Sophistication and Cautiousness in College Applications

Yan Song Kentaro Tomoeda Xiaoyu Xia

Jinan University University of Technology Sydney Chinese University of Hong Kong

May 8, 2020

Research Questions

Q1: What is the impact of matching policy changes on the matching outcomes? Is it explained by the standard equilibrium?

Research Questions

Q1: What is the impact of matching policy changes on the matching outcomes? Is it explained by the standard equilibrium?

Q2: If not, what behavioral theories explain it? How much does each behavioral component affect the welfare impact of the reforms?

Research Questions

Q1: What is the impact of matching policy changes on the matching outcomes? Is it explained by the standard equilibrium?

Q2: If not, what behavioral theories explain it? How much does each behavioral component affect the welfare impact of the reforms?

▶ We answer these in the context of Chinese college admission reforms.

College Admissions in China

▶ 3m seats in more than 1000 universities

College Admissions in China

▶ 3m seats in more than 1000 universities

Each university's seats are divided into 33 province-wide markets.

College Admissions in China

College Admissions in China

Students participate in a centralized admission system in their home province.

College Admissions in China

- Students participate in a centralized admission system in their home province.
- Single exam score is used as common priority in each province.

Chinese College Admission Reforms

• Each province has the autonomy to design their matching mechanism.

- Each province has the autonomy to design their matching mechanism.
- ▶ Reforms: increase of the "parallel" options e

- Each province has the autonomy to design their matching mechanism.
- ▶ Reforms: increase of the "parallel" options e
- Chinese parallel mechanism with e (Chen and Kesten, 2017):
 - 1. Run DA (Deferred Acceptance) with the first *e* choices. Finalize the assignments.
 - 2. With the remaining seats and students, run DA with the next *e* choices, and so on.

- Each province has the autonomy to design their matching mechanism.
- ▶ Reforms: increase of the "parallel" options e
- Chinese parallel mechanism with e (Chen and Kesten, 2017):
 - 1. Run DA (Deferred Acceptance) with the first *e* choices. Finalize the assignments.
 - 2. With the remaining seats and students, run DA with the next *e* choices, and so on.
 - e = 1: IA (Immediate Acceptance) mechanism

- Each province has the autonomy to design their matching mechanism.
- ▶ Reforms: increase of the "parallel" options e
- Chinese parallel mechanism with e (Chen and Kesten, 2017):
 - 1. Run DA (Deferred Acceptance) with the first *e* choices. Finalize the assignments.
 - 2. With the remaining seats and students, run DA with the next *e* choices, and so on.
 - e = 1: IA (Immediate Acceptance) mechanism
 - $e = \infty$: DA mechanism

Chinese College Admission Reforms

Between 2003-2018, all provinces shifted from IA to some parallel mechanism. In 2011:

Main Results

1. The standard equilibrium outcome is unique and the same across any parallel mechanisms.

Main Results

1. The standard equilibrium outcome is unique and the same across any parallel mechanisms.

 \Rightarrow We reject this hypothesis by exploiting the policy variations. The matching became more assortative after the policy reforms.

Main Results

1. The standard equilibrium outcome is unique and the same across any parallel mechanisms.

 \Rightarrow We reject this hypothesis by exploiting the policy variations. The matching became more assortative after the policy reforms.

2. To explain this, we consider sincere and cautious students, who may play suboptimally.

Main Results

1. The standard equilibrium outcome is unique and the same across any parallel mechanisms.

 \Rightarrow We reject this hypothesis by exploiting the policy variations. The matching became more assortative after the policy reforms.

2. To explain this, we consider sincere and cautious students, who may play suboptimally.

 \Rightarrow Structural estimation shows that both behavioral types are important. Students benefit from the reforms if their scores are high, and they are either sincere or cautious.

Related Literature

- Chinese college admissions: Chen and Kesten (2017; forthcoming), Wu and Zhong (2014), Lien, Zheng and Zhong (2017)
- Empirical school choice:
 - Submitted preference data: Ajayi (2013), Burgess et al. (2015), Akyol and Krishna (2017), Ajayi and Sidibé (2017), He (2017), Hwang (2017), Agarwal and Somaini (2018), Calsamiglia et al. (2018), Fack et al. (2018), Kapor et al. (2018), Luflade (2018)
 - Outcome data: Akyol and Krishna (2017), Fack et al. (2018)
- Deviations from equilibrium in school choice: Abdulkadiroğlu et al. (2006), Pathak and Sönmez (2008), He (2017), Kapor et al. (2018)

Plan of the Talk

- 1. Introduction
- 2. Background and Data
- 3. Equilibrium
- 4. Belief Heterogeneity and Strategic Sophistication
- 5. Welfare Analyses
- 6. Conclusion

Background of Chinese College Admissions

Most students take the National College Entrance Exam and are admitted through the centralized system.

