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Abstract

The existing literature of copula-based regression models typically focuses on ei-
ther conditional mean or quantile regression, and assumes complete data. This
paper unifies the conditional mean and quantile regressions as well as other
interesting regressions by formulating a general loss function which may not be
continuously differentiable. Further, we relax the assumption of complete data
by allowing the regressand and regressors to be missing at random (MAR). A
semiparametric copula and the target regression curve are estimated via the cal-
ibration approach. The consistency and asymptotic normality of the estimated
regression curve are proved. We show via Monte Carlo simulations that the
proposed approach has sharp performance in finite samples, while a benchmark
equal-weight approach fails with substantial bias under MAR. An empirical ap-
plication on revenues and R&D expenses of U.S. manufacturing firms highlights
a practical use of our approach.
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1 Introduction

Regression is the most prevailing method for investigating the relationship between

a regressand Y and regressors W . Widely used regressions include conditional mean

and quantile regressions. Noh, El Ghouch, and Bouezmarni (2013) proposed a novel

approach to estimate a conditional mean regression function by exploiting copulas,

where observations are assumed to be independently and identically distributed (i.i.d.)

and completely observed. Their key insight is that the loss function expressed as a

conditional expectation given regressors W can be rewritten as an unconditional ex-

pectation involving a parametric copula and nonparametric marginal distributions.

The marginal distributions and the copula parameter are estimated via plug-in meth-

ods. The flexibility of the semiparametric copula modelling alleviates model specifica-

tion issues such as how to transform regressors and which cross-products of regressors

to include.1

The existing literature of the copula-based regression leaves two issues, and this

paper resolves both of them. First, there is need for unified regression modelling.

Each previous paper focuses on either conditional mean or quantile regression, leav-

ing the theoretical relationship between them unclear. Other regressions such as

asymmetric least squares of Newey and Powell (1987) should also be incorporated.

This paper unifies all those regressions—with a particular emphasis on the mean re-

gression of Noh, El Ghouch, and Bouezmarni (2013) and the quantile regression of

Noh, El Ghouch, and Van Keilegom (2015)—by formulating a general loss function

which may not be continuously differentiable. We derive asymptotic theory under

the unified framework, a contribution which enhances the systematic interpretation

of various regressions.

The second issue left in the literature is how to perform the copula-based regres-

sion analysis when some observations are missing. In Noh, El Ghouch, and Bouezmarni

(2013) and Noh, El Ghouch, and Van Keilegom (2015), copula is simply a tool for es-

timating the regression curve flexibly. There also exists the vast literature where

copula itself is a primary target of estimation (see, e.g., Genest, Ghoudi, and Rivest,

1995, Chen and Fan, 2005, 2006). In either case, most papers involving copula as-

1 Noh, El Ghouch, and Van Keilegom (2015) applied the method of
Noh, El Ghouch, and Bouezmarni (2013) to the quantile regression with i.i.d. or time series
data that are completely observed. De Backer, El Ghouch, and Van Keilegom (2017) extended
the method of Noh, El Ghouch, and Van Keilegom (2015) to the quantile regression with censored
data. Kraus and Czado (2017) studied the quantile regression with complete data, using D-vine
copulas. Rémillard, Nasri, and Bouezmarni (2017) discussed the asymptotic connection between
the estimators of Noh, El Ghouch, and Van Keilegom (2015) and Kraus and Czado (2017).
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sume complete data. The assumption of complete data is restrictive and unrealistic

in many fields of research. In survey analysis, for example, respondents may refuse to

report their personal information such as age and salary.

To relax the rather restrictive assumption of complete data, this paper allows

both the regressand Y and the regressors W to be missing at random (MAR), a

key concept originally explored by Rubin (1976). Note that the MAR condition is

more general than the missing completely at random (MCAR) condition. The MCAR

condition requires that {Y,W } and their missing status T should be unconditionally

independent of each other, whereas the MAR condition requires that they should be

conditionally independent given covariates X. The MAR condition has been popu-

larly used in econometrics and statistics to identify the parameter of interest (see, e.g.,

Robins and Rotnitzky, 1995, Chen, Hong, and Tarozzi, 2008, Ding and Song, 2016,

Hamori, Motegi, and Zhang, 2019, Delaigle, Huang, and Lei, 2019).

The most näıve way to handle missing data is listwise deletion, which discards

individuals with incomplete data and assigns equal weights on individuals with com-

plete data. The listwise deletion delivers consistent inference when data are MCAR,

but may deliver inconsistent inference when data are MAR. Since the MCAR condi-

tion is restrictive in many applications, the listwise deletion is a risky approach that

can cause serious bias.

Hamori, Motegi, and Zhang (2019) is one of few works to deal with data miss-

ing at random in copula modelling.2 They use calibration weights proposed by

Chan, Yam, and Zhang (2016) for both nonparametric marginal distributions and tar-

get copula parameters. The calibration estimation is a nonparametric method that

balances the empirical moments of covariates between the observed and whole groups.

It does not require an explicit specification of the missing mechanism, and delivers

consistent inference under MAR.

Inspired by Hamori, Motegi, and Zhang (2019), this paper adopts the calibration

estimation to perform the copula-based regression with {Y,W } missing at random. A

semiparametric copula and the target regression curve are estimated via the calibra-

tion approach. The consistency and asymptotic normality of the estimated regression

curve are proved. Our simulation study shows that the proposed approach performs

well in finite samples, while a benchmark equal-weight approach fails with substan-

2 Ding and Song (2016) proposed an EM algorithm for estimating the Gaussian copula under
the MAR condition. Emura, Lin, and Wang (2010), Emura and Wang (2010) and Emura and Wang
(2012) considered the copula inference with survival data.
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tial bias under MAR. To illustrate a practical value of the proposed approach, an

empirical application on revenues and R&D expenses of U.S. manufacturing firms is

presented. The calibration approach detects a positive correlation between revenues

and R&D for any firm size, while the equal-weight approach yields mixed results for

large firms.

The remainder of this paper is organized as follows. Section 2 explains our basic

framework and notation. Our estimator is proposed in Section 3, and its large sample

properties are derived in Section 4. In Section 5, the simulation study is performed.

In Section 6, the empirical application is presented. Brief conclusions are provided in

Section 7. Mathematical details are collected in Technical Appendices.

2 Basic framework and notation

Let Y be a regressand, and let W = (W1, . . . ,Wd)
⊤ be d-dimensional regressors.

Consider the generalized regression problem:

a0(w) = argmin
a∈R

E [L(g(Y )− a)|W = w] , (2.1)

where w = (w1, . . . , wd)
⊤; L(·) is a pre-specified loss function whose derivative, de-

noted by L′(·), exists almost everywhere; g(Y ) is a known function of Y . We do not

require L(·) to be continuously differentiable. The formulation (2.1) includes many

prominent cases:

• L(v) = v2 and g(Y ) = Y , in which case a0(w) = E[Y |W = w] is the conditional

mean regression studied by Noh, El Ghouch, and Bouezmarni (2013).

• L(v) = v(τ−1(v < 0)) and g(Y ) = Y , in which case a0(w) is the τ th conditional

quantile studied by Noh, El Ghouch, and Van Keilegom (2015).

• L(v) = v2 and g(Y ) = 1(Y ≤ y), in which case a0(w) = E[1(Y ≤ y)|W = w] =

Pr(Y ≤ y|W = w) is the conditional distribution function.

• L(v) = v2|τ − 1(v ≤ 0)| and g(Y ) = Y , in which case a0(w) corresponds to the

asymmetric least squares studied by Newey and Powell (1987).

This paper considers the generalized regression problem (2.1) with both Y and W

being possibly missing. Let Oobs ⊂ O := {Y,W } be a set of components which

are observed with probability 1. Let Omis := O \ Oobs be a set of components
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which are missing with positive probability. Let dobs (resp. dmis) be the number

of elements in Oobs (resp. Omis), then d + 1 = dobs + dmis by construction. Let

T i := (T1i, . . . , Tdmis,i)
⊤ ∈ {0, 1}dmis be binary indicators which represent the missing

status of Oi,mis = (O1i,mis, . . . , Odmis,i,mis)
⊤, namely, Tji = 0 (resp. Tji = 1) if Oji,mis is

missing (resp. observed) for j ∈ {1, . . . , dmis} and i ∈ {1, . . . , N}.
If T i and Oi,mis are independent of each other, then the latter is called missing

completely at random (MCAR). Under the MCAR condition, an elementary approach

of listwise deletion, which merely picks individuals with complete observations and

puts equal weights on them, is well known to deliver consistent inference. The MCAR

condition, however, is a strong assumption that is violated in many applications.

In this paper we impose a more realistic assumption called missing at random

(MAR). Let X i = (X1i, . . . , Xri)
⊤ be r-dimensional covariates that are observable

for all individuals i ∈ {1, . . . , N}, where X i ⊃ Oi,obs and hence r ≥ dobs. The MAR

condition is that T i and Oi,mis are conditionally independent of each other given

covariates X i.

