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Abstract

We study optimal transport networks in spatial equilibrium. We develop a framework con-

sisting of a neoclassical trade model with labor mobility in which locations are arranged on a

graph. Goods must be shipped through linked locations, and transport costs depend on con-

gestion and on the infrastructure in each link, giving rise to an optimal transport problem in

general equilibrium. The optimal transport network is the solution to a social planner’s problem

of building infrastructure in each link. We provide conditions such that this problem is globally

convex, guaranteeing its numerical tractability. We also study cases with increasing returns to

transport technologies in which global convexity fails. We apply the framework to assess optimal

investments and inefficiencies in observed road networks in 25 European countries. The counter-

factuals suggest larger gains from road network expansion and larger losses from misallocation

of current roads in lower-income countries.
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1 Introduction

Trade costs are a ubiquitous force in international trade and economic geography, as they

rationalize spatial distributions of prices, real incomes, and trade flows. In reality, trade costs result

from a diverse set of policies and frictions in the economic environment. Transport infrastructure,

in particular, stands out as an important force (Limao and Venables, 2001; Atkin and Donaldson,

2015).1 Following the pioneering work of Eaton and Kortum (2002), a standard approach to study

the gains from market integration, and of infrastructure improvements in particular, is to fit a

quantitative trade model to data on the geographic distribution of economic activity, and then ask

what would happen if trade costs between specific locations were to change by some predetermined

amount.2

A range of questions related to transport infrastructure calls for a somewhat different approach.

Consider, for example, a problem confronted by countries at the time of allocating resources: how

should infrastructure investments be allocated across regions, and how do the aggregate gains

depend on the magnitude of the total investment? Relatedly, infrastructure investments may be

sensitive to frictions, local interests or corruption, potentially leading to suboptimal transport

networks that may hinder trade and development.3 How important are these inefficiencies? To

answer these questions, it is necessary to pinpoint the best set of infrastructure investments, to

then ask what would happen if trade costs were to change in the way implied by the efficient

transport network.

In this paper, we develop and apply a framework to study optimal transport networks in general

equilibrium spatial models. We solve a global optimization over the space of networks, given any

primitive fundamentals, in a general neoclassical framework. In contrast to the standard approach,

here trade costs are an outcome rather than a primitive, endogenously responding to fundamentals

such as resource endowments and geographic frictions through optimal investments in the transport

network. We apply the framework to European road networks, where we assess the aggregate and

regional impacts of optimal infrastructure growth, the inefficiencies of observed networks, and the

optimal placement of roads as a function of observable regional characteristics.

The point of departure for the framework is a neoclassical economy with multiple goods, fac-

tors, and locations, nesting standard trade models (such as the Ricardian, Armington, and factor-

endowment models) and allowing for either a fixed spatial distribution of the primary factors (as in

1For a review of various determinants of trade costs see Anderson and Van Wincoop (2004).
2Costinot and Rodŕıguez-Clare (2013) review the quantitative gravity literature on changes in trade costs focused

on measuring gains from international trade. Redding and Rossi-Hansberg (2016) review a body of research using
similar frameworks to study counterfactuals involving changes in infrastructure within countries. See Donaldson
(2015) and Redding and Turner (2015) for reviews of empirical analyses of actual changes in transport infrastructure,
as well as the literature review below for additional references.

3See WorldBank (2011) and IADB (2013) for assessments of transport costs and infrastructure in Africa and
Latin-America, respectively. Collier et al. (2016) provide evidence that the costs of building road networks in low-
and middle-income countries are related to political conflict. Such inefficiencies are not only apparent in develop-
ing countries; e.g., Castells and Solé-Ollé (2005) consider the role of political factors in driving the allocation of
infrastructure investment across Spanish departments.
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international trade models) or for labor to be mobile (as in economic geography models).4 The key

methodological innovation is that locations are arranged on a graph and goods can only be shipped

through connected locations subject to transport costs that depend both on how much is shipped

(e.g., because of congestion or decreasing returns to shipping technologies) and on how much is

invested in infrastructure (e.g., the number of lanes or the quality of the road). We tackle the

planner’s problem of simultaneously choosing the transport network (i.e., the set of infrastructure

investments), the allocation of production and consumption, and the gross trade flows across the

graph.

Solving this problem may be challenging because of dimensionality—the space of all networks

is large—and interactions—an investment in one link asymmetrically impacts the returns to invest-

ments across the network. It is also complicated by the potential presence of increasing returns due

to the complementarity between infrastructure investments and shipping. We exploit the fact that

the planner’s subproblem of choosing gross trade flows is an optimal flow problem on a network, a

well understood problem in the operations research and optimal transport literatures. A key insight

from these literatures is that the optimal flows derive from a “potential field”—prices in our con-

text—that can be efficiently solved numerically using duality techniques.5 We make assumptions

such that the full planner’s problem, involving the general equilibrium allocation and the network

investments alongside the optimal transport, inherits the tractability of optimal flow problems. Our

assumptions, including a continuous mapping from infrastructure investments to trade costs and

curvature in the technology to transport goods, ensure that the full planner’s problem is convex,

and that the set of optimal infrastructure investments can be expressed as a function of equilibrium

prices. As a result, we solve the full planner’s problem while avoiding a direct search in the space

of networks. Instead, we search in the space of equilibrium prices applying the numerical methods

typically used for optimal transport problems.

While strong enough congestion in transport guarantees convexity of the planner’s problem,

our framework can also be used when congestion is weak or absent—a case that implies increasing

returns in the overall transport technology. We numerically approximate the global solution in

non-convex cases by combining the duality approach to obtain the optimal flows and infrastructure

as a function of prices with global-search numerical methods that build upon standard simulated

annealing techniques. Even though in non-convex cases we only find local optima, the ensuing

networks display the qualitative features that we expect in the presence of economies of scale. In

particular, in a simple case with a single commodity, we demonstrate that the optimal network

is a “tree” under increasing returns: every pair of locations is necessarily connected by only one

route when convexity fails, but generically connected by multiple routes if it holds. In tune with

this feature, our numerical solutions in more complex environments with multiple commodities

show that the network is sparser in the region of the parameter space where convexity fails: the

distribution of infrastructure investments is more concentrated in fewer links and includes a larger

4We limit the analysis to transport of goods. In the case with labor mobility, labor is perfectly mobile.
5See the references in the literature review.

2



amount of zeros.

The framework has enough flexibility to be matched to real-world data and then used to un-

dertake counterfactuals involving the optimal transport network. The quantification relies on two

steps. First, the model’s fundamentals can be calibrated such that the solution to the planner’s op-

timal allocation of consumption, production, and gross flows matches spatially disaggregated data

on economic activity given an observed transport network. This step is enabled by the fact that,

given the transport network, the welfare theorems hold. Second, assuming a specific technology to

build infrastructure makes it possible to undertake counterfactuals involving the optimal network.

We apply these steps in the context of European road networks. For the quantification, we allow

locations in the model to be heterogeneous in productivity and in the supply of non-traded goods.

We discipline these fundamentals such that, given the observed road networks, the model reproduces

the observed population and value added at a 0.5 x 0.5 degree spatial resolution (approximately

50km x 50km cells) across the 25 European countries in our data. For this step we construct a

measure of the road infrastructure (number of lanes and type of roads) linking any two contiguous

cells in the data, and we entertain different assumptions on labor mobility and on the returns

to infrastructure, encompassing both convex and non-convex cases. Then, we impose alternative

assumptions on road building costs. We either assume that the observed road network is the

outcome of the full planning problem—allowing us to back out these costs from the first-order

conditions of the planner’s problem—or use existing estimates from the literature for how building

costs vary with observable geographic features.

Our counterfactuals in the benchmark parametrization with convex costs imply that, across

countries, the average welfare gain from an optimal 50% expansion in the resources used to build

the observed road networks and the average welfare loss from road misallocation are between

3% and 6%, depending on the assumptions on building costs and labor mobility. Regardless of

these assumptions, we find larger returns to optimal road expansion and larger losses from road

misallocation in poorer economies. Within countries, the optimal expansion or reallocation of

roads reduces regional inequalities in real consumption, reflecting the fact that the goal of optimal

infrastructure investments is to reduce dispersion in the marginal utility of consumption of traded

commodities. However, different assumptions on building costs and returns to scale imply different

ways of achieving this goal of reducing spatial inequalities by changing the optimal placement

of infrastructure. We illustrate the alternative road investment plans implied by the different

assumptions and counterfactuals by considering two of the largest economies in our data, France

and Spain.

The rest of the paper proceeds as follows. Section 2 discusses the connection to the literature.

Section 3 develops the framework, establishes its key properties, and discusses the numerical im-

plementation. Section 4 presents simple illustrative examples. Section 5 applies the model to road

networks in Europe. Section 6 concludes. We relegate proofs, additional derivations, details of the

quantitative exercise, tables, and figures to the appendix.
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2 Relation to the Literature

Our paper is related to a recent quantitative literature in international trade and spatial eco-

nomics that studies the role of trade costs in rich geographic settings. Eaton and Kortum (2002)

and Anderson and Van Wincoop (2003) developed quantitative versions of the Ricardian and Arm-

ington trade models, respectively, allowing counterfactuals with respect to trade costs in a multi-

country competitive equilibrium.

Some recent studies introduce traders who choose the least cost route to ship their goods

within a given transport network. These studies undertake counterfactuals with respect to the

cost of shipping across specific links, but do not optimize in the space of networks like we do.6

In this vein, Allen and Arkolakis (2014) measure the aggregate effect of the U.S. highway system,

Donaldson and Hornbeck (2016) calculate the historical impact of railroads on the U.S. economy,

and Redding (2016) compares the impact of infrastructure changes in models with varying degrees

of increasing returns. Alder (2016) simulates counterfactual transport networks in India, Nagy

(2016) studies how the development of U.S. railways affected city formation, and Sotelo (2016)

simulates the impact of highway investments on agricultural productivity in Peru. Other recent

studies allowing for factor mobility and trade frictions within countries include Bartelme (2015),

Caliendo et al. (2014) and Ramondo et al. (2012).7

To the best of our knowledge, only a few papers feature some form of search or optimization over

transport networks: Alder (2016) applies a heuristic algorithm that progressively eliminates links

according to their impact on market access and Felbermayr and Tarasov (2015) study optimal

infrastructure investments by competing planners in an Armington model where locations are

arranged on a line.8 Allen and Arkolakis (2016) compute the first-order welfare impact of reductions

to the cost of shipping across specific links in an Armington model, but do not optimize over the

space of networks.9 In contrast, we solve a global optimization over the space of networks in

a neoclassical framework with or without labor mobility.10 The fundamentals can be chosen to

match data on economic activity and actual transport networks at high spatial resolution, as in

our application to Europe.11

Both our model and the studies cited above include an optimal transport problem, defined as

6Chaney (2014a) studies endogenous networks of traders in contexts with imperfect information. For a review of
recent literature on the role of various types of networks in international trade see Chaney (2014b).

7Redding et al. (2016) study innovations to urban transport systems and apply their analysis to Berlin.
8Some recent studies allow for endogenous transport costs in different historical contexts: Swisher IV (2015)

model U.S. transport investments as the result of a Nash Equilibrium across competing companies in the context and
Trew (2016) endogeneizes trade costs in the spatial-development framework of Desmet and Rossi-Hansberg (2014)
by making them depend on the amount of activity in a location, and studies the role of transport infrastructure in
shaping structural change in England and Wales.

9Allen et al. (2014) apply related envelope conditions to compute the maximal welfare gradient with respect to
local changes in trade costs in gravity models without optimizing over the transport network.

10The model also nests the spatial equilibrium model of Rosen-Roback (Roback, 1982).
11The studies computing the gains from reducing trade costs or improving infrastructure rarely account for the

costs of doing so, while we consider both sides of the trade-off by including a cost of building infrastructure in
each link. In our counterfactuals, the parametrization of these costs has important implications for where optimal
infrastructure is placed.
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the trader’s problem of choosing least-cost routes across pairs of locations.12 However, in the studies

cited above, the optimal transport problem does not include congestion and can therefore be solved

independently from any general-equilibrium outcome. In addition, in these previous studies, each

location sources each good from only one origin, as in the Armington model where each commodity

is produced in only one location.13 In contrast, the solution to the optimal transport problem in

this paper depends on the solution to the general equilibrium of the neoclassical allocation problem,

and markets may source the same good from different locations. The least-cost route optimization

present in the applications of the gravity trade models discussed before corresponds to the solution

of our optimal transport problem in the special case in which there is no congestion.

As mentioned in the introduction, the planner’s subproblem of choosing how to ship goods

given demand, supply and infrastructure formally defines a type of optimal transport problem.

Optimal transport problems were studied early on by Monge (1781) and Kantorovich (1942).14

More specifically, because we analyze the optimal route problem instead of just the direct assign-

ment of sources to destinations, our approach is more closely related to optimal flow problems on

a network as studied in Chapter 8 of Galichon (2016) and Chapter 4 of Santambrogio (2015).15

However, our problem differs from this literature in two important aspects. First, in our model,

consumption and production in every location are endogenous because they respond to standard

general-equilibrium forces. Instead, the aforementioned optimal flows problems are concerned with

mapping sources with fixed supply to sinks with fixed demand.16 Second, our ultimate focus is

on the optimization over the transport network itself and in the application of the model to op-

timal network investments in the presence of general-equilibrium forces, whereas this literature

usually takes the transport costs between links as a primitive. In that regard, the problem that we

study is akin to the optimal transport network problems in non-economic environments analyzed

in Bernot et al. (2009).

Despite these differences, our model inherits key appealing properties of optimal transport

problems. While the optimal transport literature shows that strong duality holds under weak

conditions in a wide variety of environments, it holds under some conditions in our model as a

special case of convex duality. Hence, our way of embedding an optimal transport problem into a

general neoclassical equilibrium model extended with a network design problem does not preclude

the validity of key earlier insights from the optimal transport literature. The main benefit of duality,

in our context, is a reduction of the search space and substantial gains in computation times.17

12Note that “optimal transport” refers to the optimal shipping of goods throughout the network. This is one of
the subproblems embedded in our framework, alongside the optimal network design problem.

13An exception is Sotelo (2016), who models a factor-endowment economy where different locations may produce
the same agricultural good.

14See Villani (2003) for a textbook treatment of the subject.
15See also Bertsekas (1998) for a survey of algorithms and numerical methods for optimal flow and transport

problems on a network.
16See Beckmann (1952) for an early continuous-space example of such an optimal transport problem in economics.

See also Carlier (2010) and Ekeland (2010) for introductory lecture notes to the mathematical theory of optimal
transport and its connection to economics.

17Our paper also relates to the network-design and planning literature in operations research, which studies
related network-design problems in telecommunications and transport industries without embedding them in general-
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A large body of empirical research estimates how actual changes in transport costs impact eco-

nomic activity. For instance, Fernald (1999) estimates the impact of road expansion on productiv-

ity across U.S. industries; Chandra and Thompson (2000), Baum-Snow (2007) and Duranton et al.

(2014) estimate the impact of the U.S. highways on various regional economic outcomes; Donaldson

(2010) estimates the impact of access to railways in India; and Faber (2014) estimates the impact

of connecting regions to the expressway system in China.18 Our application measures the aggregate

country-level welfare gains from optimally expanding current road networks. In the counterfactuals,

we inspect the relationship between infrastructure investment and growth across regions. Feyrer

(2009) and Pascali (2014) assess how the arrival of new transport technologies impacted countries

or cities whose geographic position made them differentially likely to use the new transport mode.

In Section 4 we illustrate how our model could be used to determine the impact of new transport

technologies operating through the optimal investments reshaping the network.

Finally, we also apply the model to measure the potential losses from misallocation of current

roads. In that sense, this paper is broadly related to the literature on the aggregate effects of misal-

location such as Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). Recent papers such

as Desmet and Rossi-Hansberg (2013), Brandt et al. (2013), and, more recently, Hsieh and Moretti

(2015) and Fajgelbaum et al. (2015), specifically focus on misallocation across geographic units.

Asturias et al. (2016) study how transport infrastructure impacts misallocation in a model where

misallocation is endogenous through variable markups. In our case, the counterfactuals study the

inefficient placement of roads in space from the perspective of a welfare-maximizing central planner.

3 Model

3.1 Environment

Preferences The economy consists of a discrete set of locations J = {1, .., J}. We let Lj be the

number of workers located in j ∈ J , and L be the total number of workers. We will entertain cases

with labor mobility, where Lj is determined endogenously, and cases without mobility, where Lj is

given. Workers consume a bundle of traded goods and a non-traded good in fixed supply, such as

land or housing. Utility of an individual worker who consumes c units of the traded goods bundle

and h units of the non-traded good is

u = U (c, h) , (1)

where the utility function U is homothetic and concave in both of its arguments.19

equilibrium spatial models. See Ahuja et al. (1989) for a handbook treatment of the subject.
18See also Coşar and Demir (2016) and Martincus et al. (2017) for empirical studies of how infrastructure invest-

ments impact international shipments.
19Except when noted explicitly, we do not impose the Inada condition. The utility function could also vary by

location to encompass cases where they vary in how attractive they are, e.g., because of amenities.
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In location j, per-capita consumption of traded goods is

cj =
Cj

Lj
,

where Cj is the aggregate supply of the traded goods bundle in location j. There is a discrete set

of tradable sectors n = 1, .., N , combined into Cj through a homogeneous of degree 1 and concave

aggregator,

Cj = CT
j

(
C1
j , . . . , C

N
j

)
(2)

where Cn
j is the total quantity of sector n’s output consumed in location j. The typically assumed

CES aggregator is a special case of this technology.20

Production The supply-side of the economy corresponds to a general neoclassical economy. In

addition to labor, there is a fixed supply Vj =
(

V 1
j , . . . , V

M
j

)′
of primary factors m = 1, ..,M in

location j. These factors are immobile across regions but mobile across sectors. The production

process may also use goods from other sectors as intermediate inputs. Output of sector n in location

j is:

Y n
j = Fn

j

(
Ln
j ,V

n
j ,X

n
j

)
, (3)

where Ln
j is the number of workers, Vn

j =
(

V 1n
j , . . . , V Mn

j

)′
is the quantity of other primary

factors, and Xn
j =

(

X1n
j , . . . ,XNn

j

)

is the quantity of each sector’s output allocated to the pro-

duction of sector n in location j. The production function Fn
j is either neoclassical (constant

returns to scale, increasing and concave in all its arguments) or a constant (endowment economy).

Therefore, the production structure encompasses the neoclassical trade models. The Armington

model (Anderson and Van Wincoop, 2003) corresponds to N = J (as many sectors as regions) and

Fn
j = 0 for n 6= j, so that Y j

j is region j’s output in the differentiated commodity that (only) region

j provides. The Ricardian model corresponds to labor as the only factor of production and linear

technologies, Y n
j = znj L

n
j . The specific-factors and Hecksher-Ohlin models are also special cases of

this production structure.

Underlying Graph The locations J are arranged on an undirected graph (J , E), where E

denotes the set of edges (i.e., unordered pairs of J ). For each location j there is a set N (j) of

connected locations, or neighbors. Goods can be shipped only through connected locations; i.e.,

goods shipped from j can be sent to any k ∈ N (j), but to reach any k′ /∈ N (j) they must transit

through a sequence of connected locations. The transport network design problem will consist of

determining the level of infrastructure linking each pair of connected locations.

A natural case encompassed by this setup corresponds to j being a geographic unit such as

county, N (j) being its bordering counties, and shipments being done by land. More generally,

20Under the CES assumption with elasticity of substitution σ, since we only require CT
j to be concave, our

formulation allows the traded sectors to be either complements (σ < 1) or substitutes (σ > 1).
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neighbors in our theory do not need to be geographically contiguous, since it could be possible to

ship directly between geographically distant locations by land, air or sea. The fully connected case

in which every location may ship directly to every other location, N (j) = J for all j, is one special

case.

Transport Technology In the model, goods will typically transit through several locations

before reaching a point where they are consumed or used as intermediate input. We let Qn
jk be

the quantity of goods in sector n shipped from j to k ∈ N (j), regardless of where the good was

produced.21 Transporting Qn
jk from j to k requires τnjk units of the good n itself, where τnjk denotes

the per-unit cost of transporting good n from j to k. The term 1 + τnjk corresponds to the iceberg

cost typically considered in the literature. Here, the per-unit cost τnjk may depend on the quantity

shipped, Qn
jk, and on the level of infrastructure Ijk along link jk through the following transport

technology:

τnjk = τjk
(
Qn

jk, Ijk
)
, (4)

where
∂τjk
∂Qn

jk

≥ 0. (5)

This assumption allows for decreasing returns in the shipping sector. We refer to these decreasing

returns as congestion, with the understanding that this concept encapsulates several real-world

forces whereby an increase in shipping activity leads to higher marginal transport costs. These

forces include increased road use, as well as the fact that the transport sector may operate subject

to decreasing returns to scale due to land-intensive fixed factors such as warehousing or specialized

physical and human capital.22 In short, the more is shipped, the higher the per-unit shipping cost.

While the transport technology (4) assumes that the per-unit cost for commodity n depends on the

quantity shipped of commodity n only, the framework can accommodate congestion externalities

across goods, as we show in Section 3.6.

We interpret Ijk as capturing features that lead to reductions in the cost of transporting goods.

For example, when shipping over land, Ijk may correspond to whether a road linking j and k is

paved, its number of lanes or the availability of roadside services. Hence, we assume:

∂τjk
∂Ijk

6 0.

We adopt the conventions that, in the absence of infrastructure, transport along jk is prohibitively

costly, τjk (Qjk, 0) = ∞, and that only when infrastructure goes to infinity is there free transport,

21We adopt the convention that N (j) does not include j, i.e., j is not defined as a neighbor of itself.
22The Handbook on Estimation of External Costs in the Transport Sector commissioned by the European Commis-

sion (Maibach et al., 2013) lists higher travel times, higher accident rate, and road damage as reasons why increased
road use may impact transport costs. Other social costs include environmental damage and noise.
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τjk (Qjk,∞) = 0.23

The transport technology τjk (·) is allowed to vary by jk, denoting that shipping along some

links may be more costly than along others for the same quantity shipped and infrastructure. This

variation may reflect geographic characteristics such as distance or ruggedness. The per-unit cost

function τjk (Q, I) may also depend on the direction of the flow; e.g., if elevation is higher in j than

k and it is cheaper drive downhill then τjk (Q, I) > τkj (Q, I).