Background of Chinese College Admissions

- Most students take the National College Entrance Exam and are admitted through the centralized system.
- The matching mechanism is run sequentially from tier-1 to tier-3 colleges.
 - Focus on tier-1 admissions.

Background of Chinese College Admissions

- Most students take the National College Entrance Exam and are admitted through the centralized system.
- The matching mechanism is run sequentially from tier-1 to tier-3 colleges.
 - Focus on tier-1 admissions.
- Policy reforms between 2003 and 2018:
 - 1. the number of parallel options
 - 2. the timing of preference submission
 - Focus on 1 and use data from known-score submissions.

Parallel Mechanism: φ^1

- Round 0: (a) Each student applies to her first choice.(b) Each college accepts applicants following its priority order up to its capacity, and rejects all other students.
- Round t: (a) Each remaining student applies to t + 1-th choice.
 (b) Each college accepts applicants following its priority order up to its remaining capacity, and rejects all other students.
- Called the Immediate Acceptance (IA) mechanism.

Parallel Mechanism: φ^e

Round 0: (a) If a student is unassigned and is yet to apply to her *e*-th choice, she applies to her most preferable college which has not rejected her.

(b) Each college tentatively accepts applicants following its priority order up to its capacity, and rejects all other students.(c) The round terminates when each student is assigned or rejected by all first *e* choices. The assignments become final.

Round t: The same procedure for remaining students and their te + 1-th to te + e-th choices.

• φ^{∞} is called the Deferred Acceptance (DA) mechanism.

Reforms and Implementation

change in <i>e</i>	1 to 3	1 to 4	1 to 5	1 to 6	3 to 5	4 to 6
# of provinces	2	8	6	2	2	1

Between 2005-2011, known-score submissions.

Reforms and Implementation

change in <i>e</i>	1 to 3	1 to 4	1 to 5	1 to 6	3 to 5	4 to 6
# of provinces	2	8	6	2	2	1

- Between 2005-2011, known-score submissions.
- ► Typically, the length of the preference lists is 2*e* or 3*e*.
 - In the structural model, we assume that tier-one colleges are so competitive that all seats are filled in Round 0 in equilibrium.

Data Source

- 1. Administrative data: all students' matched outcomes in most provinces between 2005-2011
 - includes each student's year, province, test score (ranking), assigned college

Data Source

- 1. Administrative data: all students' matched outcomes in most provinces between 2005-2011
 - includes each student's year, province, test score (ranking), assigned college
- 2. Policy data: the evolution of matching mechanisms in each province

Data Source

- 1. Administrative data: all students' matched outcomes in most provinces between 2005-2011
 - includes each student's year, province, test score (ranking), assigned college
- 2. Policy data: the evolution of matching mechanisms in each province
- 3. Other data: external measure of school quality and the distance from the student's home county to each college

Model with a Continuum of Students

▶ A unit mass of students and a finite set C of colleges

- As in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016).
- $q_c > 0$: the capacity of c with $\sum_{c \in C} q_c < 1$

Model with a Continuum of Students

▶ A unit mass of students and a finite set C of colleges

- As in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016).
- $q_c > 0$: the capacity of c with $\sum_{c \in C} q_c < 1$
- $\theta_i = (u_i, s_i) \in \Theta$: a type of student *i*

Model with a Continuum of Students

▶ A unit mass of students and a finite set C of colleges

- As in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016).
- $q_c > 0$: the capacity of c with $\sum_{c \in C} q_c < 1$
- $\theta_i = (u_i, s_i) \in \Theta$: a type of student i
 - *u_i*: utility vector from colleges

Model with a Continuum of Students

▶ A unit mass of students and a finite set C of colleges

- As in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016).
- $q_c > 0$: the capacity of c with $\sum_{c \in C} q_c < 1$

▶ $heta_i = (u_i, s_i) \in \Theta$: a type of student i

- *u_i*: utility vector from colleges
- ▶ $s_i \in [0, 1]$: the exam score, same across colleges