Assumption 1 (missing at random). T i ⊥ Oi,mis |X i.

The MAR condition is popularly used in econometrics and statistics to identify

the parameter of interest. The MAR condition does not require the unconditional in-

dependence between T i and Oi,mis. In many applications, T i and Oi,mis are correlated

with each other through X i, and that violates MCAR but not MAR.

To simplify notation without losing generality, we assume hereafter thatOi,obs = ∅
and Oi,mis = Oi = {Yi,W i} (i.e., any component of the regressand and regressors is

missing with positive probability). Then dobs = 0, dmis = d + 1, and 0 < Pr(Tji =

1) < 1 for all j ∈ {0, 1, . . . , d}, where T0i indicates the missing status of Yi and Tji

with j ∈ {1, . . . , d} indicates the missing status of Wji. Assume further that the

observations {T i,X i,W i, Yi}Ni=1 are i.i.d.

Let fY,W (·) and fW (·) be the joint density functions of {Y,W } and W , respec-

tively. Let F0(·) and Fj(·) be the cumulative distribution functions of Y and Wj for

j = 1, . . . , d, respectively. Let f0(·) and fj(·) be the probability density functions of Y

and Wj, respectively. Let c(·) and cW (·) be the copula densities of {Y,W } and W , re-

spectively. Sklar’s Theorem ensures that fY,W (y,w) = c(F0(y), F1(w1), . . . , Fd(wd)) ·
f0(y) ·

∏d
j=1 fj(wj) and fW (w) = cW (F1(w1), . . . , Fd(wd)) ·

∏d
j=1 fj(wj). Define the

propensity score functions as

πj(x) := Pr(Tji = 1 |X i = x), j ∈ {0, 1, . . . , d}, (2.2)
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η(x) := Pr(T0i = T1i = · · · = Tdi = 1 |X i = x). (2.3)

Using Sklar’s Theorem, the MAR condition, (2.2), and (2.3), a0(w) can be identified

as follows:

a0(w) = argmin
a∈R

E [L(g(Y )− a)|W = w]

= argmin
a∈R

∫
L(g(y)− a)fY |W (y|w)dy = argmin

a∈R

∫
L(g(y)− a)

fY,W (y,w)

fW (w)
dy

=argmin
a∈R

∫
L(g(y)− a)

c(F0(y), F1(w1), . . . , Fd(wd)) · f0(y) ·
∏d

j=1 fj(wj)

cW (F1(w1), . . . , Fd(wd)) ·
∏d

j=1 fj(wj)
dy

=argmin
a∈R

∫
L(g(y)− a)c(F0(y), F1(w1), . . . , Fd(wd)) · f0(y)dy

=argmin
a∈R

E [L(g(Y )− a)c(F0(Y ), F1(w1), ..., Fd(wd))] (2.4)

= argmin
a∈R

E [E [L(g(Y )− a)c(F0(Y ), F1(w1), ..., Fd(wd))|X]]

= argmin
a∈R

E

[
E

[
T0

π0(X)

∣∣∣∣X]
· E [L(g(Y )− a)c(F0(Y ), F1(w1), ..., Fd(wd))|X]

]
=argmin

a∈R
E

[
E

[
T0

π0(X)
· L(g(Y )− a)c(F0(Y ), F1(w1), ..., Fd(wd))

∣∣∣∣X]]
=argmin

a∈R
E

[
T0

π0(X)
· L(g(Y )− a)c(F0(Y ), F1(w1), ..., Fd(wd))

]
. (2.5)

Note that a0(w) is expressed as the conditional expectation given W = w in (2.1),

while it is expressed as the unconditional expectation involving the copula density in

(2.4). Compare (2.4) and (2.5) to see how missing data are handled. The objective

function is associated with the whole group in (2.4), while it is associated with the

observed group with respect to Y in (2.5). They coincide if and only if individuals in

the observed group are weighted by π0(X)−1, a core insight of the inverse probability

weighting (Horvitz and Thompson, 1952).

3 Calibration weighting estimation

Assume that the copula density of {Y,W } admits a parametric model c(u0, u1, . . . , ud) =

c(u0, u1, . . . , ud;θ0). Assume further that θ0 is identified as the maximizer of the log-

likelihood: θ0 = argmaxθ∈Θ E [ln c(F0(Yi), F1(W1i), . . . , Fd(Wdi);θ)], where Θ is a

compact subset of Rp which contains the true value θ0. Using Assumption 1 and the
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law of iterated expectations, θ0 can be expressed as

θ0 = argmax
θ∈Θ

E [ln c(F0(Yi), F1(W1i), . . . , Fd(Wdi);θ)]

= argmax
θ∈Θ

E

[
ln c(F0(Yi), F1(W1i), . . . , Fd(Wdi);θ) · E

[
1(T0i = · · · = Tdi = 1)

η(X)

∣∣∣∣X]]
=argmax

θ∈Θ
E

[
1(T0i = · · · = Tdi = 1)

η(X i)
ln c(F0(Yi), F1(W1i), . . . , Fd(Wdi);θ)

]
. (3.1)

A sample counterpart to (3.1) is given by

θ̃ = argmax
θ∈Θ

N∑
i=1

1(T0i = · · · = Tdi = 1)

N · η(X i)
ln c(F0(Yi), F1(W1i), . . . , Fd(Wdi);θ). (3.2)

θ̃ is an infeasible estimator of θ0 since η(X i) and {Fj}dj=0 are all unknown. We thus

need to replace them with feasible estimators in order to estimate θ0. First, rewrite

F0(y) in the same way as (3.1):

F0(y) =E [1(Yi ≤ y)] = E[E [1(Yi ≤ y)|X i]] = E

[
E [1(Yi ≤ y)|X i] · E

[
T0i

π0(X i)

∣∣∣∣X i

]]
=E

[
E

[
T0i

π0(X i)
1(Yi ≤ y)

∣∣∣∣X i

]]
= E

[
T0i

π0(X i)
1(Yi ≤ y)

]
. (3.3)

Similarly, Fj(w) with j ∈ {1, ..., d} can be reritten as follows:

Fj(y) = E [1(Wji ≤ y)] = E

[
Tji

πj(X i)
1(Wji ≤ w)

]
. (3.4)

The sample counterparts to (3.3) and (3.4) are respectively given by

F̃0(y) =
N∑
i=1

T0i

{
1

N · π0(X i)

}
1(Yi ≤ y), (3.5)

F̃j(w) =
N∑
i=1

Tji

{
1

N · πj(X i)

}
1(Wji ≤ w), j ∈ {1, ..., d}. (3.6)

{F̃j}dj=0 are infeasible estimators of {Fj}dj=0 since {πj(X i)}dj=0 are unknown.

Equations (3.2), (3.5), and (3.6) motivate the estimation of {N · πj(X i)}−1 and

{N ·η(X i)}−1. A näıve approach of directly estimating πj(X i) and η(X i) and substi-

tuting {N · π̂j(X i)}−1 and {N · η̂(X i)}−1 often perform poorly in practice. Parametric

modelling of πj(X i) and η(X i) may suffer from misspecification. Nonparametric esti-
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mation such as kernel smoothing is unstable in finite samples; π̂j(X i) and η̂(X i) can

take extremely small values which destroy the entire computation. Indeed, the inverse

probability weighting estimators are notoriously sensitive to the estimated propensity

score (Kang and Schafer, 2007).

Covariate balancing is a useful approach which prevents the occurrence of extreme

weights. This paper adopts the covariate balancing principle of Chan, Yam, and Zhang

(2016) and Hamori, Motegi, and Zhang (2019) to perform a one-shot estimation of

{N · πj(X i)}−1 and {N · η(X i)}−1. Their key insight is that the following equation

holds for any integrable function u(X) and j ∈ {0, 1, ..., d}:

E

[
Tji

{
1

πj(X i)

}
u(X i)

]
= E[u(X i)], (3.7)

E

[
1(T0i = · · · = Tdi = 1)

{
1

η(X i)

}
u(X i)

]
= E[u(X i)]. (3.8)

Hence, the estimator of {N · πj(X)}−1, denoted by p̂jK(X), and the estimator of

{N ·η(X)}−1, denoted by q̂K(X), should satisfy the sample counterparts of (3.7) and

(3.8):

N∑
i=1

Tjip̂jK(X i)uK(X i) =
1

N

N∑
i=1

uK(X i), (3.9)

N∑
i=1

1(T0i = · · · = Tdi = 1)q̂K(X i)uK(X i) =
1

N

N∑
i=1

uK(X i), (3.10)

where uK(X) = (uK,1(X), ..., uK,K(X))⊤ is a known sieve basis function that can

approximate any suitable function u(X) arbitrarily well, and K → ∞ as N → ∞.

Common sieve basis functions include power series, splines, and wavelets. One can

allow the dimension K to vary across {p̂0,K0(X), . . . , p̂d,Kd
(X), q̂Kq(X)} without any

theoretical difficulty. For the sake of notational brevity, we use a single value K for

all components hereafter.

