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Abstract

We study an agent’s incentives to discover where her talents lie before putting them to pro-
ductive use. In our setting, an agent can specialize and learn about the same type of talent re-
peatedly, or experiment and learn about different types of talent. When talents are normally and
symmetrically distributed we find that experimentation is efficient, regardless of one’s initial
draw of talent. Competitive labor markets encourage experimentation whereas monopsonistic
labor markets induce specialization. Relaxing our assumptions of normality and symmetry
in the distribution of talents, and allowing for human capital acquisition, provides a role for
specialization in discovering talents.

1 Introduction

The idea that people have different talents and can benefit by specializing their efforts is an old
one–dating to around 2,400 years ago in Plato’s Republic. It was, of course, expanded into one of
the cornerstones of modern economics by Adam Smith in The Wealth of Nations where he empha-
sized the benefits of the division of labor in his hypothetical pin factory.

The gains from the division of labor among people with different talent are no less relevant
in the modern economy, and the gains from specialization that it generates remain a fundamental
consideration in fields from labor economics to international trade.

But far less attention has been paid to how people come to discover their talents. Sometimes
talents are apparent, but more often they must be discovered. The implicit and explicit incentives
provided by labor markets and other institutions play a critical role in guiding the discovery of
individual talents–and it is these incentives which are the topic of this paper.

Indeed, we suggest that talents needing to be discovered is the rule, not the exception. In a
beautiful article about “late bloomers” Malcolm Gladwell1 reminds us that Pablo Picasso once said
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“In my opinion, to search means nothing in painting. To find is the thing...The several manners I
have used in my art must not be considered as an evolution or as steps toward an unknown ideal
of painting...I have never made trials or experiments.”

But most of us are not Picassos. Indeed, as Gladwell points out, no lesser artist than Paul
Cézanne said “I seek in painting”. Cézanne’s later work was just better–after he discovered where
his true talent lay. A painting done by Picasso in his mid-twenties was worth, he found, an average
of four times as much as a painting done in his sixties. For Cézanne, the opposite was true. The
paintings he created in his mid-sixties were valued fifteen times as highly as the paintings he
created as a young man.

The workhorse model for analyzing the role of talent in economics is the now classic ca-
reer concerns model of Holmstrom (1982) in which the market and a worker symmetrically learn
about the worker’s innate ability. By now there is a substantial literature that applies aspects of
the career concerns framework to issues of institutional and organizational design: public sec-
tor management (Dewatripont, Jewitt and Tirole (1999)), team management and compensation
(Jeon (1996), Auriol, Friebel and Pechlivanos (2002), and Ortega (2003)), job design (Meyer (1994),
Ortega (2001), and Kaarboe and Olsen (2006)), and compensation design (Gibbons and Murphy
(1992) and Meyer and Vickers (1997)).

We use this workhorse model to ask a simple question: to what extent can people be expected
to be willing to invest optimally in discovering at which activity they are best? In particular, we
focus on the role of incentives as provided by the institutional structure of the labor market.

In our model there are two sectors with at least one firm in each sector and an agent who
can choose to work in either sector. The agent’s sector-specific talent is unknown and production
depends on an agent’s talent.

There are two phases: learning and working. Prior to working, the agent can get a signal about
her talents by sampling, but she can only sample one type of talent per period of learning. In
the working phase, the agent shares the surplus generated from the employment relationship via
generalized Nash bargaining.

The learning phase is readily interpretable as education. As Schultz (1968) put it, one of the
“three major functions of higher education...[is]...the discovery of talent.” Thus, our model speaks
to the incentives that education systems and labor markets provide for discovering talent.

We show that when the two sectors are symmetric in the sense talents in both sectors have
the same mean and the same variance, and are normally distributed, experimentation is efficient.

To understand why consider the choice of the agent after having sampled, say, sector A in
the first period. Experimentation involves sampling sector B in period 2, whereas specialization
involves sampling sector A again. By symmetry of the sectors, a first signal from sector B is
Blackwell more informative than a second signal from sector A. So there is more to learn from
experimentation. But there is also nothing to lose. If the agent learns that she has little aptitude
for sector B she can always switch to sector A.

Turning to labor-market incentives, we show that competition leads to efficient experimenta-
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tion. To see this, note that when the labor market is perfectly competitive, the agent is the residual
claimant and thus has incentives to choose the efficient sampling strategy.

On the other hand, when labor markets are monopsonistic, the agent has no bargaining
power and so her wage is just her reservation wage–which is determined by the the lesser of
her two talents. Thus, second period signals are irrelevant, but low signals entail a cost in terms
of a lower reservation wage. Specialization, by suppressing learning, limits this cost.

A strength of our model is that we can clearly see how our assumptions of symmetry, nor-
mality, and the absence of human capital drive our main result that experimentation is efficient.
Relaxing these assumptions highlights circumstances in which there is a role for specialization.
When talents are asymmetric, sampling the talent with the higher variance repeatedly can be op-
timal because there is more to learn from that talent. To understand the role normality plays, we
consider a setting where talents have a t-distribution. Unlike the case where talents are normally
distributed, the posterior variance now depends on the realization of the signal, which once again
makes specialization efficient for extreme draws (negative or positive) of the talent sampled. Fi-
nally, when sampling a talent is associated with the accumulation of sector-specific human capital,
specialization once again has a role to play for high draws of the initial talent sampled. We also
consider an extension where we endogenize the number of samples drawn and find that labor
market competition encourages the agent to sample more.