Model with a Continuum of Students

► A unit mass of students and a finite set C of colleges

- As in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016).
- $q_c > 0$: the capacity of c with $\sum_{c \in C} q_c < 1$
- $\theta_i = (u_i, s_i) \in \Theta$: a type of student i
 - *u_i*: utility vector from colleges
 - ▶ $s_i \in [0,1]$: the exam score, same across colleges
- η : a probability measure over Θ
 - Assume zero measure for indifferences in student preferences or scores.
 - Assume η is common knowledge among students.
Model with a Continuum of Students

► A unit mass of students and a finite set C of colleges

- As in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016).
- $q_c > 0$: the capacity of c with $\sum_{c \in C} q_c < 1$

•
$$\theta_i = (u_i, s_i) \in \Theta$$
: a type of student *i*

- u_i: utility vector from colleges
- ▶ $s_i \in [0, 1]$: the exam score, same across colleges
- η : a probability measure over Θ
 - Assume zero measure for indifferences in student preferences or scores.
 - Assume η is common knowledge among students.
- $\mu: \mathcal{C} \cup \Theta \rightarrow 2^{\Theta} \cup \mathcal{C}$: a matching
 - Assume standard technical conditions on µ.

Equilibrium

σ: Θ → Δ(R): a Bayesian strategy under φ^e R: the set of all rank-order lists

Equilibrium

- $\sigma: \Theta \to \Delta(R)$: a Bayesian strategy under φ^e
 - ► *R*: the set of all rank-order lists

Df 1. σ is an *equilibrium under* φ^e if σ gives each student a highest possible expected payoff under φ^e when all other students also play σ .

Unique Equilibrium Outcome

Prop 1. For any $e \in \{1, ..., \infty\}$, there exists a unique equilibrium matching μ^e under the parallel mechanism φ^e . Moreover, $\mu^e = \mu^{e'}$ for any $e, e' \in \{1, ..., \infty\}$.

Unique Equilibrium Outcome

Prop 1. For any $e \in \{1, ..., \infty\}$, there exists a unique equilibrium matching μ^e under the parallel mechanism φ^e . Moreover, $\mu^e = \mu^{e'}$ for any $e, e' \in \{1, ..., \infty\}$.

Unique Equilibrium Outcome

Prop 1. For any $e \in \{1, ..., \infty\}$, there exists a unique equilibrium matching μ^e under the parallel mechanism φ^e . Moreover, $\mu^e = \mu^{e'}$ for any $e, e' \in \{1, ..., \infty\}$.

• Equilibrium strategies are different across φ^{e} 's.

Unique Equilibrium Outcome

Prop 1. For any $e \in \{1, ..., \infty\}$, there exists a unique equilibrium matching μ^e under the parallel mechanism φ^e . Moreover, $\mu^e = \mu^{e'}$ for any $e, e' \in \{1, ..., \infty\}$.

- Equilibrium strategies are different across φ^e's.
- The same result holds for finite markets with complete information.

- Evidence against Prop 1
 - Colleges: compare score range and variance of admitted students details
 - Students: regress the matched colleges by the policy dummies

- Evidence against Prop 1
 - Colleges: compare score range and variance of admitted students details
 - Students: regress the matched colleges by the policy dummies
- ▶ We address the endogeneity problem of *e* in the following way:

- Evidence against Prop 1
 - Colleges: compare score range and variance of admitted students details
 - Students: regress the matched colleges by the policy dummies
- ▶ We address the endogeneity problem of *e* in the following way:
 - 1. Preference heterogeneity:
 - \Rightarrow control distance etc. by the provincial fixed effects
 - \Rightarrow control common trend by the year fixed effects

- Evidence against Prop 1
 - Colleges: compare score range and variance of admitted students details
 - Students: regress the matched colleges by the policy dummies
- ▶ We address the endogeneity problem of *e* in the following way:
 - 1. Preference heterogeneity:
 - \Rightarrow control distance etc. by the provincial fixed effects
 - \Rightarrow control common trend by the year fixed effects
 - 2. Quota changes:
 - \Rightarrow look at students who have the same set of available colleges ex post

Students' Perspective

- ► Consider 10 college groups (CGs). definition
- Consider each students group (SG): those who could be admitted to the same set of colleges.

