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Outline of the Talk
I Regime-Switching & Mixtures

I Motivation
I On Different Types of Regime-Switching Autoregressive (AR) models

I ‘Observation-dependent regime switching’
I Mixture AR Models

I Some Example Models

I Testing for Regime Switching (‘One Regime vs. Two Regimes’)
I Some Recent Literature
I Our Set-up – Likelihood Ratio Test
I 3 Challenges We Face
I Our Results

I How we deal with the 3 challenges I Assumptions & Proofs
I Asymptotic Distribution I Examples

I Simulating the asymptotic null distribution / bootstrap

I Conclusions
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Motivation
I Regime-switching models are by now rather standard in

macroeconomics
I Expansion / Recession periods of the economy
I Changes in policy (monetary policy, hawks / doves)
I Technological innovations leading to higher growth periods
I Sudden loss of confidence in a country, leading to currency crisis
I ...

I A fundamental question: Is the regime-switching necessary?
I We consider statistical tests of “1 regime vs. 2 regimes”

I This is a hard problem and previous literature is scarce
I The testing problem is non-standard in various ways
I We focus on simple univariate AR models
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Regime-switching AR models – Definition
I General Regime-Switching AR Model (two components, p = 1):

yt = st,1
(
φ0 + φ1yt−1 + σ1εt

)
+ st,2

(
ϕ0 + ϕ1yt−1 + σ2εt

)
I yt is the observed univariate time series of interest
I Ft−1 denotes the σ–algebra generated by past y ’s
I εt ∼ IID N(0, 1) (for example), εt independent of Ft−1
I st = (st,1, st,2) are unobserved random vectors such that

I For each t, one component of st takes value 1 and the other value 0 with
conditional probabilities

pijt = P(st,j = 1 | Ft−1, st−1,i = 1) i , j = 1, 2
I pijt : Transition probability that, at time t, regime i will be followed by

regime j
I conditional on {Ft−1, st−1}, the st and εt are independent

I The pijt ’s are (conditional) probabilities that determine which one of
the 2 AR components generates the next observation yt
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Regime-switching AR models – 4 Types
I General Regime-Switching AR Model (univariate, two components, p = 1):

yt = st,1
(
φ0 + φ1yt−1 + σ1εt

)
+ st,2

(
ϕ0 + ϕ1yt−1 + σ2εt

)
Regime-switching probabilities pijt = P(st,j = 1 | Ft−1, st−1,i = 1). Types:

1) ‘Classic’ Markov switching AR – e.g. Hamilton (1989 Econometrica)
I dependence on past regime only: pijt = P(st,j = 1 | st−1,i = 1) = pij

2) Time-inhomogeneous Markov switching AR – e.g. Filardo (1994 JBES)
I dependence on past regime & past observations: pijt ‘doesn’t simplify’

3) ‘Basic’ Mixture AR – e.g. Wong & Li (2000 JRSS-B)
I no dependence on past regime / observations: pijt = P(st,j = 1) = pj

4) Mixture AR with observation-dependent regime switching
I dependence on past observations only: pijt = P(st,j = 1 | Ft−1) = pjt
I e.g. Wong&Li (2001Biometrika),

Kalliovirta,Meitz&Saikkonen (2015 JTSA, 2016 JoE)
(also ‘mixture-of-experts models’ in neural networks / machine learning literature)
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Observation-dependent reg-switching – Motivation
I Why should regime switching probabilities depend on observed data?

I Allows one to associate changes in regime to observable economic
variables

I Makes interpretation of regime switches easier
I Hamilton’s (2016) Handbook of Macroeconomics chapter

“Macroeconomic regimes and regime shifts” begins with
“Many economic time series exhibit dramatic breaks associated with
events such as economic recessions, financial panics, and currency
crises. Such changes in regime may arise from tipping points or other
nonlinear dynamics and are core to some of the most important
questions in macroeconomics.”

