Introd	uction
0000	

The Model

Results

Conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stable Networks with Bargaining and Heterogeneous Costs

Erik Darpö, Alvaro Domínguez & María Martín-Rodríguez

Nagoya University

May 22, 2020 Microeconomics Workshop, Keio University

Motivation I	Introduction	The Model	Results	Conclusions
Motivation I	•00000	00000000	00000000000	000
	Motivation I			

Introduction	The Model	Results	Conclusions
•00000	00000000	00000000000	000
Motivation I			

· Trade

Introduction	The Model	Results	Conclusions
•00000	00000000	00000000000	000
Motivation I			

People associate for many reasons

- · Trade
- · Joint ventures

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation I			

- \cdot Trade
- · Joint ventures
- · Scientific research

Economics: 76% of published papers are coauthored (1980 - 2016).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	The Model	Results	Conclusions
•00000	00000000	00000000000	000
Motivation I			

- \cdot Trade
- · Joint ventures
- · Scientific research

Economics: 76% of published papers are coauthored (1980 - 2016).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

These collaborations generate networks

Introduction	The Model	Results	Conclusions
•••••	00000000	00000000000	000
Motivation I			

- \cdot Trade
- Joint ventures
- · Scientific research

Economics: 76% of published papers are coauthored (1980 - 2016).

These collaborations generate networks

 $\cdot\,$ Network: representation of a set of elements and their relationships.

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation II			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

But linking costs may differ across agents.

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation II			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

But linking costs may differ across agents.

For instance, this cost may depend on

Introduction	The Model	Results	Conclusions
00000	00000000	0000000000	000
Motivation II			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

But linking costs may differ across agents.

For instance, this cost may depend on

• the characteristics of the agents (types)

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation II			

But linking costs may differ across agents.

For instance, this cost may depend on

- the characteristics of the agents (types)
- · the characteristics of the joint activity (complementarities).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation II			

But linking costs may differ across agents.

For instance, this cost may depend on

- the characteristics of the agents (types)
- · the characteristics of the joint activity (complementarities).

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation III			

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation III			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strategic creation/breaking of links (trade-off):

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Motivation III			

Strategic creation/breaking of links (trade-off):

 \cdot Share of surplus received depends on the relative position in the network

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	The Model	Results	Conclusions
00000	00000000	00000000000	000
Motivation III			

Strategic creation/breaking of links (trade-off):

 \cdot Share of surplus received depends on the relative position in the network

· Creating links to collaborate is costly.

Motivation IV	Introduction	The Model	Results	Conclusions
Motivation IV	000000	00000000	00000000000	000
	Motivation IV			

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Motivation IV			

Answer: It depends on the cost structure!

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Motivation IV			

Answer: It depends on the cost structure!

For example, with two types of agents, these cost structures are natural:

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Motivation IV			

Answer: It depends on the cost structure!

For example, with two types of agents, these cost structures are natural:

・ロト・日本・ヨト・ヨト・日・ つへぐ

 $\cdot\,$ Cheap links across agents of the same type

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Motivation IV			

Answer: It depends on the cost structure!

For example, with two types of agents, these cost structures are natural:

・ロト・日本・ヨト・ヨト・日・ つへぐ

- $\cdot\,$ Cheap links across agents of the same type
- · Cheap links across agents of different types.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Motivation IV			

Answer: It depends on the cost structure!

For example, with two types of agents, these cost structures are natural:

- $\cdot\,$ Cheap links across agents of the same type
- · Cheap links across agents of different types.

Stable components:

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Motivation IV			

Answer: It depends on the cost structure!

For example, with two types of agents, these cost structures are natural:

- $\cdot\,$ Cheap links across agents of the same type
- · Cheap links across agents of different types.

Stable components:

· Equitable components: always pairs and odd cycles

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Motivation IV			

Answer: It depends on the cost structure!

For example, with two types of agents, these cost structures are natural:

- $\cdot\,$ Cheap links across agents of the same type
- · Cheap links across agents of different types.

Stable components:

- · Equitable components: always pairs and odd cycles
- · Inequitable components: certain bipartite graphs. More variety with the second cost structure than with the first.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Literature Review	V		

R&D Networks: Creating a link leads to a cost reduction. Firms are ex-ante homogeneous but, ex-post, they can be homogeneous or heterogeneous.

· Goyal and Moraga-González (2001), Goyal and Joshi (2003).

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Literature Review	1		

R&D Networks: Creating a link leads to a cost reduction. Firms are ex-ante homogeneous but, ex-post, they can be homogeneous or heterogeneous.