Multiple values of p̂jK(X i) and q̂K(X i) satisfy (3.9) and (3.10), respectively.

Among them, the calibration approach chooses the one closest to a uniform weight

given some distance measure in order to enhance stable performance in finite sam-

ples. As shown in Hamori, Motegi, and Zhang (2019), the resulting estimator of

{N · πj(X)}−1 is

p̂jK(X) =
1

N
· ρ′

{
λ̂

⊤
jKuK(X)

}
, (3.11)
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where ρ(·) is a strictly concave function on R, and λ̂jK ∈ RK maximizes the following

concave objective function:

ĜjK(λ) =
1

N

N∑
i=1

Tjiρ{λ⊤uK(X i)} −
1

N

N∑
i=1

λ⊤uK(X i).

The first order condition implies (3.11) holds. Similarly, the estimator of {N ·η(X)}−1

is defined by

q̂K(X i) =
1

N
ρ′{β̂

⊤
KuK(X i)} (3.12)

for any i such that T0i = T1i = · · · = Tdi = 1, where β̂K maximizes the following

concave objective function:

ĤK(β) =
1

N

N∑
i=1

1(T0i = · · · = Tdi = 1)ρ{β⊤uK(X i)} −
1

N

N∑
i=1

β⊤uK(X i).

p̂jK(X) (resp. q̂K(X)) can be interpreted as a generalized empirical likelihood esti-

mator of {N ·πj(X)}−1 (resp. {N ·η(X)}−1). See Hamori, Motegi, and Zhang (2019)

for a detailed discussion.

The ρ(v) function can be any increasing and strictly concave function. Prominent

examples include ρ(v) = − exp(−v) for the exponential tilting (Kitamura and Stutzer,

1997, Imbens, Spady, and Johnson, 1998); ρ(v) = ln(1+v) for the empirical likelihood;

ρ(v) = −(1−v)2/2 for the continuous updating of the generalized method of moments;

ρ(v) = v − exp(−v) for the inverse logistic.

Use (3.11) in (3.5) and (3.6) to estimate the marginal distributions {Fj}dj=0:

F̂0,K(y) :=
N∑
i=1

T0ip̂0K(X i)1(Yi ≤ y), (3.13)

F̂j,K(w) =
N∑
i=1

Tjip̂jK(X i)1(Wji ≤ w), j ∈ {1, . . . , d}. (3.14)

Use (3.12), (3.13), and (3.14) in (3.2) to estimate θ0:

θ̂K := argmax
θ∈Θ

N∑
i=1

1(T0i = · · · = Tdi = 1)q̂K(X i) ln c
(
F̂0,K(Yi), F̂1,K(W1i), . . . , F̂d,K(Wdi);θ

)
.
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Finally, the target a0(w) in (2.5) is estimated via

â(w) = argmin
a∈R

N∑
i=1

T0ip̂0K(Xi)L(g(Yi)− a)c
(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
.

(3.15)

Remark 1. Under the conditional mean regression of Noh, El Ghouch, and Bouezmarni

(2013), L(g(Yi)− a) = (Yi − a)2 and hence â(w) has a closed form solution:

â(w) =

∑N
i=1 T0ip̂0K(X i)Yic

(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
∑N

i=1 T0ip̂0K(X i)c
(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

) . (3.16)

4 Large sample properties

In this section, we derive large sample properties of the proposed estimator (3.15).

Let ∥ · ∥ be the Frobenius norm defined by ∥A∥ := tr(AA⊤)1/2, where A is a real

matrix. For any K ∈ N, let ζ(K) := supx∈X ∥uK(x)∥ be the supremum norm of

approximation sieves uK(x). In general, this bound depends on the array of basis

used.3 For any function f(v0, v1, ..., vd;θ), define the following derivatives:

∂θf(v0, v1, . . . , vd;θ) := (∂/∂θ)f(v0, v1, . . . , vd;θ),

∂2
θθf(v0, v1, . . . , vd;θ) := (∂2/∂θ∂θ⊤)f(v0, v1, . . . , vd;θ),

∂jf(v0, v1, . . . , vd;θ) := (∂/∂vj)f(v0, v1, . . . , vd;θ) for j ∈ {0, 1, ..., d},

∂2
θjf(v0, v1, . . . , vd;θ) := (∂2/∂θ∂vj)f(v0, v1, . . . , vd;θ) for j ∈ {0, 1, ..., d}.

Define ℓ(v0, v1, . . . , vd;θ) := ln c(v0, v1, . . . , vd;θ), U0i := F0(Yi), Uji := Fj(Wji) for

j ∈ {1, . . . , d}, and U i := (U0i, U1i, . . . , Udi)
⊤.

The following conditions, which are also imposed in Hamori, Motegi, and Zhang

(2019), are needed to establish the asymptotic normality of the estimated copula

parameter θ̂K :

Assumption 2. The support of the covariate X, which is denoted by X , is a Carte-

sian product of r compact intervals.

3 Newey (1997) shows that ζ(K) ≤ CK for orthonormal polynomials, and ζ(K) ≤ C
√
K for

B-splines, where C > 0 is a universal positive constant.
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Assumption 3. The smallest eigenvalue of E
[
uK(X)uK(X)⊤

]
is bounded away from

zero uniformly in K.

Assumption 4. The inverse propensity scores π(x)−1 and η−1(X) are bounded above,

i.e., there exists some constant δ < ∞ such that 1 ≤ π(x)−1 ≤ δ and 1 ≤ η−1(X) ≤ δ

for any x ∈ X .

Assumption 5. There exist λjK, βK ∈ RK and α > 0 such that supx∈X |(ρ′)−1 (1/πj(x))−
λ⊤

jKuK(x)| = O(K−α) and supx∈X |(ρ′)−1 (1/η(x))−β⊤
KuK(x)| = O(K−α) as K → ∞.

Assumption 6. ζ(K)2K4/N → 0 and
√
NK−α → 0.

Assumption 7. ρ(·) is a strictly concave function defined on R and three times

continuously differentiable, and the range of ρ′ contains [1, δ].

Assumption 8. E[∂θℓ(U0i, U1i, . . . , Udi;θ)|X i = x] is continuously differentiable in

x.

Assumption 9. B := −E [∂2
θθℓ(U0i, U1i, . . . , Udi;θ0)] and Σ := Var{φ(T i,X i,U i;θ0)+∑d

j=0Rj(Tji,X i, Uji;θ0)} are finite and positive definite, where

φ(T i,Xi,U i;θ0) :=
1(T0i = · · · = Tdi = 1)

η(Xi)
∂θℓ(U0i, U1i, . . . , Udi;θ0)− E[∂θℓ(U0i, U1i, . . . , Udi;θ0)]

−
{
1(T0i = · · · = Tdi = 1)

η(Xi)
− 1

}
E[∂θℓ(U0i, U1i, . . . , Udi;θ0)|Xi],

Rj(Tji,Xi, U0i;θ0) := E
[
∂2
θjℓ(U0s, U1s, . . . , Uds;θ0){ϕj(Tji,Xi, Uji;Ujs)− Ujs}|Uji,Xi, Tji

]
, (s ̸= i),

where ϕj(Tji,Xi, Uji; v) :=
Tji

πj(Xi)
1(Uji ≤ v)−

{
Tji

πj(Xi)
− 1

}
E[1(Uji ≤ v)|Xi], v ∈ [0, 1].

Assumption 10. (i) For each (u0, u1, . . . , ud) ∈ (0, 1)d+1, ∂2
θθℓ(u0, u1, . . . , ud;θ) is

continuous in θ in a neighborhood of θ0. (ii) E[supθ∈Θ:∥θ−θ0∥=o(1) ∥ℓθθ(U0i, U1i, . . . , Udi;θ)∥] <
∞.

Assumption 11. For j ∈ {0, 1, . . . , d}, ∂θjℓ(u0, u1, . . . , ud;θ0) is well defined and

continuous in (u0, u1, . . . , ud) ∈ (0, 1)d+1. Furthermore,

(i) ∥∂θℓ(u0, u1, . . . , ud;θ0)∥ ≤ constant×
∏d

j=0{uj(1−uj)}−aj for some aj ≥ 0 such

that E[
∏d

j=0{Uji(1− Uji)}−2aj ] < ∞;

(ii) ∥∂2
θkℓ(u0, u1, . . . , ud;θ0)∥ ≤ constant× {uk(1− uk)}−bk

∏d
j=0,j ̸=k{uj(1− uj)}−aj

for some bk > ak such that E[{Uki(1−Uki)}ξk−bk
∏d

j=0,j ̸=k{Uji(1−Uji)}−aj ] < ∞
for some ξk ∈ (0, 1/2).
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Assumption 2 restricts the covariates to be bounded. This condition is restrictive

but commonly imposed in the nonparametric regression literature, since it simplifies

the derivation of the convergence rate under the L∞ norm.4 Assumption 3, which

is also imposed in Newey (1997), essentially requires the sieve basis functions to be

orthogonal. Assumption 4, a common condition in the missing data literature, ensures

that a sufficient portion of marginal data are observed. Assumption 5 requires the sieve

approximation errors of ρ′−1 (πj(x)
−1) and ρ′−1 (η(x)−1) to shrink at a polynomial

rate. This condition is satisfied for a variety of sieve basis functions (Newey, 1997). If

X is discrete, then the approximation error is zero for sufficiently large K, satisfying

Assumption 5 with α = +∞. If X are continuous, the polynomial rate depends

positively on the smoothness of ρ′−1 (πj(x)
−1) and ρ′−1 (η(x)−1) in the continuous

components and negatively on the number of the continuous components; indeed, for

power series and B-splines, α = −s/r, where s is the smoothness of approximand

and r is the dimension of X. Hence, we admit that the proposed method suffers

from the curse of dimensionality, a common challenge in nonparametric estimation.