Our study shares features with the multi-armed bandit literature.2 As in the multi-armed
bandit problem, our setup includes experimentation and exploitation; but whereas in the former
an agent can repeatedly switch between experimentation and exploitation over an infinite hori-
zon, in our setup, experimentation can only happen in the learning phase (periods 1 and 2) and
exploitation occurs in the working phase (period 3). Modeling the labor market as a multi-armed
bandit problem, Miller (1984) shows that, ceteris paribus, an agent chooses the job with the highest
information value. Since working in a job reduces uncertainty about the job-specific match value,
agents have an incentive to switch between jobs (and occupations). This result is consistent with
our finding that agents in competitive labor markets experiment during the learning phase. Fol-
lowing Jovanovic (1979), Miller (1984) considers many firms that compete for a single agent, who
is, therefore, able to extract the entire match value. In contrast, Felli and Harris (1996) assumes
that there are only two firms, one for each job, such that the agent’s wage from its current em-
ployer equals the agent’s match value with the other firm. In this setting, Felli and Harris (1996)
show that the agent experiments efficiently, in the sense that total surplus is maximized. This con-
trasts with our finding that efficient experimentation occurs only if the labor market is sufficiently
competitive.

A key feature of our model is that the talent to be discovered has multiple dimensions. This
feature appears in other learning contexts as well: job design (Meyer (1994) and Ortega (2001))
and education systems (Malamud (2010) and Malamud (2011)). But in these models, the decision

2See Bergemann and Välimäki (2008) for a review of the multi-armed bandit problem and its applications in eco-
nomics.
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about which type of talent to learn about is fixed upfront and cannot depend on new information.
By contrast, this decision in our framework is flexible and is allowed to vary with new information.

Finally, the trade-off between experimantation and specialization is related to the comparison
of breadth versus depth in Geng, Pejsachovicz and Richter (2018). In their baseline model, Geng et
al. (2018) consider an agent who chooses between N products which each have N attributes. The
value of a product is the sum of its i.i.d. attributes. Before choosing a product, the agent decides
whether to learn the values of all N attributes of one product (depth) or pick one attribute, say
attribute j, and learn the values of attribute j for all N products (breadth). Geng et al. (2018) show
that when N = 2 and the distribution of attributes is symmetric, the agent is indifferent between
breadth and depth, whereas we find that the agent prefers experimentation (breadth). The key
difference that leads to the divergent findings is that in Geng et al. (2018), all attribute values are
i.i.d., whereas in our model, the second signal from sector A is less informative than the first signal
from sector B.

2 The model

2.1 Environment and Production

There are two sectors: sector A and sector B. Associated with each sector is at least one risk neutral
firm. There is a risk neutral agent who chooses to work in either sector A or sector B.

The agent’s talent in sector A (B) is given by ηA(ηB). This talent is unknown and is distributed
normally with mean 0 and variance σ2η > 0. Talents across sectors are independent of one another.
Production depends on the talent of the agent in the sector. An agent who works in sector A (B)
produces an output ηA(ηB).

2.2 Sampling Talents

Prior to working, the agent samples (or learns about) her talents in a sector over two periods. An
agent who samples sector i, i = A,B, in period t, t = 1, 2, draws an informative signal sit = ηi + εit

at the end of the period, where εit is an idiosyncratic error term which is normally distributed with
mean 0 and variance σ2ε > 0. The error terms are independent across periods.

The key constraint that the agent faces is that she can only sample one type of talent per
period. If the agent samples the same type of talent over both periods, we say that she specializes.
On the other hand, if the agent samples different types of talents over both periods, we say that
she experiments. We assume that the agent must sample a talent in each period.

2.3 Labor Market Competition and Incentives

The agent’s wage from working for a firm is determined by Nash Bargaining over the expected
surplus. Let the parameter µ ∈ [0, 1] denote the agent’s bargaining weight. We use this parameter
to model labor market competition in a reduced form way. In particular, we assume that µ = 0
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Figure 1: Timeline.

corresponds to a case of monopsony where there is only one firm in each sector. An increase in µ

can then be interpreted as more competition in the labor market with the extreme case of µ = 1

corresponding to a perfectly competitive labor market. Alternatively, the case with µ = 1 can also be
thought of as entrepreneurship where the agent is the residual claimant of her talent.

2.4 Timing and Information Structure

There are three periods in the model: two sampling periods followed by a working period. Given
the symmetry in the distribution of both talents, we assume without loss of generality that the
agent samples sector A in the first period. Thus for all of our analysis, we treat the realized signal
in period 1 for talent A, sA1 , as an exogenous parameter. The timing and information structure of
the model then is as follows.

The agent samples sector A at the start of period 1. At the end of this period, she draws a
publicly observable signal sA1 . Conditional on this realized signal the agent decides which sector
to sample at the start of the second period. And at the end of the second period, the signal si2,
where i ∈ {A,B}, is realized. At the start of period 3, the agent decides which sector to work in.
Finally, at the end of period 3, production takes place. Figure 1 depicts the timing of the model.

3 Efficiency

Efficiency requires that the agent’s sampling choice maximizes expected output. In this section,
we compare the expected surplus (output) from specializing versus experimenting, given the re-
alization of the first period signal sA1 . We first sketch the total surplus functions associated with
specialization and experimentation. We then compare the expected surplus across these two sam-
pling strategies.

Consider the surplus function associated with specialization first. To convey the intuition for
our results clearly, it is useful to work with a transformation of the second period signal in sector
A. In particular, define ŝA2 = sA2 − λ1sA1 where λ1 =

σ2
η

σ2
η+σ

2
ε

. This normalized signal ŝA2 has a mean
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Figure 2: Total Surplus Functions: sA1 > 0.
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Figure 3: Total Surplus Functions: sA1 < 0.

of 0 and the same variance as the signal sA2 . Let FA and FB be the distribution functions for ŝA2
and sB2 respectively.

Because the agent can pick which sector to work in after sampling talents, the surplus from
specialization is given by:

TSS = max{E(ηA|sA1 , ŝA2 ), E(ηB|sA1 , ŝA2 )}

= max{λ1sA1 + λ2ŝ
A
2 , 0} ,

where λ2 =
σ2
η

2σ2
η+σ

2
ε

.
Similarly, the surplus from experimentation is given by:

TSE = max{E(ηA|sA1 , sB2 ), E(ηB|sA1 , sB2 )}

= max{λ1sA1 , λ1sB2 }.