Flow Constraint In every location there may be tradable commodities being produced, as well

as coming in or out. The balance of these flows requires that, for all locations j = 1, .., J and

commodities n = 1, .., N :

Cn
j +

∑

n′

Xnn′

j +
∑

k∈N (j)

(
1 + τnjk

)
Qn

jk

︸ ︷︷ ︸

Consumption +Intermediate Use+ Exports

≤ Y n
j +

∑

i∈N (j)

Qn
ij

︸ ︷︷ ︸

Production + Imports

. (6)

The left-hand side of this inequality is location j’s consumption Cn
j of good n, intermediate-input

use Xnn′

j by each sector n′, and exports to neighbors Qn
jk. These flows are bounded by the local

production Y n
j and imports from neighbors Qn

ij.
24

We let Pn
j be the multiplier of this constraint. This multiplier reflects society’s valuation of a

marginal unit of good n in location j. In the decentralized allocation, this multiplier will equal the

price of good n in location j; therefore, we simply refer to Pn
j as the price of good n in location j.

Network Building Technology We define the transport network as the distribution of in-

frastructure {Ijk}j∈J ,k∈N (j). The network-design problem will determine this distribution. For

simplicity, we assume that building infrastructure requires a mobile resource such as “concrete” or

“asphalt”, in fixed aggregate supply K, which cannot be used for other purposes. This assumption

represents a situation where society has sunk an amount of resources into network-building, but

must still decide how to allocate these resources across different places. At the time of characteriz-

ing the planner’s problem, it will lead to the intuitive property that the opportunity cost of building

infrastructure in any location is simply foregoing infrastructure elsewhere. Section 3.6 discusses

how to endogenize the supply of infrastructure.

Importantly, the cost of setting up infrastructure may vary across links jk. Specifically, building

a level of infrastructure Ijk on the link jk requires an investment of δIjkIjk units of K. The network-

building constraint therefore is:
∑

j

∑

k∈N (j)

δIjkIjk = K. (7)

While both the transport technology τjk (Q, I) in (4) and the infrastructure building cost δIjk

23The locations k /∈ N (j) unconnected to j can be equivalently modeled as connected locations for which
τjk (Q, I) = ∞ for all Q and I .

24In standard minimum-cost flow problems this restriction is referred to as “conservation of flows constraint”.
E.g., see Bertsekas (1998) and Chapter 8 of Galichon (2016).
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in (7) vary across links according to similar geographic features, each type of variation reflects

conceptually different forces that will manifest themselves differently in the data at the time of

the quantitative application. Variation in the transport technology τjk (Q, I) by jk given Q and

I captures how features of the terrain impact per-unit shipping costs given quantity shipped and

infrastructure, whereas δIjk captures the trade-off, in terms of real resources, between setting up

a given level of infrastructure in one link versus another. Importantly, in the planner’s problem

below, δIjk will not impact the allocation other than through infrastructure Ijk.

We allow the network-design problem to take place when some infrastructure Ijk is already in

place, and we also allow (but do not require) an upper bound Ijk to how much can be built in

each link, possibly representing geographic constraints on the capacity to build on a specific link.

Assuming that existing infrastructure cannot be reallocated implies the constraints:

0 ≤ Ijk ≤ Ijk ≤ Ijk ≤ ∞.

In our application to European countries, we will compute the optimal road network expansions

starting from an observed road network Ijk.

While the graph (J , E) is undirected, there is no need to impose symmetry in investments

or costs between connected locations, i.e., we can accommodate Ijk 6= Ikj. We note that the

actual direction of the flows Qn
jk is endogenous and that the marginal transport cost τjk

(

Qn
jk, Ijk

)

varies depending on the direction, due to geographic features, quantities shipped and the level of

infrastructure.

3.2 Planner’s Problem

We solve the problem of a utilitarian social planner who maximizes welfare under two extreme

scenarios: either labor is immobile or freely mobile. The first scenario corresponds to the standard

assumption in international trade models, while the second corresponds to standard urban eco-

nomics model in the tradition of Rosen-Roback (Roback, 1982). In the former case, we let ωj be

the planner’s weight attached to each worker located in region j. We define each problem in turn.

Definition 1. The planner’s problem with immobile labor is

W = max
cj ,hj ,Cj,{Ijk}k∈N(j)

,
{

Cn
j ,Ln

j ,V
n
j ,Xn

j ,{Qn
jk}k∈N(j)

}

n

∑

j

ωjLjU (cj , hj)

subject to:

(i) availability of traded commodities,

cjLj ≤ CT
j

(
C1

j , . . . , C
N
j

)
for all j;

and availability of non-traded commodities,

hjLj ≤ Hj for all j;
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(ii) the balanced-flows constraint,

Cn
j +

∑

n′

Xnn′

j +
∑

k∈N (j)

(
1 + τjk

(
Qn

jk, Ijk
))

Qn
jk ≤ Fn

j

(
Ln
j ,V

n
j ,X

n
j

)
+
∑

i∈N (j)

Qn
ij for all j, n;

(iii) the network-building constraint,

∑

j

∑

k∈N (j)

δIjkIjk ≤ K,

subject to a pre-existing network,

0 ≤ Ijk ≤ Ijk ≤ Ijk ≤ ∞ for all j, k ∈ N (j);

(iv) local labor-market clearing,
∑

n

Ln
j ≤ Lj for all j;

and local factor market clearing for the remaining factors,

∑

n

V mn
j ≤ V m

j for all j and m; and

(v) non-negativity constraints on consumption, flows, and factor use,

Cn
j , cj , hj ≥ 0 for all j ∈ N (j) , n

Qn
jk ≥ 0 for all j, k ∈ N (j) , n

Ln
j , V

mn
j ≥ 0 for all j,m, n.

If labor is freely mobile then the problem is defined as follows.

Definition 2. The planner’s problem with labor mobility is

W = max
u,cj ,hj ,Cj,{Ijk}k∈N(j)

,Lj,
{

Cn
j ,Ln

j ,V
n
j ,X

n
j ,{Qn

jk}k∈N(j)

}

n

u

subject to restrictions (i)-(v) above; as well as:

(vi) free labor mobility,

Lju ≤ LjU (cj , hj) for all j; and

(vii) aggregate labor-market clearing,
∑

j

Lj = L.

This formulation restricts the planner’s problem to allocations satisfying utility equalization

across locations, a condition that must hold in the competitive allocation. Since U is strictly

increasing, restriction (vi) implies that the planner will allocate u = U (cj , hj) across all populated

locations, and cj = 0 otherwise.25

25Note that both planner’s problems are defined assuming weak inequality constraints except for the the aggregate
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The planner’s problem from Definition 1 can be expressed as nesting three problems:

W = max
Ijk

max
Qn

jk

max
{Cn

j ,Ln
j ,V

n
j ,X

n
j }

∑

j

ωjLjU (cj , hj)

subject to the constraints. A similar nesting can be expressed in the case with labor mobility from

Definition 2. We now discuss some intuitive features of the planner’s solution to each subproblem.

Optimal Allocation The innermost maximization problem over
(

Cn
j , L

n
j ,V

n
j ,X

n
j

)

is a rather

standard allocation problem of choosing consumption and factor use subject to the production

possibility frontier and the availability of goods in each location. In what follows we refer to it as

the “optimal allocation” subproblem.

Optimal Flows The optimal flow problem that determines the gross flows Qn
jk through the net-

work combines an optimal transport problem—how to map production sources to destinations—and

a least-cost route problem under congestion. Such a problem, under the assumption that consump-

tion Cn
j and production Y n

j are taken as given, is well known in the optimal transport literature

(see, for instance, Chapter 8 of Galichon (2016) or Chapter 4 of Santambrogio (2015)) and in opera-

tions research (Bertsekas, 1998). A general lesson from these two literatures is that these problems

are well behaved and admit strong duality. In other words, while the least-cost route problem and

the optimal coupling of sources to destinations may appear to be high-dimensional combinatorial

problems, the solution boils down to finding a “potential field”, meaning one Lagrange multiplier

(or price) for each location/good, and expressing the flows as a function of the difference between

the multipliers of two locations.

The optimal flow problem in our model inherits these properties as a special case of convex

duality. To understand the solution, remember that Pn
j is the multiplier of the flows constraint

(ii), equal to the price of good n in location j in the market allocation according to Proposition 4

below. The first-order condition from the planner’s problem gives the following equilibrium price

differential for commodity n between j and k ∈ N (j):26

Pn
k

Pn
j

≤ 1 + τnjk +
∂τnjk
∂Qn

jk

Qn
jk, = if Qn

jk > 0. (8)

Condition (8) is a no-arbitrage condition: the price differential between a location and any of its

neighbors must be less than or equal to the marginal transport cost. From the planner’s perspective,

this marginal cost takes into account the diminishing returns due to congestion. In the absence of

congestion, ∂τjk/∂Q
n
jk = 0, the price differential would be bounded by the iceberg cost, 1 + τnjk.

This expression carries a number of intuitive properties that we exploit throughout the analysis.

labor-market clearing condition (vii), which must hold with equality. The weak inequalities allow for some locations
to be unpopulated (Ln

j = hj = Cn
j = cj = 0), as well as for some factors to be used in only some sectors (V n

j = 0).
26Appendices A.1 and A.2 present the first-order conditions from the planner’s problem from which the expressions

discussed through the paper are derived.
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Figure 1: Example of Optimal Flows as a Function of the Price Field

Notes: The picture shows an example of optimal flows in a 15×15 square network with uniform infrastructure across

links and one good produced at the origin (blue circle) and consumed in 10 other locations (orange circles). The

price in each location is indicated by the z-axis coordinate, and corresponds to a solution of the optimal flow problem

given production, consumption and population. The density of flows is represented by the thickness of links and their

direction is indicated by the arrows.

Given the network investment, it identifies the trade flow Qn
jk as a function of the price differential

as long as the right-hand side can be inverted. This inversion is possible under the condition that

the total transport cost, Qn
jkτ

n
jk, is convex in the quantity shipped. Under that condition, the gross

trade flow Qn
jk is increasing in the price differential Pn

k /P
n
j : the larger the difference in marginal

valuations, the higher the flow to the location where the product is more scarce. Condition (8) also

implies that goods in each sector flow in only one direction; i.e. Qn
jk > 0 ⇒ Qn

kj = 0. However,

along a given link there may be flows in opposite directions corresponding to different sectors.

To help visualize the geometric properties of the problem, Figure 1 illustrates how a price field

can implement the optimal flows given consumption and production. In the example, a good is

produced in the location at the origin (blue circle) and demanded in ten locations (orange circles).

The prices, represented on the z-axis, attain their lowest value at the point of production, and

gradually increase with the distance from that point. The optimal flows follow the price gradient

according to equation (8) under equality. The locations where consumption takes place are local

peaks of the price field, as long as these locations do not re-ship the good.27

The least-cost route optimization present in the applications of gravity trade models discussed

in the literature review corresponds to the solution to this optimal transport problem assuming

27In this example there are some shipments in every link, although they become negligible in regions faraway from
the points of production and consumption. As shown below, links with zero flows may arise depending on the shape
of the transport technology. To construct the example in Figure 1, we have used the convenient property that, with
congestion, the right-hand side of equation (8) can be inverted to express the flows as a function of prices. The case
without congestion lacks such an inversion but is a linear programming problem that can be tackled with the simplex
algorithm (Bertsekas, 1998).
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no congestion. In that case, the optimal transport problem can be solved independently from

the rest of the model. In our case, determining the least-cost routes requires information about

the flows, the supply, and the demand for each good, which are endogenously solved as part of

the allocation. Therefore, the optimal transport problem must be solved jointly with the optimal

allocation problem.

Optimal Network Consider now the outer problem of choosing the transport network Ijk for

all j ∈ J and k ∈ N (j) given the optimal transport and the neoclassical allocation. Letting µ be

the multiplier of the network-building constraint (iii), the planner’s choice for Ijk implies

µδIjk
︸︷︷︸

Marginal Building Cost

≥
∑

n

Pn
j Q

n
jk

(

−
∂τnjk
∂Ijk

)

︸ ︷︷ ︸

Marginal Gain from Infrastructure

, (9)

with equality if there is actual investment, Ijk > Ijk. This condition compares the marginal cost

and benefits from investing on the link jk. The left-hand side is the opportunity cost of building

an extra unit of infrastructure along jk, equal to the marginal value of the scarce resource K in the

economy (the multiplier µ of the the network building constraint (7)) times the rate δIjk at which

that resource translates to infrastructure. In turn, the gain from the additional infrastructure, on

the right hand side of (9), is the reduction in per-unit shipping costs, −∂τnjk/∂Ijk, applied to the

total value of the goods used as input in the transport technology, the trade flows
∑

n P
n
j Q

n
jk.

28

Importantly, the network investment problem inherits the properties that make the optimal

transport problem tractable. Substituting the solution for Qn
jk as function of the price differentials

Pn
k /P

n
j into (9) implies that the optimal infrastructure Ijk between locations j and k is only

a function of prices in each location. Hence, rather than searching in the very large space of

all networks, this condition allows us to solve for the optimal investment link by link given the

considerably smaller set of all prices.

3.3 Properties

Convexity We establish conditions for the convexity of the planner’s problem, which guarantee

its numerical tractability.

Proposition 1. (Convexity of the Planner’s Problem) (i) Given the network {Ijk}, the joint op-

timal transport and allocation problem in the fixed (resp. mobile) labor case is a convex (resp.

quasiconvex) optimization problem if Qτjk (Q, Ijk) is convex in Q for all j and k ∈ N (j); and (ii)

if in addition Qτjk (Q, I) is convex in both Q and I for all j and k ∈ N (j), then the full planner’s

28Recent papers measure the first-order impact of changes in bilateral trade costs on world welfare
(Atkeson and Burstein, 2010; Burstein and Cravino, 2015; Lai et al. 2015; Allen et al., 2014) or in trade costs in
specific links of a transport network on country-level welfare (Allen and Arkolakis, 2016) around an observed equilib-
rium. The right-hand side of (9) could be used for a similar purpose, given a specific set of changes in trade costs. In
our context, this expression is one part of the full characterization of the global optimum, alongside with the optimal
allocation and optimal flows.
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problem including the network design problem from Definition 1 (resp. Definition 2) is a convex

(resp. quasiconvex) optimization problem. In either the joint transport and allocation problem, or

the full planner’s problem, strong duality holds when labor is fixed.

The first result establishes that the joint optimal allocation and optimal transport subproblems,

taking the infrastructure network {Ijk} as given, define a convex problem for which strong duality

holds under the mild requirement that the transport technology Qτjk (Q, Ijk) is (weakly) convex

in Q. This property ensures that our specific way of introducing an optimal-transport problem

into a general neoclassical economy is tractable. Specifically, it guarantees the existence of La-

grange multipliers that implement the optimal allocation and transport subproblems and ensures

the sufficiency of the Karush-Kuhn-Tucker (KKT) conditions, in turn allowing us to apply a du-

ality approach to solve the model numerically—an approach which, as discussed in Section 3.5,

substantially reduces computation times. Even if the full problem, including the network design,

is not convex due to increasing returns to the network building technology (i.e., if part (ii) of the

proposition fails but part (i) holds), a large subset of the full problem can be solved using these

efficient numerical methods.29

The second result establishes the convexity of the full planner’s problem, including the network

design, under the stronger requirement that the transport cost function Qτjk (Q, Ijk) is jointly con-

vex in Q and I. This condition restricts how congestion in shipping and the returns to infrastructure

enter in the transport technology in each link through τjk (Q, I). In the absence of congestion (i.e.,

if ∂τjk/∂Q = 0), convexity fails unless τjk is a constant.

Example: Log-Linear Parametrization of Transport Costs A convenient parametrization

of (4) is the constant-elasticity transport technology,

τjk (Q, I) = δτjk
Qβ

Iγ
with β ≥ 0, γ ≥ 0. (10)

If β > 0, this formulation implies congestion in shipping: the more is shipped, the higher the

per-unit shipping cost; when β = 0, the marginal cost of shipping is invariant to the quantity

shipped, as in the standard iceberg formulation. In turn, γ captures the elasticity of the per-unit

cost to infrastructure. The scalar δτjk captures the geographic trade frictions that affect per-unit

transport costs given the quantity shipped Q and the infrastructure I, such as distance, ruggedness,

or difference in elevation.

When the transport technology is given by (10), many of the preceding results admit intuitive

closed-form formulations. First, the restriction that Qτjk (Q, I) is convex in both arguments from

Proposition 1 holds if and only if β ≥ γ. This inequality captures a form of diminishing returns

29The proof of Proposition is 1 is immediate and can be summarized here. Given the neoclassical assumptions,
the objective function is concave and the constraints are convex, except possibly for the balanced-flows constraint.
Convexity of the transport cost Qτjk (Q, Ijk) ensures convexity of that constraint as well. In the case with labor
mobility, the planner’s problem can only be recast as a quasiconvex optimization problem, but the Arrow-Enthoven
theorem for the sufficiency of the Karush-Kuhn-Tucker conditions under quasiconvexity, requiring that the gradient
of the objective function is different from zero at the optimal point, is satisfied (Arrow and Enthoven, 1961).
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to the overall transport technology: the elasticity of per-unit transport costs to investment in

infrastructure is smaller than its elasticity with respect to shipments. Second, from the no-arbitrage

condition (8), we obtain the following solution for total flows from j to k as function of prices:

Qn
jk =

[

1

1 + β

Iγjk
δτjk

max

{

Pn
k

Pn
j

− 1, 0

}] 1
β

. (11)

This solution naturally implies that better infrastructure is associated with higher flows given prices

and geographic trade frictions. Third, using the log-linear transport technology (10), whenever the

planner chooses to build on top of existing infrastructure (Ijk > Ijk), the optimal infrastructure

(9) arising from the optimal-network problem is

I∗jk =

[

γ

µ

δτjk

δIjk

(
∑

n

Pn
j

(
Qn

jk

)1+β

)] 1
1+γ

. (12)

Given the prices at origin, the optimal infrastructure increases with the gross flows Qn
jk. Given

these flows, infrastructure also increases with prices at origin: because shipping requires the good

being shipped as an input, a higher sourcing price implies a higher marginal saving from investing.

Conditioning on these outcomes, infrastructure increases with δτjk, reflecting that optimal infras-

tructure investments offset geographic trade frictions, and decreases with δIjk, reflecting that the

investment is smaller where it is more costly to build.

Expression (12) determines the level of infrastructure when there actually is investment (Ijk >

Ijk). Because it satisfies the Inada condition, the log-linear specification (10) implies that the solu-

tion to the planner’s problem features a positive investment whenever the price of any good varies

between neighboring locations, Pn
j 6= Pn

k for any n. Specifically, the optimal level of infrastructure

is

Ijk = max
{
I∗jk, Ijk

}
. (13)

where, combining (11) with (9), we reach an explicit characterization of the optimal infrastructure

in each link as function of equilibrium prices alone:

I∗jk =






κ

µδIjk

(

δτjk

) 1
β




∑

n:Pn
k >Pn

j

Pn
j

(

Pn
k

Pn
j

− 1

) 1+β
β










β
β−γ

. (14)

where κ ≡ γ (1 + β)
− 1+β

β is a constant and the multiplier µ is such that the network-building

constraint (7) is satisfied.

Proposition 2. (Optimal Network in Log-Linear Case) When the transport technology is given

by (10), the full planner’s problem is a convex (resp. quasiconvex) optimization problem if β ≥ γ.

The optimal infrastructure is given by (13) implying that, in the absence of a pre-existing network
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(Ijk = 0), then Ijk = 0 ⇔ Pn
k = Pn

j for all n.

Under a general formulation of the transport technology τjk (Q, I) before imposing the log-

linear form (10), and in the absence of a pre-existing network (Ijk = 0), then: i) the solution to the

full planner’s problem may feature no infrastructure and no trade in some links even if the prices

vary between the pairs of nodes connected by those links; and ii) in the presence of a pre-existing

network (Ijk ≥ 0), the optimal transport subproblem may feature zero flows along links with

positive infrastructure even if prices are different (i.e., there may be unused roads). However, when

the transport technology takes the loglinear form (10), Proposition 2 implies that these possibilities

arise if and only if there are no incentives to trade (Pn
j = Pn

k for all n) due to i) the Inada condition

on Ijk in the transport technology (10), and ii) the property that the marginal shipping costs are

zero when no shipping is done as long as β ≥ 0, respectively.

Non-Convexity: the Case of Increasing Returns to Transport When the condition guar-

anteeing global convexity in Proposition 1 fails, the constraint set in the planner’s problem is not

convex, and the sufficiency of the first-order conditions is not guaranteed. We may nonetheless

implement these cases numerically, as we discuss in Section 3.5, and characterize certain properties

of the optimal network theoretically, as we do now. Focusing on the log-linear specification (10)

introduced above, such nonconvexities arise when the transport technology features economies of

scale, γ > β.

We show in a simple special case how the qualitative properties of the optimal network are

affected by such economies of scale. In particular, increasing returns to investment in infrastructure

create an incentive for the planner to concentrate flows on few links. As a result, the optimal network

may take the form of a tree, a property already highlighted for various non-economic environments

in the optimal transport literature.30

Proposition 3. In the absence of a pre-existing network (i.e., Ijk = 0), if the transport technology

is given by (10) and satisfies γ > β, and if there is a unique commodity produced in a single location,

the optimal transport network is a tree.

A tree is a connected graph with no loops (see Figure 2). Intuitively, under the conditions

of the proposition, loops cannot be optimal, because they waste resources. On the margin, it is

always better to remove alternative paths linking pairs of nodes and concentrate infrastructure

investments and flows in fewer links. As a result, in the optimal network a single path connects

any two locations, a defining characteristic of a tree.