$$y_{ijt} = \xi_1 + \xi_2 r_{jt} + D_j + D_t + \epsilon_{ijt}$$

- y_{ijt}: dummy variable of student i being matched to a given college group in province j and year t
- r_{jt} : dummy variable of e > 1 in province j and year t
- D_j: provincial fixed effects
- D_t: year fixed effects

Students' Perspective

- ► Consider 10 college groups (CGs). definition
- Consider each students group (SG): those who could be admitted to the same set of colleges.

$$y_{ijt} = \xi_1 + \xi_2 r_{jt} + D_j + D_t + \epsilon_{ijt}$$

- y_{ijt}: dummy variable of student i being matched to a given college group in province j and year t
- r_{jt} : dummy variable of e > 1 in province j and year t
- D_j: provincial fixed effects
- ► *D_t*: year fixed effects
- If (i) the preferences are captured by two fixed effects and (ii) the students play the eq in Prop 1, ξ₂ must be zero.

Students in SG1 and SG2

▶ SG1: above all the cutoffs, SG2: just below CGs 1-2

	CG 1-2	CG 3-6	CG 7-10
SG1	0.0753^{***}	-0.0549^{***}	-0.0205^{**}
	(0.0084)	(0.0096)	(0.0086)
Observations	33,660	$33,\!660$	33,660
R-squared	0.139	0.092	0.165
	CG 3-6	CG 7	CG 8-10
SG2	CG 3-6 0.1680***	CG 7 -0.0518***	CG 8-10 -0.1130***
SG2	CG $3-6$ 0.1680^{***} (0.0119)	CG 7 -0.0518^{***} (0.0170)	$\begin{array}{c} \text{CG 8-10} \\ \text{-}0.1130^{***} \\ (0.0149) \end{array}$
SG2 Observations	$\begin{array}{c} {\rm CG} \ 3-6\\ 0.1680^{***}\\ (0.0119)\\ 20,709 \end{array}$	CG 7 -0.0518*** (0.0170) 20,709	CG 8-10 -0.1130*** (0.0149) 20,709

Students in SG1 and SG2

► SG1: above all the cutoffs, SG2: just below CGs 1-2

	CG 1-2	CG 3-6	CG 7-10
SG1	0.0753***	-0.0549***	-0.0205**
	(0.0084)	(0.0096)	(0.0086)
Observations	33,660	33,660	33,660
R-squared	0.139	0.092	0.165
	CG 3-6	CG 7	CG 8-10
SG2	0.1680^{***}	-0.0518^{***}	-0.1130***
	(0.0119)	(0.0170)	(0.0149)
Observations	20,709	20,709	20,709
R-squared	0.337	0.160	0.342

Shift from lower ranked colleges to higher ranked colleges.

Students in SG3 and SG4

▶ SG3: just below CGs 1-6, SG4: just below CGs 1-7

	CG 7	CG 8	CG 9-10
SG3	0.0725^{***}	0.0744^{***}	-0.146^{***}
	(0.0011)	(0.0020)	(0.0021)
Observations	727,024	727,024	727,024
R-squared	0.084	0.043	0.062
	CG 8	CG 9	CG 10
SG4	0.0367^{***}	0.1190^{***}	-0.1540^{***}
	(0.0030)	(0.0040)	(0.0044)
Observations	$435,\!269$	$435,\!269$	435,269
R-squared	0.047	0.055	0.083

Students in SG3 and SG4

▶ SG3: just below CGs 1-6, SG4: just below CGs 1-7

	CG 7	CG 8	CG 9-10
SG3	0.0725^{***}	0.0744^{***}	-0.146^{***}
	(0.0011)	(0.0020)	(0.0021)
Observations	727,024	$727,\!024$	$727,\!024$
R-squared	0.084	0.043	0.062
	CG 8	CG 9	CG 10
SG4	0.0367^{***}	0.1190^{***}	-0.1540^{***}
	(0.0030)	(0.0040)	(0.0044)
Observations	$435,\!269$	$435,\!269$	435,269
R-squared	0.047	0.055	0.083

 Consistent patterns: matchings became more assortative after the reforms.

Model Extensions

1. Sincere applications

2. Belief Heterogeneity (+ Maxmin Preferences)

Model Extensions

- Have been observed and theoretically analyzed in school choice (Abdulkadiroğlu et al., 2006; Pathak and Sönmez, 2008).
- 2. Belief Heterogeneity (+ Maxmin Preferences)

Model Extensions

- Have been observed and theoretically analyzed in school choice (Abdulkadiroğlu et al., 2006; Pathak and Sönmez, 2008).
- But would not explain the patterns of those in SG1.
- 2. Belief Heterogeneity (+ Maxmin Preferences)

Model Extensions

- Have been observed and theoretically analyzed in school choice (Abdulkadiroğlu et al., 2006; Pathak and Sönmez, 2008).
- But would not explain the patterns of those in SG1.
- 2. Belief Heterogeneity (+ Maxmin Preferences)
 - Relaxes the common prior assumption.

Model Extensions

1. Sincere applications

- Have been observed and theoretically analyzed in school choice (Abdulkadiroğlu et al., 2006; Pathak and Sönmez, 2008).
- But would not explain the patterns of those in SG1.

2. Belief Heterogeneity (+ Maxmin Preferences)

- Relaxes the common prior assumption.
- Recently discussed in the empirical school choice literature (He, 2017; Kapor et al., 2018).

Model Extensions

- Have been observed and theoretically analyzed in school choice (Abdulkadiroğlu et al., 2006; Pathak and Sönmez, 2008).
- But would not explain the patterns of those in SG1.
- 2. Belief Heterogeneity (+ Maxmin Preferences)
 - Relaxes the common prior assumption.
 - Recently discussed in the empirical school choice literature (He, 2017; Kapor et al., 2018).
- A reduced form of the optimal portfolio choices under uncertainties (Chade and Smith, 2006; Shorrer, 2019)
 - Advantage: avoid huge computational burden while explaining the major patterns of the data.

strate	egies \setminus beliefs	neutral	pessimistic
	sincere	Sincere	Sincere
SO	phisticated	Rational	Cautious

Behavioral Types

strategies \setminus beliefs	neutral	pessimistic
sincere	Sincere	Sincere
sophisticated	Rational	Cautious

 neutral: has the correct belief over student (utility and behavioral) types

strategies \setminus beliefs	neutral	pessimistic
sincere	Sincere	Sincere
sophisticated	Rational	Cautious

- neutral: has the correct belief over student (utility and behavioral) types
- pessimistic: has a set of beliefs that are consistent with the equilibrium ranking of colleges

strategies \setminus beliefs	neutral	pessimistic
sincere	Sincere	Sincere
sophisticated	Rational	Cautious

- neutral: has the correct belief over student (utility and behavioral) types
- pessimistic: has a set of beliefs that are consistent with the equilibrium ranking of colleges
 - \Rightarrow Takes the worst-case scenario out of all such beliefs:
 - everyone else is rational and
 - prefers colleges according to the equilibrium ranking.

strategies \setminus beliefs	neutral	pessimistic
sincere	Sincere	Sincere
sophisticated	Rational	Cautious

- neutral: has the correct belief over student (utility and behavioral) types
- pessimistic: has a set of beliefs that are consistent with the equilibrium ranking of colleges
 - \Rightarrow Takes the worst-case scenario out of all such beliefs:
 - everyone else is rational and
 - prefers colleges according to the equilibrium ranking.
- Both dimensions can be generalized. general

Cutoff Scores for the Pessimistic Type

Behavioral Types

strategies \setminus beliefs	neutral	pessimistic
sincere	Sincere	Sincere
sophisticated	Rational	Cautious

A sophisticated student lists top *e* colleges as follows:
(i) list truthful top *e* colleges; and
(ii) if there is no safe college in the list, then drop the least preferable risky college and add the most preferable safe college that was not originally in the list

Example when e = 3

Assignment Probabilities

Assume that the behavioral type is independent of other types.

strategies \setminus beliefs	neutral $(1 - \beta)$	pessimistic (β)
sincere (α)	Sincere	Sincere
sophisticated $(1 - \alpha)$	Rational	Cautious

Assignment Probabilities

Assume that the behavioral type is independent of other types.

strategies \setminus beliefs	neutral $(1 - \beta)$	pessimistic (β)
sincere (α)	Sincere	Sincere
sophisticated $(1 - \alpha)$	Rational	Cautious

The outcome is an equilibrium of φ^e given the behavioral-type restrictions, and varies across e's.

Assignment Probabilities

Assume that the behavioral type is independent of other types.

strategies \setminus beliefs	neutral $(1 - \beta)$	pessimistic (β)
sincere (α)	Sincere	Sincere
sophisticated $(1 - \alpha)$	Rational	Cautious

- The outcome is an equilibrium of φ^e given the behavioral-type restrictions, and varies across e's.
- ► The assignment probability is written in a closed form for $u_i(c) = v_i(c) + \epsilon_i$ with ϵ_i following type I extreme value distribution.

- 4. Belief Heterogeneity and Strategic Sophistication
- Identification

- We emply the following assumption:
- **Assumption I.** For each province and year, the utility vector u_i and the score s_i are independently distributed.

Identification

We emply the following assumption:

Assumption I. For each province and year, the utility vector u_i and the score s_i are independently distributed.

Prop 5. Under Assumption I, utility parameters and behavioral type parameters are identified sepearately for each province and year.
4. Belief Heterogeneity and Strategic Sophistication

Estimation

 For the ease of the estimation, specify the utility vector of province p as

$$v_p(c) = \gamma_1 Quality_c + \gamma_2 Distance_{cp}.$$

In theory, this could be each college's fixed effect.

4. Belief Heterogeneity and Strategic Sophistication

Estimation Results

Panel A: Sample province				
	School quality	Distance	α	β
Estimates	0.0570	-1.97E-03	0.2299	0.1212
s.e.	0.0011	1.73E-05	0.0056	0.0069
t-stat	53.9852	$1.14E{+}2$	40.8894	17.6036
Panel B: All estimates				
	School quality	Distance	α	β
Estimates	0.0507	-0.0013	0.5237	0.1198
s.e.	0.0236	0.0006	0.2835	0.1552
t-stat	2.1483	2.1667	1.8473	0.7719
Obs	65			

In the sample province (Hebei Province in 2006, e = 1), 23% of students are sincere, and 9% are cautious. 4. Belief Heterogeneity and Strategic Sophistication

Model Fit: Simulated Cutoff Scores

Three Welfare Measures

Consider

- 1. the expected utility (EU),
- 2. the extensive margin (<u>P</u>): the prob of being assigned to the outside option, and
- 3. the intensive margin (*CU*): the utility conditional on being assigned to tier-one schools

for each behavioral type (Rational, Sincere and Cautious).

► $A^e(s_i)$: the set of available colleges for a student *i* with score s_i under φ^e

Direct and General Equilibrium Effects

Prop 2. For any e < e' and a student *i* with score s_i and $A^e(s_i) = A^{e'}(s_i)$,

- 1. $EU_{R}^{e}(s_{i}) = EU_{R}^{e'}(s_{i}), \ EU_{S}^{e}(s_{i}) \le EU_{S}^{e'}(s_{i}), \ \text{and} \ EU_{C}^{e}(s_{i}) \le EU_{C}^{e'}(s_{i}).$
- 2. $\underline{P}_R^e(s_i) = \underline{P}_R^{e'}(s_i) = 0$, $\underline{P}_S^e(s_i) \ge \underline{P}_S^{e'}(s_i)$ and $\underline{P}_C^e(s_i) = \underline{P}_C^{e'}(s_i) = 0$.
- 3. $CU_{R}^{e}(s_{i}) = CU_{R}^{e'}(s_{i}), \ CU_{S}^{e}(s_{i}) \ge CU_{S}^{e'}(s_{i}), \ \text{and} \ CU_{C}^{e}(s_{i}) \le CU_{C}^{e'}(s_{i}).$

Direct and General Equilibrium Effects

Prop 2. For any e < e' and a student *i* with score s_i and $A^e(s_i) = A^{e'}(s_i)$,

- 1. $EU_R^e(s_i) = EU_R^{e'}(s_i), EU_S^e(s_i) \le EU_S^{e'}(s_i), \text{ and } EU_C^e(s_i) \le EU_C^{e'}(s_i).$ 2. $\underline{P}_R^e(s_i) = \underline{P}_R^{e'}(s_i) = 0, \ \underline{P}_S^e(s_i) \ge \underline{P}_S^{e'}(s_i) \text{ and } \underline{P}_C^e(s_i) = \underline{P}_C^{e'}(s_i) = 0.$
- 3. $CU_{R}^{e}(s_{i}) = CU_{R}^{e'}(s_{i}), \ CU_{S}^{e}(s_{i}) \ge CU_{S}^{e'}(s_{i}), \ \text{and} \ CU_{C}^{e}(s_{i}) \le CU_{C}^{e'}(s_{i}).$

Prop 3. For any regular problem, any e < e' and a student *i* with score s_i , $A^e(s_i) \supseteq A^{e'}(s_i)$ holds.

Simulation: Extensive Margin

Simulation: Intensive Margin

Simulation: by Behavioral Types

Panel A: Extensive margin					
$e \setminus Behavioral types$ Sincere Rational Ca					
1	0.87	0	0.2		
3	0.64	0	0.27		
6	0.49	0	0.25		
DA	0.12	0.12	0.12		
Panel B: Intensive margin					
$e \setminus Behavioral types$	Sincere	Rational	Cautious		
1	3.31	2.39	0.48		
3	3.01	2.23	1.18		
6	2.82	2.04	1.84		
DA	2.05	2.05	2.05		

6. Conclusion

Summary

- 1. Prop 1 is rejected; higher *e* achieved a more assortative matching.
- 2. Both of sincere and cautious types are important in explaining the observations.
- 3. Students benefit from the reforms if their scores are high, and they are either cautious or sincere.

Thank you very much!

Colleges' Perspective

Dependent variable	Range		Variance	
OLS	(1)	(2)	(3)	(4)
Adopt parallel option (r_{jt})	-0.0832^{***}	-0.0932^{***}	-0.0323^{***}	-0.0319^{***}
	(0.0058)	(0.0046)	(0.0015)	(0.0013)
Mean Range / Variance	0.387		0.127	
Province FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
College FE	No	Yes	No	Yes
Observations	$35,\!439$	$35,\!439$	$31,\!531$	$31,\!531$
R-squared	0.032	0.388	0.096	0.302

- Samples: all (tier-one) colleges from all markets
- Suggests that schools admit more similar scores of students.

College Grouping

- 1. Peking University
- 2. Tsinghua University
- 3. University of Science and Techology China
- 4. Shanghai Jiaotong University
- 5. Fudan University
- 6. Zhejiang University
- 7. QS 2016 ranking above 450 (12 colleges)
- 8. QS ranking 450-600 or in Project 985 (55 colleges)
- 9. Project 211 (55 colleges)
- 10. Other tier-one universities (473 college)

Behavioral Types

strategies \setminus beliefs	neutral	pessimistic 1	 pessimistic L
sincere	Sincere	Sincere	 Sincere
sophisticated 1	Rational	Cautious 11	 Cautious 1 <i>L</i>
:	:	:	÷
sophisticated <i>e</i>	Rational	Cautious e1	 Cautious <i>eL</i>

- neutral: has the correct belief over student (utility and behavioral) types
- pessimistic: has a set of beliefs that are consistent with the equilibrium ranking of colleges
 - \Rightarrow Pessimistic L takes the worst-case scenario out of all such beliefs:
 - everyone else is rational and
 - prefers colleges according to the equilibrium ranking.

Cutoff Scores for Pessimistic Types

Behavioral Types

strategies \setminus beliefs	neutral	pessimistic 1	 pessimistic L
sincere	Sincere	Sincere	 Sincere
sophisticated 1	Rational	Cautious 11	 Cautious 1 <i>L</i>
:	÷	:	:
sophisticated <i>e</i>	Rational	Cautious e1	 Cautious <i>eL</i>

k: the degree of cautiousness

Student with degree k lists e colleges as follows:

(i) list truthful top *e* colleges; and

(ii) if there are $\kappa < k$ safe colleges in the list, then drop the least preferable $k - \kappa$ unsafe schools and add most preferable $k - \kappa$ safe colleges that were not originally in the list

Example when e = 3

list for k = 0, 1

$$c_1$$
 c_2
 c_3

 list for k = 2
 c_1
 c_3
 c_5

 list for k = 3
 c_3
 c_5
 c_6

Assignment Probabilities

Assume that the behavioral type is independent of other types.

strategies \setminus beliefs	neutral (β_0)	 pessimistic $L(\beta_L)$
sincere (α_0)	Sincere	 Sincere
sophisticated 1 (α_1)	Rational	 Cautious 1L
÷	:	:
sophisticated $e(\alpha_e)$	Rational	 Cautious <i>eL</i>

- The outcome is an equilibrium of φ^e given the behavioral-type restrictions, and varies across e's.
- ► The assignment probability is written in a closed form for u_i(c) = v_i(c) + ε_i with ε_i following type I extreme value distribution.

Assignment Probabilities

The probability of student *i* with score s_i being assigned to an available tier-one college c:

$$\begin{split} &\beta_{0}\sum_{k=1}^{e}\alpha_{k}\Big\{\frac{\exp(v_{i}(c))}{\sum_{c'\in C_{a}(s_{i})}\exp(v_{i}(c'))}\Big\} \\ &+\alpha_{0}\Big\{\frac{\exp(v_{i}(c))}{\sum_{c'\in C}\exp(v_{i}(c'))} \\ &+\mathbbm{1}_{\{e\geq 2\}}\sum_{m=1}^{e-1}\sum_{(c^{(1)},\dots,c^{(m)})\in U_{m}(s_{i})}\mathbbm{1}_{s=1}^{m}\frac{\exp(v_{i}(c^{(x)}))}{\sum_{c'\in C\setminus\{c^{(0)},\dots,c^{(x-1)}\}}\exp(v_{i}(c'))}\frac{\exp(v_{i}(c))}{\sum_{c'\in C\setminus\{c^{(1)},\dots,c^{(m)}\}}\exp(v_{i}(c'))}\Big\} \\ &+\sum_{l=1}^{L}\beta_{l}\sum_{k=1}^{e}\alpha_{k}\Big\{\mathbbm{1}_{\{e-\bar{k}\geq 1\}}\frac{\exp(v_{i}(c))}{\sum_{c'\in C}\exp(v_{i}(c'))} \\ &+\mathbbm{1}_{\{e-\bar{k}\geq 2\}}\sum_{m=1}^{e-\bar{k}-1}\sum_{(c^{(1)},\dots,c^{(m)})\in U_{m}(s_{i})}\mathbbm{1}_{s=1}^{m}\frac{\exp(v_{i}(c^{(x)}))}{\sum_{c'\in C\setminus\{c^{(0)},\dots,c^{(x-1)}\}}\exp(v_{i}(c'))}\frac{\exp(v_{i}(c))}{\sum_{c'\in C\setminus\{c^{(1)},\dots,c^{(m)}\}}\exp(v_{i}(c'))} \\ &+\mathbbm{1}_{\{c\in C_{s}^{l}(s_{i})\}}\frac{\exp(v_{i}(c))}{\sum_{c'\in C_{s}^{l}(s_{i})}\exp(v_{i}(c'))} \\ &\Big(\mathbbm{1}_{\{\bar{k}\geq e\}}+\mathbbm{1}_{\{e-\bar{k}\geq 1\}}\sum_{(c^{(1)},\dots,c^{(e-\bar{k})})\in U_{e-\bar{k}}(s_{i})}\prod_{s=1}^{e-\bar{k}}\frac{\exp(v_{i}(c^{(x)}))}{\sum_{c'\in C\setminus\{c^{(0)},\dots,c^{(x-1)}\}}\exp(v_{i}(c'))}\Big)\Big\}. \end{split}$$

Identification

We emply the following assumption:

Assumption I. For each province and year, the utility vector u_i and the score s_i are independently distributed.

Prop 5. Under Assumption I, utility parameters and behavioral type parameters are identified sepearately for each province and year.

Proof Idea of Prop 3

• Consider e = 3 and L = 2.

strategies \setminus beliefs	neutral (β_0)	pessimistic 1 (β_1)	pessimistic 2 (β_2)
sincere (α_0)	Sincere	Sincere	Sincere
sophisticated 1 (α_1)	Rational	Cautious 11	Cautious 12
sophisticated 2 (α_2)	Rational	Cautious 21	Cautious 22
sophisticated 3 (α_3)	Rational	Cautious 31	Cautious 32

• v(c) and five parameters need to be identified.

Proof Idea of Prop 3

- C_a: the set of available colleges (safe colleges under the neutral belief)
- C_s^l : the set of safe colleges for pessimistic *l*

 $C = C_a = C_s$ v(c) identified $C = C_a = C_s^1 \neq C_s^2$ $\alpha_3\beta_2 \text{ identified}$ $C = C_a \neq C_s^1$ $\alpha_3\beta_1 \text{ identified}$ $|C_a| = |C| - 1$ $\alpha_2/\alpha_3 \text{ identified}$ $|C_a| = |C| - 2$ $\alpha_1/(\alpha_2 + \alpha_3) \text{ identified}$ $|C_a| = |C| - 3$ $\alpha_0/(\alpha_1 + \alpha_2 + \alpha_3) \text{ identified}$ students by scores