I This paper: Simple univariate AR’s – complicated enough
I Extensions? Regime-switching reduced-form VAR’s or Structural VAR’s.
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Mixture AR (MAR) Models
I General Mixture AR Model (univariate, two components, p = 1):

yt = st
(
φ0 + φ1yt−1 + σ1εt

)
+ (1− st)

(
ϕ0 + ϕ1yt−1 + σ2εt

)
I εt ∼ IID N(0, 1), εt independent of Ft−1
I st (unobserved) Bernoulli (1 / 0) random variables with

P(st = 1 | Ft−1) = αt (αt ∈ (0, 1) function of yt−j , j > 0)

I conditional on Ft−1, the st and εt are independent

I “yt generated by 2 AR components with probabilities αt and 1− αt”
I Different models ←→ Different specifications for αt

I The ‘basic’ mixture AR model – Wong & Li (2000 JRSS-B)

αt = α with α ∈ (0, 1) a constant
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Mixture AR (MAR) Models
I Logistic MAR (LMAR) model – Wong & Li (2001 Biometrika)

αt = αt(α0, α1) = exp(α0 + α1yt−1)
1 + exp(α0 + α1yt−1) (α0, α1 parameters)

I Gaussian MAR (GMAR) model
– Kalliovirta, Meitz & Saikkonen (2015 JTSA, 2016 JoE)

αt = αt(α, φ, ϕ ) = α n1(yt−1;φ)
α n1(yt−1;φ) + (1− α) n1(yt−1;ϕ)

α ∈ (0, 1) a parameter
φ = (φ0, φ1, σ

2
1)

ϕ = (ϕ0, ϕ1, σ
2
2)

density of

N
( φ0
1− φ1

,
σ2

1
1− φ2

1

)
evaluated at yt−1

density of

N
( ϕ0
1− ϕ1

,
σ2

2
1− ϕ2

1

)
evaluated at yt−1

I This choice of αt leads to nice properties
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Testing for Regime Switching

I In all regime switching models, a crucial question is:

One Regime or Two Regimes ?

I What do we do in this paper?

Study the appropriate Likelihood Ratio (LR) test in mixture
AR models with observation-dependent regime switching.
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Testing for Regime Switching – Literature
I Testing for Markov-switching type regime switching

I Hansen (1992 JAE), Garcia (1998 IER): Early discussions of LR test
I Cho & White (2007 Econometrica):

I LR test for a mixture model to test for Markov-switching type regime switching
I Carrasco, Hu & Ploberger (2014 Econometrica):

I ‘information matrix type test’, asymptotically optimal against Markov switching
I Recent working papers: Qu & Zhuo (2017), Kasahara & Shimotsu (2017):

I LR test for regime switching in Markov switching models.

I Testing for mixture type regime switching
I Extensive literature for case of independent observations without regressors
I Zhu&Zhang (2004 JRSS-B, 2006 JMVA), Kasahara&Shimotsu (2015 JASA):

I with regressors, no dependent data. LR tests for regime switching (+ other things)

I Testing for observation-dependent regime switching
I Previous literature almost non-existent
I Jeffries (1998 UMaryland PhD thesis): LR test in a specific first-order model
I Shen & He (2015 JASA): An ‘expectation maximization test’
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Testing: The basic set-up (here with p = 1)
I Model under alternative a general Mixture AR model:

yt = st
(
φ0 + φ1yt−1 + σ1εt

)
+ (1− st)

(
ϕ0 + ϕ1yt−1 + σ2εt

)
P(st = 1 | Ft−1) = αt(α, φ, ϕ)
αt(α, φ, ϕ) ∈ (0, 1) and σ(yt−1)–measurable
εt ∼ IID N(0, 1)
Parameters: α, φ = (φ0, φ1, σ

2
1), ϕ = (ϕ0, ϕ1, σ

2
2)

I Model under null: Gaussian AR Model
I Null to be tested: φ = ϕ

I Test to be used: Likelihood ratio (LR) test
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Testing: The log-likelihood
I Basic equation defining Mixture AR model:

yt = st
(
φ0 + φ1yt−1 + σ1εt

)
+ (1− st)