Note that this property only holds when there is only one source for one commodity. When

goods are produced in multiple regions, or when there are multiple goods, it may still be optimal

to maintain loops depending on the underlying graph and comparative advantages. However, the

incentives to concentrate flows on fewer but larger routes remain. In Section 4 we present several

30E.g., these applications range from the formation of blood vessels to irrigation or electric power supply systems
(Banavar et al., 2000; Bernot et al., 2009).
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Figure 2: Examples of tree and non-tree networks
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examples with multiple goods and multiple productive locations where, if γ > β, the topology of

the optimal network is sparser and concentrated on fewer links relative to cases with γ ≤ β. Similar

patterns arise in non-convex cases in the application from Section 5.

3.4 Decentralized Allocation Given the Network

We establish that the planner’s optimal allocation (maxCn
j ,L

n
j ,V

n
j ,X

n
j
) and optimal transport

(maxQn
jk
) subproblems given the network {Ijk} correspond to a decentralized competitive equilib-

rium. For the decentralization of these subproblems, we do not need to take a particular stand on

whether the network is the result of a planner’s optimization.

Given the network, the decentralized economy corresponds to the perfectly competitive equi-

librium of a standard neoclassical economy where consumers maximize utility given their budget,

producers maximize profits subject to their production possibilities, and goods and factor markets

clear. The only less standard feature is the existence of a transport sector with congestion. We

assume free entry of atomistic traders into the business of purchasing goods in any sector at ori-

gin o and delivering at destination d for all (o, d) ∈ J 2. The traders are price-takers and use a

constant-returns to scale shipping technology. Each trader has a cost equal to τnjkq
n
jk of delivering

qnjk units of good n from j to k ∈ N (j) and takes the iceberg trade cost τnjk as given, although this

trade cost is determined endogenously through (10) as function of the aggregate quantity shipped.

As long as there is congestion in shipping, the traders will engage in an inefficient amount

of shipping. We assume that the market allocation features policies that correct this externality.

While there are multiple ways to achieve efficiency, we allow here for Pigouvian sales taxes tnjk on

companies shipping good n on leg j → k.

Consider a trader purchasing good n at location o and delivering it to location d. This company

maximizes profits by optimizing over the route r = (j0, . . . , jρ) ∈ Rod, where j0, . . . , jr is a sequence

of nodes leading from o to d and Rod is the set of all such routes. Since transport technologies are
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linear, the optimal route rnod must maximize the per-unit profits:

πn
od = max

r=(j0,...,jρ)∈Rod

pnd − pnoT
n
r,0

︸ ︷︷ ︸

Sourcing Costs

−

ρ−1
∑

k=0

pjk+1
tnjkjk+1

T n
r,k+1

︸ ︷︷ ︸

Taxes

, (15)

where pnj is the price of good n in location j in the market allocation, and T n
r,k is the accumulated

iceberg cost from location jk to the final destination d along path r.31 For each unit delivered at d,

a shipper from d obtains the price pnd and must ship T n
r,0 out of o, purchased there at the price pno .

In addition, shippers must pay the “toll” pjk+1
tnjkjk+1

on each of the T n
r,k+1 units that cross from

jk to jk+1. In the absence of congestion taxes (tnjkjk+1
= 0), shippers just choose the route that

minimizes the iceberg cost from o to d, T n
π (o, d). That solution would correspond to the least-cost

route optimization present in the applications of gravity trade models discussed in the literature

review. Otherwise, shippers also take into account the taxes on the gross flows on each link to

decide the optimal path.

To define the competitive equilibrium, we must also allocate the returns to factors other than

labor. Under no labor mobility we assume that, in addition to the wage, each worker in location

j receives a transfer tj such that
∑J

j=1 tjLj = Π, where Π is an aggregate portfolio including all

the sources of income except for labor.32 Hence, workers are rebated all tax revenues and own

all the primary factors and non-traded goods in the economy. This formulation allows for trade

imbalances, which are needed to implement the planner’s allocation under arbitrary weights.

Since it is standard, we relegate the Definition 3 of the competitive allocation with and without

labor mobility to the appendix. Using that definition, we establish that the welfare theorems given

the transport network hold.

Proposition 4. (First and Second Welfare Theorems) If the sales tax on shipments of product n

from j to k is

1− tnjk =
1 + τnjk

1 +
(

εnQ,jk + 1
)

τnjk

,

where εnQ,jk = ∂ log τnjk/∂ logQn
jk, then:

(i) if labor is immobile, the competitive allocation coincides with the planner’s problem under

specific planner’s weights ωj. Conversely, the planner’s allocation can be implemented by a market

allocation with specific transfers tj ; and

(ii) if labor is mobile, the competitive allocation coincides with the planner’s problem if and only

if all workers own an equal share of fixed factors and tax revenue regardless of their location, i.e.,

tj =
Π
L
.

31See condition (1)(c) of Definition 3 of the general equilibrium in Appendix A.3 for the definition of Tn
r,k .

32For simplicity we refer to tj as a transfer, although it encompasses both ownership of fixed factors and government
transfers. This formulation encompasses the case where returns to the fixed factors and the tax revenue in each
location are owned by residents of that location. In that particular case, there would be no trade imbalances in the
market allocation.
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In either case, the price of good n in location j, pnj , equals the multiplier on the balanced-flows

constraint in the planner’s allocation, Pn
j .

These results are useful for bringing our model to the data in the application. Under the

assumption that the observed allocation corresponds to the decentralized equilibrium, the first

welfare theorem will enable us to calibrate the model using the planner’s solution to the optimal

allocation and optimal transport subproblems given the network. As we discuss in Section 3.6, it

would also be possible to calibrate the model assuming that the observed market allocation does

not feature policies correcting the externality and is therefore inefficient.

3.5 Numerical Implementation

In this section we broadly discuss our numerical implementation and relegate details to Ap-

pendix A.4.

Convex Cases Under the conditions of Proposition 1, the full planner’s problem is a convex

optimization problem and the KKT conditions are both necessary and sufficient. The system of

first-order conditions is, however, a large system of non-linear equations with many unknowns.

Fortunately, gradient-descent based algorithms make large-scale convex optimization problems like

ours numerically tractable, meaning that these algorithms are guaranteed to converge to the unique

global optimum (Boyd and Vandenberghe, 2004).33

Our problem can be tackled numerically using two equally valid approaches. The first one is to

feed the numerical solver with the primal problem, in other words the full planner’s problem exactly

as written in Definition 1. Specifically, letting L be the Lagrangian of the planner’s problem as a

function of the variables controlled by the planner, x =
(

Cn
j , L

n
j ,V

n
j , Q

n
jk, . . .

)

, and the multipliers

λ =
(

Pn
j , . . .

)

on the various constraints,34 the primal problem consists of solving the saddle-point

problem

sup
x

inf
λ≥0

L (x,λ) .

The second approach, usually preferred in the optimal transport literature, is to solve instead the

dual problem obtained by inverting the order of optimization, i.e.,

inf
λ≥0

sup
x

L (x,λ) .

In our context, the convexity of the full planner’s problem without labor mobility ensures that the

dual problem coincides with the primal under weak conditions (Proposition 1), i.e., strong duality

holds. The advantage of the dual is that we can use the first-order conditions from the optimal

33We use the open-source large-scale optimization package IPOPT (https://projects.coin-or.org/Ipopt) which is
based on an interior point method and is able to handle thousands of variables as long the problem is sufficiently
sparse. The software converges in polynomial time, in the sense that the resolution time is O

(
namb

)
, where n is the

number of variables, m is the number of constraints and a, b some real numbers (Nesterov and Nemirovskii, 1994).
34These expressions are defined explicitly in Appendix A.1.
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transport and the optimal investment problems, (8) and (12), as well as those from the neoclassical

allocation problem, to express the control variables as functions of the multipliers, x (λ). The

remaining minimization problem, infλ≥0L (x (λ) , λ), is a convex minimization problem over fewer

variables, subject to only non-negativity constraints.

Non-Convex Cases When the condition stated in Proposition 1 fails, the full planner’s problem

is no longer globally convex, and the method described above is not guaranteed to find the global

optimum. To solve for such non-convex cases, we exploit the property, stated at the beginning of

Proposition 1, that the joint neoclassical allocation and optimal transport problem nested within

the planner’s problem is convex as long as Qτjk (Q, Ijk) is convex in Q. This condition is weaker

and holds under the log-linear specification as long as β ≥ 0, including the standard case without

congestion (β = 0). We combine the primal and dual approaches to solve for the joint neoclassi-

cal allocation and optimal transport problems with an iterative procedure over the infrastructure

investments. Specifically, starting from a guess on the network investment Ijk, we solve for the

optimum over Cn
j , L

n
j , V

n
j and Qn

jk, and then use the optimal network investment condition (9)

to obtain a new guess over Ijk, and then repeat until convergence. We then refine the solution

using a simulated annealing method that perturbs the local optimum and gradually reaches better

solutions. See Appendix A.4 for additional details.

3.6 Extensions

In this section, we briefly consider various extensions and discuss how to preserve the convexity

property in each case.

Congestion Across Goods We have assumed that congestion only applies within good types.

A natural extension is to allow for congestion across goods. A simple way to model this feature

while preserving the convexity of the problem is to assume that the per-unit cost τnjk is denominated

in units of the bundle of traded goods aggregated through CT
j rather that in units of the good itself.

Specifically, we can assume that transporting each unit of good n from j to k ∈ N (n) requires

τnjk = mnτjk (Qjk, Ijk) (16)

units of the traded goods bundle, where the parameters (m0, . . . ,mN ) capture the unit weight

or volume of goods in each sector, and where Qjk =
∑N

n=1mnQ
n
jk is the total weight or volume

transported from j to k. The total units of the traded goods bundle used to transport goods from

j is
∑

k Qjkτjk (Qjk, Ijk). After properly adjusting the resource constraints in the definition of the

planner’s problem,35 the convexity of the full planner’s problem is preserved under the exact same

conditions stated in Proposition 1. In this case, under the log-linear specification (10), heavy enough

35This correction requires adding up
∑

k Qjkτjk (Qjk, Ijk) to the left-hand side of (i) and eliminating τjk
(
Qn

jk, Ijk
)

from (ii).
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goods are not shipped even in the presence of price differentials between connected locations, due

to the marginal congestion cost that they exert on other goods.36

Endogenous Supply of Resources in Infrastructure We have assumed that the network

building technology uses a single input, asphalt, in aggregate fixed supply. The framework can also

accommodate a network building technology using ordinary factors of production, endogenously

supplied at the local level. For instance, we can assume that building Ijk requires local factors

of production at j and k by letting Ijk = 1
δIjk

F I
(

LI
j + LI

k,H
I
j +HI

k

)

where F I is a neoclassical

production function, and where LI
j + LI

k and HI
j +HI

k are, respectively, the amounts of labor and

non-traded goods from j and k used to build infrastructure on the link between j and k. This

formulation would encompass the feature that building up the network takes up resources, such

as land, that could be used to produce goods or consumed in the form of housing. After properly

modifying the factor resource constraints, the full planner’s problem is convex under the same

conditions as before as in Proposition 1 as long as F I is concave in all its arguments.

Externalities and Inefficiencies in the Market Allocation In Section 3.4, we assumed that

the decentralized allocation is efficient. However, in some cases it may be desirable to consider an

inefficient market allocation. For example, a standard formulation with agglomeration spillovers

is to assume that the production technology is Y n
j = Fn

j

(

Ln
j ,V

n
j ,X

n
j ;Lj

)

, where the spillover

from the total number of workers Lj on output Y n
j is not internalized in the market allocation.

Similarly, without the Pigouvian taxes tnjk correcting the congestion externality in shipping, the

market allocation is inefficient. In these cases, it is still possible to calibrate the model and to

undertake counterfactuals using a “fictitious” planner who ignores the dependence of Y n
j on Lj or

of τnjk on Qn
jk. For example, in the case of size spillovers, the fictitious planner problem is defined

exactly as in Definition 2 under the assumption that the vector of aggregate population levels

L =
{
Lj

}
in Y n

j = Fn
j

(

Ln
j ,V

n
j ,X

n
j ;Lj

)

is taken as given.37 As long as Fn
j (·) is neoclassical given

Lj, the statement of Proposition 1 remains the same. However, this approach requires solving an

additional loop imposing that the vector of population L = {Lj} that solves the fictitious planner

problem coincides with the perceived aggregate distribution L. It is straightforward to show that,

if it exists, every distribution of population L satisfying this fixed point problem corresponds to an

inefficient market allocation and vice-versa.38

36The no-arbitrage condition (11) in this case implies all goods for which which mn ≥ 1
τjk(β+1)

Pn
k −Pn

j

PC
j

, are not

traded from j to k.
37Similarly, under congestion externalities, the fictitious planner problem is defined exactly as in Definition 2 given

the shipments Q̄ =
{

Qn
jk

}

j,k,n
in τjk

(

Qn
jk, Ijk

)

.

38Whether such a fixed point exists depends on the specifics of the environment. It is beyond the scope of
this paper to determine the conditions under which that is the case, but we note that, given the network {Ikl},
our environment can accommodate the specific parametric assumptions that guarantee existence or uniqueness of an
inefficient decentralized allocation found in the previous literature. E.g., see Allen and Arkolakis (2014) for conditions
that lead to existence and uniqueness in an Armington model with labor mobility and size spillovers.
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4 Illustrative Examples

In this section we implement examples that illustrate the basic economic forces captured by the

framework and its potential uses. We start with an endowment economy without labor mobility

and only one traded and one non-traded good in a symmetric graph. Then, we progressively move

to more complex cases with multiple locations in asymmetric spaces, multiple sectors, labor mo-

bility, and heterogeneous building costs due to geographic features. Throughout the examples, we

illustrate the contrast between the globally optimal networks in convex cases, where the congestion

forces dominate the returns to network building, and the approximate optimal networks in cases

where global convexity of the planner’s problem fails. In all the examples, preferences are CRRA

over a Cobb-Douglas bundle of traded and non-traded goods, U =
(
cαh1−α

)1−ρ
/ (1− ρ) with α = 1

2

and ρ = 2. There is a single factor of production, labor, and all technologies are linear. We adopt

the constant-elasticity functional forms (10) for the transport and network-building technologies.

4.1 One Good on a Regular Geometry

Comparative Statics over K in a Symmetric Network To start we impose β = γ = 1,

which lies at the boundary of the parameter space guaranteeing global convexity. We assume a

single good, no labor mobility and no geographic frictions, δτjk = δIjk = 1.

Figure A.1 presents a network with 9 × 9 locations uniformly distributed in a square, each

connected to 8 neighbors. All fundamentals except for productivity are symmetric: (Lj,Hj) =

(1, 1). Labor productivity is zj = 1 at the center and 10 times smaller elsewhere.

Figure A.2 shows the globally optimal network when K = 1 (panel (a)) and when K = 100

(panel (b)). The upper-left figure in each panel displays the optimal infrastructure network Ijk

corresponding to (12). The optimal network investments radiate from the center, and so do ship-

ments. The bottom figures in each panel display the multipliers of the flows constraint (6)—the

prices in the market allocation—and consumption. Because tradable goods are scarcer in the out-

skirts, marginal utility is higher and so are prices. As the aggregate investment grows from K = 1

to K = 100, the network grows into the outskirts and the differences in the marginal utility shrink.

Panel (a) of Figure A.3 displays the spatial distribution of prices (upper panels) and consumption

(bottom). The left panels display outcomes across locations ordered by Euclidean distance to the

center. As the network grows, relative prices and consumption converge to the center, and spatial

inequalities are reduced.

Panel (b) of Figure A.3 illustrates the difference between the welfare gains from uniform and

optimal network expansion. For K close to zero, the levels of infrastructure Ijk are small everywhere

and every location is close to autarky. We simulate an increase in K in two cases: a proportional

increase in infrastructure across all links (a “rescaled” network) and the optimal one. The figure

reports the welfare increase associated with each network. Broadly speaking, the uniform network

expansion corresponds to the standard counterfactual implemented in international trade, in which

trade costs are reduced uniformly from autarky to trade. As K grows, the economy converges to the
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level of welfare under free internal trade regardless of whether the network is optimal. Moving from

close to autarky to close to free trade across locations increases aggregate welfare by 5%. However,

investing optimally leads to faster convergence to the free-trade welfare level. In the example, the

welfare level attained in the uniform network when K = 106 is attained in the optimal network

when K = 103.

Randomly Located Cities and Non-Convex Cases We now explore more complex networks

and non-convex cases. Figure A.4 shows 20 “cities” randomly located in a space where each location

has six neighbors. Population is Lj = 1 in each city and 0 otherwise. Productivity is again ten

times larger at the center. The top panel shows the infrastructure and goods’ flows in the optimal

network. The optimal network radiates from the center to reach all destinations. Due to congestion,

some destinations are reached through multiple routes. However, to reach some faraway locations

such as the one in the northwest, only one route is built.

The middle panel inspects the same spatial configuration but assumes γ = 2. Now, the sufficient

condition for global convexity from Proposition 1 fails. We see a qualitative change in the shape

of the network. Due to increasing returns to network building, fewer roads are built but each has

higher capacity. In particular, there is now only one route linking any two destinations, consistent

with the no-loops result in Proposition 3.39

Because in the non-convex network we can only guarantee convergence to a local optimum,

we refine the solution by applying the numerical approach discussed in Appendix A.4 involving

simulated annealing. The bottom panel compares the non-convex network before and after the

annealing refinement. The refined network economizes on the number of links, leading to a welfare

increase but preserving the no-loops property.

4.2 Many Sectors, Labor Mobility, and Non-Convexity

We now further introduce multiple traded goods and labor mobility. We allow for 11 traded

commodities, one “agricultural” good (good 1) that may be produced everywhere outside of “cities”

(z1j = 1 in all “countryside” locations) and ten “industrial” goods, each produced in one random

city only (znj = 1 in only one city j and znj = 0 otherwise). These goods are combined via a constant

elasticity of substitution aggregator with elasticity of substitution σ = 2. Labor continues to be

the sole factor of production, but is now mobile. The supply of the non-traded good is uniform,

Hj = 1 for all j.

Figure A.5 shows the convex case (β = γ = 1). The first panel shows the optimal network. In

the figure, each circle’s size denotes the population share. The remaining figures show the shipments

of each good, with the circle sizes representing the shares in total production for the corresponding

good. Figure A.6 shows the optimal network with annealing in the nonconvex case when γ = 2.

In these examples, we observe complex shipping patterns. There are bilateral flows over each

39While we derive the no-loop result when there is only one producer, in this example every populated location
produces the good.
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link, now involving several commodities. Overall, the optimal network in the first panel reflects the

spatial distribution of comparative advantages. Since industrial goods are relatively scarce, wages

and population are higher in the cities that produce them. Due to the need to ship industrial

goods to the entire economy and to bring agricultural goods to the more populated cities, the

transport network has better infrastructure around the producers of industrial products. As Panel

(a) of each figure illustrates, the optimal network links the industrial cities through wider routes

branching out into the countryside. The agricultural good, being produced in many locations,

travels short distances and each industrial city is surrounded by its agricultural hinterland.

The comparison between Figures A.5 and A.6 confirms the intuition that, in the presence of

economies of scale in transportation, the optimal network becomes more skewed towards fewer

but wider “highways”. Note, however, that the tree property from Proposition 3 no longer holds

because there are multiple goods.

4.3 Geographic Features and New Transport Technologies

We now show how the framework can accommodate geographic accidents. To highlight the

role of these frictions we revert to a case with a single good and no factor mobility. Panel (a) of

Figure A.7 shows 20 cities randomly allocated in a space where each location is connected to 8

other locations. Population equals 1 in all cities and productivity is the same everywhere (equal to

0.1) except in the central city, displayed in red, where it is 10 times larger. Each city’s size in the

figure varies in proportion to consumption.

As implied by condition (12), the optimal infrastructure in a given link depends on the link-

specific building cost δIjk. In panel (a) we show the optimal network under the assumption that the

cost of building infrastructure is proportional to the Euclidean distance:

δIjk = δ0Distanceδ1jk. (17)

As in our first set of examples, the optimal network radiates from the highest-productivity city to

alleviate differences in marginal utility.

In panel (b), we add a “mountain” by adding an elevation dimension to each link and re-

configuring the building cost as

δIjk = δ0Distanceδ1jk

(

1 + |∆Elevation|jk

)δ2
. (18)

Because it is more costly to build through the mountain, the optimal network circles around it to

reach the cities in the northeast. Because more resources are invested in that region, the network

shrinks elsewhere.

In the subsequent figures, we either increase or decrease the cost of building the network in

specific links. Specifically, we allow for the more general specification:

δIjk = δ0Distanceδ1jk

(

1 + |∆Elevation|jk

)δ2
δ
CrossingRiverjk
3 δ

AlongRiverjk
4 . (19)
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In panel (c) we include a river and assume that δ3 = δ4 = ∞, so that investing in infrastructure

either across or along the river is prohibitively costly. The optimal network linking cities across

the river can only be built through the one patch of dry land. In that natural crossing there is a

“bottleneck”, and a large amount of infrastructure is optimally built.

In panel (d) we assume instead that no dry patch exists and that building bridges is feasible,

1 < δ3 < ∞. Now, the planner builds two bridges, directly connecting the pairs of cities across the

river. Panel (e) further allows for water transport by allowing to building transport capacity along

the river (δ4 < ∞). The planner retains the bridges, but now faraway locations in the southeast

are reached by water instead of ground transport.

Finally, panel (f) moves to the non-convex case, γ = 2 > β, implemented through the combi-

nation of first-order conditions and simulated annealing approach described in Section 3.5. Now, a

unique route links any two cities, water transport is not used, and a single bridge is built.

We conclude by showing how the optimal reconfiguration of the transport network triggered

by the arrival of a new transport technology can lead to a drastic reconfiguration of city sizes.

Both panels of Figure A.8 correspond to an economy with random cities, all with same population,

where productivity is 10 times larger in the city represented in red. The circle sizes again represent

consumption per capita. Panel (a) shows an economy with strong dependence on water transport,

with low δ3 in (19). The optimal network implies high consumption in the city near the river. In

panel (b) we assume that ground transport becomes cheap (e.g., due to the arrival of railways),

represented by a lower δ1 in (19). As a result, water transport is abandoned and the spatial

distribution of consumption per worker is reconfigured. The city near the river shrinks and other

cities that become more central to the new network, as well as those in their hinterland, grow.