The expected surplus from specialization, VS , is then given by:

VS = EŝA2
[TSS ] = EŝA2

[max{λ1sA1 + λ2ŝ
A
2 , 0}]

and the expected surplus from experimentation, VE , is given by:

VE = EsB2
[TSE ] = EsB2

[max{λ1sA1 , λ1sB2 }] .

Figures 2 and 3 plot the surplus from experimentation and specialization as a function of the
realization of the second period signal. Looking at these figures, it is not clear which of the two
sampling strategies yields a higher expected surplus. Notice that the surplus functions overlap.
Also expectations are taken with respect to different random variables: ŝA2 and sB2 . Our main result
in this section is that experimentation yields a higher expected surplus relative to specialization
regardless of the initial draw of talent.

But first we state a useful Lemma.

Lemma 1 Let x be a normally distributed random variable with mean 0. Let a be a positive real number
and let c and d be real numbers. Then Ex[max{ax+ c, d}] = Ex[max{ax+ d, c}].
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Proof Let F denote the distribution function of x. Since the normal distribution is symmetrical
around zero, F (x) = 1− F (−x). Then

Ex[max{ax+ c, d}]− Ex[max{ax+ d, c}] = F (d−ca ) d+ a

∫ ∞
d−c
a

xdF + (1− F (d−ca )) c

− F ( c−da )c− a
∫ ∞
c−d
a

xdF − (1− F ( c−da ))d

= a

∫ ∞
d−c
a

xdF − a
∫ ∞
c−d
a

xdF

= 0 ,

where the last step again follows from the symmetry of the normal distribution. �

The above Lemma says that when a random variable is normally distributed with a mean of
zero, then interchanging intercepts across components of the max function does not change the
expected value of the max function. It is worth pointing out that the lemma above holds not just
for a normal distribution but for any symmetric distribution with mean 0.

We now turn to our main result in this section.

Proposition 1 Experimentation, where the agent samples different sectors in each period, is efficient.

Proof We split the proof into three claims.
Claim 1: EŝA2 [TSS ] = EŝA2

[max{λ1sA1 + λ2ŝ
A
2 , 0}] ≤ EsB2 [max{λ1sA1 + λ2s

B
2 , 0}].

The distribution of signal ŝA2 given sA1 is N(0, (1 − λ21)(σ2η + σ2ε )). The distribution of signal
sB2 is N(0, σ2η + σ2ε ). Therefore the two random variables ŝA2 and sB2 have the same mean but the
former has smaller variance than the latter. Thus ŝA2 second-order stochastically dominates sB2 .
Since the max function is convex, EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}] ≤ EsB2 [max{λ1sA1 + λ2s

B
2 , 0}].

Claim 2: EsB2 [max{λ1sA1 + λ2s
B
2 , 0}] < EsB2

[max{λ1sA1 + λ1s
B
2 , 0}].

Consider two possible cases.
First, suppose sA1 ≤ 0. Then max{λ1sA1 +λ2s

B
2 , 0} ≤ max{λ1sA1 +λ1s

B
2 , 0}with the inequality

strict for sB2 sufficiently large. Thus EsB2 [max{λ1sA1 + λ2s
B
2 , 0}] < EsB2

[max{λ1sA1 + λ1s
B
2 , 0}].

Second, suppose sA1 > 0. Then max{λ1sA1 , λ2sB2 } ≤ max{λ1sA1 , λ1sB2 } with the inequal-
ity strict for sB2 sufficiently large. From Lemma 1, it follows that EsB2 [max{λ1sA1 + λ2s

B
2 , 0}] =

EsB2
[max{λ1sA1 , λ2sB2 }] < EsB2

[max{λ1sA1 , λ1sB2 }] = EsB2
[max{λ1sA1 + λ1s

B
2 , 0}].

Claim 3: EsB2 [max{λ1sA1 + λ1s
B
2 , 0}] = EsB2

[max{λ1sA1 , λ1sB2 }] = EsB2
[TSE ].

This claim follows from Lemma 1.
Taking all three claims together, the result holds. �
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To understand the intuition for this result it helps to take a closer look at the surplus func-
tions in Figures 2 and 3 above. In particular, notice that there is an upside effect: a high signal in
the second period increases the posterior mean of the sampled talent and thus increases surplus,
whereas a low signal entails no cost because the agent can switch to the non-sampled sector. It
turns out that the upside effect is stronger in the case of experimentation for the following two
reasons.

First, since the agent’s talent in sector B is sampled for the first time in the case of experimen-
tation, the weight placed on this signal is larger relative to the weight placed on the signal in the
specialization case (λ1 > λ2). This is because a signal drawn for the first time is more informative
about talent.

Second, both the signals ŝA2 and sB2 have the same mean of 0, but the signal in sector B,
which is drawn for the first time, has larger variance.3 Or put differently, the signal ŝA2 second-
order stochastically dominates the signal sB2 . This is because less is known about a talent which is
sampled for the first time.

To summarize, there is more to learn from experimentation: the weight placed on signal B
when updating beliefs is stronger (λ1 > λ2) and extreme values of signal B are more likely (ŝA2
second-order stochastically dominates sB2 ). As a result, the upside effect is larger for experimen-
tation. This larger upside effect combined with the symmetry of the normal distribution ensures
that experimentation yields a higher expected surplus relative to specialization.

Given that experimentation always does better than specialization, we now look at how the
difference in the expected surplus across both of these cases varies as we vary parameters in our
model.

Proposition 2 VE − VS is:

i strictly increasing in σ2η .

ii strictly decreasing in |sA1 | and tends to 0 as |sA1 | tends to infinity.

The proof of Proposition 2 is in the appendix. The intuition for the first part of this proposition
is clear. As the variance of talents gets larger, there is more to learn from experimentation which
makes it more valuable relative to specialization. Part (ii) of the proposition, on the other hand, is
less obvious and says that the gains from experimentation are the largest for intermediate draws
of talent, and that in the limit (for very good or very bad draws of talent) these gains disappear.

