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Motivation I

People associate for many reasons

· Trade

· Joint ventures

· Scientific research

Economics: 76% of published papers are coauthored (1980 - 2016).

These collaborations generate networks

· Network: representation of a set of elements and their relationships.
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But linking costs may differ across agents.

For instance, this cost may depend on

· the characteristics of the agents (types)

· the characteristics of the joint activity (complementarities).
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Assume that pairs of agents generate a joint surplus normalized to one.

Strategic creation/breaking of links (trade-off):

· Share of surplus received depends on the relative position in the
network

· Creating links to collaborate is costly.
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Motivation IV

Question: How do the stable networks look like?

Answer: It depends on the cost structure!

For example, with two types of agents, these cost structures are natural:

· Cheap links across agents of the same type

· Cheap links across agents of different types.

Stable components:

· Equitable components: always pairs and odd cycles

· Inequitable components: certain bipartite graphs. More variety with
the second cost structure than with the first.
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Literature Review

R&D Networks: Creating a link leads to a cost reduction. Firms are
ex-ante homogeneous but, ex-post, they can be homogeneous or
heterogeneous.
· Goyal and Moraga-González (2001), Goyal and Joshi (2003).

Information networks: Creating a link leads to more information
available. Cost heterogeneity directly derives from agent heterogeneity
and results in core-periphery architectures.
· Galeotti et al. (2006), Galeotti and Goyal (2010).

Bargaining networks: Creating a link may alter the bargaining power.
· Stationary networks: Manea (2011), Gauer and Hellmann (2017).
· Non-stationary networks: Kranton and Minehart (2001), Elliott and
Nava (2019).
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The Model

Two-stage game:

· t = 0: players form undirected, costly links.

· The linking cost differs.

· t = 1, 2, ...: given the network formed in the previous stage,
infinite-horizon game in which pairs of players connected through a
link are randomly matched to bargain à la Manea.
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Networks I

Network, g : simple, undirected graph.

Set of players: N = {1, 2, ..., n}, n ≥ 3, representing the nodes.

Link between players i , j ∈ N, i 6= j : ij = ji , representing the
collaborations.

Neighbors of player i in network g : Ni (g) = {j ∈ N | ij ∈ g}

· Degree of player i : ηi (g) = |Ni (g)|
· A player is isolated if she has no neighbors.

Path: sequence of links which joins a sequence of nodes which are all
distinct.
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Networks II

Component of network g : subnetwork in which any two nodes are
connected to each other by paths, and which is connected to no
additional nodes in the network.

Notation:
· g + ij := g ∪ {ij}: network obtained by adding link ij to the existing
network g

· g − ij := g \ {ij}: network obtained by deleting link ij from the
existing network g .
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Bargaining I

Given a network g , bargaining stage à la Manea

· Each period t = 1, 2, ... a link ij ∈ g is selected with the same
probability and then, with probability 1/2, one of the two players is
chosen to make an offer on how to split the unitary joint surplus

· If rejected, both players get zero; if accepted, both players exit the
game with the shares agreed upon and they are replaced in the next
period by identical players.

The stationary equilibrium payoffs are denoted by v .
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Bargaining II

With sufficiently patient agents, the algorithm below calculates the
equilibrium payoffs v .

For every network g and subset of nodes M, let Lg (M) = ∪i∈MNi (g) be
the set of neighbors of the nodes in M. M is g -independent if there is no
link between two nodes in M.

Intuitively, at each step the algorithm identifies the players in strongest
and weakest bargaining positions by minimizing |Lgs (Ms)|/|Ms |.