The extension to high dimensional covariates is beyond the scope of this paper and

will be pursued in the future work. We will show that the convergence rate of the

estimated weight function is bounded by this polynomial rate. Assumption 6, another

common assumption in nonparametric regression, restricts the smoothing parameter

to balance the bias and variance. Assumption 7 is a mild restriction on ρ which is

satisfied in all important cases considered in the literature. Assumption 8 controls

the approximation error. Assumption 9 guarantees the finiteness of the asymptotic

variance. Assumption 10 guarantees the uniform convergence. Assumption 11 allows

the score function and its partial derivatives with respect to the first d arguments to

blow up at the boundaries, which occurs for many popular copula functions such as

Gaussian, Clayton, and t-copulas.

Proposition 1. Under Assumptions 1-11, we have that

√
N(θ̂K − θ0) =

1√
N

N∑
i=1

ηi + op(1),

where ηi = B−1{φ(T i,X i,U i;θ0) +
∑d

j=0 Rj(Tji,X i, Uji;θ0)}.

Proposition 1 is a restatement of Hamori, Motegi, and Zhang (2019, Theorem 5).

The following conditions are needed to establish the consistency of â(w).

4 Assumption 2 can be relaxed if we restrict the tail distribution of X.
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Assumption 12. (i) The parameter space A ⊂ R is a compact set and the true

parameter a0(w) lies in the interior of A; (ii) E[supa∈A |L(g(Y )− a)|2] < ∞.

Condition (i) is often imposed in the regression literature. Condition (ii) is an envelope

condition that is sufficient for the applicability of the uniform law of large numbers.

Theorem 1. Under Assumptions 1-12, for each fixed w, â(w)
p−→ a0(w).

A proof of Theorem 1 is presented in Appendix A.

We next establish the asymptotic normality of the proposed estimator. To handle

a potentially non-smooth loss function, the following conditions are required.

Assumption 13. (i) The loss function L(v) is differentiable almost everywhere;

(ii) E [L′(g(Y )− a)c (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] is differentiable with respect to a,

and the derivative is nonzero; (iii)
∑N

i=1 T0ip̂0K(X i)L
′(g(Yi)−â(w))c(F̂0,K(Yi), F̂1,K(w1), . . . ,

F̂d,K(wd); θ̂K) = op(N
−1/2).

Condition (i) is a mild condition since L′(v) is not required to be continuous. All

example loss functions presented in Section 2 satisfy Condition (i). Condition (ii)

guarantees the asymptotic variance to be finite. Condition (iii) is essentially the

asymptotic first order condition, similar to that used in Z-estimation. This first order

condition is satisfied by popular non-smooth loss functions (see Pakes and Pollard,

1989).

The following theorem establishes the asymptotic normality of our proposed es-

timator.

Theorem 2. Under Assumptions 1-13, we have

√
N{â(w)− a0(w)} =

1√
N

N∑
i=1

S(Ti,X i, Yi;w) + op(1),

which implies that
√
N{â(·) − a0(·)} converges weakly to a Gaussian process with

covariance function Ω(w1,w2) = E [S(T,X, Y ;w1)S(T,X, Y ;w2)] for w1,w2 ∈ Rd,

where

S(Ti,X i, Yi;w) =
1

b(w)
× (A1i + A2i + A3i) ,

b(w) = −∂aE [L′(g(Y )− a0)c (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] ,

A1i =
T0i

π0(X i)
L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)
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−
(

T0i

π0(X i)
− 1

)
E [L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) |X i] ,

A2i =

∫
L′(g(y)− a0)∂0c (F0(y), F1(w1), . . . , Fd(wd);θ0)

·
[

T0i

π0(X i)
1(Yi ≤ y)−

(
T0i

π0(X i)
− 1

)
FY |X(y|x)− F0(y)

]
dF0(y),

A3i =
d∑

j=1

E [L′(g(Y )− a0)∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

·
{

Tji

πj(X i)
1(Wji ≤ wj)−

(
Tji

πj(X i)
− 1

)
FWj |X(wj|x)− Fj(wj)

}
+ η⊤

i E [L′(g(Y )− a0)∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] .

A proof of Theorem 2 is presented in Appendix B.

Remark 2.

1. Theorem 2 ensures that our proposed estimator satisfies
√
N-normality under

the unified framework which covers non-smooth L(·).

2. Theorem 2 contains some important results in the existing literature as special

cases. When the mean regression with complete data is considered, the influence

function S(Ti,X i, Yi;w) reduces to that of Noh, El Ghouch, and Bouezmarni

(2013). When the quantile regression with complete data is considered, S(Ti,X i, Yi;w)

reduces to the influence function of Noh, El Ghouch, and Van Keilegom (2015).

See Appendices C-D for derivations.

5 Monte Carlo simulations

In this section, Monte Carlo simulations are conducted to evaluate the finite sample

performance of the calibration estimation. Section 5.1 covers a benchmark scenario

which has one regressor (d = 1) and one covariate (r = 1). Section 5.2 presents

an extended scenario which has one regressor (d = 1) and two covariates (r = 2).

Section 5.3 presents another extended scenario which has two regressors (d = 2) and

one covariate (r = 1).
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5.1 Benchmark scenario

Let Zi = (Z1i, Z2i, Z3i)
⊤, and draw Zi independently and identically from two well-

known copulas:

• trivariate Clayton copula with parameter θ0 = 1.333;

• trivariate Gumbel copula with parameter θ0 = 1.667.

For both cases, the implied Kendall’s tau is τ = 0.4, a moderate level of association.

Define the regressand Yi = Φ−1(Z1i), regressor Wi = Φ−1(Z2i), and covariate Xi =

Φ−1(Z3i), where Φ−1(·) is the inverse distribution function of N(0, 1). Assume that

Wi and Xi are observed for all individuals i ∈ {1, . . . , N}, where the sample size is

N ∈ {250, 500, 750}. Let Ti be a binary indicator which equals 1 if Yi is observed

and 0 if Yi is missing. The regressand Yi may be missing with the propensity score

function:

Pr(Ti = 1 |Xi = x) =
1

1 + exp(b0 + b1x)
. (5.1)

The logistic function is commonly used to specify the propensity score function in the

literature of missing data analysis (see, e.g., Qin, Leung, and Shao, 2002). Suppose

that (b0, b1) = (−0.57, 1.5), in which case E(Ti) = 0.6 and Yi is MAR.5

Following Noh, El Ghouch, and Bouezmarni (2013), the conditional mean regres-

sion is considered here.6 In this case, the estimated regression curve â(w) has the

closed form solution (3.16). Hence, the computation of â(w) is straightforward once

the weights p̂K(Xi) are computed.

We perform the calibration estimation with the exponential tilting ρ(v) = − exp(−v)

and the following sieve basis function in order to compute p̂K(Xi):

uK(X) = (1, X, . . . , XK−1)⊤, K ∈ {2, 3, 4}. (5.2)

For comparison, the equal weight p̂K(Xi) = 1/
∑N

i=1 Ti is also considered. The equal-

weight approach should fail under the MAR mechanism (5.1), since by construction

5 In an extra simulation not reported here, we also considered (b0, b1) = (−0.405, 0), in which
case E(Ti) = 0.6 and Yi is MCAR. Under MCAR, the calibration estimation and the benchmark
approach of assigning equal weights on all individuals with complete data perform as well as each
other. Since this result is not surprising, the present paper focuses on the MAR case for the sake of
brevity.

6 In an extra simulation not reported here, we also considered the conditional 25-percentile and
median regressions in accordance with Noh, El Ghouch, and Van Keilegom (2015). Simulation re-
sults of the quantile regressions is qualitatively similar to those of the mean regression, and hence
the present paper focuses on the mean regression for the sake of brevity.
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it ignores the impact of X on the propensity score.

In the present simulation, a model misspecification is not discussed. When the un-

derlying copula is Clayton (Gumbel), we fit the Clayton (Gumbel) copula to estimate

θ0 and then estimate the target function a0(w).