· Goyal and Moraga-González (2001), Goyal and Joshi (2003).

Information networks: Creating a link leads to more information available. Cost heterogeneity directly derives from agent heterogeneity and results in core-periphery architectures.

· Galeotti et al. (2006), Galeotti and Goyal (2010).

Introduction	The Model	Results	Conclusions
000000			
Literature Review	/		

R&D Networks: Creating a link leads to a cost reduction. Firms are ex-ante homogeneous but, ex-post, they can be homogeneous or heterogeneous.

· Goyal and Moraga-González (2001), Goyal and Joshi (2003).

Information networks: Creating a link leads to more information available. Cost heterogeneity directly derives from agent heterogeneity and results in core-periphery architectures.

· Galeotti et al. (2006), Galeotti and Goyal (2010).

Bargaining networks: Creating a link may alter the bargaining power.

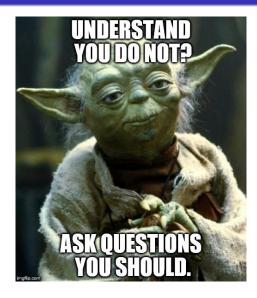
- · Stationary networks: Manea (2011), Gauer and Hellmann (2017).
- Non-stationary networks: Kranton and Minehart (2001), Elliott and Nava (2019).

Introduction

Questions

The Model

Results 0000000000000 Conclusions



Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
The Model			

Two-stage game:

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ����

Introduction	The Model	Results	Conclusions
000000	•0000000	00000000000	000
The Model			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Two-stage game:

· t = 0: players form undirected, costly links.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
The Model			

Two-stage game:

- · t = 0: players form undirected, costly links.
 - · The linking cost differs.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
The Model			

Two-stage game:

- · t = 0: players form undirected, costly links.
 - · The linking cost differs.
- t = 1, 2, ...: given the network formed in the previous stage, infinite-horizon game in which pairs of players connected through a link are randomly matched to bargain *à la Manea*.

Introduction	The Model	Results	Conclusions
000000	0000000	00000000000	000
Networks I			

Network, *g*: simple, undirected graph.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Networks I			

Network, *g*: simple, undirected graph.

Set of players: $N = \{1, 2, ..., n\}$, $n \ge 3$, representing the nodes.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Networks I			

Network, *g*: simple, undirected graph.

Set of players: $N = \{1, 2, ..., n\}$, $n \ge 3$, representing the nodes.

Link between players $i, j \in N$, $i \neq j$: ij = ji, representing the collaborations.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Networks I			

Network, *g*: simple, undirected graph.

Set of players: $N = \{1, 2, ..., n\}$, $n \ge 3$, representing the nodes.

Link between players $i, j \in N$, $i \neq j$: ij = ji, representing the collaborations.

Neighbors of player *i* in network *g*: $N_i(g) = \{j \in N \mid ij \in g\}$

- · Degree of player i: $\eta_i(g) = |N_i(g)|$
- \cdot A player is isolated if she has no neighbors.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Networks I			

Network, *g*: simple, undirected graph.

Set of players: $N = \{1, 2, ..., n\}$, $n \ge 3$, representing the nodes.

Link between players $i, j \in N$, $i \neq j$: ij = ji, representing the collaborations.

Neighbors of player *i* in network *g*: $N_i(g) = \{j \in N \mid ij \in g\}$

- · Degree of player i: $\eta_i(g) = |N_i(g)|$
- · A player is isolated if she has no neighbors.

Path: sequence of links which joins a sequence of nodes which are all distinct.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Networks II			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Component of network g: subnetwork in which any two nodes are connected to each other by paths, and which is connected to no additional nodes in the network.

Introduction	The Model	Results	Conclusions
000000	0000000	00000000000	000
Networks II			

Component of network g: subnetwork in which any two nodes are connected to each other by paths, and which is connected to no additional nodes in the network.

Notation:

· $g + ij := g \cup \{ij\}$: network obtained by adding link ij to the existing network g

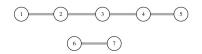
 $g - ij := g \setminus \{ij\}$: network obtained by deleting link ij from the existing network g.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Networks II			

Component of network g: subnetwork in which any two nodes are connected to each other by paths, and which is connected to no additional nodes in the network.

Notation:

- · $g + ij := g \cup \{ij\}$: network obtained by adding link ij to the existing network g
- $g ij := g \setminus \{ij\}$: network obtained by deleting link ij from the existing network g.



Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	
Bargaining I			

Introduction	⊤he Model	Results	Conclusions
000000	000 0 00000	00000000000	000
Bargaining I			

• Each period t = 1, 2, ... a link $ij \in g$ is selected with the same probability and then, with probability 1/2, one of the two players is chosen to make an offer on how to split the unitary joint surplus

Introduction	The Model	Results	Conclusions
000000	0000000	00000000000	000
Bargaining I			

- Each period t = 1, 2, ... a link $ij \in g$ is selected with the same probability and then, with probability 1/2, one of the two players is chosen to make an offer on how to split the unitary joint surplus
- If rejected, both players get zero; if accepted, both players exit the game with the shares agreed upon and they are replaced in the next period by identical players.

Introduction	The Model	Results	Conclusions
000000	0000000	00000000000	000
Bargaining I			

- Each period t = 1, 2, ... a link $ij \in g$ is selected with the same probability and then, with probability 1/2, one of the two players is chosen to make an offer on how to split the unitary joint surplus
- If rejected, both players get zero; if accepted, both players exit the game with the shares agreed upon and they are replaced in the next period by identical players.

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

The stationary equilibrium payoffs are denoted by v.

Introduction	The Model	Results	Conclusions
	00000000		
Bargaining II			

(ロ)、(型)、(E)、(E)、 E) のQ(C)

With sufficiently patient agents, the algorithm below calculates the equilibrium payoffs v.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Bargaining II			

For every network g and subset of nodes M, let $L^{g}(M) = \bigcup_{i \in M} N_{i}(g)$ be the set of neighbors of the nodes in M. M is g-independent if there is no link between two nodes in M.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Bargaining II			

For every network g and subset of nodes M, let $L^{g}(M) = \bigcup_{i \in M} N_{i}(g)$ be the set of neighbors of the nodes in M. M is g-independent if there is no link between two nodes in M.

Intuitively, at each step the algorithm identifies the players in strongest and weakest bargaining positions by minimizing $|L^{g_s}(M_s)|/|M_s|$.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Bargaining II			

For every network g and subset of nodes M, let $L^{g}(M) = \bigcup_{i \in M} N_{i}(g)$ be the set of neighbors of the nodes in M. M is g-independent if there is no link between two nodes in M.

Intuitively, at each step the algorithm identifies the players in strongest and weakest bargaining positions by minimizing $|L^{g_s}(M_s)|/|M_s|$.

At each step s, given the network g_s

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Bargaining II			

For every network g and subset of nodes M, let $L^{g}(M) = \bigcup_{i \in M} N_{i}(g)$ be the set of neighbors of the nodes in M. M is g-independent if there is no link between two nodes in M.

Intuitively, at each step the algorithm identifies the players in strongest and weakest bargaining positions by minimizing $|L^{g_s}(M_s)|/|M_s|$.

At each step s, given the network g_s

 \cdot Identify a non-empty, g-independent set M_{s} such that

 $r_s = |L^{g_s}(M_s)|/|M_s|$ is minimized

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Bargaining II			

For every network g and subset of nodes M, let $L^{g}(M) = \bigcup_{i \in M} N_{i}(g)$ be the set of neighbors of the nodes in M. M is g-independent if there is no link between two nodes in M.

Intuitively, at each step the algorithm identifies the players in strongest and weakest bargaining positions by minimizing $|L^{g_s}(M_s)|/|M_s|$.

At each step s, given the network g_s

- · Identify a non-empty, g-independent set M_s such that $r_s = |L^{g_s}(M_s)|/|M_s|$ is minimized
- · If $r_s \ge 1$, each player gets payoff 1/2 and stop. Otherwise, players in M_s get payoff $x_s = r_s/(1+r_s) = |L^{g_s}(M_s)|/(|L^{g_s}(M_s)| + |M_s|) < 1/2$ and players in $L^{g_s}(M_s)$ get $1 - x_s = |M_s|/(|L^{g_s}(M_s)| + |M_s|) > 1/2$

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Bargaining II			

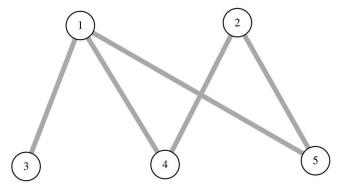
For every network g and subset of nodes M, let $L^{g}(M) = \bigcup_{i \in M} N_{i}(g)$ be the set of neighbors of the nodes in M. M is g-independent if there is no link between two nodes in M.