At each step s, given the network gs

· Identify a non-empty, g -independent set Ms such that
rs = |Lgs (Ms)|/|Ms | is minimized
· If rs ≥ 1, each player gets payoff 1/2 and stop. Otherwise, players in
Ms get payoff xs = rs/(1+ rs) = |Lgs (Ms)|/(|Lgs (Ms)|+ |Ms |) < 1/2
and players in Lgs (Ms) get 1− xs = |Ms |/(|Lgs (Ms)|+ |Ms |) > 1/2
· Set gs+1 = gs \ (Ms ∪ Lgs (Ms)) and repeat.
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Bargaining III

The algorithm finishes in one step:
M1 = {3, 4, 5}, Lg1(M1) = {1, 2}; r1 = 2/3, x1 = 2/5, 1− x1 = 3/5
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Bargaining IV

The algorithm finishes in two steps:
M1 = {3, 4}, Lg1(M1) = {1}; r1 = 1/2, x1 = 1/3, 1− x1 = 2/3

M2 = {5}, Lg2(M2) = {2}; r1 = 1, x1 = 1− x1 = 1/2
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Stability

When forming the network, the players anticipate the outcome of the
bargaining stage v .

The linking decisions reflect the following trade-off:
· creating a link may alter the bargaining power
· creating a link to collaborate is costly.

At t = 0, each player i tries to maximize

ui (g) := vi (g)−
∑

j∈Ni (g)

c ij .

A network g is pairwise stable if:
· for all ij ∈ g : ui (g) ≥ ui (g − ij) and uj (g) ≥ uj (g − ij), and
· for all ij /∈ g : if ui (g + ij) > ui (g), then uj (g + ij) < uj (g)
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General Results: Architecture of Stable Components

These results about the architecture of the stable components do not
depend on the cost structure, but the specific stability condition does.

For all stable components, the algorithm finishes in one step.

Equitable components (exhaustive list)
· pairs
· odd cycles

Inequitable components: certain bipartite graphs such that all its leaves
are elements of M.
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Costs

Assume two types of players, E and T , such that N = NE ∪̇NT .

The linking cost may include several components. For instance,

· Communication costs

· Cost that depends on the complementarities required to complete
the collaboration.

One can assume that it’s easier to communicate with someone of the
same type.

If strong complementarities among skills are necessary to complete the
collaboration and generate the surplus, then the linking cost may be
cheaper among agents of different types.

Anyhow, each link has a cost either c or c for both players, with c < c .
This cost depends only on the types of the adjacent players.
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Equitable components: essentially the same as in Gauer and Hellmann.
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Cheap Connections with Same Type: Components II

Inequitable components: essentially the same as in Gauer and Hellmann.

c = 1/6 c = 1/6
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Cheap Connections with Same Type: Networks I

Very minor differences with respect to Gauer and Hellmann.

There can be networks formed by pairs of the same types and two isolated
nodes of different types (the former depend on c and the latter on c).

However, if there are pairs of players of different types, there can only be
one isolated node.
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Cheap Connections with Same Type: Networks II

Very minor differences with respect to Gauer and Hellmann.

There can be networks formed by odd cycles of the same types and two
isolated nodes of different types (the former depend on c and the latter
on c).

If in addition to the cycles of same types there are pairs, all of the same
type, there can only be one isolated node of type different from the pairs.
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Cheap Connections with Same Type: Networks II

Very minor differences with respect to Gauer and Hellmann.

Given the maximum size of the cycles that connect players of the same
type, the cycles that connect players of different types cannot be larger.

A single line of length three that connects players of different types can
coexist with cycles of size three that connect players of different types
and with cycles that connect players of the same type. If c is large
enough, there can also be pairs.
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Cheap Connections with Different Type: Components I

Pairs and odd cycles are still the only equitable components.

But now there are inequitable components besides the line of length
three!

Odd lines of length m

M1 = {blacks}
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Cheap Connections with Different Type: Components II

M1 = {blacks}
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Cheap Connections with Different Type: Components III

Stars with n leaves, all of the same type and different from the root

M1 = {leaves}
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Cheap Connections with Different Type: Components IV
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Conclusions

· Model to study the stability of the network resulting from agents
decisions to collaborate.

· Factors like the agents’ heterogeneity and the severity of the
complementarities determine the overall cost structure.

· When it is cheaper in the overall to collaborate between types that
are alike, there are more architectures of equitable components.

· When it is cheaper in the overall to collaborate between types that
are different, there are more architectures of inequitable components.
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Future Work

· Characterize the inequitable components as much as possible.

· Empirical check.
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