Draw J = 1000 Monte Carlo samples and compute integrated root mean squared

errors (IRMSEs) as follows. First, the RMSE in the jth sample is defined as

RMSEj =

√
1

#W
∑
w∈W

{âj(w)− a0(w)}2, (5.3)

where âj(w) is the estimated target function; W is the set of w’s considered; #W
is the number of w’s considered. Since the marginal distribution of the regressor Wi

is N(0, 1), the range w ∈ [−3, 3] should be covered in order to properly evaluate the

performance of each estimator. Dividing this interval more finely would make the eval-

uation more accurate, but it would raise computational burden. To balance the eval-

uation accuracy and computational speed, we use W = {−3.00,−2.95, . . . , 2.95, 3.00}
and hence #W = 121. RMSEj in (5.3) contains the true value a0(w). Recall that

a0(w) = argmin
a∈R

E[L{g(Y )− a}c{F0(Y ), F1(w); θ0}],

which can be approximated by

a0(w) ≃ argmin
a∈R

1

N

N∑
i=1

L{g(Yi)− a}c{F0(Yi), F1(w); θ0}.

Since L{g(Y )− a} = (Y − a)2 in the present study, a0(w) is simply given by

a0(w) =

∑N
i=1 Yic{F0(Yi), F1(w); θ0}∑N
i=1 c{F0(Yi), F1(w); θ0}

. (5.4)

Substitute (5.4) into (5.3) to compute RMSEj. Finally, the IRMSE is defined as

IRMSE =
1

J

J∑
j=1

RMSEj, J = 1000.

See Table 1 for the resulting IRMSEs. The calibration estimation performs well

for both copulas considered. Besides, the selection of tuning parameter K ∈ {2, 3, 4}
has a relatively small impact on IRMSE, which is a practical advantage. As expected,
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IRMSE shrinks as sample size N grows. The equal-weight approach always leads

to larger IRMSEs than the calibration approach with any K considered. Under the

Clayton copula with N = 500, for example, the IRMSE is {0.142, 0.124, 0.114} for the

calibration approach with K ∈ {2, 3, 4} respectively, while it is 0.249 for the equal-

weight approach. Thus, the calibration approach is a desired approach that dominates

the equal-weight approach.

Table 1: IRMSE of â(w) under the benchmark scenario

Clayton copula Gumbel copula

N = 250 N = 500 N = 750 N = 250 N = 500 N = 750

Calibration (K = 2) 0.171 0.142 0.130 0.290 0.229 0.197

Calibration (K = 3) 0.156 0.124 0.107 0.256 0.178 0.145

Calibration (K = 4) 0.175 0.114 0.094 0.286 0.177 0.143

Equal weight 0.270 0.249 0.241 0.427 0.384 0.370

For the calibration estimator, the sieve basis function is constructed as uK(X) = (1, X, . . . ,XK−1)⊤. “Equal

weight” signifies the benchmark approach of assigning equal weights for all individuals. The regressand Yi

is missing at random (MAR). The integrated root mean squared error (IRMSE) is computed across the grid

w ∈ {−3.00,−2.95, . . . , 2.95, 3.00} and J = 1000 Monte Carlo samples.

In Figures 1-2, we plot the true a0(w) with a black, solid line and point-wise 95%

confidence bands CB(w) = [ℓ(w), u(w)] with red, dashed lines, where ℓ(w) and u(w)

are the lower and upper 2.5-percentiles of {â1(w), . . . , âJ(w)}, respectively. N = 250

in Figure 1, while N = 750 in Figure 2. Figures with N = 500 are omitted to conserve

space, since their appearance is logically an intermediate case between Figures 1 and

2.

For the Clayton copula, the calibration estimation with any K ∈ {2, 3, 4} leads

to narrow enough confidence bands which contain a0(w) in the middle. Naturally, the

larger sample size implies the even narrower confidence bands. When N = 750, ℓ(w)

and u(w) almost coincide with a0(w) for any w > −2, which highlights the strikingly

sharp performance of the calibration estimation. The same implications hold for the

Gumbel copula as far as w < 1.5 is concerned. There tends to be a negative bias for

w > 1.5, which is not a surprising result since few observations are available in that

region.

The equal-weight approach, by contrast, leads to substantial bias for almost any

w ∈ [−3, 3] (see the bottom panels of Figures 1-2). This is the source of the large

IRMSEs of the equal-weight approach observed in Table 1. For the Clayton copula,
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Figure 1: True a0(w) and 95% confidence bands (benchmark scenario; N = 250)
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there is a clear downward bias for w ∈ [−2, 3]. For the Gumbel copula, there is a

critical downward bias for w > 0. Those biases do not vanish as the sample size
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Figure 2: True a0(w) and 95% confidence bands (benchmark scenario; N = 750)
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increases, a strong evidence that the equal-weight approach fails when the regressand

is MAR.
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In summary, the simulation results highlight the advantage of the calibration

approach in finite samples. Under MAR, the calibration approach delivers consistent

inference while the benchmark equal-weight approach delivers inconsistent inference.

5.2 Extended scenario I: Two covariates

In this section, we extend the benchmark scenario by adding another covariate (r = 2).

Let Zi = (Z1i, Z2i, Z3i, Z4i)
⊤, and draw Zi independently and identically from

• four-variable Clayton copula with parameter θ0 = 1.442;

• four-variable Gumbel copula with parameter θ0 = 1.719.

For both cases, the implied Kendall’s tau is τ = 0.4. The marginal distributions of

(Yi,Wi, X1i, X2i) are all N(0, 1) as in the benchmark scenario. Assume that Wi and

X i = (X1i, X2i)
⊤ are observed for all individuals. The propensity score function is

Pr(Ti = 1 |X i = x) =
1

1 + exp(−0.53 + 0.75x1 + 0.75x2)
.

This specification implies that E(Ti) = 0.6 and Yi is MAR. For the calibration esti-

mation, the following sieve basis functions are used:

u3(X) = (1, X1, X2)
⊤,

u6(X) = (1, X1, X2, X
2
1 , X

2
2 , X1X2)

⊤,

u10(X) = (1, X1, X2, X
2
1 , X

2
2 , X1X2, X

3
1 , X

3
2 , X

2
1X2, X1X

2
2 )

⊤.

See Table 2 for IRMSEs after J = 1000 Monte Carlo iterations. The calibration es-

timation with any K ∈ {3, 6, 10} performs well for both copulas, and the performance

becomes sharper as the sample size becomes larger. The equal-weight approach always

leads to larger IRMSEs than the calibration approach with any K ∈ {3, 6, 10}. Under
the Clayton copula with N = 500, for example, the IRMSE is {0.121, 0.120, 0.116}
for the calibration approach with K ∈ {3, 6, 10} respectively, while it is 0.270 for the

equal-weight approach. Thus, as in the benchmark scenario, the calibration approach

dominates the equal-weight approach.7

Under the Gumbel copula, the performance of the calibration approach is more

sensitive to K than in the benchmark scenario. When N = 500, the IRMSE is

7 Figures of confidence bands are omitted, since they are qualitatively similar to Figures 1-2.
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Table 2: IRMSE of â(w) under the extended scenario I (two covariates)

Clayton copula Gumbel copula

N = 250 N = 500 N = 750 N = 250 N = 500 N = 750

Calibration (K = 3) 0.153 0.121 0.106 0.272 0.204 0.181

Calibration (K = 6) 0.157 0.120 0.105 0.232 0.157 0.129

Calibration (K = 10) 0.162 0.116 0.100 0.296 0.235 0.222

Equal weight 0.288 0.270 0.264 0.433 0.392 0.371

For the calibration estimator, the sieve basis function is constructed as u3(X) = (1, X1, X2)
⊤, u6(X) =

(1, X1, X2, X
2
1 , X

2
2 , X1X2)

⊤, or u10(X) = (1, X1,X2,X
2
1 ,X

2
2 ,X1X2, X

3
1 , X

3
2 , X

2
1X2, X1X

2
2 )

⊤. “Equal

weight” signifies the benchmark approach of assigning equal weights for all individuals. The regressand

Yi is missing at random (MAR). The integrated root mean squared error (IRMSE) is computed across the

grid w ∈ {−3.00,−2.95, . . . , 2.95, 3.00} and J = 1000 Monte Carlo samples.

{0.204, 0.157, 0.235} for K ∈ {3, 6, 10}, respectively. It suggests that there is a greater
need of a data-driven selection of K as the dimension of covariates increases.

5.3 Extended scenario II: Two regressors

In this section, we extend the benchmark scenario by adding another regressor (d = 2).

The copulas used here are the same as those in the extended scenario I. The marginal

distributions of (Yi,W1i,W2i, Xi) are all N(0, 1) as in the previous scenarios. The

propensity score is specified as in (5.1). For the calibration estimator, the sieve basis

function is constructed as in (5.2).

See Table 3 for IRMSEs after J = 1000 Monte Carlo iterations. Since there are

two regressors, the IRMSEs are computed over a two-dimensional grid (w1, w2) ∈
{−3.0,−2.5, . . . , 2.5, 3.0} × {−3.0,−2.5, . . . , 2.5, 3.0}. Hence, the number of (w1, w2)

considered is #W = 169. The results in Table 3 are all consistent with the previous

results in Tables 1-2. The calibration estimation with any K ∈ {2, 3, 4} performs well

for both copulas, and their IRMSE is always smaller than the IRMSE of the equal-

weight approach. Under the Clayton copula with N = 500, for example, the IRMSE

is {0.197, 0.152, 0.142} for the calibration approach with K ∈ {2, 3, 4} respectively,

while it is 0.247 for the equal-weight approach. The performance of the calibration

approach is more sensitive to the choice of K than in the benchmark scenario. It

suggests that there is a greater need of a data-driven selection of K as the dimension

of regressors increases.

In summary, the calibration estimation performs well for any scenario considered,
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Table 3: IRMSE of â(w) under the extended scenario II (two regressors)

Clayton copula Gumbel copula

N = 250 N = 500 N = 750 N = 250 N = 500 N = 750

Calibration (K = 2) 0.228 0.197 0.186 0.195 0.149 0.134

Calibration (K = 3) 0.202 0.152 0.136 0.165 0.121 0.101

Calibration (K = 4) 0.210 0.142 0.117 0.183 0.124 0.100

Equal weight 0.281 0.247 0.240 0.259 0.225 0.214

For the calibration estimator, the sieve basis function is constructed as uK(X) = (1, X, . . . ,XK−1)⊤. “Equal

weight” signifies the benchmark approach of assigning equal weights for all individuals. The regressand Yi

is missing at random (MAR). The integrated root mean squared error (IRMSE) is computed across the grid

(w1, w2) ∈ {−3.0,−2.5, . . . , 2.5, 3.0} × {−3.0,−2.5, . . . , 2.5, 3.0} and J = 1000 Monte Carlo samples.

while the equal-weight approach fails with serious bias under the MAR mechanism.8

6 Empirical applications

In this section, we analyze the relationship between research and development (R&D)

expenses and revenues of manufacturing firms in the U.S. R&D is a key element of

manufacturing, and we use revenues as a proxy of the firm size. Intuitively, the larger

manufacturing firm should have the larger R&D expense, hence the two variables

should be positively correlated. A goal of this study is to check if that is indeed the

case in the U.S.

6.1 Data and methodology

Let the regressor Wi be the operating revenue (turnover) of firm i measured in billions

of U.S. dollars. Let the regressand Yi be the R&D expense of firm i in billions of USD.

In practice, many firms report their operating revenues but not R&D expenses, while

few firms report their R&D expenses but not revenues. It is therefore reasonable to

assume that the revenue W is always observed while the R&D expense Y is possibly

missing.

Assume that the covariate is identical to the regressor: Xi = Wi. Intuitively,

whether a firm reports its R&D expense should depend on the stringency of the

8 As in the extended scenario I, figures of confidence bands are omitted since they are qualitatively
similar to Figures 1-2.
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accounting requirement that the firm is facing. The larger firm should meet the more

stringent accounting rule in order to keep its social credibility. Hence, the magnitude

of revenues is supposed to have a positive impact on the probability of reporting R&D.

All data used in this study are retrieved via Orbis maintained by Bureau van

Dijk. There are 1914 firms whose (i) country ISO code is US, (ii) US SIC codes are

2000-3999 (Manufacturing), and (iii) operating revenues in 2017 are observed. The

bottom 914 firms are discarded, since their revenues are negligibly small. The top

10 firms are also discarded, since their revenues and some of their R&D expenses are

exceptionally large. The remaining N = 990 firms are retained for analysis. R&D

expenses are observed for 701 of the 990 firms and missing for the other 289. The

missing probability of R&D is as high as 29.2%, motivating the use of the calibration

estimation.

As in the simulation study, the exponential tilting function ρ(v) = − exp(−v) is

used to compute calibration weights. The sieve basis function is specified as uK(X) =

(1, X,X2)⊤ with K = 3. Empirical implications do not alter when K = 2 or K = 4

is used. The equal-weight approach is also considered for comparison. For both ap-

proaches, the conditional mean regression of Noh, El Ghouch, and Bouezmarni (2013)

with the Gumbel copula is performed. In this specific study, the Gumbel copula fits

the data better than the Clayton copula.

Since the conditional mean regression is considered, the regression curve a0(w)

can be estimated via (3.16). The grid is specified as w ∈ {0.07, 0.08, . . . , 79.04}, where
0.07 and 79.04 are the minimum and maximum of revenues, respectively. Confidence

bands of â(w) are constructed via resampling, taking advantage of the i.i.d. assump-

tion. Draw {i1, . . . , iN} independently and identically from the discrete uniform dis-

tribution on {1, . . . , N}. Given the resampled dataset {Yij ,Wij , Xij , Tij}Nj=1, estimate

a regression curve and call it âb(w). Repeat B = 1000 times to get {âb(w)}Bb=1. For

each w ∈ {0.07, . . . , 79.04}, the 95% confidence band of â(w) is given by the lower

and upper 2.5 percentiles of {âb(w)}Bb=1.

6.2 Empirical results

See Figure 3 for empirical results. The blue asterisks represent the 701 firms whose

revenues and R&D are both observed. The black, solid line represents the regression

curve â(w). As expected, â(w) is positively sloped, suggesting a positive correlation

between revenues and R&D. The green circles represent the 289 firms with unobserved

R&D expenses, and those values are imputed with the conditional expectation given
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Wi. By construction, all green circles lie on â(w). As expected, the vast majority of the

289 firms with unobserved R&D have relatively small revenues. The 95% confidence

bands based on resampling are plotted as the red, dashed lines. The confidence bands

become wider as the revenue w increases, reflecting the fact that there are fewer firms

on the upper tail.

Figure 3: Empirical results
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The calibration and equal-weight approaches produce similar regression curves

â(w), but their confidence bands are clearly different. For w < 40, where most firms

are present, the confidence bands for the equal-weight approach are roughly twice

as wide as the confidence bands for the calibration approach. This result indicates

that the calibration approach delivers the sharper inference than the equal-weight

approach.

For w > 40, the two approaches yield very different confidence bands. For the

calibration approach, both lower and upper bounds of the confidence bands increase

as w grows. It implies that revenues and R&D are positively correlated for any

w ∈ [0.07, 79.04]. For the equal-weight approach, the confidence bands have almost

constant lower bounds and increasing upper bounds when w > 40. It indicates that

the equal-weight approach faces a great deal of uncertainty on the relationship between

revenues and R&D for large firms.

The reason why the calibration approach delivers the sharper inference than the

equal-weight approach, especially for large firms, is that the former takes into account

the revenues of the 289 firms with unobserved R&D while the latter does not. Most of

the 289 firms are present at the lower tail, and hence the calibration approach assigns
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large weights on small firms and small weights on large firms. Hence, the calibration

approach asserts that the positive correlation between revenues and R&D observed

for small firms should be preserved for large firms too, even though there is apparently

a substantial dispersion across large firms. The equal-weight approach, by contrast,

is directly affected by the dispersion at the upper tail and loses confidence on the

positive correlation detected at the lower tail.

7 Conclusion

The existing literature of copula-based regression models typically focuses on either

conditional mean or quantile regression, and assumes complete data. This paper has

unified the conditional mean regression of Noh, El Ghouch, and Bouezmarni (2013),

the conditional quantile regression of Noh, El Ghouch, and Van Keilegom (2015), and

other regressions by formulating the general loss function. Furthermore, we relaxed

the rather strong assumption of complete data by allowing the regressand and regres-

sors to be missing at random. The calibration estimation of the regression curve is

proposed, and its consistency and asymptotic normality are proved.

Our simulation results indicate that the proposed approach performs well in finite

samples, while the benchmark equal-weight approach fails under the MARmechanism.

The empirical application on revenues and R&D expenses of U.S. manufacturing firms

highlights a practical use of the calibration approach. The latter detects a positive

correlation between the revenues and R&D for any firm size. The equal-weight ap-

proach, by contrast, detects a positive correlation for small firms but produces mixed

results for large firms.
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Technical Appendices

A Proof of Theorem 1

Note that

sup
a∈A

∣∣∣∣ N∑
i=1

T0ip̂0K(X i)L(g(Yi)− a)c
(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
− E

[
T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

] ∣∣∣∣
≤ sup

a∈A

∣∣∣∣ N∑
i=1

T0ip̂0K(X i)L(g(Yi)− a)c
(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
−

N∑
i=1

T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

∣∣∣∣ (A.1)

+ sup
a∈A

∣∣∣∣ N∑
i=1

T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

− E

[
T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

] ∣∣∣∣. (A.2)

To show â(w)
p−→ a0(w), it is sufficient to show both (A.1) and (A.2) are of op(1). By

Proposition 1 and Assumption 12, and the result supx∈X |Np̂0K(x)− π−1
0 (x)| = op(1)

(Hamori, Motegi, and Zhang (2019, Theorem 1)), the term (A.1) is trivially of op(1).
For the term (A.2), note that for fixed a ∈ A,∣∣∣∣ N∑

i=1

T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

− E

[
T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

] ∣∣∣∣ = op(1).