5 Road Network Expansion and Misallocation in Europe

We apply the framework for quantitative analysis of road networks in Europe. We start by

describing the data sources and the steps we used to represent data on economic activity and

road networks in terms of the graph of our model. Then we choose the fundamentals to match

the observed distribution of economic activity within each country. We conclude by implementing

counterfactuals involving the optimal transport network. The counterfactuals tackle two related

questions: how large would the gains from optimal expansions of current road networks be, and

how large are the losses from misallocation of current roads? The first question is motivated

by the fact that a large fraction of public investment is directed to expansion of roads, yet no

quantitative general-equilibrium analysis exists of the optimal placement of these investments and

their impact across and within countries. The second question is motivated by the fact that

the allocation of regional investments in transportation is often sensitive to frictions and political

interests, potentially leading to inefficiencies in the observed transport networks.
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5.1 Data and Discretization

Sources We combine geocoded data on the shape of road networks, population, and income across

25 European countries. The road network data is from EuroRegionalMap by EuroGeographics. The

dataset combines shapefiles on the current road network from each European country’s mapping

and cadastral agencies. For example, the French road network is represented by 38699 segments

connecting 159519 distinct geographic points.

An appealing feature of this dataset is that each segment of a road network has information

about objective measures of road quality including road use (national, primary, secondary, or local)

and number of lanes, as well as other features such as whether it is paved or includes a median.

National roads encompass each country’s highway system, and, as shown in Table A.1 in Appendix

C, they are always paved, more likely to include a median, and feature twice as many average lanes

relative to other types of roads.40 Since the roads labeled as primary, secondary and tertiary have

similar characteristics, we bundle them into a single “non-national roads” category. In our analysis,

we use two features of each segment: whether it belongs to a national road, and its number of lanes.

We use population data from NASA-SEDAC’s Gridded Population of the World (GPW) v.4,

and value added from Yale’s G-Econ 4.0. The GPW population data is reported for 30 arc-second

cells (approximately 1 kilometer), and the G-Econ value-added data is reported for 1 arc-degree

cells (approximately 100 km). We undertake our analysis using 0.5 arc-degree cells (approximately

50 km). The resulting number of cells within each country is in most cases in between the number of

level-3 NUTS subdivisions (provinces or counties) and the number of LAU subdivisions (municipal-

ities or communes). We allocate population to each 0.5-degree cell by aggregating the smaller cells

in GPW, and we allocate income by apportioning the G-Econ cells according to the GPW-based

population measure.

We denote by Lobs
j and GDP obs

j the population and value added observed in each cell j of each

country. Using these data we also construct empirical counterparts to the underlying geography

(J , E) corresponding to the locations and links in the graph of our model, as well as an observed

measure of infrastructure Iobsjk for each link.

We perform all the analysis separately for each of the 25 countries included in EuroRegionalMap

for which data on number of lanes is available. This set includes rich and poor countries, as well

as geographically large and small. Table A.2 in Appendix C reports the list of countries with

summary statistics about the size and average features of their road networks, the number of cells,

and features of their discretized road networks.41

40E.g., roads labeled as national in the data include the Autobahn highway system in Germany, autovias and
autopistas in Spain, and the autoroute system in France.

41The 25 countries included in our data are Austria, Belgium, Cyprus, Czech Republic, Denmark, Finland,
France, Georgia, Germany, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Nether-
lands, Northern Ireland, Portugal, Serbia, Slovakia, Slovenia, Spain and Switzerland. We exclude the following 10
countries for which road lane data is not available in EuroRegionalMap: Bulgaria, Croatia, Great Britain, Greece,
Estonia, Iceland, Norway, Poland, Romania, and Sweden. For Luxembourg we use 0.25 arc-degree cells to allow for
a significant number of cells.
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Underlying Graph To define the set of nodes J in each country, we use the high-resolution

GPW population data to locate the population centroid of each cell. The population centroids are

usually very close to a node on the road network. We relocate each population centroid to the

closest point on a national road crossing through the cell, or on other types of roads if no national

roads cross through the cell.42 We define the observed population and income of each node j ∈ J

to be equal to the total income GDP obs
j and the population Lobs

j of the cell that contains it.

In turn, we define the set of edges E as the links between nodes in contiguous cells. This step

defines a set of up to eight neighbors N (j) for each node j ∈ J : the 4 nodes in horizontal or

vertical neighbors and the 4 nodes along the diagonals.

Discretized Road Network To construct a measure of infrastructure corresponding to Ijk in

our model, we first aggregate the observed attributes of the road network over the actual roads

linking each j ∈ J and k ∈ N (j). We use information on whether each segment s on the actual

road network belongs to a national road and its number of lanes. We define the average number of

lanes and average road type for the link between j and k as follows:

lanesjk =
∑

s∈S

ωjk (s) lanes (s) ,

natjk =
∑

s∈S

ωjk (s)nat (s) ,

where lanes (s) is the number of lanes on each segment s on the actual road network S, nat (s)

indicates whether segment s belongs to a national road, and ωjk (s) is the weight attached to the

infrastructure of each segment when computing the level of infrastructure from j to k. The weights

ωjk (s) should be larger on segments of the road network that are more likely to be used when

shipping from j to k, and equal to zero for all s ∈ S if no direct route exists linking j and k. We

define ωjk (s) based on the fraction of the cheapest path P (j, k) from j to k corresponding to that

segment:

ωjk (s) =







length(s)∑
s′∈P(j,k) length(s

′) s ∈ P (j, k)

0 s /∈ P (j, k)

where length (s) is the length of segment s and P (j, k) is the cheapest path from j to k on the

actual road network.43 We follow these steps as long as the cheapest path does not stray from the

cells containing j and k.44 When that happens, we assume that no direct path from j to k exists

42This leads to a very small adjustment: on average across countries, the average relocation across all cells within
a country is 6.2 km.

43This step does not involve solving the model. In this step, for each pair of nodes j ∈ J and k ∈ N (j) we ask:
what are the average characteristics (number of lanes and type of road) of the actual route connecting these two
locations in the real world? For this we must pick some route in the real world, and the cheapest-route criterion is
a selection device. This cheapest path is constructed weighting each segment s by its road user cost based on data
from Combes and Lafourcade (2005) and other sources. See Appendix C for details on these weights.

44We classify a path from j to k as straying from the cells containing j and k if more than 50% of the path steps
over cells that do not contain j or k.
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in the actual road network, P (j, k) = �, in which case ωjk (s) = 0 for all segments s ∈ S.

Observed Measured of Infrastructure After implementing the previous steps, we obtain the

measures lanesjk and natjk capturing the average number of lanes and the likelihood of using

national roads between j and k on the real network. However, our model includes a single index

of infrastructure, Ijk. Hence, we define the observed measure of infrastructure for each j ∈ J and

k ∈ N (j) by aggregating the observed attributes lanesjk and natjk into a single index:

Iobsjk = lanesjk × χ
1−natjk
nat . (20)

To compute the index we must assign a value to χnat. We note that, in the model, the resource cost

of building a level of infrastructure Iobsjk is δIjkI
obs
jk , with features of the terrain entering through δIjk.

Therefore, the coefficient 1/χnat > 1 in (20) captures the extent by which the features associated

with national roads raise construction and maintenance costs relative to a non-national road. We set

1/χnat = 5, which corresponds to expenditures in road construction and maintenance per kilometer

of federal motorways relative to the cost per kilometer of other trunk roads in Germany in 2007,

as reported by Doll et al. (2008).

In sum, we construct the observed infrastructure Iobsjk as the average number of national road

lanes over the path from j to k on the actual road network, if a direct path exists.45

We verify that Iobsjk correlates with external measures of road quality: first, across countries, the

average of this infrastructure measure has a correlation of 0.45 with the road-quality index from

the Global Competitiveness Report (WorldEconomicForum, 2016);46 second, across all connected

nodes in all countries in the discretized network, there is a correlation of 0.67 between Iobsjk and

the speed on the quickest path according to GoogleMaps. This relationship between speed and

infrastructure is depicted in Figure A.10.

Examples: France and Spain Figures 3 and 4 represent each of the steps described above for

two large countries in our data, France and Spain. Panel (a) of each panel shows the discretized

map and associated population. Brighter cells are more populated, corresponding to higher deciles

of the population distribution across cells. The (b) panels display the cells, the centroids (light blue

circles) and the edges (red segments) of the underlying graph. The (c) panels show the centroids and

the full road network. Green segments correspond to national roads and red segments correspond

to other roads, and the width of each road is proportional to its number of lanes.

45To understand the units, we note that natjk = 1 implies Iobsjk = lanesjk. Therefore, this measure can be
interpreted as saying that the resource cost on the path linking j to k is equivalent to the resource cost, for that same
link, of a national road with Iobsjk lanes.

46The average infrastructure of each country is constructed as
∑

j∈J

∑

k∈N (j) ωjkI
obs
jk where ωjk =

distjk
∑

j∈J

∑

k∈N(j) disstjk
is the fraction of total distance in the discretized network corresponding to the link from j

to k. Column (6) of Table A.2 in Appendix C reports this value for each country. Note that the average infrastruc-
ture index captures both the number of lanes and the prevalence of national roads, and it is therefore not directly
comparable to the the average lane per kilometer reported in Column (3).
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Figure 3: Discretization of the French Road Network

(a) Population on the Discretized Map (b) Nodes and Edges in the Baseline Graph

(c) Nodes in the Actual Road Network (d) Actual Road Network on the Baseline Graph

Notes: Panel (a) shows total population from GPW aggregated into 50 km cells. Panel (b) shows the nodes J

corresponding to the population centroids of each cell in Panel (a), reallocated to their closest point on the actual

road network, and the edges E corresponding to all the vertical and diagonal links between cells. Panel (c) shows

the centroids and the actual road network. Green segments correspond to national roads, red segments are all other

roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows the same centroids

and the edges as the baseline graph in Panel (b), where each edge is weighted proportionally to the average number

lanes on the cheapest path between each pair of nodes on the road network. The color shade ranges from red to green

according to the fraction of the shortest path traveled on a national road.

Finally, the (d) panels show the infrastructure in the discretized road network. Each of the

edges from the (b) panels is now assigned a width depending on the average number of lanes,

lanesjk, and a color ranging from red to green depending on the likelihood of using a national road,

natjk. The width and color scale are the same as in panel (c). When no direct link from j to k is

identified by our procedure, no edge is shown. The resulting discretized networks on the baseline

grids clearly mirror the actual road networks for both countries, but they are now expressed in

terms of the nodes and edges of our model and therefore allow us to quantify it.
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Figure 4: Discretization of the Spanish Road Network

(a) Population on the Discretized Map (b) Nodes and Edges in the Baseline Graph

(c) Nodes in the Actual Road Network (d) Actual Road Network on the Baseline Graph

Notes: Panel (a) shows total population from GPW aggregated into 50 km cells. Panel (b) shows the nodes J

corresponding to the population centroids of each cell in Panel (a), reallocated to their closest point on the actual

road network, and the edges E corresponding to all the vertical and diagonal links between cells. Panel (c) shows

the centroids and the actual road network. Green segments correspond to national roads, red segments are all other

roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows the same centroids

and the edges as the baseline graph in Panel (b), where each edge is weighted proportionally to the average number

lanes on the cheapest path between each pair of nodes on the road network. The color shade ranges from red to green

according to the fraction of the shortest path traveled on a national road.

5.2 Parametrization

We discuss the specific parametric assumptions to implement the general model described in

Section 3.

Preferences and Technologies The individual utility over traded and non-traded goods defined

in (1) is assumed to be Cobb-Douglas,

U = cαh1−α,
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while the aggregator of traded goods (2) is CES:

Cj =

(
N∑

n=1

(
Cn
j

)σ−1
σ

) σ
σ−1

(21)

where σ > 0 is the elasticity of substitution. Labor is the only factor of production and the

production technologies (3) are assumed to be linear:

Y n
j = znj L

n
j .

We need to impose values to the preference parameters (α, σ). We assume α = 0.4 to match a

standard share of non-traded goods in consumption and σ = 5 which corresponds to a central value

of the demand elasticities reported by Head and Mayer (2014) across estimates from the interna-

tional trade literature. As we discuss below, the calibrated model gives a reasonable prediction for

the distance elasticity of trade, which is typically closely linked to σ in existing studies.

Labor Mobility We undertake the entire analysis for the case in which labor is fixed and for the

case in which it is perfectly mobile.

Transport Technology We adopt the log-linear transport technology (10). Under this assump-

tion we must parametrize the congestion parameter β, the parameter γ capturing the return to

infrastructure investments, and the frictions δτjk.

As discussed in Section 3.1, the congestion parameter β admits several interpretations. Here,

we associate congestion in the model with the impact of traffic on speed on actual roads, under the

assumptions that shipments translate linearly into traffic, and that lower speed translates linearly

into higher per-unit shipping cost. Wang et al. (2011) review and estimate a standard class of traffic

density-speed relationship from traffic flow theory and transportation engineering. As detailed in

Appendix C, we choose β such that the relationship between flows and inverse-shipping costs in

our model matches the empirical relationship between traffic density and speed reported in their

paper. As a result of this step, we obtain β = 1.245.47

Having set β, we perform the entire analysis, including the calibration with fixed and mobile

labor, for values of γ that span convex and non-convex cases: γ = {0.5× β, β, 1.5 × β}.

Geographic Trade Frictions We also need to calibrate the matrix of trade frictions δτjk applying

to the transport technology (10). As far as we know, data on trade flows within countries is not

readily available at a reasonable level of spatial disaggregation for almost any of the countries in

our data. Therefore, trade flows are not observed across the cells in our discretization; if that data

were available, δτjk could be backed out for each pair of links as part of our calibration to rationalize

the observed trade flows as an equilibrium outcome.

47To preserve the global convexity of the optimal flows problem, we adopt the log-linear specification of the
transport technology rather than the logistic relationship assumed in Wang et al. (2011).
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To sidestep this shortcoming we follow the standard approach of assuming that δτjk is a function

of distance,

δτjk = δτ0dist
δτ1
jk. (22)

We set δτ0 such that the model matches the share of total intra-regional trade in total intra-national

trade of 39% reported by Llano et al. (2010) using average flows from 1995 to 2005 across Spanish

regions. Because this ratio is only available for Spain, we undertake the calibration of δ0 using our

model predictions for Spain, and then, using this estimate, we construct δτjk across all cells in each

country. In Table A.3 in Appendix C, we report the mean and standard deviation of the intra-

regional trade share across the countries in our data, as well as the calibrated δτ0 , for each value of

γ and assumption on labor mobility. The average intra-regional trade share in total domestic trade

is often close to 50%.

This approach to calibrating geographic frictions within countries is in the spirit of Ramondo et al.

(2012), who study a model featuring within-country trade without access to within-country trade

data except for one country (in their case, the U.S.).48 They jointly set (δτ0 , δ
τ
1 ) to target the elas-

ticity of trade with respect to distance from a standard gravity equation, as well as the share of

intra-regional trade in domestic trade within the U.S., and then apply these coefficients to all other

regions in their data. As we discuss in Appendix C, the coefficient δτ1 has approximately no impact

on the elasticity of shipping costs with respect to distance in our model, and therefore it has close

to no impact on the trade-distance elasticity recovered from a standard gravity regression run on

data generated by our model. Therefore, we normalize δτ1 = 1.49

While the trade distance elasticity is rather insensitive to δ1, it is sensitive to both β and σ.

We have calibrated these parameters to match external sources, but we note that the calibrated

model makes reasonable predictions for the trade-distance elasticity. As reported in Table A.3 in

Appendix C, across countries the within-country trade-distance elasticity is centered around 1.1. A

trade-distance elasticity around one corresponds to the typical value of existing estimates on both

intra-national and inter-national trade data as summarized by Ramondo et al. (2012).

Productivities and Endowments We must impose values for the productivities znj and the en-

dowment of non-traded servicesHj. In the case with perfect labor mobility we interpret
(

Lobs
j , GDP obs

j

)

as outcomes of the planner’s solution for the optimal allocation and optimal flows problems dis-

cussed in Section 3.2 taking the observed network Iobsjk as given, and use this information to back

out the fundamentals
(

znj ,H
n
j

)

. In the case with fixed labor, we interpret GDP obs
j as the outcome

of the planner solution and use this information to back out the productivities znj , normalizing

Hj = 1 and setting the planner’s weights ωj = 1 everywhere.

48In their formulation, Ramondo et al. (2012) also include an international border effect, which is not present here
because we implement the analysis separately for each country.

49We experimented with a range of alternative values for δτ1 , and we always found that this parameter has no
effect on the calibration and counterfactuals other than a re-scaling of the calibrated value of δτ0 , consistent with our
discussion in Appendix C.
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Since our data only includes aggregate measures of economic activity for each cell, we assume

that each location produces only one tradable good. We allow for N different sectors: N − 1

“industrial” goods, and one “agricultural” good. We assume that each of the N − 1 industrial

goods is produced in each of the N − 1 cells with the largest observed population, and that the

agricultural good is produced by all the remaining cells.50 As a benchmark, we assume 10 different

sectors (N = 10) and explore the robustness of this assumption to alternative values of N at the

end of this section (N = 5 or N = 15). In geographically small countries where N > J we set the

number of goods equal to the number of locations, N = J .

This approach leaves us with J productivity parameters zj , each corresponding to the produc-

tivity of a different location. Given the observed infrastructure Iobsjk and the previous parameter

choices, we choose each location’s productivity and supply of non-traded goods such that, taking

the observed network Iobsjk as given, the planner’s solution to the optimal allocation and optimal

flows problems from Definition 2 reproduces the observed value-added and population as an out-

come.51 The model solution readily yields the level of population in each location, Lj. As for the

model’s prediction for GDP, we invoke the second welfare theorem from Proposition 4 to recover

the prices in the observed allocation as the multipliers of the various constraints in the planner’s

problem.52

The various panels in Figure A.11 in Appendix C show the results of the calibration for the

case of γ = β (similar relationships hold for alternative values of γ). Panels (a) and (b) contrast

the model-implied population share and income share of each location against the data, over all

locations in the 25 countries. Except for very few locations, both population and income shares are

matched with high precision. Panels (c) and (d) show the calibrated fundamentals (productivity

and endowment of non-traded services per capita) in the vertical axes against income and popu-

lation shares in the data, respectively, for the case with labor mobility. The calibration implies

higher productivity and slightly lower supply of non-traded goods per capita in more populated

places. Panel (e) shows a similar positive relationship between productivity and income share in

the calibration of the model with fixed labor.

50Because data on industry-level value added or trade flows within countries is not always available, the approach
in many of the related studies cited in the literature review has been to assume a pattern of specialization where each
location produces a different product, i.e. the Armington assumption. Here, when N = J the production structure
corresponds to that assumption. While assuming Armington is sensible at somewhat higher levels of aggregation, it
is arguably less appealing for the high geographic resolution (50 km x 50 km cells) that we consider.

51Based on the discussion of the preceding section, we first implement this step for Spain, where we jointly calibrate
{zj ,Hj} and δτ0 . For the remaining countries, we apply that δτ0 , but still back out {zj ,Hj} using each country’s income
and value-added distribution.

52More specifically, in the solution of the planner’s problem each location’s value added is P
n(j)
j zjLj + PH

j Hj +
∑

n

∑

k∈N (j)

[
Pn
k − Pn

j

(
1 + τjk

(
Qn

jk, I
obs
jk

))]
Qn

jk, where n (j) denotes the good produced by location j, Pn
j is the

price of good n in location j (i.e., multiplier of the flows constraint for good n in j in the planner’s problem), and PH
j

is the price of non-traded services in sector j (i.e., the multiplier of the availability of non-traded goods constraint in
the planner’s problem). This step assumes that value added in the transport sector is empirically accounted to the
exporting node.
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Cost of Building Infrastructure To implement the optimal transport network in counterfac-

tual scenarios we must parametrize the cost of infrastructure along each edge, δIjk. We follow two

approaches. In the first approach, we interpret the observed infrastructure Iobsjk as the result of the

full planner’s problem. We do so under the assumption that δIjk = δIkj, so that it is equally costly

to build in either direction, and that Iobsjk = Iobskj , implying that infrastructure applies equally in

either direction. In this case the observed network, Iobsjk , is consistent with the planner’s first-order

condition for Ijk in (12) under the assumption that Ijk = 0. Imposing symmetry on that first-order

condition we then recover the cost of infrastructure as function of outcomes from the calibrated

model (see Appendix A.2). We refer to this measure as the “FOC-based” measure of building costs,

δI,FOC
jk .

Our second approach is agnostic about whether the observed network results from any sort of

optimization by a central authority, but takes a stand about how the building costs depend on

geographic features. Specifically, we rely on data from Collier et al. (2016), who estimate highway

building costs from more than three thousand World-Bank investment projects across the world,

and then relate these costs to a host of geographic and non-geographic frictions.53 We assume that

δIjk is a function of two geographic features included in their study, distance and ruggedness of

the terrain. We refer to this building-cost measure as the “geographic” measure, δI,GEO
jk . In our

notation, their estimates imply:

ln

(

δI,GEO
jk

distjk

)

= ln
(
δI0
)
− 0.11 ∗ (distjk > 50km) + 0.12 ∗ ln (ruggedjk) , (23)

where distjk is the distance between j and k and ruggedjk is the average over the ruggedness in

locations j and k.54 This expression implies that it is more costly to build on rugged terrain, but

less costly per kilometer to build on longer links. We assume that the elasticity of building costs

with respect to features of the terrain is the same across all countries, but that the constant δI0 may

be country-specific.

These steps give two alternative measurements of δIjk up to scale in each country. In the case of

δI,FOC
jk the scale corresponds to the multiplier µ of the planner’s resource constraint (see (A.3) in

Appendix A.2), and in the case of δI,GEO
jk it corresponds to δI0 in (23). In either case, the network-

building constraint (7) must be satisfied. Hence, we set K = 1 in every country and re-scale each

of the two measures of δIjk to satisfy the network-building constraint with equality in each country.