To see why the second part of Proposition 2 holds, notice from Lemma 1 that we can rewrite
EŝA2

[max{λ1sA1 +λ2ŝ
A
2 , 0}] = EŝA2

[max{λ1sA1 , λ2ŝA2 }]. Comparing this expression with the expected
surplus from experimentation, which is EsB2 [max{λ1sA1 , λ1sB2 }], we see that two things matter:
the floor of the total surplus function λ1s

A
1 which is common across both expressions, and the

inferences drawn from the second period signal across sectors (λ2ŝA2 versus λ1sB2 ). For a very
good first period draw in sector A, the common floor is highly likely to bind and hence both

3The signal ŝA2 ∼ N(0, (1− λ2
1)(σ

2
η + σ2

ε )), whereas the signal sB2 ∼ N(0, σ2
η + σ2

ε ).
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sampling strategies yield close to the same value. For a very low draw in sector A, on the other
hand, the common floor rarely binds. Since the mean of ŝA2 and the mean of sB2 are both 0, the
sampling strategies once again yield a similar value. Thus, it is for intermediate draws of the
first period signal – where the floor is partially relevant and where there is more to learn from
experimentation – where these sampling strategies differ the most.

4 Incentives to Sample

We now turn to incentives that the agent has to specialize or experiment. Given that the agent
bargains with a firm over the surplus, the agent’s expected utility from specializing and experi-
menting are given by:

EUS = EŝA2
[µmax{λ1sA1 + λ2ŝ

A
2 , 0}+ (1− µ)min{λ1sA1 + λ2ŝ

A
2 , 0}]

and
EUE = EsB2

[µmax{λ1sA1 , λ1sB2 }+ (1− µ)min{λ1sA1 , λ1sB2 }].

The proposition below shows the agent’s optimal sampling strategy.

Proposition 3 EUE − EUS = (2µ− 1)(VE − VS). Thus the agent experiments if and only if µ ≥ 1
2 .

Proof Notice that

EUS = EŝA2
[µmax{λ1sA1 + λ2ŝ

A
2 , 0}+ (1− µ)min{λ1sA1 + λ2ŝ

A
2 , 0}]

= (2µ− 1)EŝA2
[max{λ1sA1 + λ2ŝ

A
2 , 0}] + (1− µ)EŝA2 [λ1s

A
1 + λ2ŝ

A
2 ]

= (2µ− 1)VS + (1− µ)λ1sA1 ,

where the second line follows from the fact that max{x, y} + min{x, y} = x + y, and third line
follows from ŝA2 having a mean of zero.

Also

EUE = EsB2
[µmax{λ1sA1 , λ1sB2 }+ (1− µ)min{λ1sA1 , λ1sB2 }]

= (2µ− 1)EsB2
[max{λ1sA1 , λ1sB2 }] + (1− µ)EsB2 [λ1s

A
1 + λ1s

B
2 ]

= (2µ− 1)VE + (1− µ)λ1sA1 ,

where the second line, once again, follows from the fact that max{x, y} +min{x, y} = x + y, and
the third line follows from sB2 having a mean of zero.

Thus we have EUE − EUS = (2µ − 1)(VE − VS). Since VE − VS > 0 (from Proposition 1), it

follows that EUE − EUS ≥ 0 , if and only if µ ≥
1

2
. �
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Proposition 3 says that an agent (efficiently) experiments as long as labor markets are suf-
ficiently competitive. The cutoff that induces experimentation (µ = 1

2 ) lies right in the middle
of the two polar cases: µ = 1 (perfectly competitive labor markets) and µ = 0 (monopsony).
This is because talents are symmetrically distributed and because the updating rule for normally
distributed talents and signals is linear.

To see the intuition for the proposition more clearly, let’s go back to the two extreme cases
of competition. When µ = 1 so that labor markets are perfectly competitive, the agent is the
residual claimant and thus has incentives to choose the efficient sampling strategy. On the other
hand, when µ = 0 so that labor markets are monopsonistic, the agent has no bargaining power.
She hence receives her reservation wage which is the lesser of her two talents. As a result, her
incentives are distorted away from experimentation: sampling the second talent in the hope of
receiving a high signal in the second period yields no benefit (as wages are capped above by the
non-sampled sector) while low signals entail an additional cost, because they would reduce the
reservation wage. Specialization helps limit this cost: because the residual variance of sampling
the same talent in the second period is lower than sampling the other talent. Put differently,
specialization suppresses learning, which in monopsony only has costs and no benefits.

5 Extensions

5.1 A Role for Specialization

Our main result in Proposition 1 is that experimentation is efficient regardless of the initial draw
of talent. This result, however, hinges crucially on some assumptions made in our paper: talents
are symmetrically and normally distributed, and there is no human capital acquired during the
learning phase. In this subsection, we show that specialization has a role to play from an efficiency
viewpoint when these assumptions are relaxed.4 The proofs of all the propositions that follow are
in the appendix.

5.1.1 Human Capital

We now introduce human capital into our analysis. When an agent samples a sector, she does not
just get a signal of her talent; she also acquires human capital H > 0. Output in each sector is
the agent’s talent plus her human capital. When human capital is general across sectors, we can
rewrite the surplus functions as:

TSGeneralS = max{λ1sA1 + λ2ŝ
A
2 + 2H, 2H}

and

TSGeneralE = max{λ1sA1 + 2H,λ1s
B
2 + 2H}.

4Allowing for an exogenous outside option for the agent limits these efficiency gains from specialization.
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When human capital is specific to a sector, on the other hand, the surplus functions become:

TSSpecificS = max{λ1sA1 + λ2ŝ
A
2 + 2H, 0}

and

TSSpecificE = max{λ1sA1 +H,λ1s
B
2 +H}.

The following proposition characterizes the efficient sampling strategy with human capital.