Intuitively, at each step the algorithm identifies the players in strongest and weakest bargaining positions by minimizing $|L^{g_s}(M_s)|/|M_s|$.

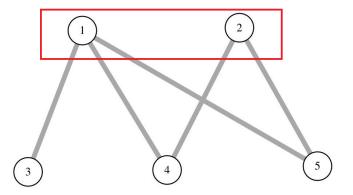
At each step s, given the network g_s

- · Identify a non-empty, g-independent set M_s such that $r_s = |L^{g_s}(M_s)|/|M_s|$ is minimized
- · If $r_s \ge 1$, each player gets payoff 1/2 and stop. Otherwise, players in M_s get payoff $x_s = r_s/(1+r_s) = |L^{g_s}(M_s)|/(|L^{g_s}(M_s)| + |M_s|) < 1/2$ and players in $L^{g_s}(M_s)$ get $1 - x_s = |M_s|/(|L^{g_s}(M_s)| + |M_s|) > 1/2$
- \cdot Set $g_{s+1} = g_s \setminus (M_s \cup L^{g_s}(M_s))$ and repeat.

Introduction	The Model	Results	Conclusions
	000000000		
Bargaining III			

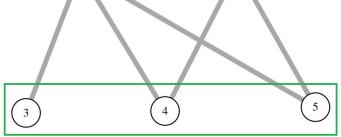


Introduction	The Model	Results	Conclusions
000000	00000●000	00000000000	000
Bargaining III			



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction 000000	The Model 00000●000	Results 00000000000	Conclusions
Bargaining III			
		2	



The algorithm finishes in one step: $M_1 = \{3,4,5\}, \ L^{g_1}(M_1) = \{1,2\}; \ r_1 = 2/3, \ x_1 = 2/5, \ 1-x_1 = 3/5$

Introduction 000000	The Model 000000●00	Results 00000000000	Conclusions
Bargaining IV			
	$\begin{pmatrix} 1 \end{pmatrix}$	$\left(2\right)$	
	X	\mathbf{i}	

3

4

(5)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Introduction 000000	The Model 000000●00	Results 00000000000	Conclusions
Bargaining IV			
	$\begin{pmatrix} 1 \end{pmatrix}$	$\left(\begin{array}{c}2\end{array}\right)$	
		7	
(3) (4)	5	

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲目 ▶ ◆□ ▶

Introduction 000000	The Model 000000●00	Results 00000000000	Conclusions
Bargaining IV			
		\bigcirc	
		$\backslash \rangle$	

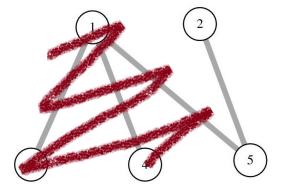
4

3

(5)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Introduction	The Model	Results	Conclusions
000000	000000000	00000000000	000
Bargaining IV			



The algorithm finishes in two steps: $M_1 = \{3,4\}, \ L^{g_1}(M_1) = \{1\}; \ r_1 = 1/2, \ x_1 = 1/3, \ 1 - x_1 = 2/3$ $M_2 = \{5\}, \ L^{g_2}(M_2) = \{2\}; \ r_1 = 1, \ x_1 = 1 - x_1 = 1/2$

・ロト・(四ト・(川下・(日下))

Introduction	The Model	Results	Conclusions
	000000000		
Stability			

Introduction	The Model	Results	Conclusions
000000	000000000	00000000000	000
Stability			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The linking decisions reflect the following trade-off:

- $\cdot\,$ creating a link may alter the bargaining power
- $\cdot\,$ creating a link to collaborate is costly.

Introduction	The Model	Results	Conclusions
000000	000000000	00000000000	000
Stability			

The linking decisions reflect the following trade-off:

- $\cdot\,$ creating a link may alter the bargaining power
- $\cdot\,$ creating a link to collaborate is costly.

At t = 0, each player *i* tries to maximize

$$u_{i}(g) := v_{i}(g) - \sum_{j \in N_{i}(g)} c^{ij}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	The Model	Results	Conclusions
000000	000000000	00000000000	000
Stability			

The linking decisions reflect the following trade-off:

- $\cdot\,$ creating a link may alter the bargaining power
- $\cdot\,$ creating a link to collaborate is costly.