53The investment projects in their data are concentrated in low- and middle-income countries, of which three
(Lithuania, Georgia, and Macedonia) are in our data. The coefficients from their study introduced in our equation
(23) correspond to the average of the coefficients over the distance dummy and the ruggedness index across the 6
specifications in Tables 4 and 5 of their paper.

54We use elevation data from the ETOPO1 Global Relief Model. The ETOPO1 dataset corresponds to a 1 arc-
minute degree grid. We construct ruggedness for each cell as the average ruggedness across the 900 arc-minute
cells from the ETOPO1 dataset contained in each 0.5 arc-degree cell in our discretized maps. We use the standard
ruggedness index by Riley et al. (1999). Letting J etopo (j) be the set of cells in ETOPO1 contained in each cell
j ∈ J of our discretization and N etopo (i) be the 8 neighboring cells to each cell in ETOPO1, this index is defined

as: ruggedj =
(
∑

i∈J etopo(j)

∑

k∈Netopo(i) (elevi − elevk)
2
)1/2

; i.e., it is the standard deviation of the difference in

elevation across neighboring cells. Then, we define ruggedjk in (23) as ruggedjk = 1
2
(ruggedj + ruggedk).
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5.3 Optimal Expansion and Reallocation

We simulate two types of counterfactuals. First, we measure the aggregate gains from the

optimal expansion of the observed road network within each country. For that, we assume that the

total resources K are increased by 50% relative to the observed network, constraining the planner

to build on top of the existing network, Iobsjk . I.e., in the notation of restriction (iii) in definitions

1 and 2, Ijk = Iobsjk . Second, we measure the potential losses due to misallocation of current roads

within each country. For that, we assume that the total resources K are the same as in the observed

network, without constraining the planner to build on top of the existing network, Iobsjk . I.e., in the

notation of restriction (iii) in Definitions 1 and 2, Ijk = 0.55

In short, the first “optimal expansion” counterfactual amounts to optimally expanding the net-

work on top of what is already observed. In turn, the second “optimal reallocation” counterfactual

amounts to optimally reallocating the existing roads or, equivalently, to building the globally opti-

mal network employing the same amount of resources as those used to build the observed network.

The first counterfactual is clearly more policy-relevant, as it prescribes where new roads should be

built and yields the aggregate gains of those investments. The second counterfactual is unfeasible

in reality, but it gives a sense of the losses from misallocation of existing roads.

We implement the optimal expansion under the two measures of building costs, the FOC-based

measure δI,FOC
jk and the geographic measure δI,GEO

jk . The optimal reallocation is only meaningful

under the geographic measure, since, by construction, the observed network is optimal and cannot

be improved under δI,FOC
jk . We implement each of these three counterfactuals for each of the

three values γ = {0.5β, β, 1.5β}, assuming both fixed and mobile labor, separately for each of the

25 countries. We re-calibrate the model for each value of γ, assumption on labor mobility, and

country following the steps from the previous section.

Regional Impact within Countries We inspect first the within-country regional implications

for two of the largest countries in our data, Spain and France. Figure 5 depicts the pattern of

investment and population change for counterfactuals under the geographic measure of building

costs, δI,GEO. Panels (a) and (b) show the optimal reallocation and panels (c) and (d) show

the optimal expansion when γ = β (convex case). Panels (e) and (f) reproduce the optimal

expansion assuming γ > β (non-convex case). All the figures correspond to assuming mobile

labor. The thickness of each link increases with the absolute value of the investment, defined as the

difference between the counterfactual and the observed infrastructure, I∗jk−Iobsjk . In the reallocation

counterfactual, links with negative investment, I∗jk − Iobsjk < 0, are shown in red, while all other

links are shown in green. In turn, green nodes denote positive population change, and red nodes

denote negative population change. Brighter nodes represent a larger absolute value of population

change.

In the optimal reallocation counterfactual, we observe positive investments radiating away from

55In every case, we set the upper bound on infrastructure, Ijk, to be 50% above the largest level of infrastructure
observed in each country.
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Figure 5: Optimal Network Reallocation and Expansion, δI = δI,GEO

(a) Optimal Network Reallocation, γ = β (b) Optimal Network Reallocation, γ = β

(c) Optimal Network Expansion, γ = β (d) Optimal Network Expansion, γ = β

(e) Optimal Network Expansion, γ > β (f) Optimal Network Expansion, γ > β

Notes: The width and brightness of each link is proportional to the difference between the optimal counterfactual

network and the observed network, I∗jk − Iobsjk , for each link jk ∈E shown in panel (b) of Figures 3 and 4. The

color scale is the same as in Figure 3. In the misallocation counterfactuals, red links represent negative investment.

Brighter green (red) nodes represent larger population increase (decrease).

some areas with higher economic activity in the case of France, but a more dispersed investment

pattern in Spain. As we compare panels (a) and (b) with panels (c) and (d), we observe similar
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investment patterns in the optimal reallocation and expansion counterfactuals within each country:

the links identified as having too much infrastructure, shown in red in panels (a) and (b), typically

feature no expansion in panels (c) and (d). The comparison between panels (c)-(d) and panels

(e)-(f) reveals that under increasing returns to infrastructure the optimal road expansion follows a

similar pattern as in the convex case, but is more sparse and concentrated on fewer roads, in tune

with our results in Proposition 3.

Despite the different investment patterns, population is reallocated to the same set of regions

within each country across the counterfactuals. Due to the labor mobility constraint in the plan-

ner’s problem, changes in labor are perfectly correlated with changes in consumption of traded

commodities per worker, cj .
56 For the cases without labor mobility, there is a similar consistency

across the counterfactuals in the changes in consumption of traded commodities per capita cj across

locations.

What observable characteristics make specific regions more likely to receive infrastructure or to

grow? Is growth correlated with receiving infrastructure? To answer these questions, we inspect,

across the 25 countries, how a few typically observable regional characteristics map to infrastructure

investment and population growth using data from the counterfactuals. Table 1 reports results from

regressions of infrastructure and population growth on each location’s initial population, income

per capita, consumption of traded goods per capita and level of infrastructure, and on whether the

location produces differentiated products. We report here results corresponding to the case where

γ = β, but note that the results are very similar under the alternative values of γ or assuming

fixed labor (and using the change in consumption per capita instead of population as dependent

variable).

The odd columns imply that, regardless of the measure of building costs, optimal road invest-

ments are directed to locations with initially lower levels of infrastructure, capturing decreasing

marginal aggregate welfare gains from infrastructure in specific links. Under the geographic mea-

sure of building costs in columns (1) and (3), optimal road investments are also more intensely

directed to locations with initially higher levels of population and consumption per worker, as well

as to producers of differentiated goods. However, these patterns are not present under the FOC-

based measure of building costs. Importantly, in every case, the few variables in the regression

have reasonable explanatory power (R2 in the order of 30-40%). Therefore, even though the model

implies a complex mapping from the fundamentals to the investments, observable features of each

location guide a considerable fraction of the optimal investment decisions.

Looking at population changes, the even columns imply that the handful of variables in the

regression explain between about 60% and 90% percent of the population changes. But, perhaps

surprisingly, infrastructure growth in a location does not show up as an important determinant.

Therefore, the model suggests that, in the context of a centrally and optimally planned infrastruc-

ture expansion, it is not necessarily true that the locations receiving more investments are also

56The labor mobility constraint (vi) from Definition 2 implies α∆ ln cj = (1− α)∆ lnLj + ∆ ln u, where ∆ lnx
denotes the difference in the log of variable x between the counterfactual and calibrated allocation.
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Table 1: Optimal Infrastructure Investment, Population Growth and Local Characteristics

Reallocation (δ = δI,GEO) Expansion (δ = δI,GEO) Expansion (δ = δI,FOC)

Dependent variable: Investment Pop. Growth Investment Pop. Growth Investment Pop. Growth

(1) (2) (3) (4) (5) (6)

Population 0.308*** 0.002 0.104*** 0.002** 0.004 0.002**

Income per Capita 0.127 0.003 0.007 -0.002 -0.020 0.031**

Consumption per Capita 0.290** -0.143*** 0.179*** -0.134*** 0.130 -0.179***

Infrastructure -0.362*** -0.003 -0.195*** -0.001 -0.067** 0.000

Differentiated Producer 0.271*** 0.017*** 0.133*** 0.028*** -0.099*** 0.031***

R2 0.38 0.56 0.32 0.65 0.38 0.90

Each column corresponds to a different regression pooling all locations across the 25 countries assuming γ = β,

mobile labor, δ = δI,GEO, and N=10. All regressions include country fixed effects. Standard errors are clustered at

the country level. ***=1% significance, **=5%, *=10%. Dependent variables: Investment is defined as ∆ ln Ij , where

Ij = 1
#N (j)

∑

k∈N (j) Ijk is the average level of infrastructure across all the links of location j, and population growth

is defined as ∆ lnLj , where ∆ ln x denotes the difference between the log of variable x in the counterfactual and in the

calibrated allocation. Independent variables: all correspond to the log of the level of each variable in the calibrated

model. Population and income per capita are the two outcomes matched by the calibration. Consumption per

capita corresponds to traded goods, cj in the model. Infrastructure is the average infrastructure of each location, Ij .

Differentiated producer is a dummy for whether the location is a producer of differentiated goods in the calibration.

those more likely to grow.57

Instead, two other variables have a significant relationship with regional growth: consumption

of traded goods per capita and whether the location is a producer of differentiated goods. Con-

sumption per capita is a strong determinant, with a negative elasticity of growth with respect to

initial consumption in the order of 13%-18%. If consumption per capita was excluded, then the

coefficient on income per capita would become negative and significant, with a negative elasticity

of growth with respect to income per capita of 10% across the three counterfactuals. Hence, the

impact of initial income on growth in the optimal investment plan operates through the level of

consumption.

This reallocation pattern reflects that the goal of the optimal investments is to reduce variation

in the marginal utility of consumption of traded commodities across locations. Since changes

in population and consumption per capita between the counterfactual and initial allocation are

perfectly correlated, the optimal investment plan leads to an increase in consumption of traded

commodities in locations where consumption per capita is initially low. We conclude that the

optimal investment in infrastructure reduces spatial inequalities, although different assumptions

on building costs imply different ways of achieving this goal by changing the optimal placement of

infrastructure, as implied by our previous discussion.

57The empirical literature on the impacts of trade costs on regional outcomes referenced in Section 2, and sum-
marized by Donaldson (2015), does not always find that improvements in a location’s market access leads to an
increase in that location’s economic activity. For example, Faber (2014) finds lower growth in peripheral counties
that gained market access relative to other counties that did not improved access in the context of China’s expansion
of its National Trunk System.
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Table 2: Average Welfare Gains Across Countries

Returns to Scale: γ = 0.5β γ = β γ = 1.5β

Labor: Fixed Mobile Fixed Mobile Fixed Mobile

Optimal Reallocation

δ = δI,GEO 3.2% 3.0% 4.6% 4.8% 5.6% 6.6%

Optimal Expansion

δ = δI,GEO 3.9% 3.5% 5.8% 5.7% 7.2% 7.9%

δ = δI,FOC 1.2% 1.0% 3.4% 5.8% 11.3% 12.4%

Each element of the table shows the average welfare gain in the corresponding counterfactual across the 25 countries.

Aggregate Impact Across Countries We conclude with the aggregate welfare effects. Table

2 shows the average welfare gain for each counterfactual across all 25 countries in our dataset.

Tables A.4 and A.5 in Appendix C show the results for each country with fixed and mobile labor,

respectively.

Starting from the case γ = β, we find average welfare gains across countries of between 3% and

6%, depending on the type of counterfactual, whether labor is allowed to be mobile, and whether

building costs are measured according to the geographic or FOC-based measure. The average gains

are increasing in the returns to scale, γ, particularly so under the FOC-based measure of building

costs.

These effects vary considerably across countries. Each panel of Figure 6 shows the welfare

gain across countries in each counterfactual for the case of γ = β, under both fixed and mobile

labor, against each country’s real income per capita. We see considerable variation in the gains

across countries, ranging from around 2% to 15%. We also find negative relationships between

income per capita and the welfare gains from either optimally expanding or reallocating current

roads, suggesting larger returns to infrastructure and larger misallocation of existing roads in poorer

economies.

This distribution of welfare gains across countries is very stable regardless of the parametrization

of γ, the assumption on labor mobility, the parametrization of the building costs δI , or the type of

counterfactual. For example, across all the parametrizations of γ and labor mobility, the correlation

between the gains from optimally expanding the network under the two measures of building

costs, δI,GEO and δI,FOC , is between 0.88 and 0.98.58 Therefore, the answers to the questions of

which countries would gain more from optimally expanding their current road networks and which

countries suffer larger losses from misallocation of current roads is robust across all these cases.

Robustness to the Number of Sectors The analysis was implemented assuming N = 10

sectors. We also implement the calibration and counterfactuals, under both mobile and fixed labor,

58In the benchmark case of N = 10, for each country we run 18 counterfactuals spanning the assumptions on γ,
δI , type of counterfactual (expansion or reallocation), and labor mobility. Across all pairwise comparisons of these
18 cases, the lowest correlation in welfare gains across countries is 0.79.
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Figure 6: Gains from Optimal Reallocation and Expansion and Income Per Capita

(a) Optimal Reallocation with δI,GEO (b) Optimal Expansion with δI,GEO

(c) Optimal Expansion with δI,FOC

Notes: Each figure displays the % welfare gains across countries in each counterfactual against each country’s log-

income per capita, for the case γ = β. The same patterns are present for γ = 0.5β and γ = 1.5β.

assuming either that N = 5 or N = 15, for the case γ = β. We find that both the regional impact

within countries and the aggregate impact across countries are very similar to the benchmark with

N = 10. Table A.6 in Appendix C reports the coefficients from columns (3) and (4) of Table 1,

corresponding to the optimal expansion under calibrations that assume N = 5 or N = 15. In

both cases, the patterns described above remain unchanged, and the magnitude of most of the

coefficients does not exhibit large variation. Similarly, Table A.7 reproduces Table 2 for different

values of N . The aggregate gains change little with the number of sectors. The correlation between

the aggregate welfare effects across countries under N = 5 or N = 15 and under N = 10 is between

0.8 and 0.9 depending on the type of counterfactual and the assumption on labor mobility.
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6 Conclusion

In this paper, we develop a framework to study optimal transport networks in spatial equilibrium

models. The framework combines a neoclassical environment where each location is a node in a

graph, an optimal transport problem subject to congestion in shipping, and an optimal network

design. It nests commonly used neoclassical trade models and it allows for either fixed or mobile

factors across space. We provide conditions such that the full planner’s problem, involving the

optimal flow of goods as well as the general-equilibrium and network-design problems, is globally

convex and numerically tractable using standard numerical methods typically applied to tackle

optimal transport problems.

In the application, we match the model to data on road networks and economic activity at a

0.5 x 0.5 degree spatial resolution across 25 European countries. Given the observed road network,

the model reproduces the population and value added observed across the cells in the data. Using

the calibrated model, we find larger gains from road expansion and larger losses from misallocation

of current roads in lower-income countries. We also find that the optimal expansion of current

road networks reduces regional inequalities within countries. These results hold consistently across

different parametrizations.

The framework could serve as basis for other applications. For instance, it could be used to

study political-economy issues associated with infrastructure, such as spatial competition among

planning authorities. Our application was limited to European countries, but low-income economies

are likely to benefit more from infrastructure investment. It is also well understood that systems of

cities and transport networks are highly persistent;59 the model could be used to study inefficient

network lock-in due to existing investments corresponding to dated economic fundamentals. The

empirical literature mentioned in Section 2 and summarized by Donaldson (2015) relies on exoge-

nous sources of variation for the placement of infrastructure investments; the framework may be

used to construct instruments for investments in transport infrastructure as function of observable

regional characteristics. Finally, a number of forces such as commuting or dynamic adjustment were

left out of our analysis. We believe these are all interesting avenues to pursue in future research.
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A Appendix to Section 3 (Model)

A.1 Planner’s Problem

In this section we present the first-order conditions to the planner’s problem. We refer to these first-order

conditions in some of the characterizations in the text and in the proofs below.

Immobile Labor

The Lagrangian of the problem in Definition 1 is

L =
∑

j

ωjLjU (cj , hj)−
∑

j

PC
j

[

cjLj − CT
j

(
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j , .., C
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j
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∑
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j , PH

j , PN
j , Wj , R

l
j , µ, ζ

I
jk, ζ

Q
jkn, ζ

L
jn, ζ

V
jnl, ζ

C
jn, ζ

c
j , ζ

h
j are the multipliers of all constraints implied by (i)-(v)

in Definition 1. The first-order conditions with respect to consumption and production are:

[cj ] ωjLjUC (cj , hj) + ζcj = PC
j Lj

[hj ] ωjLjUH (cj , hj) + ζhj = PH
j Lj

[
Cn

j
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j

∂CT
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∂Xln
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+ ζXjnl = P l
j

The first-order conditions with respect to flows is:

[
Qn

jk

]
− Pn

j

(

1 + τn
jk +

∂τn
jk

∂Qn
jk

Qn
jk

)

+ Pn
k + ζQjkn = 0

which, along with the complementary slackness condition for Qn
jk, implies (8) in the main text.

Finally, the first order condition with respect to the network investment is

[Ijk]
∑

n

Pn
j Qn

jk

(

−
∂τn

jk

∂Ijk

)

+
(

ζ
I
jk − ζIjk

)

= µδIjk

which, along with the complementary slackness condition for Injk, implies (9) in the text.
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Mobile Labor

The Lagrangian of the problem in Definition 2 is

L = u−
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where, in addition to the previous notation for the multipliers, in the first line we have defined ω̃j and WL as the

multipliers of constraints (vi) and (vii) in Definition 2.

The first-order conditions with respect to consumption of traded services
[
Cn

j

]
, factor allocation within locations

[
Ln

j

]
,
[
V n
j

]
and

[
Xn

j

]
, optimal transport

[
Qn

jk

]
, and optimal investment [Ijk] are the same as in the problem without

labor mobility. The first-order conditions with respect to u and Lj are:

[u] 1 =
∑

j

Lj ω̃j

[Lj ] PC
j cj + PH

j hj − ω̃j [U (cj , hj)− u] = Wj −WL

where from monotonicity of U (cj , hj) it follows that

U (cj , hj) =







u if Lj > 0,

0 if Lj = 0.

In addition, the first-order conditions with respect to consumption of traded and non-traded services, [cj ] and [hj ],

are the same as in the problem without labor mobility replacing the planner’s weights ωj with the multipliers of the

mobility constraint ω̃j . Combining [Lj ] with [cj ] and [hj ] gives the multiplier on the labor-mobility constraint. For

populated locations:

ω̃j =
Wj −WL

UC (cj , hj) cj + UH (cj , hj)hj
.

A.2 Symmetry in Infrastructure Investments

For the applications in Section 5 we impose symmetry in infrastructure levels, i.e., Ijk = Ikj . This section

provides the first-order condition for Ijk in that case. The first-order condition with respect to Ijk is
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= µ
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. (A.1)

Assuming symmetry leaves all the remaining first-order conditions presented in Section A.1 unchanged. Under

the log-linear specification (10) of the transport technology, the optimal infrastructure investment, conditional on

Ijk ∈
(

ζIjk, ζ
I
jk

)

, is
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which, substituting for the optimal flows, yields:

I∗jk =
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. (A.3)

Expressions (12) and (14) in Section 3 are analogous to these conditions when symmetry is not imposed. As discussed

in Section 5.2, to build δI,GEO
jk we use (A.2) under the symmetry assumption δIjk = δIkj . Setting I∗jk = Iobsjk ,δI,GEO

jk can

be backed out as function of calibrated parameters, the observed network IOBS
jk , and the equilibrium prices generated

by the calibrated model. Note that, to generate these prices, we use the model calibrated given the network IOBS
jk ,

as discussed in Section 5.2.

A.3 Proofs of the Propositions

Proposition 1. (Convexity of the Planner’s Problem) (i) Given the network {Ijk}, the joint optimal transport

and allocation problem in the fixed (resp. mobile) labor case is a convex (resp.quasiconvex) optimization problem if

Qτjk (Q, Ijk) is convex in Q for all j and k ∈ N (j); and (ii) if in addition Qτjk (Q, I) is convex in both Q and I for

all j and k ∈ N (j), then the full planner’s problem including the network design problem from Definition (1) (resp.

Definition (2)) is a convex (resp. quasiconvex) optimization problem. In either the joint transport and allocation

problem, or the full planner’s problem, strong duality holds when labor is fixed.

Proof. Consider the planner’s problem from Definition 1. We can write it as

max
{

Cj ,

{

Cn
j
,
{

Qn
jk
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}}
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6 0 for all j;

(ii) the balanced-flows constraint,

g2jn ≡ Cn
j +

∑

k∈N (j)

Qn
jk

[
1 + τjk

(
Qn

jk, Ijk
)]
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(iii) the network-building constraint,
∑

j

∑

k∈N (j)

δIjkIjk ≤ K;

and conditions (iv)-(v) in the text. Since constraints (iii)-(v) are linear, we need f to be concave and g1j and g2jn to

be convex. Since U is jointly concave in both its arguments, f is concave. Cj

({
Cn

j

})
is concave, hence g1j is convex.

If Qτjk (Q, I) is convex in then g2jn is the sum of linear and convex functions, hence it is convex. To show that this

problem admits strong duality, a constraint qualification is required. Note first that constraints g1j and g2jn must hold

with equality at an optimum and therefore can be substituted into the objective function. The remaining constraints

(iii)-(v) are all linear and thus satisfy the Arrow-Hurwicz-Uzawa qualification constraint (Takayama (1985), Theorem

1.D.4). Hence, the global optimum must satisfy the KKT conditions and the duality gap is 0.60

60Despite having substituted constraints g1j and g2jn into the objective function, the multipliers for these constraints,
PC
j and Pn

j , can be recovered from the above KKT conditions such that ωjUC (cj , hj) = PC
j and PC

j ∂CT
j /∂Cn

j = Pn
j .
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Consider now the planner’s problem with labor mobility from Definition 2. Because U is homothetic, we can

express it as U = G (U0 (c, h)), where G is an increasing continuous function and U0 is homogeneous of degree 1.

Therefore, imposing the change of variables ũ = G−1 (u), the planner’s problem can be restated as

max ũ

subject to the convex constraints (i)-(v) and Lj ũ 6 U0 (Cj ,Hj). To make the latter constraint convex, let us denote

Uj = Lj ũ and replace ũ in the objective function by minj|Lj>0

{
Uj

Lj

}

,61 so that the problem becomes

max
Cj ,

{

Cn
j
,Ln

j
,Vn

j
,
{

Qn
jk

,In
jk

}

k∈N(j)

}

,Uj ,Lj

min
j|Lj>0

{
Uj

Lj

}

subject to the convex restrictions (i)-(v) above as well as

Uj ≤ U0 (Cj ,Hj) for all j.

The objective function is quasiconcave because Uj/Lj is quasiconcave and the minimum of quasiconcave functions is

quasiconcave. In addition, all the restrictions are convex. Arrow and Enthoven (1961) then implies that the Karush-

Kuhn-Tucker conditions are sufficient if the gradient of the objective function is different from zero at the candidate

for an optimum, and here the gradient never vanishes.

Proposition 2. (Optimal Network in Log-Linear Case) When the transport technology is given by (10), the full

planner’s problem is a convex (resp. quasiconvex) optimization problem if β > γ. The optimal infrastructure is given

by (13) implying that, in the absence of a pre-existing network (i.e., if I0jk = 0), then Ijk = 0 ↔ Pn
k = Pn

j for all n.

Proof. First, note that if β ≥ γ then Qτ (Q, I) ∝ Q1+βI−γ is convex in Q ∈ R+ and I ∈ R+. To see that, note that

the determinant of the Hessian of Q1+βI−γ is (1 + β) γ (β − γ)Q2βI−2(γ+1), which is positive for Q ∈ R+ and I ∈ R+

if β ≥ γ ≥ 0. Next, from the first-order condition for optimal infrastructure (9), if the solution to the planning problem

implies Ijk = Ijk, so that there is no investment, then:

µ ≥ −
1

δIjk

∑
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∣
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,

where the second line follows from (10) and the third line follows from (11). Note that the last inequality is equivalent

to Ijk ≥ I∗jk for I∗jkdefined in (14). Therefore, if Ijk < I∗jk then Ijk > Ijk and Ijk = I∗jk. Moreover, if there is any n

such that Pn
k 6= Pn

j then I∗jk > 0.

Proposition 3. (Tree Property) Assume that lim
c→0+

UC (c, h) = ∞. In the absence of a pre-existing network (i.e.,

Ijk = 0), if the transport technology is given by (10) and satisfies γ > β, and if there is a unique commodity produced

in a single location, then the optimal transport network is a tree.

61Since the objective function is strictly increasing in ũ and because ũ only shows up in the constraints Lj ũ 6

U0 (Cj ,Hj) for all j, it is necessarily the case that ũ = minj|Lj>0 Uj/Lj .
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Proof. To establish the result, we focus on the case with fixed labor.62 We assume WLOG that production Yj is

exogenous (endowment economy) since there is only one commodity and factors are immobile. To fix ideas, let us

assume that I = {0, 1, . . . , J − 1} and Y0 > 0 but Yj = 0 for j ≥ 1. We write down the Lagrangian of the problem

L =
∑

j

ωjLjU (cj , hj)−
∑

j

Pj



Ljcj +
∑

k∈N(j)

(

1 + δτjk
Qβ

jk

Iγjk

)

Qjk − Yj −
∑

k∈N(j)

Qkj





− µ




∑

j

∑

k∈N(j)

δIjkIjk −K



+
∑

j,k

ζQjkQjk +
∑

j,k

ζIjkIjk, ζQjk > 0, ζIjk > 0.

Despite being a nonconvex optimization problem, there must exist a vector of Lagrange multipliers such that the

KKT conditions hold.63 As a preliminary step, we eliminate the infrastructure investment Ijk using (12), so that

Ijk =

(

γ
µ

δτjk

δI
jk

PjQ
1+β
jk

) 1
γ+1

whenever Qjk > 0, otherwise Ijk = 0. Solving for the multiplier µ such that (7) is satisfied,

we reformulate the problem with allocation and flows only as follows

L =
∑

j

ωjLjU (cj , hj)−
∑

j

Pj



Ljcj +
∑

k∈N(j)

Qjk − Yj −
∑

k∈N (j)

Qkj





−K−γ




∑

j,k

(

δIjk/δ
τ
jk

) γ
γ+1

(

PjQ
1+β
jk

) 1
γ+1





γ+1

+
∑

j,k

ζQjkQjk, ζQjk > 0. (A.4)

The source of nonconvexities is the term

[
∑

j,k

(
δIjk/δ

τ
jk

) γ
γ+1

(

PjQ
1+β
jk

) 1
γ+1

]γ+1

, which is convex when β > γ,

but neither convex nor concave when γ > β. Let us now assume that (c∗,Q∗) with c∗ = (c∗0 , . . . c
∗
J−1)

′ and Q∗ =
(
Q∗

jk

)

j,k∈N (j)
is a local optimum, i.e., it satisfies the FOCs and SOCs of the Lagrangian (A.4). We are going to show

that the graph associated with Q∗ is a tree. Define the (undirected) graph associated to Q∗ as the tuple (I, E∗) such

that E∗ ⊂ E is a subset of the edges of the underlying geography such that

E∗ =
{
{j, k} ∈ E | Q∗

jk > 0
}
.

Note that since Ijk is non-zero whenever Qjk > 0 or Qkj > 0, the support of graph (I, E∗) coincides with that of

the transport network {Ijk}. After this preparatory work, we now refer the reader to Proposition 5 in Appendix D

which establishes that E∗ is a tree.

Definition 3. The decentralized equilibrium without labor mobility consists of quantities cj , hj , Cj , C
n
j , L

n
j ,V

n
j ,X

n
j ,
{
Qn

jk

}

k∈N (j)
,

goods prices
{
pnj
}

n
, pCj , p

H
j and factor prices wj ,

{
rmj
}

m
in each location jsuch that:

(i)(a) consumers optimize:

{cj , hj} = argmax
ĉj ,ĥj

U
(

ĉj , ĥj

)

pCj ĉj + pHj ĥj = ej ≡ wj + tj ,

where ej are expenditures per worker in j and where pCj is the price index associated with Cj

(
c1j , .., c

N
j

)
at prices

62In the labor mobility case, an identical argument can be made by taking the optimal allocation of Lj as given
and replacing the Pareto weights ωj with the Lagrange multipliers of the constraints Lju ≤ LjU (cj , hj).

63The resource constraint can be substituted in the objective function to yield Pj = ωjUC (cj , hj). The Arrow-
Hurwicz-Uzawa theorem (Takayama (1985), Theorem 1.D.4) implies that, the remaining constraints being affine,
there must exist a vector of Lagrange multipliers such that the KKT conditions hold.
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{
pnj
}

n
and tj is a transfer per worker located in j. The set of transfers satisfy

∑

j

tjLj = Π

where Π adds up the aggregate returns to the portfolio of fixed factors and the government tax revenue,

Π =
∑

j

pHj Hj +
∑

j

∑

m

rmj V m
j +

∑

j

∑

k∈N (j)

∑

n

tnjkp
n
kQ

n
jk;

(i)(b) firms optimize:

{
Ln

j ,V
n
j ,X

n
j

}
= argmax

L̂n
j
,V̂n

j
,X̂n

j

pnj F
n
j

(

L̂n
j , V̂

n
j , X̂

n
j

)

−wjL̂
n
j −

∑

m

rmj V̂ mn
j ;

(i)(c) the transport companies optimize,

πn
od = max

r=(j0,...,jρ)∈Rod

pnd − pnoT
n
r,0 −

ρ−1∑

k=0

pjk+1 t
n
jkjk+1

Tn
r,k+1,

for all (o, d) ∈ J 2, where Rod =
{
(j0, . . . , jρ) ∈ J ρ+1, ρ ∈ N | j0 = o, jρ = d, jk+1 ∈ N (jk) for all 0 ≤ k < ρ

}
is the

set of routes from o to d, and Tn
r,k is the accumulated iceberg cost from location jk to d along route r,

Tn
r,k =







∏ρ−1
m=k

(

1 + τn
jmjm+1

)

for 0 ≤ k ≤ ρ− 1

1 for k = p;

and there is free entry to delivering products from every source to every destination: πn
od ≤ 0 for all (o, d) ∈ J 2, = if

good n is shipped from o to d.

(i)(d) producers of final commodities optimize:

{
Cn

j

}
= argmax

Cn
j

Cj

({

Ĉn
j

})

−
∑

j

pnj Ĉ
n
j ;

as well as the market-clearing and non-negativity constraints (i), (ii), (iv), and (v) from Definition 1.

If, in addition,if labor is mobile, then the decentralized equilibrium also consists of utility u and employment {Lj}

such that

u = Uj (cj , hj)

whenever Lj > 0, and the labor market clearing condition (vii) from Definition 2 holds.

Proposition 4. (First and Second Welfare Theorems) If the sales tax on shipments of product n from j to k is

1 − tnjk =
1+τn

jk

1+
(

εn
Q,jk

+1
)

τn
jk

where εnQ,jk = ∂ log τn
jk/∂ logQn

jk, then: (i) if labor is immobile, the competitive allocation

coincides with the planner’s problem under specific planner’s weights ωj . Conversely, the planner’s allocation can be

implemented by a market allocation with specific transfers tj; and (ii) if labor is mobile, the competitive allocation

coincides with the planner’s problem if and only if all workers own an equal share of fixed factors and tax revenue,

i.e., tj = Π
L
. In either case, the price of good n in location j, pnj , equals the multiplier on the balanced-flows constraint

in the planner’s allocation, Pn
j .

Proof. Equivalence of the First-order Conditions. Condition (i)(c) from the definition of the market allocation

implies that the free entry condition of shippers holds for every pair of neighbors; i.e., for every j ∈ J and k ∈ N (j),

pnk
(
1− tnjk

)
≤ pnj

(
1 + τn

jk

)
, = if Qn

jk > 0. (A.5)

This condition is consistent with the first-order condition (8) from the planner’s problem if and only if the tax scheme

is defined as in the proposition. We must further show that, under this tax scheme, a route is the solution to (i)(c)
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if and only if it is used in the solution to the planner’s problem, which we establish at the end of this proof.

Without labor mobility, the rest of the allocation corresponds to a standard neoclassical economy with con-

vex technologies and preferences where the welfare theorems hold. Specifically, the first-order conditions from the

consumer and firm optimization problems (i)(a) and (i)(b) yield:

[ĉj ]

(
1

λj

)

UC (cj , hj) = pCj

[

ĥj

] (
1

λj

)

UH (cj , hj) = pHj

[

Ĉn
j

]

pCj
∂CT

j

∂Cn
j

= pnj

[

L̂n
j

] ∂Y n
j

∂Ln
j

Pn
j ≤ wj ,= if Ljn > 0

[

V̂ mn
j

] ∂Y n
j

∂V mn
j

Pn
j ≤ rmj ,= if V mn

j > 0.

Since the market clearing constraints are the same in the market’s and the planner’s allocation, the planner’s allocation

coincides with the market if the planner’s weights are such that the planner’s FOC for Cj coincide with the market.

This is the case if the weight ωj from the planner’s problem equals the inverse of the multiplier on the budget

constraint from the consumer’s optimization problem (i)(a) in the market allocation. To find that weight, using that

U is homothetic we can write U = G (U0 (c, h)), where U0 is homogeneous of degree 1. Then, the planner’s allocation

coincide with the market’s under weights

ωj =
ej

G′ (U0 (cj , hj))U0 (cj , hj)
,

where ej is the expenditure per worker and cj , hj are the consumption per worker of the traded and non-traded

good in the market allocation. If U is homogeneous of degree one, then ωj = PU
j , where PU

j is the price index

associated with U (cj , hj) at the market equilibrium prices pCj , p
H
j . In the opposite direction, given arbitrary weights

ωj , the market allocation implements the planner’s under the transfers tj = PC
j cj + PH

j hj − Wj constructed using

the quantities {cj , hj} from the planner’s allocation and the multipliers
{
PC
j , PH

j

}
and Wj corresponding to the

constraints (i) and (iv) of the planner’s problem, respectively.

For the case with labor mobility, note that, for populated locations, the planner’s first-order condition with

respect to Lj implies:

PC
j cj + PC

j hj = Wj −WL.

Therefore, the market allocation and the planner’s solution coincide if and only if in the market allocation expenditure

per worker in location j takes the form ej = wj + Constant for all j. The only transfer scheme delivering the same

transfer per capita is tj = Π
L
.

Equivalence of Least Cost Routes. We want to establish that a route is a solution to (i)(c) in Definition

3 under the proposed tax scheme if and only if it is used in the planner’s problem. Fix good n. We introduce the

following notation: for all r ∈ Rod, we denote tnr the matrix:

(tnr )j∈I,k∈N (j) =







Tn
r (jl+1, d) for 0 6 l 6 p− 1 such that j = jl, k = jl+1

0 otherwise,

where Tn
r (jk, d) is the accumulated iceberg cost from jk to d on route r as introduced in Definition 3. Matrix tnr

captures the fact that shipping ε additional units of good n (at destination) from o to d through route r requires

modifying the trade flows to Q+εtnr . Indeed, Q
n
jp−1d

must increase by ε×Tr (jp, d) = ε, Qn
jp−2jp−1

by ε×Tr (jp−1,d) =

ε
(

1 + τn
jp−1jp

)

, and so on.

Consider an optimal route from o to d, r∗ =
(
j∗0 , . . . , j

∗
p∗
)
∈ Rod, i.e., such that Qn

j∗
k
j∗
k+1

> 0 at the optimum of
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the planner’s problem. We now consider redirecting a marginal amount of goods ε > 0 from π∗ to some other route

r = (j0, . . . , jp) ∈ Rod. In other words, we consider the flows Q+εtnr −εtnr∗ . The first order impact on the Lagrangian

can be decomposed into its various contributions to the resource constraint in locations along the two paths, r and

r∗:

1. Destination d: the resource constraint in the final destination, d, is unaffected: the flows from route r∗ are

reduced by ε, but an additional amount ε of goods arrive from route r.

2. Locations along the path: for any location j∗k along route r∗, other than that the origin and the destination,

the amount of goods that arrives from j∗k−1 decreases by εTn
r∗ (j

∗
k , d) and the amount of goods re-expedited

to j∗k+1 decrease by εTn
r∗ (j

∗
k+1d), implying a reduction in gross shipments of

(

1 + τn
jkjk+1

)

× εTn
r∗ (j

∗
k+1, d) =

εTn
r∗ (j

∗
k , d). Both reductions of flows thus fully offset each other. The sole remaining effect on the resource

constraint at j∗k is a reduction in total trade costs through lower congestion. The first-order contribution of

these savings in trade costs corresponds to a gain of

Pn
j∗
k

∂τn
j∗
k
j∗
k+1

∂Qn
j∗
k
j∗
k+1

Qn
j∗
k
j∗
k+1

× εTn
r∗ (j

∗
k+1, d) .

Symmetrically, the impact on a location jk along route r amounts to a first-order impact on the Lagrangian of

[

−Pn
jk

∂τn
jkjk+1

∂Qn
jkjk+1

Qn
jkjk+1

+ ζQjkjk+1,n

]

× εTn
r (jk+1, d) ,

where we have also included the multiplier ζQjkjk+1,n
which can be strictly positive along initially unused links,

as opposed to links along the optimal path.

3. Origin o: shipments through path r∗ are reduced by εTn
r∗ (j

∗
1 , d), implying a saving of

(

1 + τn
oj∗1

)

×εTn
r∗ (j

∗
1 , d) =

εTn
r∗ (o, d) goods; while shipments through r are increased by εTn

r (j1, d), implying an additional demand of

resources of
(
1 + τn

oj1

)
× εTn

r (j1, d) = εTn
r (o, d). In addition, total trade costs are affected by changes in

congestion along both paths. Lower congestion along path r∗ amounts to a saving in trade costs of

Pn
o

∂τn
oj∗1

∂Qn
oj∗1

Qn
oj∗1

× εTn
r∗ (j

∗
1 , d) ,

but increased congestion along r, combined with the non-negativity constraint on Qn
oj1 , results in a Lagrangian

first-order impact of
[

−Pn
o

∂τn
oj1

∂Qn
oj1

Qn
oj1 + ζQoj1,n

]

× εTn
r (j1, d) .

By definition, r∗ being the solution to the planner’s saddle point problem of the Lagrangian, the redirection of flows

from r∗ to r should have a negative first-order effect on the Lagrangian. Summing up, the overall impact on the

Lagrangian, this implies

Pn
o Tn

r∗ (o, d) +

p∗−1
∑

k=0

[

Pn
j∗
k

∂τn
j∗
k
j∗
k+1

∂Qn
j∗
k
j∗
k+1

Qn
j∗
k
j∗
k+1

]

Tn
r∗ (j

∗
k+1, d)

6 Pn
o Tn

r (o, d) +

p−1∑

k=0

(

Pn
jk

∂τn
jkjk+1

∂Qn
jkjk+1

Qn
jkjk+1

− ζQjkjk+1,n

)

Tn
r (jk+1, d) .

To simplify the expression, we use the first-order condition of the Lagrangian with respect to every Qn
jk,

Pn
j

∂τn
jk

∂Qn
jk

Qn
jk − ζQjk,n = Pn

k − Pn
j

(
1 + τn

jk

)
,
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and obtain that the optimal route r∗ must be the solution to the least-cost route problem

min
r∈Rod

Pn
o Tn

r (o, d) +

p−1
∑

k=0

[

Pn
jk+1

−
(

1 + τn
jkjk+1

)

Pn
jk

]

Tn
r (jk+1, d) .

Under the proposed Pigouvian tax scheme, the above least-cost route problem can be equivalently restated as a

minimization over total shipping costs and total tax liabilities. More specifically, the free-entry condition on every

link (j, k) tells us that

Pn
k −

(
1 + τn

jk

)
Pn
j 6 Pn

k tnjk,

with equality if the link is used at the optimum. Hence, for all routes r ∈ Rod, we have

Pn
o Tn

r (o, d) +

p−1∑

k=0

[

Pn
jk+1

−
(

1 + τn
jkjk+1

)

Pn
jk

]

Tn
r (jk+1, d) 6 Pn

o Tn
r (o, d) +

p−1∑

k=0

Pn
jk+1

tnjkjk+1
Tn
r (jk+1, d) ,

with equality for the optimal route r∗. Hence, the optimal route r∗ is also solution to the least-cost route problem

min
r∈Rod

Pn
o Tn

r (o, d) +

p−1
∑

k=0

Pn
jk+1

tnjkjk+1
Tn
r (jk+1, d) ,

where we recognize the equivalence with condition (i)(c) of Definition 3.

A.4 Appendix to Section 3.5 (Numerical Implementation)

In this section, we provide a more detailed explanation of the numerical algorithms we use to solve the model.

Duality Approach

As explained in section 3.5, our preferred approach to solve the model relies on solving the dual Lagrangian

problem of the planner. We provide, here, a simple example of how to solve the joint optimal allocation and transport

problem taking the infrastructure network {Ijk} as given. This example can easily be generalized to the full problem,

including the network design problem, in the convex case, but is also part of our resolution method for the nonconvex

case. We focus on the case studied in the quantitative part of the paper, in which: i) we use the log-linear specification

of transport costs, τn
jk = δτjk

(
Qn

jk

)β
I−γ
jk ; ii) labor is the sole production factor, Fn

j

(
Ln

j

)
= znj

(
Ln

j

)a
; and iii) CT is a

CES aggregator with elasticity of substitution σ. We consider the case with immobile labor.64

We write the Lagrangian of the problem

L =
∑

j

ωjLjU (cj , hj)−
∑

j

PC
j



cjLj −

(
∑

n

(
Cn

j

)σ−1
σ

) σ
σ−1





−
∑

j

∑

n

Pn
j



Cn
j +

∑

k∈N (j)

(

Qn
jk + δτjk

(
Qn

jk

)1+β
I−γ
jk

)

− znj
(
Ln

j

)a
−
∑

i∈N (j)

Qn
ij





−
∑

j

Wj

[
∑

n

Ln
j − Lj

]

+
∑

j,k,n

ζQjknQ
n
jk +

∑

j,n

ζLjnL
n
j +

∑

j,n

ζCjnC
n
j +

∑

j

ζcj cj .

Recall that the dual problem consists of solving

inf
λ≥0

sup
x

L (x,λ) .

64In the mobile labor case, we can only show that the planner’s problem is a quasiconvex optimization problem.
Hence, a duality gap may exist. We therefore adopt a (slower) primal approach in that case.
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We start by expressing our control variables x =
(
cj , C

n
j , Q

n
jk, L

n
j

)
as functions of the Lagrange multipliers λ =

(

PC
j , Pn

j ,Wj , ζ
Q
jkn, ζ

L
jn, ζ

C
jn, ζ

c
j

)

. Using the optimality conditions, one obtains the following expressions:

cj = U<−1>
c





(
∑

n′

(

Pn′

j

)1−σ
) 1

1−σ

/ωj , hj





Cn
j =






Pn
j

(
∑

n′

(
Pn′

j

)1−σ
) 1

1−σ






−σ

Ljcj

Qn
jk =

[

1

1 + β

Iγjk
δτjk

max

(
Pn
k

Pn
j

− 1, 0

)] 1
β

Ln
j =

(
Pn
j znj

) 1
1−a

∑

n′

(
Pn′

j zn
′

j

) 1
1−a

Lj .

As these expressions illustrate, we have been able to eliminate a large number of the multipliers directly, so that

the only remaining Lagrange multipliers are λ =
(
Pn
j

)

j,n
. We may now compute the inner part of the saddle-point

problem:65

L (x (λ) ,λ) =
∑

j

ωjLjU (cj (λ) , hj)

−
∑

j

∑

n

Pn
j



Cn
j (λ) +

∑

k∈N (j)

(

Qn
jk (λ) + δτjk

(
Qn

jk (λ)
)1+β

I−γ
jk

)

− znj
(
Ln

j (λ)
)a

−
∑

i∈N (j)

Qn
ij (λ)



 .

The dual problem then consists of the simple unconstrained, convex66 minimization problem in J ×N unknowns:

min
λ>0

L (x (λ) ,λ) .

This problem can be readily fed into a numerical optimization software. Faster convergence can be achieved by

providing the software with an analytical gradient and hessian. Note that, as a direct implication of the envelope

theorem, the gradient of the dual problem is simply the vector of constraints:

∇L (x (λ) ,λ) = −









...

Cn
j (λ) +

∑

k∈N (j)

(

Qn
jk (λ) + δτjk

(
Qn

jk (λ)
)1+β

I−γ
jk

)

− znj
(
Ln

j (λ)
)a

−
∑

i∈N (j) Q
n
ij (λ)

...









.

Nonconvex cases

When the conditions for convexity fail to obtain, the full planner’s problem is not a convex optimization problem.

It is, however, easy to find local optima by using the following iterative procedure. We then search for a global

maximum using a simulated annealing method that we describe below.

Finding Local Optima Despite the failure of global convexity for the full planner’s problem, the joint optimal

allocation and transport problems, taking the network as given, is always convex as long as β > 0. We thus use our

duality approach to solve for
(
cj , C

n
j , Q

n
jk, L

n
j

)
for a given level of infrastructure Ijk, and then iterate on the (necessary)

65Note that, due to complementary slackness, we can drop the constraints that correspond to all the Lagrange
multipliers that we were able to solve by hand. As a result, only the balanced flows constraints remain.

66Dual problems are always convex, by construction, even when the primal problem is not.
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first order conditions that characterize the optimal network. The procedure can be summarized in pseudo-code as

follows.

1. Let l := 1. Guess some initial level of infrastructure
{

I
(1)
jk

}

that satisfies the network building constraint.

2. Given the network
{

I
(l)
jk

}

, solve for
(
cj , C

n
j , Q

n
jk, L

n
j

)
using a duality approach.

3. Given the flows Qn
jk and the prices Pn

j , get a new guess I
(l+1)
jk =

[

γ
µ

δτjk

δI
jk

(
∑

n Pn
j

(
Qn

jk

)1+β
)] 1

1+γ

and set µ

such that
∑

δIjkI
(l+1)
jk = K.

4. If
∑

j,k

∣
∣
∣I

(l+1)
jk − I

(l)
jk

∣
∣
∣ 6 ε, then we have converged to a potential candidate for a local optimum. If not, set

l := l + 1 and go back to (2).

Simulated Annealing In the absence of global convexity results, the above iterative procedure is likely to end

up in a local extremum. Unfortunately, there exists to our knowledge few global optimization methods that would

guarantee convergence to a global maximum in a reasonable amount of time.67 We opt for the simple but widely

used heuristic method of simulated annealing, which is a very popular probabilistic method to search for the global

optimum of high dimensional problems such as, for instance, the traveling salesman problem. Simulated annealing

can be described as follows:

1. Let l := 1. Set the initial network
{

I
(1)
jk

}

to a local optimum from the previous section and compute its welfare

v(1). Set the initial “temperature” T of the system to some number.

2. Draw a new candidate network
{

Îjk
}

by perturbing
{

I
(l)
jk

}

(see below). [Optional: deepen the network.]

Compute the corresponding optimal allocation and transport
{
cj , C

n
j , Q

n
jk, L

n
j

}
. Compute associated welfare

v̂.

3. Accept the new network, i.e., set I
(l+1)
jk = v̂ and v(l+1) = v̂ with probability min

[

exp
((

v̂ − v(l)
)

/T
)

, 1
]

, if

not keep the same network,
{

I
(l+1)
jk

}

=
{

I
(l)
jk

}

and v(l+1) = v(l).

4. Stop when T < Tmin. Otherwise set l := l + 1 and T := ρTT and return to (2),

where ρT < 1 controls the speed of convergence. Note that we improve the algorithm by allowing to “deepen”

the network in step (2), meaning that we additionally apply the iterative procedure from the previous section for a

pre-specified number of iterations so that the candidate network
{

Îjk
}

is more likely to be a local optimum itself.

Drawing Candidate Networks The performance of the simulated annealing depends on how new candidate

networks are drawn. Because of the complex network structure, purely random perturbations are likely to be rejected

and the algorithm may easily fail to improve the initial network. We design a simple algorithm that exploits the

structure of the problem to make educated guesses for the candidate networks. The algorithm builds on the idea

that, under increasing returns, a welfare improvement can be achieved by directly connecting locations to more

central locations. Since a lower price level indicates that a location has higher relative availability of goods produced

anywhere in the economy, we use the price level as a proxy for centrality. We thus construct candidate networks

where random locations are better connected to their lowest-price neighbors. The algorithm can be described as

follows:

1. Given an initial network I
(l)
jk , draw a random set of locations I ⊂ J .

67Techniques such as the branch-and-bound method are guaranteed to converge to the global optimum, but remain
heavy to implement and computationally intensive.
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2. For each j ∈ I , identify m (j) as the neighbor with the lowest price index for the bundle of tradable goods,

m (j) = argmin
k∈N (j)

PC
k , and n (j) as the “parent” with the highest level of infrastructure, n (j) = argmax

k∈N (j)|Pn
k
6Pn

j

Ikj .

3. For each j ∈ I , define the candidate network I
(l+1)
jk by switching the infrastructure levels of m (j) and n (j):

I
(l+1)
kj =







I
(l)
m(j)j if k = n (j) , j ∈ I

I
(l)
n(j)j if k = m (j) , j ∈ I

I
(l)
kj if j /∈ I or (j ∈ I and k /∈ {m (j) , n (j)}) ,

which, by construction, satisfies the network building constraint.
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B Appendix to Section 4 (Illustrative Examples)

Figure A.1: A Simple Underlying Geography

(a) Population

(b) Productivity

Notes: On panel (a), each circle represents a location. The links represent the underlying network, i.e., links upon

which the transport network may be built. Population and housing are uniform across space, normalized to 1. On

panel (b), the size of the circles represent the productivity of each location.
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Figure A.2: The Optimal Network for K = 1 and K = 100

(a) K=1

(b) K=100

Notes: On each panel, the thickness and color of the segments reflects the level of infrastructure built on a given

link. Thicker and darker colors represent more infrastructure. On the bottom panels, the heat map represents the

level of prices and consumption, normalized to 1 at the center. Lighter color represents higher values for prices and

consumption. Prices and consumption levels are linearly interpolated across space to obtain smooth contour plots.
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Figure A.3: Optimal Network Growth

(a) Spatial Inequalities
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Figure A.4: Optimal Network with Randomly Located Cities

(a) Convex Case: γ = β = 1

(b) Non-Convex Case: γ = 2 > β = 1

(c) Optimal Network Before and After Annealing Refinement in Non-Convex Case

Notes: On each panel, the thickness and color of the segments reflects the level of infrastructure built or the shipment

sent on a given link. Thicker and darker colors represent higher infrastructure or quantity.
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Figure A.5: Optimal Network with 10+1 Goods, Convex Case (β = γ = 1), Labor Mobility

Notes: On panel (a), the thickness and color of the segments reflects the level of infrastructure built on a given link,

and the size of each circle is the population share. On the other panels, the segments represent the quantity shipped

through each link and the circles represent the location of producers.
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Figure A.6: Optimal Network with 10+1 Goods, Nonconvex Case (β = 1,γ = 2), Labor Mobility

Notes: On panel (a), the thickness and color of the segments reflects the level of infrastructure built on a given link,

and the size of each circle is the population share. On the other panels, the segments represent the quantity shipped

through each link and the circles represent the location of producers.

64



Figure A.7: The Optimal Transport Network under Alternative Building Costs

(a) Baseline Geography (b) Adding a Mountain

(c) Adding a River and a Bottleneck Access by Land (d) Allowing for Endogenous Bridges

(e) Allowing for Water Transport (f) Non-Convex Case (γ = 2; β = 1) with Annealing

Notes: The thickness and color of the segments reflects the level of infrastructure built on a given link. Thicker and

darker colors represent more infrastructure and quantities. The circles represent the 20 cities randomly allocated

across spaces. The larger red circle represents the city with the highest productivity. The different panels vary in

the parametrization of the cost of building infrastructure. In panel (a), it is only a function of Euclidean distance.

In panel (b), we add a mountain and assume that the cost also depend on difference in elevation. In panel (c), we

add a river with a natural land crossing and assume that the cost of building along or across the river is infinite. In

panel (d) there is no natural land crossing but allow for construction of bridges. In panel (e) we additionally allow

for investment in water transport. Panel (d) makes the assumptions as Panel (e) but assumes increasing returns to

network building.
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Figure A.8: Arrival of a New Transport Technology and Network Reoptimization

(a) Initial Geography Dependence on Water Transport

(b) Allowing for Cheap Land Transport

Notes: The bright blue curve represents a river. The thickness and color of the other segments reflects the level of

infrastructure built on a given link. Thicker and darker colors represent more infrastructure/quantities. The circles

represent the 10 cities randomly allocated across spaces. The larger red circle represents the city with the highest

productivity.
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C Appendix to Section 4 (Calibration and Counterfactuals)

Construction of P (j, k) The definition of the weights ωjk (s) assigned to the construction of Iobsjk involves

the cheapest path P (j, k) for all j ∈ J and k ∈ N (j) in every country. To find P (j, k), we first convert the shapefile

with all the road segments from EuroGeographics into a weighted graph, where each edge corresponds to a segment

s on the road network. We define P (j, k) as the shortest path between j and k under the segment-specific weights

lengths ∗ lanes−χlane
s ∗ χ1−nats

use ∗ χ1−paveds
paved ∗ χ1−medians

median , where lengths is the length of the segment, laness is the

number of lanes, nats equals 1 if the segment belongs to a national road, paveds equals 1 if the segment is paved,

and medians equals 1 if the segment has a median. We parametrize χlane, χuse, χpaved, and χmedian based on the

extent by which adding a lane, using a national road, using paved road, or using a road with a median reduces road

user costs. Specifically, Table 4 of Combes and Lafourcade (2005) reports that, in France, the reference cost per

km. in a national road with at least 4 lanes is 25% higher than in other national roads. In our road network data

for France, the average number of lanes in national roads with at least 4 lanes is 4.43, and the average number of

lanes in national roads with less than 4 lanes is 1.9. From this, we infer that adding 2.5 on top of 2 lanes, a 125%

increase in the number of lanes, reduces costs by 25%, implying an elasticity of costs with respect to number of lanes

of χlane = 25%
125%

= 0.2 in absolute value. In addition, Table 4 in Combes and Lafourcade (2005) reports that the

total reference cost is about 7% higher on “secondary roads” relative to “other national roads”, from which we infer

χuse = 1.07. According to Figueroa et al. (2013), road user costs are 35% higher on gravel relative to paved roads,

implying χpaved = 1.35, and according to Tay and Churchill (2007), adding a median increases speed by 5%, implying

χmedian = 1.05.

Calibration of β Under the assumption that the transport cost per unit of transported good, τ = δτ Qβ

Iγ
, is

proportional to the travel time and that the flow of goods, Q, is proportional to the flow of vehicles on a highway,

we calibrate the elasticity β to empirical observations relating speed of vehicles on highways to observed car density.

We use estimates from Wang et al. (2011) who assembled data from various segments of the GA500 route in Georgia,

USA. The data was collected at 5min frequency over the span of year 2003 with speed and density computed over

20s windows. The authors estimate the five-parameter logistic relationship

v (k, θ) = vb +
vf − vb

(

1 + exp
(

k−kt

θ1

))θ2
,

where speed v (km/h) is a function of car density k (cars/km). Parameter vf is the free flow speed, vb is the average

travel speed at stop-and-go conditions, kt is the threshold parameter at which traffic transitions from free flow to

congested flow, and (θ1, θ2) are specific scale and shape parameters. Wang et al. (2011) report estimates of these

parameters for 63 sections of the route. We use these estimates to produce artificial observations of speed and density

ranging from 18.96 (average threshold kt at which congestion starts) to 150 cars per km (maximum reported by the

authors) for all sections. We then compute the average time per km (1/v) and regress its log on the log density to

obtain an estimate of the elasticity β = 1.2446. Figure A.9 below presents the fit of our log-linear model to the data

generated by their empirical logistic model.

Calibration of δτ0 As mentioned in the text, we calibrate the coefficients δτ0 entering in 22 to match the share of

total intra-regional trade to total intra-national trade (sum of intra-regional trade and exports from Spanish regions

to other Spanish regions) of 39% reported by Llano et al. (2010).68 In our model, this summary statistic is:

∑

j

∑

n Pn
j Y n

j

∑

j

(
∑

n Pn
j Y n

j +
∑

k∈N (j) Xjk

) , (A.6)

68This is the ratio of the value in the last row of Column 1 of Table 1 in their paper to the sum of that value and
the value reported in the last row of Column 2 of that table.
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Figure A.9: Fit of linear model on log(time) to log(density)

Notes: The blue scatter plot displays all the pooled artificial observations across the 63 stations on GA500. The

green curve is the fitted relationship.

where Xjk are total exports from j to k ∈ N (j):

Xjk =
∑

n

Pn
j Qn

jk. (A.7)

The numerator of this expression is the sum value added in the tradable sector across all regions. Because in the model

there are no international flows, this term corresponds to the sum of total intra-regional trade.69 The denominator

equals total intra-national trade, defined as the sum total of intra-regional trade and total exports to other regions.

When all regions gross exports equal x% of their value added, this ratio equal 1
1+x

.70

Impact of δτ1 on Equilibrium Outcomes We show here that δτ1 does not impact the trade-distance

elasticity because it does not impact the elasticity of per-unit shipping costs with respect to distance. Consider first

a fully symmetric configuration of the model. In logs, the number of units of product n that must be shipped from

j0 for one unit to arrive in jn through the intervening locations j1, .., jn−1 is:

log






N−1∏

i=0




1 + δτji,ji+1

(

Qn
ji,ji+1

)β

Iγji,ji+1









 ≃

N−1∑

i=0

δτji,ji+1

(

Qn
ji,ji+1

)β

Iγji,ji+1

= DISTj0,jN∆0
(Qn)β

Iγ
, (A.8)

where ∆0 ≡ δτ0dist
δτ1−1 is a constant, DISTj0,jN = N ∗ dist is the total distance between locations j0 and jn, and

where dist is the distance between any two connected locations. The approximation in the first line follows from

69Specifically, if we let Dj =
∑

n Pn
j Y n

j +Mj −Xj be the domestic absorption of region j, where Mj are region j
imports and Xj are region j exports, then intra-regional trade at the country level is

∑

j Dj =
∑

j

∑

n Pn
j Y n

j because,
each country being a closed economy,

∑

j Mj =
∑

j Xj

70I.e., this ratio can be defined as
∑

Dj
∑

Dj+
∑

j Xj
, where Dj =

∑

n Pn
j Y n

j + Mj −Xj is the domestic absorption of

region j, Xj =
∑

n

∑

k∈N(j) P
n
j Qn

jk are gross exports, and Mj =
∑

n

∑

i∈N(j) P
n
j Qn

ij are gross imports. If each region

gross exports is fraction x of its value added, then Dj = X
(
1
x
− 1
)
+Mj , hence the ratio of intra-regional to intra-

national trade becomes 1
1+x

. If each region openness coefficient is
Xj+Mj

∑

n Pn
j
Y n
j

= x, then then Dj =
Xj+Mj

x
+Mj −Xj ,

hence the ratio of intra-regional to intra-national trade becomes 1
1+x/2

.
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assuming that per-unit shipping costs between connected locations in our model are not large, and the second line

follows from assuming symmetry, Qn
ji,ji+1

= Qn, Iji,ji+1 = I , and distji,ji+1 = dist. The expression above implies

that, in the model, the elasticity of per-unit transport costs between any two faraway locations j0 and jn to the

distance DISTj0,jn is equal to 1. This means that δτ1 impacts the level of per-unit costs, but not the elasticity of

per-unit costs with respect to distance in the cross-section. It also implies that δτ1 and δτ0 impact the overall level

trade costs through the constant ∆0. Our calibration strategy chooses δτ0 to match the intra-regional trade share.

Furthermore, we can note that δτ1 and δτ0 only impact the economy through ∆0, so that, once we have matched the

intra-regional trade share the value of δτ1 is not relevant for any equilibrium outcome.

Our assumption that distji,ji+1 is constant is not a bad approximation to our actual implementation since all

cells are equally-sized. However, the equilibria that we study through the paper are clearly asymmetric. In that case,

(A.8) becomes:

DISTj0,jN∆0






1

N

N−1∑

i=0

(

Qn
ji,ji+1

)β

Iγji,ji+1




 .

Hence, as long as the average per-unit cost over links (the term between parenthesis in the last expression) does not

vary systematically with the total distance of shipments, the model preserves the property we just described.
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&����]}v�}(�<uX�}(�Z}���E��Á}�l íì9 ðõ9 ïí9 õ9

�À���P��Eµu����}(�>�v�� íXôð îXíô íXõî ðXíî

^��v�������À]��]}v�}(�Eµu����}(�>�v�� ìXîð ìXíô ìXðõ ìXðõ

9�Á]�Z���u��]�v ìXð9 ìXñ9 ðXð9 õîXó9

9���À�� ôô9 õô9 íìì9 íìì9

Table A.1: Average Features of the Road Network across Countries, by Type of Road

Note: The table reports summary statistics from the EuroRegionalMap by EuroGeographics. The table reports the

average of each summary statistic across the 25 countries included in our data.

�}�� >�vP�Z�~<uX� Eµu����}(�^�Pu�v��
�À���P��>�v�������

<uX
Eµu����}(���oo� >�vP�Z�~<uX�

�À���P��/v(�����µ��µ���

/v��Æ

~í� ~î� ~ï� ~ð� ~ñ� ~ò�

�µ���]� �d íóîïì òíòí îXïò ðò õõòô íXñð

��oP]µu �� íõóìî íìðõò îXðõ îì ïðìì íXôì

�Ç��µ� �z îôíô õðó îXîõ ïì ïòñï ìXôí

�Ì��Z�Z��µ�o]� �� îôòòñ íìíõð îXîì ðô íìõïñ ìXõõ

��vu��l �< ííððï ðîõò îXíô îí ðíìî íXíí

&]vo�v� &/ óìïõð õîîí îXìð óï ïðîòî ìXîõ

&��v�� &Z íîôôîî ïôòõõ îXìñ îóò óôðìñ íXðñ

'�}�P]� '� îôòôî õììõ íXõñ ïî óôõñ ìXïô

'��u�vÇ �� ííñíóó òòðîô îXðî íõò ñòðíì íXôì

,µvP��Ç ,h ïîóðì õîðð îXíì ñì íîìíó ìXõì

/��o�v� /� îðõñî ðíðð îXíì ðó ííîõõ ìXòï

/��oÇ /d óóòìô ððíñõ îXïî íîò ïîòðì íXñó

>��À]� >s ííðõñ îíìï îXìï ðó íìñõõ ìXïð

>]�Zµ�v]� >d íìòôî íñôò îXïõ ðï õóïò ìXñô

>µÆ�u�}µ�P >h íóóõ ôòò îXïí ô òóð ìXóô

D����}v]� D< ññóô õìô îXíñ íð îîôî ìXîò
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W}��µP�o Wd íñìïð ðõïï îXíì ðï ííììì íXðï
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�}µv��Ç

Table A.2: Summary Statistics of Actual and Discretized Road Network by Country

Note: Columns (1) to (3) report statistics from EuroRegionalMap, and Columns (4) to (6) report statistics from the

discretization of road networks described in Section 5.1.
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Value of γ: 0.5β β 1.5β

Labor: Fixed Mobile Fixed Mobile Fixed Mobile

Mean (SD) Trade-Dist. Elasticity -1.08 (0.17) -1.11 (0.21) -1.12 (0.17) -1.19 (0.26) -1.16 (0.22) -1.17 (0.27)

Mean (SD) Intra-regional Share 0.54 (0.13) 0.48 (0.09) 0.57 (0.14) 0.52 (0.11) 0.60 (0.17) 0.54 (0.14)

Calibrated δτ0 1.20 2.74 2.19 6.39 4.33 9.90

Table A.3: Trade-Distance Elasticity, Intra-regional Trade Share, and Calibrated δ0

Note: The table reports the mean and standard deviation of the trade-distance and elasticity and intra-regional trade

share across the 25 countries in our data in the calibrated model under each value of γ and each assumption for labor

mobility, as well as the calibrated value of δτ0 in each case. To compute the trade-distance elasticity we run, in the

calibrated model: ln (Xjk) = a0 ln (GDPj) + a1 ln (GDPk) + b ln (distjk) + εjk, where Xjk are exports from j to k,

GDPj is the GDP of region j defined in Footnote 52 , and distjk is the geographic distance between locations j and

k. The intra-regional trade share is computed using the definition in (A.6) below.

Figure A.10: Quality of Infrastructure Measure and Speed
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Regression slope (robust SE): 5.445 (.188). Pools all links. Includes country fixed effects.

Notes: The figure shows the speed, according to GoogleMaps, on the fastest route linking connected pairs of nodes

in the discretized network, against our measure of infrastructure Iobsjk . The figure pools all links across all countries.

The red circles correspond to the average infrastructure and speed across all links within each country.
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Figure A.11: Calibration of Population and Income Shares, All Locations and Countries

(a) Population Shares in Model and Data
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(b) Income Shares in Model and Data
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(c) Fundamentals and Income Shares, Mobile Labor
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(d) Fundamentals and Population Shares, Mobile Labor
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(e) Fundamentals and Income Shares, Fixed Labor
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Notes: All the figures pool the 1511 cells from the 25 countries when γ = β. Similar relationships hold for the

alternative values of γ assumed in the calibration. In the Panels (c) to (e), log-productivity and log-endowment of

the non-traded good per capita are demeaned within each country.
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/��o�v� ïXõ9 ðXð9 íXí9 òXð9 óXî9 ðXí9 óXõ9 õXò9 íðXõ9

/��oÇ îXò9 ïXõ9 íXò9 îXõ9 ñXï9 ïXô9 ïXí9 ñXô9 òXð9

>��À]� ñXì9 ñXð9 íXî9 ôXî9 ôXï9 ðXí9 íìXî9 íìXò9 îíXí9

>]�Zµ�v]� ïXí9 ïXõ9 íXð9 ðXò9 òXî9 ðXó9 òXî9 ôXò9 íõXí9

>µÆ�u�}µ�P ìXð9 ìXõ9 ìXó9 ìXô9 íXõ9 íXñ9 íXï9 îXõ9 ñXì9

D����}v]� ïXí9 ïXñ9 íXì9 ïXï9 ðXì9 îXô9 îXô9 ðXì9 ïXî9

D}o�}À� ïXí9 ðXì9 íXí9 ïXó9 ñXï9 îXõ9 ïXó9 ñXò9 ñXð9

E��Z��o�v�� îXí9 îXó9 íXì9 ïXð9 ðXï9 îXî9 ðXì9 ñXî9 òXò9

E}��Z��v�/��o�v� íXñ9 îXí9 íXì9 îXî9 ïXð9 îXî9 ïXð9 ñXì9 ôXô9

W}��µP�o îXó9 ïXð9 íXì9 ïXò9 ñXí9 îXñ9 ðXì9 òXî9 òXð9

^���]� ííXð9 ííXï9 îXò9 íôXí9 íôXì9 óXó9 îðXí9 îñXì9 ðõXð9

^o}À�l]� ðXó9 ñXî9 íXð9 òXî9 óXì9 ïXõ9 ñXó9 ôXî9 íòXð9

^o}À�v]� îXò9 ïXî9 íXí9 ïXî9 ðXð9 îXï9 ïXò9 ðXõ9 òXî9

^��]v ïXì9 ðXí9 íXñ9 ïXô9 òXí9 ðXí9 ðXî9 óXð9 ôXñ9

^Á]�Ì��o�v� ïXñ9 ðXí9 íXí9 ðXõ9 òXì9 ïXî9 òXî9 óXð9 õXí9

�À���P� ïXî9 ïXõ9 íXî9 ðXò9 ñXô9 ïXð9 ñXò9 óXî9 ííXï9

>}Á�'�uu� D]��o��'�uu� ,]PZ�'�uu�

Table A.4: Welfare Gains From Optimal Reallocation or Expansion of Current Networks, Fixed Labor
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�}µv���(���µ�o D]��oo}���]}v �Æ��v�]}v �Æ��v�]}v D]��oo}���]}v �Æ��v�]}v �Æ��v�]}v D]��oo}���]}v �Æ��v�]}v �Æ��v�]}v

�µ]o�]vP��}��� '�K '�K &K� '�K '�K &K� '�K '�K &K�

~í� ~î� ~ï� ~ð� ~ñ� ~ò� ~ó� ~ô� ~õ�

�µ���]� ïXõ9 ðXò9 íXî9 ñXò9 òXô9 óXó9 òXó9 ôXñ9 íìXó9

��oP]µu íXï9 íXò9 ìXò9 íXó9 îXî9 íXò9 îXì9 îXð9 îXò9

�Ç��µ� íXó9 îXí9 ìXõ9 îXî9 îXõ9 ïXî9 îXó9 ïXô9 ñXð9

�Ì��Z�Z��µ�o]� îXì9 îXð9 ìXõ9 ïXò9 ðXð9 ðXì9 ðXõ9 òXí9 õXò9

��vu��l ìXõ9 íXî9 ìXñ9 íXð9 íXô9 îXí9 íXñ9 îXì9 îXõ9

&]vo�v� ïXõ9 ñXì9 íXï9 ðXô9 òXô9 ñXõ9 ñXô9 õXï9 ôXñ9

&��v�� ïXï9 ðXï9 íXñ9 ðXó9 òXò9 ôXî9 ñXó9 ôXñ9 ííXò9

'�}�P]� ïXó9 ðXí9 íXî9 óXí9 óXî9 íìXñ9 íìXõ9 íìXó9 îîXð9

'��u�vÇ ìXõ9 íXð9 ìXó9 íXñ9 îXî9 îXî9 íXð9 îXì9 îXï9

,µvP��Ç ðXô9 ñXó9 íXñ9 ñXì9 òXï9 ñXí9 óXð9 õXó9 íðXó9

/��o�v� ïXõ9 ðXð9 íXí9 òXò9 óXï9 ôXí9 õXì9 õXó9 íðXõ9

/��oÇ îXì9 îXõ9 íXî9 îXð9 ðXí9 ïXò9 îXï9 ðXí9 ðXî9

>��À]� òXì9 òXï9 íXð9 íîXì9 ííXô9 íïXï9 íõXð9 íóXõ9 ðîXî9

>]�Zµ�v]� ïXì9 ïXó9 íXï9 ðXò9 òXî9 õXñ9 ôXó9 ííXí9 îíXò9

>µÆ�u�}µ�P ìXï9 ìXò9 ìXð9 ìXñ9 íXî9 íXì9 íXì9 îXð9 ïXõ9

D����}v]� íXî9 íXï9 ìXð9 îXó9 ïXï9 îXï9 ïXò9 ñXì9 ðXî9

D}o�}À� îXð9 îXõ9 ìXô9 ðXî9 ñXô9 ðXô9 ñXï9 óXô9 óXï9

E��Z��o�v�� ìXó9 ìXõ9 ìXð9 íXí9 íXð9 íXí9 ìXõ9 íXí9 íXï9

E}��Z��v�/��o�v� ìXô9 íXí9 ìXò9 íXï9 íXô9 íXó9 îXî9 îXõ9 ðXò9

W}��µP�o îXò9 ïXï9 íXì9 ïXñ9 ðXô9 ïXõ9 ðXî9 ñXõ9 ñXõ9

^���]� íóXò9 íóXñ9 ïXï9 îõXô9 îôXñ9 îóXí9 ðïXó9 ðïXô9 óôXó9

^o}À�l]� ïXî9 ïXñ9 íXì9 ñXì9 ñXò9 ñXò9 ñXî9 óXî9 íîXó9

^o}À�v]� íXì9 íXî9 ìXñ9 íXï9 íXô9 íXð9 íXð9 íXõ9 îXï9

^��]v ïXì9 ðXï9 íXò9 ïXõ9 òXð9 òXð9 ðXï9 óXô9 õXï9

^Á]�Ì��o�v� îXí9 îXð9 ìXó9 ïXñ9 ðXí9 ðXì9 ðXî9 ñXì9 ñXð9

�À���P� ïXì9 ïXñ9 íXì9 ðXô9 ñXó9 ñXô9 òXò9 óXõ9 íîXð9

>}Á�'�uu� D]��o��'�uu� ,]PZ�'�uu�

Table A.5: Welfare Gains From Optimal Reallocation or Expansion of Current Networks, Mobile Labor
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Table A.6: Optimal Infrastructure Investment, Population Growth and Local Characteristics for
Different Number Sectors

Number Sectors N=5 N=10 N=15

Dependent variable: Investment Pop. Growth Investment Pop. Growth Investment Pop. Growth

(1) (2) (3) (4) (5) (6)

Population 0.082*** 0.000 0.104*** 0.002** 0.107*** 0.002***

Income per Capita -0.074 0.009 0.007 -0.002 -0.035 0.001

Consumption per Capita 0.307*** -0.158*** 0.179*** -0.134*** 0.267*** -0.143***

Infrastructure -0.179*** 0.002 -0.195*** -0.001 -0.206*** -0.000

Differentiated Producer 0.254*** 0.029*** 0.133*** 0.028*** 0.101*** 0.025***

R2 0.28 0.67 0.32 0.65 0.34 0.63

Each column corresponds to a different regression pooling all locations in the optimal expansion counterfactual across

the 25 countries assuming γ = β, mobile labor, and δ = δI,GEO. All regressions include country fixed effects. Standard

errors are clustered at the country level. ***=1% significance, **=5%, *=10%. Dependent variables: Investment is

defined as ∆ ln Ij , where Ij = 1
#N (j)

∑

k∈N (j) Ijk is the average level of infrastructure across all the links of location

j, and population growth is defined as ∆ lnLj , where ∆ ln x denotes the difference between the log of variable x in the

counterfactual and in the calibrated allocation. Independent variables: all correspond to the log of the level of each

variable in the calibrated model. Population and income per capita are the two outcomes matched by the calibration.

Consumption per capita corresponds to traded goods, cj in the model. Infrastructure is the average infrastructure of

each location, Ij . Differentiated producer is a dummy for whether the location is a producer of differentiated goods

in the calibration.

Table A.7: Average Welfare Gains Across Countries for Different Number of Sectors

Number of Sectors N=5 N=10 N=15

Labor: Fixed Mobile Fixed Mobile Fixed Mobile

Optimal Reallocation

δ = δI,GEO 3.5% 3.7% 4.6% 4.8% 4.6% 4.7%

Optimal Expansion

δ = δI,GEO 4.4% 4.3% 5.8% 5.7% 5.8% 5.6%

δ = δI,FOC 5.7% 2.6% 3.4% 5.8% 3.7% 5.9%

Each element of the table shows the average welfare gain in the corresponding counterfactual across the 25 countries

for the case γ = β.
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D Online Appendix I: Auxiliary Material to Proposition 3

D.1 Definitions

Let G = (I, E) be an undirected graph. We say that a path of length n ∈ N
∗ from a node a ∈ I to b ∈ I is a

finite sequence of nodes (i1, . . . , in) such that ik ∈ I for 1 ≤ k ≤ n, i1 = a and in = b and {ik, ik+1} ∈ E . A simple

path is a path that contains no repeated node, i.e., ik 6= il for all 1 ≤ k, l ≤ n and k 6= l. A cycle of length n is a

path p = (i1, . . . , in) such that i1 = in. A simple cycle of length n is a cycle that contains no repeated node other

than the starting and ending nodes, i.e., ik 6= il for 1 6 k, l 6 n− 1 and k 6= l. A tree is a connected graph such that

has no simple cycle. Equivalently, in a tree, there is a unique simple path connecting any two nodes.

D.2 Propositions and Lemmas

Proposition 5. E∗ is a tree.

Proof. Because node 0 is the unique productive center and there is an Inada condition in consumption, there must

exist a path connecting each node to 0. Hence, E∗ must be connected. It remains to show that E∗ cannot have simple

cycles. We proceed by contradiction. Assume there exists a simple cycle p = (i1, . . . , in).Figure A.12 illustrates the

different types of cycles that can arise. Case (i) is a cycle with circular flows that run in only one direction. Lemma 1

tells us that such cycle cannot arise if (c∗,Q∗) is locally optimal, as they inefficiently waste goods in transportation.

Cases (ii) and (iii) correspond to cycles along which flows run into different directions. Lemma 3 establishes that

whenever there is a cycle of type (iii), then there must exists a cycle of type (ii). We conclude with Lemma 4

by showing that cycles of type (ii) cannot arise if (c∗,Q∗) is locally optimal. The reason is that one is better off

redirecting flows into one of the two branches because of economies of scale in the transport technology when γ > β.

Hence, simple cycles may not exist and E∗ is a tree.

a

b

a

b

a

b

c

0

Case (i) Case (ii) Case (iii)

Figure A.12: Different types of simple cycles

Lemma 1. If (c∗,Q∗) is a local optimum with (I, E∗) its associated graph, then there exists no simple cycle

p = (i1, . . . , in) such that Q∗
ik,ik+1

> 0 for all 1 6 k 6 n− 1.

Proof. Case (i) in Figure A.12 presents the type of cycle with circular flows that cannot exist in a local optimum.

By contradiction, assume that there exists such a cycle p = (i1, . . . , in). Then, for ε > 0 small, consider the allocation

of flows

Qε
jk =







Qjk − ε if ∃l, 1 6 l 6 n− 1, such that j = il and k = il+1

Q∗
jk elsewhere

.
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If ε 6 min
16k6n−1

Qik,ik+1 , then
(
{cj} ,

{
Qε

jk

})
is a feasible allocation that is strictly preferable to ({cj} , Q

∗) since it

yields the same utility at a lower transport cost. Hence, the gradient of the Lagrangian with respect to ε is strictly

greater than 0 (recall that Pj = uc (cj , hj) > 0), contradicting the assumption that (c∗,Q∗) is a local optimum.

Lemma 2. For every node a ∈ I distinct from the productive center 0 ∈ I and such that La > 0, there exists a

simple path p = (i1, . . . , in) that connects 0 to a and such that Qik,ik+1 > 0 for 1 6 k 6 n− 1.

Proof. The proof is constructive. We build a simple path p = (i1, . . . , in) with i1 = a, ik 6= il for all 1 6 k, l 6 n and

k 6= l and such that Qik,ik−1 > 0. We proceed by recursion on the length of path p, which we denote by |p| = n. We

start the recursion by setting i1 = a. Because of the Inada conditions in the utility function and La > 0, we know

that caLa > 0. The balanced flow constraint in a,

caLa =
∑

k∈N (a)

Qka −
∑

k∈N (a)

Qak

[

1 + δτak
Qβ

ak

Iγak

]

> 0,

tells us that location a must be a net recipient of goods from its neighbors. Hence, there exists k ∈ N (a) such that

Qka > 0. Let i2 = k. If i2 = 0, then we have found a simple path connecting a to 0 with positive flows from 0 to a.

If not, we now have a path p2 = (i1, i2) of length 2 such that i1 = a, i1 6= i2 6= 0 and Qi2i1 > 0. Assume now that

n > 2 and, by recursion hypothesis, that we have a path pn = (i1, . . . in) with i1 = a, ik 6= il 6= 0 for all 1 6 k, l 6 n

and k 6= l and such that Qik,ik−1 > 0. Consider location in. The balanced flow constraint at in tells us that

cinLin =
∑

k∈N (in)

Qk,in −
∑

k∈N (in)

Qin,k

[

1 + δτin,k

Qβ
in,k

Iγin,k

]

> 0.

Since we know by recursion hypothesis that Qin,in−1 > 0, then there exists a k ∈ N (in) such that Qk,in > 0. We

know that k 6= il for all 1 6 l 6 n because otherwise there would exists a cycle with circular flows, which is ruled

out by Lemma 1. If k = 0, then we have found a path pn+1 = (i1, . . . , in, 0) that connects a to 0 with only positive

flows from 0 to a. If not, then set in+1 = k. We then have a path pn+1 = (i1, . . . in+1) with i1 = a, ik 6= il 6= 0 for all

1 6 k, l 6 n+ 1 and k 6= l and such that Qik,ik−1 > 0.

We conclude as follows. Since I is finite, the above recursion must finish in a finite number of iterations. Since

the recursion only stops after finding a path that ends in 0, then there must exists a simple path p of size n < |I|

with p = (i1, . . . , in) such that i1 = a, in = 0 and Qik,ik+1 > 0 for 1 6 k 6 n − 1. By construction, the path

p̃ = (in, in−1, . . . , i1) proves the statement.

Lemma 3. Assume there exists a simple cycle p = (i1, . . . , in). Then, there exists (a, b) ∈ I2, a 6= b, such that

there exists two distinct simple paths from a to b, p1 =
(
i1k
)

1≤k≤n1
and p2 =

(
i2k
)

1≤k≤n2
with i11 = i21 = a and

i1n1
= i2n2

= b, such that the flows are strictly positive from a to b along both paths, i.e., Q∗
il
k
,il
k+1

> 0 for l ∈ {1, 2}

and 1 ≤ k ≤ nl − 1.

Proof. The objective of this lemma is to establish that if there exists a simple cycle, then there must exist a cycle

of type (ii) as illustrated on Figure A.12.

Consider the simple cycle p = (i1, . . . , in). For convenience of notation, denote i0 = in−1 and in+1 = i2. Denote

Q̃ik,ik+1 = Q∗
ik,ik+1

− Q∗
ik+1,ik

the net flow from ik to ik+1 for 0 6 k 6 n, which can be either strictly positive or

strictly negative. We know from Lemma 1 that the net flows Q̃ik,ik+1 cannot have the same sign, otherwise we would

have a cycle with circular flow, violating the local optimality condition of (c∗, Q∗). Hence, there must exist 1 6 k 6 n

such that Q̃ik−1,ik > 0 and Q̃ik,ik+1 < 0. Node k is a location that receives goods from its two neighbors on the

cycle, as illustrated by node c in case (iii) of Figure A.12. Set a = 0 and b = ik. We know from Lemma 2 that there

exists a path p1 =
(
j11 , . . . , j

1
n1

)
such that j11 = a = 0, j1n1

= ik−1 and Q̃j1
l
,j1

l+1
> 0 for all 1 6 l 6 n1. Similarly, there

exists a path p2 =
(
j21 , . . . , j

2
n2

)
such that j21 = a = 0, j2n2

= ik+1 and Q̃j2
l
,j2

l+1
> 0 for all 1 6 l 6 n2. We now argue
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that the paths p̃1 =
(
j11 , . . . , j

1
n1

, b
)
and p̃2 =

(
j21 , . . . , j

2
n2

, b
)
are two distinct simple paths from a to b with strictly

positive flows. By construction, we know that Q̃j1n1
,ik

> 0 and Q̃j2n2
,ik

> 0 so that the flows are strictly positive

along both paths. We must only check that they are simple paths, i.e., that the nodes are not repeated. Let us treat

the case of p̃1. The other one follows symmetrically. We must show in particular that there is no l with 1 6 l 6 n1

such that j1l = b. If this was the case, then
(
b, , j1l+1 . . . , j

1
n1

, b
)
would be a cycle with circular flows running in the

same direction, which Lemma 1 rules out. Hence, p̃1 is a simple path.

Lemma 4. For all (a, b) ∈ I2, a 6= b, if there are two simple paths p1 and p2 connecting a to b, i.e., p1 =
(
i1k
)

1≤k≤n1

and p2 =
(
i2k
)

1≤k≤n2
with i11 = i21 = a and i1n1

= i2n2
= b, such that Qil

k
,il
k+1

> 0 for l ∈ {1, 2} and 1 ≤ k ≤ nl, then

p1 = p2.

Proof. The objective of this lemma is to show that cycles of the type (ii) in Figure A.12 cannot exist. Assume

by contradiction that such a cycle exists and that p1 6= p2. Note that we can assume WLOG that i1k 6= i2l for all

1 < k < n1 and 1 < l < n2. To see this, let k = min
{
k|i1k+1 6= i2k+1

}
and k1 = min

{
k > k|∃l > k, i1k = i2l

}
and k2

be such that i1
k1

= i2
k2
. By construction, the path p′1 =

(

i1k, . . . , i
1
k1

)

and p
′

2 =
(

i2k, . . . , i
2
k2

)

are two paths such that

i1k = i2k, i
1
k1

= i2
k2
, and i1k 6= i2l for all k < k < k1 and k < l < k2 .

a

b

a

b

Q∗ − ε

Q∗ + ε

(a) Initial (b) After redirection

Figure A.13: Redirecting the flows to one branch

We are now going to show that p1 6= p2 leads to a contradiction. The idea behind the proof is illustrated in

Figure A.13 below. We are going to show that if there exists two distinct simple paths with positive flows going from

a to b, then it would be strictly preferable to redirect the flows from one branch to the other due to the non-concavity

of the Lagrangian, violating the local optimality of (c∗,Q∗). Consider the allocation Qε =
{
Qε

jk

}
for ε ∈ R such that

Qε
jk =







Q∗
jk + ε if ∃l such that j = i1l and k = i1l+1

Q∗
jk − ε if ∃l such that j = i2l and k = i2l+1

Q∗
jk elsewhere.

In other words, Qε
jk corresponds to the pattern of flows Q∗

jk where a volume ε of the flows going through path 2

are redirected through path 1. By construction, Qε
jk is feasible (we are redirecting a fraction of flows that were

running through locations on path 2 but not serving any of these locations). In particular, it leaves the value of the

Lagrangian (A.4) unchanged except through the term

[
∑

j,k δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1

]γ+1

where δ̂jk = δIjk/δ
τ
jk.

Consider the derivative of the Lagrangian with respect to ε:

∂L

∂ε
= − (1 + β)




∑

j,k

δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1





γ 


∑

16k6n1−1

δ̂
γ

γ+1

i1
k
i1
k+1

P
1

γ+1

i1
k

Q
1+β
1+γ

−1

i1
k
i1
k+1

−
∑

16k6n2−1

δ̂
γ

γ+1

i2
k
i2
k+1

P
1

γ+1

i2
k

Q
1+β
1+γ

−1

i2
k
i2
k+1
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which satisfies ∂L

∂ε
= 0 by assumption (local optimum). Let us examine the second order condition:

∂2
L

∂ε2
= − (1 + β)

(
1 + β

1 + γ
− 1

)



∑

j,k

δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1





γ

×




∑

16k6n1−1

δ̂
γ

γ+1

i1
k
i1
k+1

P
1

γ+1

i1
k

Q
1+β
1+γ

−2

i1
k
i1
k+1

+
∑

16k6n2−1

δ̂
γ

γ+1

i2
k
i2
k+1

P
1

γ+1

i2
k

Q
1+β
1+γ

−2

i2
k
i2
k+1





− (1 + β)2
γ

γ + 1




∑

j,k

δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1





γ−1

×









∑

16k6n1−1

δ̂
γ

γ+1

i1
k
i1
k+1

P
1

γ+1

i1
k

Q
1+β
1+γ

−1

i1
k
i1
k+1

−
∑

16k6n2−1

δ̂
γ

γ+1

i2
k
i2
k+1

P
1

γ+1

i2
k

Q
1+β
1+γ

−1

i2
k
i2
k+1

︸ ︷︷ ︸

=0









2

.

Hence, we see that ∂2
L

∂ε2
> 0 when γ > β. Therefore, the point under consideration cannot be a local maximum. A

tiny deviation in either direction for ε would increase welfare, thereby yielding a contradiction.
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