(
ϕ0 + ϕ1yt−1 + σ2εt

)
I Conditional density function of yt given its past:

f (yt | Ft−1) = αt ft(φ)+ (1− αt)ft(ϕ)

density of
N(φ0 +φ1yt−1, σ

2
1)

evaluated at yt

density of
N(ϕ0 +ϕ1yt−1, σ

2
2)

evaluated at yt

I mixture of two normal densities with mixing weights αt and 1− αt

I The (per observation conditional) log-likelihood:

lt(α, φ, ϕ) = log[αt ft(φ) + (1− αt)ft(ϕ)]

where αt = αt(α, φ, ϕ) depends on parameters α, φ, ϕ and yt−1
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Challenge 1. Unidentified parameters
I If φ = ϕ, the parameter α is not identified

I Two AR components identical ⇒ model is the same regardless of α
I in terms of the likelihood:

lt(α, φ, φ) = log[αt ft(φ) + (1− αt)ft(φ)] = log[ft(φ)]

does not depend on α!
so αt = αt(α, φ, ϕ) and thus α vanishes

I This is the classical ‘unidentified parameters under the null’ problem
I Davies (1977, 1987 Biometrika), Hansen (1996 Econometrica)
I Solution: Use a sup LR test with an appropriate asymptotic distribution
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Challenge 2. Singular Information Matrix
I Fisher Information Matrix is Singular (but φ, ϕ locally identifiable)
I Illustrate with MAR model: αt = α

I Scores of φ & ϕ are linearly dependent under the null (φ = ϕ = φ∗):

∇φlt(α, φ∗, φ∗) = α
∇ft(φ∗)
ft(φ∗) and ∇ϕlt(α, φ∗, φ∗) = (1− α)∇ft(φ∗)

ft(φ∗)

I Fisher information matrix is singular! Trouble!
I Moreover, due to properties of the normal density, linear

dependencies also among higher-order derivatives. More trouble!

I for example ∇σ2ft(φ∗)
ft(φ∗)

and
∇2
φ0

ft(φ∗)
ft(φ∗)

are linearly dependent
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Challenge 2. Singular Information Matrix
I Solution? Carefully constructed reparameterization(s) inspired by

Rotnitzky, Cox, Bottai & Robins (2000 Bernoulli)
I also used by Kasahara & Shimotsu (2015 JASA)

I Intuitive idea?
I If scores of original parameters are linearly dependent, reparameterize in

such a way that the resulting new scores are orthogonal.
I Due to rank deficiency of the information matrix, some new scores are

now necessarily zero.
I In a Taylor expansion of the reparameterized log-likelihood, the second

derivative term now provides the first (nontrivial) local approximation
for those (reparameterized) parameters that have zero scores

I LR test derivation based on a quadratic approximation of the
log-likelihood in terms of the reparameterized parameters
(= higher-order expansion in terms of original parameters)

I Rates of convergence vary, depending on degree of first nonzero
derivative



Intro Regimes & Mixtures Testing: (i) Literature (ii) Set-Up (iii) 3 Challenges (iv) Our Results (v) Simulations Conclusions

Challenge 3. Parameters on the Boundary
I The (reparameterized) parameter vector under the null hypothesis lies

on the boundary of the permitted parameter space.
I Furthermore, both the (reparameterized) parameter and its parameter

space depend on the unidentified nuisance parameters
I Parameters on the boundary have been considered, e.g., in

I Andrews (1999, 2001 Econometrica)
I Silvapulle & Sen (2005 Wiley book)

I Solution? Approximate the parameter space by a cone
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Dealing with Challenges 1–3
I Dealing with Challenges 1 (unidentification) and 3 (boundary):

I Andrews (1999, 2001 Econometrica)
I Our problem: Adding Challenge 2 (singularity)
I Broadly speaking, we analyze

I the necessary reparameterizations to deal with the singularity
I a quadratic approximation in terms of the reparameterized parameters

I Our results slightly adapt/extend results in Andrews (1999, 2001
Econometrica) and Zhu & Zhang (2006 JMVA)
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Assumptions & Proofs
I Assumptions?

I αt(α, φ, ϕ) ∈ (0, 1), σ(yt−1, . . . , yt−p)–measurable, α vector-valued,
αt(α, ·, ·) sufficiently differentiable

I MLE in the Mixture AR model consistent (uniformly over α)
I Suitable and ‘smooth’ reparameterization can be found to handle

singularities (case-by-case)
I Quadratic approximation in the reparameterized parameters satisfies

conditions similar to Andrews (2001 Econometrica)
I All assumptions verified for LMAR and (a version of) GMAR

I Proofs?
I Slight adaptations of Andrews (1999, 2001 Econometrica) and Zhu &

Zhang (2006 JMVA)
I Reparameterized parameter and its parameter space depend on α
I This parameter space ‘uniformly (over α) approximated’ by a non-convex

cone (not depending on α)
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Asymptotic Distribution
I Asymptotic null distribution of sup-LR test LR = supα LR (α)?
I Of the Andrews ‘sup-of-chi-bar-square’ – type:

sup
α

{
Z ′αV−1

α Zα − inf
λ∈Λ

{
(λ− Zα)′V−1

α (λ− Zα)
}}

with Zα ∼ N(0,Vα) and Λ a cone

I Distribution application-specific, cannot be tabulated.
I Simulating the asymptotic null distribution / bootstrap – in a moment.
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Examples: LMAR, GMAR
I General theory formulated using high-level assumptions
I All details for two example models

I LMAR model of Wong & Li (2001 Biometrika)
I GMAR model of Kalliovirta, Meitz & Saikkonen (2015 JTSA)

I with the restriction φ0 = ϕ0

I The two examples are rather different:
LMAR GMAR

Unidentified parameters? ! !

...that enter the asymptotic distribution of LR test? !

Parameters on boundary? !

Singularities? !

Degree of Taylor expansion? 2 4
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Simulating the asymptotic distribution / bootstrap
The asymptotic null distribution is not simple – two options:

I Simulating the asymptotic null distribution
I Simulating asymptotically exact draws from the asymptotic null

distribution is easy (details omitted here)
→ p–values or critical values of the asymptotic null distribution

I Used by Hansen (1996 Econometrica) and Andrews (2001 Econometrica)
I Computationally rather easy

I Requires computer-intensive but ‘simple’ calculations, takes only a few
seconds

I Bootstrap
I Based on simulations, restricted parametric bootstrap works very well
I Computationally quite heavy

I Requires repeated estimation of the mixture model under the alternative

Next slide: Some Monte Carlo simulations (more in the paper)
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Simulation: Size & Power
I Empirical rejection frequencies of tests against LMAR and GMAR.
I DGP’s 1–2 (size), AR(1): yt = 0.6 yt−1 + εt and yt = 0.9 yt−1 + εt
I DGP 3 (power), GMAR(1): yt = st( 0.2 yt−1 + εt) + (1− st)( 0.8 yt−1 + εt)
I DGP 4 (power), LMAR(1): yt = st(0.5yt−1 + εt ) + (1− st)(0.5yt−1 +

√
3εt )

I always εt ∼ N(0, 1); details of P(st = 1 | Ft−1) = αt omitted for brevity

Asymptotic null distribution Parametric bootstrap
DGP T LMAR LRT GMAR LRT LMAR LRT GMAR LRT

10% 5% 10% 5% 10% 5% 10% 5%
1 250 0.12 0.07 0.12 0.06 0.10 0.05 0.11 0.05

500 0.09 0.05 0.11 0.06 0.08 0.04 0.10 0.05
2 250 0.11 0.05 0.13 0.07 0.11 0.05 0.10 0.05

500 0.10 0.05 0.12 0.06 0.11 0.05 0.11 0.06
3 250 0.24 0.16 0.62 0.49 0.22 0.13 0.57 0.42

500 0.32 0.22 0.84 0.76 0.32 0.21 0.82 0.71
4 250 0.89 0.83 0.62 0.49 0.88 0.79 0.58 0.46

500 0.99 0.98 0.82 0.74 0.99 0.98 0.83 0.72
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Conclusions
I We analyze the LR test for regime switching in mixture AR models

with observation dependent regime switching
I Previous literature minimal

I We present results that cover various types of
observation-dependence
I Examples: LMAR, GMAR

I Challenges in obtaining the asymptotic distribution
I unidentification, singularity, boundary
I proofs adapt existing results

I Simulations show size & power properties are good



Thank you!