At t = 0, each player *i* tries to maximize

$$u_{i}(g) := v_{i}(g) - \sum_{j \in N_{i}(g)} c^{ij}.$$

A network g is *pairwise stable* if:

- \cdot for all $ij \in g: u_i\left(g
 ight) \geq u_i\left(g-ij
 ight)$ and $u_j\left(g
 ight) \geq u_j\left(g-ij
 ight)$, and
- $\cdot \text{ for all } ij \notin g: \text{ if } u_i\left(g+ij\right) > u_i\left(g\right), \text{ then } u_j\left(g+ij\right) < u_j\left(g\right)$

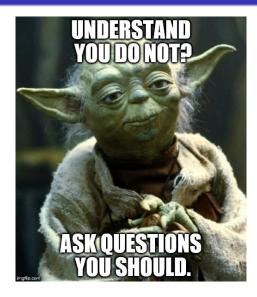
Introduction

Questions

The Model

Results

Conclusions



Introduction	The Model	Results	Conclusions
000000	000000000	00000000000	
General Results:	Architecture of St	able Components	

Introduction	The Model	Results	Conclusions
000000	000000000	00000000000	000
General Results:	Architecture of St	table Components	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

For all stable components, the algorithm finishes in one step.

Introduction	The Model	Results	Conclusions
000000	000000000	●00000000000	000
General Results:	Architecture of St	able Components	

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

For all stable components, the algorithm finishes in one step.

Equitable components (exhaustive list)

- pairs
- · odd cycles

Introduction	The Model	Results	Conclusions
000000	000000000	●00000000000	000
General Results:	Architecture of St	able Components	

For all stable components, the algorithm finishes in one step.

Equitable components (exhaustive list)

- pairs
- odd cycles

Inequitable components: certain bipartite graphs such that all its leaves are elements of M.

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Costs			

Assume two types of players, *E* and *T*, such that $N = N_E \dot{\cup} N_T$.

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Costs			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Assume two types of players, *E* and *T*, such that $N = N_E \dot{\cup} N_T$.

The linking cost may include several components. For instance,

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Costs			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Assume two types of players, *E* and *T*, such that $N = N_E \dot{\cup} N_T$.

The linking cost may include several components. For instance,

 \cdot Communication costs

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Costs			

Assume two types of players, *E* and *T*, such that $N = N_E \dot{\cup} N_T$.

The linking cost may include several components. For instance,

- · Communication costs
- $\cdot\,$ Cost that depends on the complementarities required to complete the collaboration.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Costs			

Assume two types of players, *E* and *T*, such that $N = N_E \dot{\cup} N_T$.

The linking cost may include several components. For instance,

- · Communication costs
- \cdot Cost that depends on the complementarities required to complete the collaboration.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

One can assume that it's easier to communicate with someone of the same type.

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Costs			

Assume two types of players, *E* and *T*, such that $N = N_E \dot{\cup} N_T$.

The linking cost may include several components. For instance,

- · Communication costs
- \cdot Cost that depends on the complementarities required to complete the collaboration.

One can assume that it's easier to communicate with someone of the same type.

If strong complementarities among skills are necessary to complete the collaboration and generate the surplus, then the linking cost may be cheaper among agents of different types.

Introduction	The Model	Results	Conclusions
000000	00000000	0000000000	000
Costs			

Assume two types of players, *E* and *T*, such that $N = N_E \dot{\cup} N_T$.

The linking cost may include several components. For instance,

- · Communication costs
- \cdot Cost that depends on the complementarities required to complete the collaboration.

One can assume that it's easier to communicate with someone of the same type.

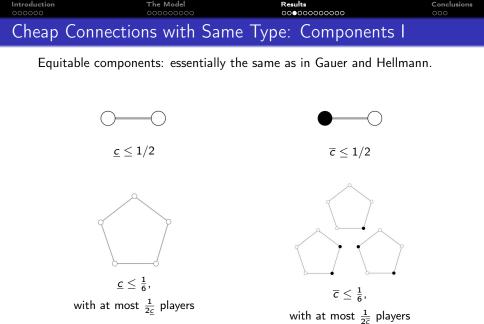
If strong complementarities among skills are necessary to complete the collaboration and generate the surplus, then the linking cost may be cheaper among agents of different types.

Anyhow, each link has a cost either \underline{c} or \overline{c} for both players, with $\underline{c} < \overline{c}$. This cost depends only on the types of the adjacent players.
 Introduction
 The Model
 Results
 Conclusions

 00000000
 0000000000
 000
 000

 Cheap Connections with Same Type:
 Components I
 000

Equitable components: essentially the same as in Gauer and Hellmann.