Proposition 4 i When human capital is general across sectors, experimentation is efficient.

ii When human capital is specific to a sector, specialization is efficient for a sufficiently large first period
signal sA1 , and experimentation is efficient for a sufficiently small first period signal sA1 .

With general human capital, nothing changes in our analysis: experimentation is still efficient
regardless of the first period signal. But when human capital is specific to a sector, our main result
in Proposition 1 changes. With specific human capital, when an agent gets a really good draw in
sector A, then it is efficient for her to sample the same sector again. And when she gets a really
bad draw in sector A, efficiency dictates that she should experiment instead. The intuition for
the result is the following. Because human capital is sector specific, it is lost if the agent ends up
working in a different sector. For a large first period signal in sector A, the agent is more likely to
work in sector A which makes it more costly to sample and accumulate human capital in sector B.
For a low first period signal on the other hand, the agent is more likely to work in sector B so that
experimentation is more valuable.

5.1.2 Asymmetric Model

So far in our model, sectors are symmetric: talents in both sectors have the same mean and the
same variance. In this section, we allow for asymmetries across sectors.

Let ηA ∼ N(0, σ2η) and ηB ∼ N(b, vσ2η) where v > 0 and where b is any real number. Also let
εAt ∼ N(0, σ2ε ) and εBt ∼ N(0, wσ2ε ) for t = 1, 2 with w > 0. Using this information structure we
have that E(ηB|sB2 ) = (1 − λB1 )b + λB1 s

B
2 , where λB1 =

vσ2
η

vσ2
η+wσ

2
ε
. The unconditional distribution of

the signal sB2 is normal with mean b and variance vσ2η + wσ2ε .

We break this section into two parts. In the first part, we assume that the agent exogenously
samples sector A in period 1. In the second part, the agent’s choice of which sector to sample
initially is made endogenous.

The following proposition gives sufficient conditions under which experimentation is effi-
cient when the agent exogenously samples sector A in period 1.

Proposition 5 Let 1 − λ21 < vλ1 + w(1 − λ1) < v(1 + λ1). Then, experimentation, where the agent
samples different sectors in each period, is efficient.
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Notice first that the parameter b plays no role in the proposition above – the sufficient con-
ditions do not depend on b. What the result does depend on is the variances of talents and the
variances of the error terms. The first condition in the proposition, 1−λ21 < vλ1+w(1−λ1), ensures
that signal B has larger variance than signal A. The second condition, vλ1+w(1−λ1) < v(1+λ1),
ensures that the weight placed on signal B while updating the mean is higher. These two condi-
tions, combined with the symmetry of the normal distribution ensure that experimentation, once
again, is efficient.

Next, we relax the assumption that the agent exogenously samples sector A in the first period.
We restrict our attention to the case where v > 1 and w = 1. Thus, talent has a larger prior
variance in sector B and signals are equally noisy across sectors. For this case we have a very
simple condition under which experimentation is efficient.

Proposition 6 Let v > 1, w = 1, and let the agent choose which sector to sample in period 1. Then
experimentation is efficient if and only σ2

η

σ2
ε
≥ v−1

v .

The proposition above offers a simple condition that is both necessary and sufficient for ex-
perimentation to be efficient. The left-hand side of the condition σ2

η

σ2
ε

is simply the signal to noise
ratio, whereas the right-hand side of the condition, v−1v measures the degree to which variances
across sectors are asymmetric. The proposition then says that as long as the signal to noise ratio is
at least as large as the degree of asymmetry in the variances, then experimentation is efficient.

5.1.3 How Sensitive is the Result to the Normal-Normal Model?

The fact that the result that experimentation is more efficient than specialization is independent
of the realization of the signal drawn in the first period is surprising. We conjecture that the inde-
pendence on the first period signal is specific to the normal-normal model and, more specifically,
to the property that the variance of the updated normal distribution is independent of the first
period signal.

To explore this conjecture we analyze a slightly more general information structure. We as-
sume that the agent’s talent, ηi, in sector i = {A,B} follows a Student t-distribution with ν > 2

degrees of freedom, a mean of zero and scale parameter of ν−2ν σ2η, i.e.,

ηi ∼ tν(0, ν−2ν σ2η).

As before, conditional on ηi, signals are normally distributed with mean ηi and variance σ2ε .When
the prior distributions for the agent’s talents follow a t-distribution and signals are normally dis-
tributed, the posterior distributions for the agent’s talents are also t-distributions DeGroot (1970).
The posterior means of the agent’s talents are the same as for the normal-normal model.

Similarly, the unconditional distribution of the first signal and the conditional distribution of
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Figure 4: The difference in expected surplus from experimentation over specialization (VE − VS)

the second signal given the first signal follow Student t-distributions. More specifically,

sB2 ∼ tν(0,
ν−2
ν (σ2η + σ2ε ))

and

ŝA2 |sA1 ∼ tν+1(0, (
ν−2
ν + 1

ν+1
(sA1 )2

σ2
η+σ

2
ε
)(1− λ21)(σ2η + σ2ε ))

These posterior distributions are very similar to the ones obtained in the normal-normal model.
Posterior means are identical and, as ν → ∞, the variances and distributions converge to the
normal-normal model.

The crucial difference to the normal-normal model is that the posterior variance of the second
signal in sector A depends on the first signal. The greater the magnitude of the first signal, the
greater the posterior variance of the second signal. If sA1 is very high or very low, the posterior
variance of the second signal from sector A can get larger than the unconditional variance of
the signal from sector B. In this case it can be efficient to sample from sector A again and, thus,
specialize.

This is illustrated in Figure 4, which shows the difference in expected surplus from experi-
mentation and specialization. Here, σ2η = σ2ε = 1, λ1 = 0.5, λ = 0.33 and ν = 3.

Figure 4 confirms our conjecture: The result that experimentation is more efficient than spe-
cialization for all realizations of the first signal relies on the normal-normal model. In Figure 4
specialization is more efficient when the first signal is below -3.4 or above 3.4. Note that for the
parameter values used in Figure 4, the signal sA1 follows a t-distribution with 3 degrees of free-
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dom, mean zero and standard deviation of
√
2.Given this distribution, the probability of choosing

a signal below -3.4 or above 3.4 is less than 10%. Thus, for the vast majority of realized signals,
experimentation is still efficient.

5.2 Option not to Sample Talent

So far in our analysis, we have assumed that the agent has to sample her talent twice: in period 1
and in period 2. Implicit in this framework is a sufficiently large cost c > 0, that the agent incurs
if she does not draw a second sample of talent.5 In this subsection, we relax this assumption and
give the agent the option of not sampling her talent in the second period. Fewer sampling draws
can be interpreted as the agent entering the labor market early. The following proposition shows
how the agent’s decision to draw a second sample depends on competition in the labor market.

Proposition 7 An agent is more likely to sample her talent for a second time in a more competitive labor
market (where µ is larger).

Proof The agent samples her talent for the second time if and only if

max{EUS , EUE} − (µmax{λ1sA1 , 0}+ (1− µ)min{λ1sA1 , 0}) ≥ −c.

Using the fact that max{x, y}+min{x, y} = x+ y, the inequality above can be rewritten as

(2µ− 1)(max{VS , VE} −max{λ1sA1 , 0}) ≥ −c.

Using Lemma 1 and the fact that ŝA2 has a mean of zero gives us,

VS = EŝA2
[max{λ1sA1 + λ2ŝ

A
2 , 0}] = EŝA2

[max{λ1sA1 , λ2ŝA2 }] > max{λ1sA1 , 0},

and the fact that sB2 has a mean of zero yields,

VE = EsB2
[max{λ1sA1 , λ1sB2 }] > max{λ1sA1 , 0}.

Thus max{VS , VE}−max{λ1sA1 , 0} > 0. It follows that (2µ−1)(max{VS , VE}−max{λ1sA1 , 0})
is strictly increasing in µ.�

The proposition above says that competition in the labor market encourages the agent to
draw more samples of talent. Or put differently, when labor markets are competitive, the agent
has an incentive to delay her entry into the labor market by learning more about her talents.
Conversely, imperfect labor markets encourage early entry into the labor market. To illustrate the
intuition for this proposition, it is useful to focus on the monopsony case where µ = 0. Here,

5In an imperfectly competitive labor market, additional information to the market can be used to lower an agent’s
wage, giving her an incentive not to sample her talent for a second time.
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max{EUS , EUE} = −VS which is negative for any realization of the signal sA1 . So if there were no
costs to the agent from forgoing a second draw, she would never sample her talent in period 2. In
a monopsony, where the agent has no bargaining power, additional information to a labor market
can only hurt her as her wage is the lesser of her two talents. As the agent’s bargaining power
improves, she can capture a larger share of the surplus from additional information, giving her
more of an incentive to sample again.

6 Discussion

We now discuss potential applications of our model to labor markets. Two key features underpin
our simple model. First, talents are publicly sampled prior to those talents being put to produc-
tive use. Thus sampling in our framework can be thought of as education, public certification
programs, or a publicly observable job assignment. Second, competition in labor markets can be
imperfect based on the extent to which an individual is a residual claimant on the returns from
her talent.

Taken together, these features yield two testable implications. First, education systems that
favor experimentation should correlate positively with competition in labor markets or with insti-
tutions that encourage entrepreneurship. While proxies of labor market competition are difficult
to find, there are data on the ease of starting a business and overall entrepreneurial activity in a
country. For example, the Doing Business Database (the World Bank) and the Index of Economic
Freedom (the Heritage Foundation) have data on barriers such as the average number of proce-
dures officially required to start a business, and the time taken for these procedures. And the
Global Entrepreneurship Monitor (GEM) has measures of entrepreneurial activity. Not surpris-
ingly, the U.S and Canada, which have some of the lowest costs of starting a business and high
entrepreneurial activity, also have education systems that encourage experimentation.

The second implication is that workers should enter a labor market earlier when competi-
tion is imperfect. This could possibly explain why education systems in many European countries
have a vocational focus where students are put on a vocational track early in their schooling years.
If labor markets in Europe are more imperfect, as many economists believe, the payoff from dis-
covering talents through more education is small.

The key features of our model and the implications that result allow us to clearly distinguish
our work from two sets of influential theories in the labor literature: job matching (Jovanovic
(1979) and Miller (1984)) and career concerns (Holmstrom (1982)). In both of these theories, the
sampling is done during the working period and the extent to which an individual is a residual
claimant of her talent is not allowed to vary. Our emphasis on a different, yet fundamental, type
of (pre work) sampling thus complements these theories above. It is also worth pointing out that a
worker being a residual claimant leads to different implications in the career concerns framework.
In that setting, being a residual claimant can lead to inefficiency in terms of effort whereas in our
framework being a residual claimant always leads to an efficient outcome.
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7 Conclusion

People’s talents are the driving force for innovation and growth. But in many cases these talents
are unknown. Institutions in society thus have to be designed to provide incentives for individuals
to learn about their talents in an efficient way. Our paper is a deliberately abstract attempt to make
this link between institutions – particularly those governing competition in the labor market –
and incentives to discover talents. We develop a tractable model to compare the relative merits of
experimentation (where different types of talent are sampled) and specialization (where the same
type of talent is sampled repeatedly). We also find that while competitive labor markets induce
efficient learning of talents, monopsonistic labor markets move incentives towards specialization.

Our focus has mainly been on incentives provided by labor market institutions. But there
are other institutions that matter for discovering talent: education systems, regulations that en-
trepreneurs are subject to, access to finance, and taxation, are all arguably important. Our tractable
model serves as a useful starting point to better understand the role that these institutions play in
discovering talent.
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Appendix

Proof of Proposition 2: We first prove that:

VE − VS =

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1|sA1 |)fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ2σAz)fzdz ,

where z is distributed normally with mean 0 and variance 1, σA is the standard deviation of the
random variable ŝA2 , and σB is the standard deviation of the random variable sB2 .

Consider two cases. Suppose sA1 ≥ 0. Then:

VE − VS = EsB2
[max{λ1sA1 , λ1sB2 }]− EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}]

= EsB2
[max{λ1sA1 , λ1sB2 }]− EŝA2 [max{λ1sA1 , λ2ŝA2 }]

= EsB2
[max{λ1sA1 , λ1sB2 } − λ1sA1 ]− EŝA2 [max{λ1sA1 , λ2ŝA2 } − λ1sA1 ]

=

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1sA1 )fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ1sA1 )fzdz −
∫ ∞
λ1|sA1 |
λ2σA

(λ2σAz − λ1sA1 )fzdz

=

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1|sA1 |)fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ2σAz)fzdz ,

where the second line above follows from Lemma 1, and the fourth line makes use of the transfor-
mation sB2 = σBz and ŝA2 = σAz.

Next, suppose sA1 < 0. Then:

VE − VS = EsB2
[max{λ1sA1 , λ1sB2 }]− EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}]

= EsB2
[max{λ1sA1 + λ1s

B
2 , 0}]− EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , 0}]

=

∫ − λ1sA1
λ2σA

−
sA1
σB

(λ1σBz + λ1s
A
1 )fzdz +

∫ ∞
−
λ1s

A
1

λ2σA

(λ1σBz + λ1s
A
1 )fzdz −

∫ ∞
−
λ1s

A
1

λ2σA

(λ2σAz + λ1s
A
1 )fzdz

=

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(λ1σBz − λ1|sA1 |)fzdz +
∫ ∞
λ1|sA1 |
λ2σA

(λ1σBz − λ2σAz)fzdz .

Now consider the comparative static results with respect to σ2η and |sA1 | respectively.
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i

∂(VE − VS)
∂σ2η

=
∂
λ1|sA1 |
λ2σA

∂σ2η
(
λ1σB − λ2σA

λ2σA
)λ1|sA1 |fz(

λ1|sA1 |
λ2σA

)−
∂
|sA1 |
σB

∂σ2η
(0)

+

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

λ1
∂σB

∂σ2η
zfzdz

+

∫ λ1|s
A
1 |

λ2σA

|sA1 |
σB

(
∂λ1

∂σ2η
(σBz − |sA1 |))fzdz

−
∂
λ1|sA1 |
λ2σA

∂σ2η
(
λ1σB − λ2σA

λ2σA
)λ1|sA1 |fz(

λ1|sA1 |
λ2σA

)

+

∫ ∞
λ1|sA1 |
λ2σA

(λ1
∂σB

∂σ2η
+
∂λ1

∂σ2η
σB − λ2

∂σA

∂σ2η
−
∂λ2

∂σ2η
σA)zfzdz .

Notice that the first and fourth lines in the expression above cancel each other out. The third
line is positive since z ≥ |s

A
1 |
σB

. Also, since λ1 > λ2, σB > σA, ∂λ1
∂σ2
η
> ∂λ2

∂σ2
η

and ∂σB
∂σ2
η
> ∂σA

∂σ2
η

, the last

line is positive. Thus ∂(VE−VS)
∂σ2
η

> 0.

ii

∂(VE − VS)
∂|sA1 |

=
λ21|sA1 |
λ22σ

2
A

(λ1σB − λ2σA)fz(
λ1|sA1 |
λ2σA

)

− λ1|sA1 |
σB

(0)fz(
|sA1 |
σB

)

−
∫ λ1|s

A
1 |

λ2σA

|sA1 |
σB

λ1fzdz

− λ21|sA1 |
λ22σ

2
A

(λ1σB − λ2σA)fz(
λ1|sA1 |
λ2σA

) .

Notice that the first and fourth lines cancel each other out. Thus
∂(VE − VS)

∂|sA1 |
< 0.

Proof of Proposition 4:

i Suppose human capital is general. Then

EsB2
[TSGeneralE ]− EŝA2 [TS

General
S ] = VE − VS .

From Proposition 1, it follows that experimentation is efficient.

ii Suppose human capital is specific to a sector.
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We can write EsB2 [TS
Specific
E ] = VE +H . Similarly, we can write

EŝA2
[TSSpecificS ] = VS +H + g(sA1 ) ,

where g(sA1 ) =
∫ 0
−(λ1sA1 +2H)

λ2

2HdFA +
∫ −λ1sA1λ2
−(λ1sA1 +2H)

λ2

(λ1s
A
1 + λ2ŝ

A
2 )dF

A.

Thus the expected gain in surplus from experimenting over specializing is given by VE −VS −
g(sA1 ) . In the limit as sA1 tends to infinity, VE−VS−g(sA1 ) tends to−H and as sA1 tends to minus
infinity, VE − VS − g(sA1 ) tends to H . Furthermore,

g′(sA1 ) =
2Hλ1

λ2
fA(

−(λ1sA1 +2H)
λ2

) + λ1

∫ −λ1sA1
λ2

−(λ1sA1 +2H)
λ2

dFA −
2Hλ1

λ2
fA(

−(λsA1 +2H)
λ2

) > 0 .

Thus there is a threshold level of the first period signal, above which it is efficient to specialize.
And since VE − VS > 0, there is a threshold level of the first period signal below which it is
efficient to experiment.

Proof of Proposition 5: Let ŝB2 = sB2 − b . We split the proof into three claims.
Claim 1: EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , b}] ≤ EŝB2 [max{λ1sA1 + λ2ŝ

B
2 , b}].

Proof The distribution of signal ŝA2 given sA1 is N(0, (1 − λ21)(σ2η + σ2ε )). The distribution of sig-
nal ŝB2 is N(0, vσ2η + wσ2ε ). When 1 − λ21 < vλ1 + w(1 − λ1) the two random variables ŝA2 and
ŝB2 have the same mean but the former has smaller variance than the latter. Thus ŝA2 second-
order stochastically dominates ŝB2 . Since the max function is convex, EŝA2 [max{λ1sA1 + λ2ŝ

A
2 , b}] ≤

EŝB2
[max{λ1sA1 + λ2s

B
2 , b}].�

Claim 2: EŝB2 [max{λ1sA1 + λ2ŝ
B
2 , b}] < EŝB2

[max{λ1sA1 + λB1 ŝ
B
2 , b}].

Proof Notice that λB1 > λ2 when vλ1 + w(1− λ1) < v(1 + λ1).
Consider two possible cases.
First, suppose λ1sA1 ≤ b. Then max{λ1sA1 +λ2ŝ

B
2 , b} ≤ max{λ1sA1 +λB1 ŝ

B
2 , b}with the inequal-

ity strict for ŝB2 sufficiently large. Thus EŝB2 [max{λ1sA1 + λ2ŝ
B
2 , b}] < EŝB2

[max{λ1sA1 + λB1 ŝ
B
2 , b}].

Second, suppose λ1sA1 ≥ b. Then max{λ1sA1 , λ2ŝB2 + b} ≤ max{λ1sA1 , λB1 ŝB2 + b} with the in-
equality strict for ŝB2 sufficiently large. From Lemma 1 it follows that EŝB2 [max{λ1sA1 + λ2ŝ

B
2 , b}] =

EŝB2
[max{λ1sA1 , λ2ŝB2 + b}] < EŝB2

[max{λ1sA1 , λ1ŝB2 + b}] = EŝB2
[max{λ1sA1 + λB1 ŝ

B
2 , b}].�

Claim 3: EŝB2 [max{λ1sA1 + λB1 ŝ
B
2 , b}] = EsB2

[max{λ1sA1 , (1− λB1 )b+ λB1 s
B
2 }].
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Proof

EŝB2
[max{λ1sA1 + λB1 ŝ

B
2 , b}] = EŝB2

[max{λ1sA1 , λB1 ŝB2 + b}]

= EsB2
[max{λ1sA1 , λB1 (sB2 − b) + b}]

= EsB2
[max{λ1sA1 , (1− λB1 )b+ λB1 s

B
2 }] ,

where the equality in the first line follows from Lemma 1. �

Taking all three claims together, the result holds.�

Proof of Proposition 6: Since v > 1 and w = 1 both the inequalities in Proposition 5 hold.
Thus specializing in sector A is dominated by sampling sector A in the first period and experi-
menting with B in the second. Also, since we can switch the order of integration, experimentation
yields the same expected surplus regardless of which sector the agent samples first. Thus it is
sufficient for us to compare two cases: the case where the agent samples sector B first and then
experiments with sector A and the case where the agent specializes in sector B.

Note that:

σ2η

σ2ε
≥
v − 1

v
⇐⇒

vσ2ησ
2
ε

vσ2η + σ2ε
≤ σ2η ⇐⇒ λB2 =

vσ2η
2vσ2η + σ2ε

≤ λ1 ,

where
vσ2ησ

2
ε

vσ2η + σ2ε
is the posterior variance of the talent in sector B and where λB2 is the updating

weight that the agent places on the second period signal in sector B if she specializes.

When
σ2η

σ2ε
<
v − 1

v
, the following three claims (as in the proof of Proposition 5) hold.

Claim 1: EsA2 [max{λ1sA2 , (1 − λB1 )b + λB1 s
B
1 }] ≤ E

ŝB
′

2
[max{λ1ŝB

′
2 , (1 − λB1 )b + λB1 s

B
1 }] , where

ŝB
′

2 = sB2 − ((1 − λB1 )b + λB1 s
B
1 ). This claim holds because the signals sA2 and ŝB

′
2 have the same

mean, but the former has smaller variance than the latter.
Claim 2: E

ŝB
′

2
[max{λ1ŝB

′
2 , (1 − λB1 )b + λB1 s

B
1 }] < E

ŝB
′

2
[max{λB2 ŝB

′
2 , (1 − λB1 )b + λB1 s

B
1 }]. This

claim holds because λB2 =
vσ2
η

2vσ2
η+σ

2
ε
> λ1.

Claim 3: E
ŝB
′

2
[max{λB2 ŝB

′
2 , (1 − λB1 )b + λB1 s

B
1 }] = EŝB2

[max{0, λB2 sB2 + (1 − λB2 )((1 − λB1 )b +
λB1 s

B
1 )}]. This claim follows from Lemma 1.

Thus, specializing in sector B is optimal when
σ2η

σ2ε
<
v − 1

v
.

On the other hand, when
σ2η

σ2ε
≥
v − 1

v
, the following three claims once again hold.

Claim 1: E
ŝB
′

2
[max{0, λB2 ŝB

′
2 + (1− λB1 )b+ λB1 s

B
1 }] ≤ EsA2 [max{0, λB2 sA2 + (1− λB1 )b+ λB1 s

B
1 }] ,

where ŝB
′

2 = sB2 − ((1 − λB1 )b + λB1 s
B
1 ). This claim holds because the signals ŝB

′
2 and sA2 have the

same mean, but the former has smaller variance than the latter.
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Claim 2: EsA2 [max{0, λB2 sA2 + (1 − λB1 )b + λB1 s
B
1 }] < EsA2

[max{0, λ1sA2 + (1 − λB1 )b + λB1 s
B
1 }] ,

where λB2 =
vσ2
η

2vσ2
η+σ

2
ε

. This claim holds because λB2 =
vσ2
η

2vσ2
η+σ

2
ε
≤ λ1.

Claim 3: EsA2 [max{0, λ1sA2 + (1 − λB1 )b + λB1 s
B
1 } = EsA2

[max{λ1sA2 , (1 − λB1 )b + λB1 s
B
1 }. This

claim follows from Lemma 1.

Thus experimenting is optimal when
σ2η

σ2ε
≥
v − 1

v
. �
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