Moreover, the dominating function is integrable:

E

[
sup
a∈A

∣∣∣∣ T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

∣∣∣∣]
=E

[
sup
a∈A

T0i

π0(X i)
L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

]
≤δ · E

[
sup
a∈A

L(g(Yi)− a)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

]
=

δ

cW (F1(ω1), ..., Fd(ωd))
· E

[
sup
a∈A

L(g(Yi)− a)|W i = w

]
< ∞,
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where δ is defined in Assumption 4. Hence, by the uniform law of large numbers, the
term (A.2) is of op(1).

B Proof of Theorem 2

The following lemma will be used later to prove Theorem 2:

Lemma 1. Under Assumptions 2-7, for all j ∈ {0, 1, ..., d} and any square integrable
function ϕ(Y,W ,X), we have

N∑
i=1

Tjip̂j,K(X i)ϕ(Yi,W i,X i) =
1

N

N∑
i=1

Tji

πj(X i)
ϕ(Yi,W i,X i)

− 1

N

N∑
i=1

{
Tji

πj(X i)
− 1

}
E[ϕ(Yi,W i,X i)|X i] + op(N

−1/2).

A proof of Lemma 1 is omitted since it is similar to the proof of Hamori, Motegi, and Zhang
(2019, Theorem 2).

By Assumption 13 (iii), we have
∑N

i=1 T0ip̂0K(X i)L
′(g(Yi)−â)c(F̂0,K(Yi), F̂1,K(w1),

. . . , F̂d,K(wd); θ̂K) = op(N
−1/2). Since the loss function L(·) may not be twice differ-

entiable, we cannot directly apply the Taylor’s expansion to obtain the expression for√
N(â− a0). Define the function

f(a) := E

[
T0

π0(X)
· L′(g(Y )− a)c(F0(Y ), F1(w1), ..., Fd(wd);θ0)

]
,

which is differentiable with respect to a. Define

νN(a) :=
1√
N

N∑
i=1

{
T0iNp̂0,K(X i) · L′(g(Yi)− a)c(F0(Y ), F1(w1), ..., Fd(wd);θ0)− f(a)

}
,

which is an empirical process indexed by a. Note that f(a0) = 0 holds by definition.

Using the Mean Value Theorem, we have 0 =
√
Nf(a0) =

√
Nf(â)−f ′(ã)·

√
N(â−a0),

where ã lies between a0 and â. Since f ′(a) is a continuous function of a and â
p−→ a0,

we have
√
N(â− a0) = f ′(a0)

−1 ·
√
Nf(â) + op(1)

=f ′(a0)
−1 ·

{√
Nf(â)−

√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− â)c(F0(Yi), F1(w1), ..., Fd(wd);θ0)

+
√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− â)c(F0(Yi), F1(w1), ..., Fd(wd);θ0)

}
+ op(1)

=− f ′(a0)
−1νN (â) + f ′(a0)

−1 ·
√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− â)c(F0(Yi), F1(w1), ..., Fd(wd);θ0) + op(1)
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=− f ′(a0)
−1νN (â) + f ′(a0)

−1 ·
√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− â)c(F0(Yi), F1(w1), ..., Fd(wd);θ0)

− f ′(a0)
−1 ·

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â)c

(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
+ op(1)

=− f ′(a0)
−1 · [νN (â)− νN (a0)]− f ′(a0)

−1 · νN (a0)

+ f ′(a0)
−1 ·

√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− â)c(F0(Yi), F1(w1), ..., Fd(wd);θ0)

− f ′(a0)
−1 ·

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â)c

(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
+ op(1)

=− f ′(a0)
−1 · νN (a0) + f ′(a0)

−1 ·
√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Y )− â)c(F0(Y ), F1(w1), ..., Fd(wd);θ0)

− f ′(a0)
−1 ·

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â)c

(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
+ op(1)

=− f ′(a0)
−1 ·

√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− a0)c(F0(Yi), F1(w1), ..., Fd(wd);θ0)

+ f ′(a0)
−1 ·

√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− â)c(F0(Yi), F1(w1), ..., Fd(wd);θ0)

− f ′(a0)
−1 ·

√
N

N∑
i=1

Tip̂0K(Xi)L
′(g(Yi)− â)c

(
F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd); θ̂K

)
=− f ′(a0)

−1 ·
√
N

N∑
i=1

T0ip̂0K(Xi) · L′(g(Yi)− a0)c(F0(Y ), F1(w1), ..., Fd(wd);θ0)

− f ′(a0)
−1 ·

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â) · ∂0c

(
F̃0,K(Yi), F̃1,K(w1), . . . , F̃d,K(wd); θ̃K

)√
N{F̂0,K(Yi)− F0(Yi)}

− f ′(a0)
−1 ·

N∑
i=1

d∑
j=1

T0ip̂0K(Xi)L
′(g(Yi)− â) · ∂jc

(
F̃0,K(Yi), F̃1,K(w1), . . . , F̃d,K(wd); θ̃K

)√
N{F̂j,K(wj)− Fj(wj)}

− f ′(a0)
−1 ·

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â) · ∂θc

(
F̃0,K(Yi), F̃1(w1), . . . , F̃d(wd); θ̃K

)√
N(θ̂K − θ0),

(B.1)

where (F̃0,K(Yi), F̃1,K(w1), . . . , F̃d,K(wd)) lies on the line joining from (F̂0,K(Yi), F̂1,K(w1), . . . , F̂d,K(wd))

to (F0(Yi), F1(w1), . . . , Fd(wd)), and θ̃K lies on the line joining θ̂K and θ0. By Lemma
1, we can deduce the following identities.

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

=
1√
N

N∑
i=1

{
T0i

π0(Xi)
L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)
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−
(

T0i

π0(Xi)
− 1

)
E
[
L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) |Xi

]}
, (B.2)

and

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â)∂0c

(
F̃0,K(Yi), F̃1(w1), . . . , F̃d(wd); θ̃K

)
{F̂0,K(Yi)− F0(Yi)}

=
√
N

N∑
i=1

T0ip̂0K(Xi)

{
L′(g(Yi)− â)∂0c

(
F̃0,K(Yi), F̃1,K(w1), . . . , F̃d,K(wd); θ̃K

)
− L′(g(Yi)− a0)∂0c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

}
{F̂0,K(Yi)− F0(Yi)}

+
√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− a0)∂0c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) {F̂0,K(Yi)− F0(Yi)}

=op(1) +

∫
L′(g(y)− a0)∂0c (F0(y), F1(w1), . . . , Fd(wd);θ0) ·

√
N{F̂0,K(y)− F0(y)}dF0(y)

=op(1) +
1√
N

N∑
i=1

∫
L′(g(y)− a0)∂0c (F0(y), F1(w1), . . . , Fd(wd);θ0)

·
{

T0i

π0(Xi)
1(Yi ≤ y)−

(
T0i

π0(Xi)
− 1

)
FY |X(y|x)− F0(y)

}
dF0(y), (B.3)

and

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â)

d∑
j=1

∂jc
(
F̃0,K(Yi), F̃1,K(w1), . . . , F̃d,K(wd); θ̃K

)
{F̂j(wj)− Fj(wj)}

=op(1) +
1√
N

N∑
i=1

d∑
j=1

E
[
L′(g(Y )− a0)∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)

]
·
{

Tji

πj(Xi)
1(Wji ≤ wj)−

(
Tji

πj(Xi)
− 1

)
FWj |X(wj |x)− Fj(wj)

}
. (B.4)

and

√
N

N∑
i=1

T0ip̂0K(Xi)L
′(g(Yi)− â)∂θc

(
F̃0,K(Yi), F̃1,K(w1), . . . , F̃d,K(wd); θ̃K

)
(θ̂K − θ0)

=op(1) + E
[
L′(g(Y )− a0)∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)

]
· 1√

N

N∑
i=1

ηi. (B.5)

Combine (B.1)-(B.5) to obtain

√
N(âK(w)− a0(w))

= −∂aE [L′(g(Y )− a0)c (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]
−1

31



× 1√
N

N∑
i=1

{
T0i

π0(X i)
L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

−
(

T0i

π0(X i)
− 1

)
E [L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) |X i]

+

∫
L′(g(y)− a0)∂0c (F0(y), F1(w1), . . . , Fd(wd);θ0)

×
[

T0i

π0(X i)
1(Yi ≤ y)−

(
T0i

π0(X i)
− 1

)
FY |X(y|x)− F0(y)

]
dF0(y)

+
d∑

j=1

E [L′(g(Y )− a0)∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

×
{

Tji

πj(X i)
1(Wji ≤ wj)−

(
Tji

πj(X i)
− 1

)
FWj |X(wj|x)− Fj(wj)

}
+ η⊤

i E [L′(g(Y )− a0)∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

}

=
1√
N

N∑
i=1

S(Ti,X i, Yi;w) + op(1),

where

S(Ti,X i, Yi;w)

= −∂aE [L′(g(Y )− a0)c (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]
−1

×

{
T0i

π0(X i)
L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

−
(

T0i

π0(X i)
− 1

)
E [L′(g(Yi)− a0)c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) |X i]

+

∫
L′(g(y)− a0)∂0c (F0(y), F1(w1), . . . , Fd(wd);θ0)

×
[

Ti

π(X i)
1(Yi ≤ y)−

(
Ti

π(X i)
− 1

)
FY |X(y|x)− F0(y)

]
dF0(y)

+
d∑

j=1

E [L′(g(Y )− a0)∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

×
{

Tji

πj(X i)
1(Wji ≤ wj)−

(
Tji

πj(X i)
− 1

)
FWj |X(wj|x)− Fj(wj)

}
+ η⊤

i E [L′(g(Y )− a0)∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

}
=

1

b(w)
× (A1i + A2i + A3i).
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C Special case I: Mean regression with complete

data

In this section, we show that Theorem 2 contains a key result of the conditional
mean regression derived by Noh, El Ghouch, and Bouezmarni (2013) as a special case.
Specifically, we show that the influence function S(Ti,X i, Yi;w) in Theorem 2 reduces
to that of Noh, El Ghouch, and Bouezmarni (2013) when the conditional mean regres-
sion with complete data is considered. Suppose that T0i = T1i = · · · = Tdi ≡ 1 for
i = 1, . . . , N with probability 1, L(v) = v2, and a0(w) = E [Y |W = w]. Then, key
quantities in Theorem 2 are simplified as follows.

b(w) = 2 · E [c (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] = 2 · cW (F1(w1), ..., Fd(wd);θ0),

A1i = 2 · (Yi − a0(w)) · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) ,

A2i = 2

∫
(y − a0(w))∂0c (F0(y), F1(w1), . . . , Fd(wd);θ0) · [1(Yi ≤ y)− F0(y)] dF0(y)

= 2

∫
(y − a0(w)) [1(Yi ≤ y)− F0(y)] dc (F0(y), F1(w1), . . . , Fd(wd);θ0)

= 2

∫ ∞

Yi

(y − a0(w))dc (F0(y), F1(w1), . . . , Fd(wd);θ0)

− 2

∫ ∞

−∞
(y − a0(w)) · F0(y)dc (F0(y), F1(w1), . . . , Fd(wd);θ0)

= −2 · (Yi − a0(w)) · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

− 2

∫ ∞

Yi

c (F0(y), F1(w1), . . . , Fd(wd);θ0) dy

+ 2

∫ ∞

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0)F0(y)dy

+ 2

∫ ∞

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0) (y − a0(w))dF0(y)

= 2

∫ ∞

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0) (y − a0(w))dF0(y)

− 2 · (Yi − a0(w)) · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

− 2

∫
(1(Yi ≤ y)− F0(y))c (F0(y), F1(w1), . . . , Fd(wd);θ0) dy,

A3i = 2 ·
d∑

j=1

E [(Y − a0(w))∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] · {1(Wji ≤ wj)− Fj(wj)}

+ 2 · η⊤
i E [(Y − a0(w))∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] .

Hence, the influence function S(Ti,X i, Yi;w) in Theorem 2 is simplified as follows.

Smean =
1

b(w)
× (A1i + A2i + A3i)
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=
1

cW (F1(w1), ..., Fd(wd);θ0)
×
{∫ ∞

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0) (y − a0(w))dF0(y)

−
∫
(1(Yi ≤ y)− F0(y))c (F0(y), F1(w1), . . . , Fd(wd);θ0) dy

+
d∑

j=1

E [(Y − a0(w))∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] · {1(Wji ≤ wj)− Fj(wj)}

+ η⊤
i E [(Y − a0(w))∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

}
=

1

cW (F1(w1), ..., Fd(wd);θ0)
×
{
−

∫
(1(Yi ≤ y)− F0(y))c (F0(y), F1(w1), . . . , Fd(wd);θ0) dy

+
d∑

j=1

E [(Y − a0(w))∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] · {1(Wji ≤ wj)− Fj(wj)}

+ η⊤
i E [(Y − a0(w))∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

}
,

where the third equality holds because

1

cW (F1(w1), ..., Fd(wd);θ0)

{∫ ∞

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0) (y − a0(w))dF0(y)

}
= 0.

Hence, our influence function reduces to that of Noh, El Ghouch, and Bouezmarni
(2013).

D Special case II: Quantile regression with com-

plete data

In this section, we show that Theorem 2 contains a key result of the conditional
quantile regression derived by Noh, El Ghouch, and Van Keilegom (2015) as a special
case. Specifically, we show that the influence function S(Ti,X i, Yi;w) in Theorem 2
reduces to that of Noh, El Ghouch, and Van Keilegom (2015) when the conditional
τ th-quantile regression with complete data is considered. Suppose that T0i = T1i =
· · · = Tdi ≡ 1 for i = 1, . . . , N with probability 1 and L(v) = v(τ − 1(v ≤ 0)), which
implies that L′(v) = τ − 1(v ≤ 0). Then, key quantities in Theorem 2 are simplified
as follows.

b(w) = −∂aE [(τ − 1(Y ≤ a0))c (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

= ∂a

∫ a

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0) f0(y)dy

∣∣∣∣
a=a0(w)

= c (F0(a0(w)), F1(w1), . . . , Fd(wd);θ0) f0(a0(w)),
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A1i = {τ − 1(Yi ≤ a0(w))} · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) ,

A2i =

∫
{τ − 1(y ≤ a0)}∂0c (F0(y), F1(w1), . . . , Fd(wd);θ0) · [1(Yi ≤ y)− F0(y)] dF0(y)

=

∫
{τ − 1(y ≤ a0)} · [1(Yi ≤ y)− F0(y)] dc (F0(y), F1(w1), . . . , Fd(wd);θ0)

= τ ·
[∫ ∞

Yi

dc (F0(y), F1(w1), . . . , Fd(wd);θ0)−
∫ ∞

−∞
F0(y)dc (F0(y), F1(w1), . . . , Fd(wd);θ0)

]
−

∫ a0

Yi

dc (F0(y), F1(w1), . . . , Fd(wd);θ0) +

∫ a0

−∞
F0(y)dc (F0(y), F1(w1), . . . , Fd(wd);θ0)

= −τ · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0) + τ · cW (F1(w1), ..., Fd(wd);θ0)

− 1(Yi ≤ a0) · c (F0(a0(w)), F1(w1), . . . , Fd(wd);θ0)

+ 1(Yi ≤ a0) · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

+ F0(a0(w)) · c (F0(a0(w)), F1(w1), . . . , Fd(wd);θ0)

−
∫ a0

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0) dF0(y)

= −τ · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

− 1(Yi ≤ a0(w)) · c (F0(a0(w)), F1(w1), . . . , Fd(wd);θ0)

+ 1(Yi ≤ a0(w)) · c (F0(Yi), F1(w1), . . . , Fd(wd);θ0)

+ F0(a0(w)) · c (F0(a0(w)), F1(w1), . . . , Fd(wd);θ0) ,

where the last equality holds because

τ · cW (F1(w1), ..., Fd(wd);θ0)−
∫ a0

−∞
c (F0(y), F1(w1), . . . , Fd(wd);θ0) dF0(y)

=E [L′(Y − a0)c (F0(y), F1(w1), . . . , Fd(wd);θ0)] = op(N
−1/2).

Finally,

A3i =
d∑

j=1

E [{τ − 1(Y ≤ a0)}∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] · {1(Wji ≤ wj)− Fj(wj)}

+ η⊤
i E [{τ − 1(Y ≤ a0)}∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] .

Hence, the influence function S(Ti,X i, Yi;w) in Theorem 2 is simplified as follows.

Squantile =
1

b(w)
× (A1i + A2i + A3i)

=
1

c (F0(a0(w)), F1(w1), . . . , Fd(wd);θ0) f0(a0(w))

×
[
− {1(Yi ≤ a0(w))− F0(a0(w))} · c (F0(a0(w)), F1(w1), . . . , Fd(wd);θ0)
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+
d∑

j=1

E [{τ − 1(Y ≤ a0)}∂jc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)] · {1(Wji ≤ wj)− Fj(wj)}

+ η⊤
i E [{τ − 1(Y ≤ a0)}∂θc (F0(Y ), F1(w1), . . . , Fd(wd);θ0)]

]
,

which coincides with the influence function of Noh, El Ghouch, and Van Keilegom
(2015).
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