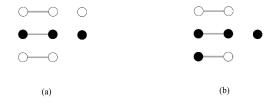
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	The Model	Results	Conclusions
000000	000000000	000●0000000	
Cheap Connecti	ons with Same	Type: Components I	

Inequitable components: essentially the same as in Gauer and Hellmann.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Very minor differences with respect to Gauer and Hellmann.



There can be networks formed by pairs of the same types and two isolated nodes of different types (the former depend on \underline{c} and the latter on \overline{c}).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Very minor differences with respect to Gauer and Hellmann.

There can be networks formed by pairs of the same types and two isolated nodes of different types (the former depend on \underline{c} and the latter on \overline{c}).

However, if there are pairs of players of different types, there can only be one isolated node.

Very minor differences with respect to Gauer and Hellmann.

There can be networks formed by odd cycles of the same types and two isolated nodes of different types (the former depend on \underline{c} and the latter on \overline{c}).

If in addition to the cycles of same types there are pairs, all of the same type, there can only be one isolated node of type different from the pairs.

Very minor differences with respect to Gauer and Hellmann.

Given the maximum size of the cycles that connect players of the same type, the cycles that connect players of different types cannot be larger.

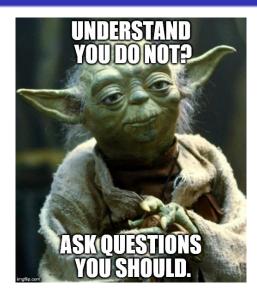
A single line of length three that connects players of different types can coexist with cycles of size three that connect players of different types and with cycles that connect players of the same type. If \underline{c} is large enough, there can also be pairs.

Introduction

Questions

The Model

Results 000000●00000 Conclusions



◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Pairs and odd cycles are still the only equitable components.

But now there are inequitable components besides the line of length three!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

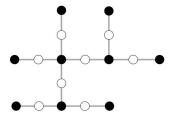
Pairs and odd cycles are still the only equitable components.

But now there are inequitable components besides the line of length three!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

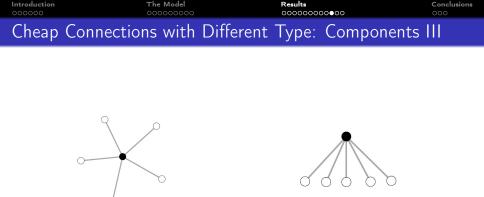
Odd lines of length m

 $M_1 = \{ blacks \}$



 $M_1 = \{ blacks \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Stars with n leaves, all of the same type and different from the root

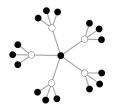
 $M_1 = \{\text{leaves}\}$

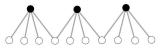
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Introduction
 The Model
 Results
 Conclusions

 Observation
 Observations
 Observations
 Observations
 Observations

 Cheap Connections with Different Type:
 Components IV
 Observations
 Observations
 Observations



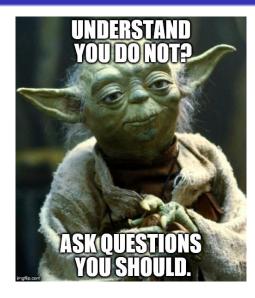


Introduction

Questions

The Model

Results 0000000000000 Conclusions



Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	•••
Conclusions			

 $\cdot\,$ Model to study the stability of the network resulting from agents decisions to collaborate.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	• 0 0
Conclusions			

 $\cdot\,$ Model to study the stability of the network resulting from agents decisions to collaborate.

• Factors like the agents' heterogeneity and the severity of the complementarities determine the overall cost structure.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	00
Conclusions			

- $\cdot\,$ Model to study the stability of the network resulting from agents decisions to collaborate.
- Factors like the agents' heterogeneity and the severity of the complementarities determine the overall cost structure.
- When it is cheaper in the overall to collaborate between types that are alike, there are more architectures of equitable components.

Conclusions	Introduction	The Model	Results	Conclusions
Conclusions	000000	00000000	00000000000	000
	Conclusions			

- \cdot Model to study the stability of the network resulting from agents decisions to collaborate.
- Factors like the agents' heterogeneity and the severity of the complementarities determine the overall cost structure.
- When it is cheaper in the overall to collaborate between types that are alike, there are more architectures of equitable components.
- When it is cheaper in the overall to collaborate between types that are different, there are more architectures of inequitable components.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Future Work			

· Characterize the inequitable components as much as possible.

Introduction	The Model	Results	Conclusions
000000	00000000	00000000000	000
Future Work			

· Characterize the inequitable components as much as possible.

· Empirical check.

The Model Results THANK YOU! Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで