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A BINOMIAL ASSET PRICING MODEL

IN A CATEGORICAL SETTING

TAKANORI ADACHI, KATSUSHI NAKAJIMA AND YOSHIHIRO RYU

Abstract. Adachi and Ryu introduced a category Prob of prob-
ability spaces whose objects are all probability spaces and whose
arrows correspond to measurable functions satisfying an absolutely
continuous requirement in [Adachi and Ryu, 2019]. In this paper,
we develop a binomial asset pricing model based on Prob. We
introduce generalized filtrations with which we can represent sit-
uations such as some agents forget information at some specific
time. We investigate the valuations of financial claims along this
type of non-standard filtrations.

1. Introduction

Adachi and Ryu introduced the category Prob as an adequate candi-
date of the category of probability spaces with good arrows. They show
the existence of the conditional expectation functor from Prob to Set,
which is a natural generalization of the classical notion of conditional
expectation ([Adachi and Ryu, 2019]).,

In this paper, we develop a binomial asset pricing model based on the
category Prob. Generalized filtrations defined in this setting change
not only σ-algebras but also probability measures and even underlying
sets throughout time. We introduce a few types of generalized filtra-
tions. Each of them represents a subjective filtration of an agent. In
other words, each agent has not only her subjective probability mea-
sure but also her own subjective filtration. For example, some filtration
represents the situation in which she forgets the information generated
at a specific time. This paper investigate the valuations of financial
claims along these non-standard filtrations.

First, in Section 2, we review the concept of categorical probabil-
ity theory and introduce generalized filtrations and adapted processes
and martingales along them. In this setting, our probability spaces are
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changing as time goes on. For example, we may have a bigger underly-
ing set in future than that in past. This case allows us to have unknown
future elementary events. Section 3 is the heart of this paper in which
we develop a concrete binomial asset pricing model and investigate a
few generalized filtrations and possibility of valuations along them.

2. Generalized Filtrations

In this section, we introduce some basic concepts of categorical prob-
ability theory which was mainly introduced in [Adachi and Ryu, 2019]
as a preparation for Section 3.

Let X̄ = (X,ΣX ,PX), Ȳ = (Y,ΣY ,PY ) and Z̄ = (Z,ΣZ ,PZ) be
probability spaces throughout this paper.

Definition 2.1. [Null-preserving functions [Adachi and Ryu, 2019] ] A
measurable function f : Ȳ → X̄ is called null-preserving if f−1(A) ∈
NY for every A ∈ NX , where NX := P−1

X (0) ⊂ ΣX and NY := P−1
Y (0) ⊂

ΣY .

Definition 2.2. [Category Prob [Adachi and Ryu, 2019] ] A category
Prob is the category whose objects are all probability spaces and the
set of arrows between them are defined by

Prob(X̄,Ȳ ) := {f− | f : Ȳ → X̄ is a null-preserving function.},

where f− is a symbol corresponding uniquely to a function f .
We write IdX for an identity measurable function from X̄ to X̄ ,

while writing idX for an identity function from X to X . Therefore, the
identity arrow of a Prob-object X̄ is Id−X .

Definition 2.3. [Generalized Filtrations] Let T be a fixed small cate-
gory which we sometimes call the time domain . A T -filtration is
a functor F : T → Prob.

T

F
��

t0
i0

//

i1◦i0

##
t1

i1

// t2
i2

// . . .

Prob Ft0
F i0 //

F (i1◦i0)=F i1◦F i0

;;
Ft1

F i1 // Ft2
F i2 // . . .

Figure 2.1. T -filtration

When we say filtrations in the classical setting, we keep using a same
underlying set Ω throughout time. This situation can be represented
by the following diagram.
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T t0 // t1 // t2 // . . .

Ft0

Id−1

Ω // Ft1

Id−1

Ω // Ft2

Id−1

Ω // . . .

Ω Ω
IdΩoo Ω

IdΩoo . . .
IdΩoo

However, in our new setting, the filtration can change not only σ-
fields but also probability measures and underlying sets as the following
diagram shows.

T

F ��

t0 // t1 // t2 // . . .

Prob X̄t0

f−

0 // X̄t1

f−

1 // X̄t2

f−

1 // . . .

Xt0 Xt1

f0oo Xt2

f1oo . . .
f2oo

One of the implications of this generalization is that we can think
possibly distorted filtrations by using adequate null-preserving function
ft.

Actually, the biggest aim of this paper is to investigate this kind of
non-standard filtrations by using, as a first example, a simple binomial
asset pricing model.

Before going into our concrete example, we will define adapted pro-
cesses and martingales over this generalized filtrations.

Let F be a fixed T -filtration throughout this section.

Definition 2.4. [F -Adapted Processes] An F -adapted process is a
collection of natural transformations

(2.1) τ := {τs : T (s,−)→̇L ◦ F}s∈Obj(T )

For a Prob-arrow ϕ : X̄ → Ȳ , there exists a measurable function
f : Y → X such that ϕ = f− by its definition. We write ϕ+ for this f .
That is, (ϕ+)− = ϕ.
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Now Let τ be an F -adapted process and i : s → t be a T -arrow.
Then, we have the following commutative diagram.

Ids

∈

✤ //
❴

��

τs,s(Ids)

∈
❴

��

s

i

��

T (s, s)
τs,s //

T (s,i)

��

L(Fs)

L(F i)

��
t T (s, t)

τs,t
// L(Ft)

i

∈

✤ // τs,t(i) = L(Fi)(τs,s(Ids))

∈

For s ∈ Obj(T ) pick a random variable vs satisfying [vs]∼PFs
= τs,s(Ids).

Then, we have

(2.2) τs,t(i) = [vs ◦ (Fi)+]∼PFt
.

That is, τs,t(i) is (Fi)-measurable.

Proposition 2.5. Let AP (F ) be the set of all F -adapted processes.
Then,

(2.3) AP (F ) ∼=
∏

t∈Obj(T )

L(Ft).

Proof. By Yoneda Lemma, we have for t ∈ Obj(T ),

(2.4) yt : Nat(T (t,−), L ◦ F ) ∼= (L ◦ F )t.

Then,
∏

t∈Obj(T ) yt is an isomorphism denoting (2.3).
�

For x ∈ AP (F ), we sometimes write

(2.5) x = {xt}t∈Obj(T )

where

(2.6) xt := x(t) ∈ L(Ft).

Remark 2.6. For an arrow i : s → t in T , in general, Fs and Ft

are different probability spaces. So we cannot (for example) add two

random variables xs ∈ L1(Fs) and xt ∈ L1(Ft) whose domains are F̃ s
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and F̃ t.

s
i // t

Fs
F i // Ft

F̃ s

xs

��

F̃ t
(F i)+
oo

xt

��
xs◦(F i)+

��
R R

In order to import xs into L1(Ft), we take xs ◦ (Fi)+ as its proxy. This
fact allows us to treat L1(Ft) as a vector space containing all preceding
random variables xs ∈ L1(Fs) with s ≤ t.

Next, we go into the definition of martingales. In order to make it
possible, we need a concept of conditional expectations in the category
Prob which was introduced in [Adachi and Ryu, 2019].

Theorem 2.7. [Conditional Expectation [Adachi and Ryu, 2019]] Let
f− : X̄ → Ȳ be a Prob-arrow. For all v ∈ L1(Ȳ ) and A ∈ ΣX , there
exists u ∈ L1(X̄) satisfying the following equation.

(2.7)

∫

A

u dPX =

∫

f−1(A)

v dPY .

We call u a conditional expectation along f− and denote it by
Ef−

(v).

Theorem 2.8. [Conditional Expectation Functor [Adachi and Ryu, 2019]]
There exists a functor E : Probop → Set as following:

X X̄

f−

��

✤ E // EX̄ := L1(X̄) ∋ [Ef−

(v)]∼PX

Y

f

OO

Ȳ ✤ E // E Ȳ :=

Ef−

OO

L1(Ȳ ) ∋ [v]∼PY
.

❴

Ef−

OO

We call E a conditional expectation functor.

Definition 2.9. [F -Martingales] Let F : T → Prob be a functor.
An F -martingale is an F -adapted process x ∈ AP (F ) such that for
every T -arrow i : s → t,

(2.8) (E ◦ F )i(x(t)) = x(s).

3. A Binomial Asset Pricing Model

In this section, we introduce a binomial asset pricing model based
on the category Prob. First, we define a general scheme of our model
by introducing a filtration B.
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s

i

��

✤ F // Fs

F i

��

✤ E // E(Fs) := L1(Fs) ∋ xs = [EF i(v)]∼PFs

t ✤
F // Ft ✤

E // E(Ft) :=

E(F i)

OO

L1(Ft) ∋ xt = [v]∼PFt
.

❴

E(F i)

OO

Figure 2.2. F -martingale

Definition 3.1. [Filtration B] Let ω be the category whose objects
are all integers starting with 0 and for each pair of integers m and n

with m ≤ n there is a unique arrow ∗m,n : m → n. That is, ω is the
category corresponding to the integer set N with the usual total order.
Let p := {pi}i=1,2,... be an infinite sequence of real numbers pi ∈ [0, 1].
We define an ω-filtration B := Bp : ω → Prob in the following way.

For an object n of ω, Bn is a probability space B̄n := (Bn,Σn,Pn)
whose components are defined as follows:

(1) Bn := {0, 1}n, the set of all binary numbers of t digits,
(2) Σn := 2Bn ,
(3) for a := d1d2 . . . dn ∈ Bn where di ∈ {0, 1} (i = 1, 2, . . . n).

Pn : Σn → [0, 1] is the probability measure defined by

(3.1) Pn({a}) :=
n
∏

i=1

pdii (1− pi)
1−di .

For integers m and n with m < n, we define

(3.2) B(∗m,n) := f−
m,n := (fm ◦ fm+1 ◦ · · · ◦ fn−1)

−

where fn := (B(∗n,n+1))
+ is a predefined null-preserving function from

Bn+1 to Bn.

Note that any function from Bn is measurable since Σn is a powerset
of Bn.

ω

B ��

0
i0 // 1

i1 // . . .
in−1 // n

in // n + 1
in+1 // . . .

Prob B̄0

f−

0 // B̄1

f−

1 // . . .
f−

n−1 // B̄n

f−

n // B̄n+1

f−

n+1 // . . .

As we introduced, the functor B is a generalized filtration, represent-
ing a filtration over the classical binomial model, for example developed
in [Shreve, 2005].

The classical version requires the terminal time horizon T for de-
termining the underlying set Ω := {0, 1}T while our version does not
require it since the time variant probability spaces can evolve without
any limit. That is, our version allows unknown future elementary
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events, which, we believe, shows a big philosophical difference from the
Kolmogorov world.

In order to see a variety of filtrations, we introduce two candidates
of fn.

Definition 3.2. [Candidates of fn]

(1) f full
n

Bn+1
f
full
n //

∈
Bn

∈

d1 . . . dndn+1
✤ f

full
n // d1 . . . dn

(2) f drop
n

Bn+1
f
drop
n //

∈

Bn

∈

d1 . . . dn−1, dndn+1
✤f
drop
n // d1 . . . dn−1 0

The function f drop
n can be interpreted to forget what happens at time

n.

Note that the function f full
n is always null-preserving while f drop

n is
null-preserving if and only if pn = 0.

Example 3.3. [Filtrations] As we mentioned in Definition 3.1, all we
need to determine the filtration is to specify fn : Bn+1 → Bn. We have
three examples of filtration B. For j = 1, 2, . . . , n,

(1) Classical filtration:

fn := f full
n .

(2) Drop-k:

fn :=

{

f drop
n if n = k,

f full
n if n 6= k.

(3) Elderly person: For fixed numbers k0, k1 ∈ N,

fn :=

{

f drop
n if k0 ≤ n ≤ T − k1

f full
n if 0 ≤ n < k0 or T − k1 < n ≤ T.

Proposition 3.4. For a Prob-arrow f−
n : B̄n → B̄n+1, v ∈ L1(B̄n+1)

and a ∈ Bn,

(3.3) Ef−

n (v)(a)Pn({a}) =
∑

b∈f−1
n (a)

v(b)Pn+1({b}).
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Especially, with the classical filtration, we have

(3.4) f−1
n (a) = (f full

n )−1(a) = {a0, a1}.

Hence

Ef−

n (v)(a) = v(a0)
Pn+1({a0})

Pn({a})
+ v(a1)

Pn+1({a1})

Pn({a})

= v(a0)(1− pn+1) + v(a1)pn+1.(3.5)

Definition 3.5. [B-Adapted Process ξn] For n = 1, 2, . . . define a B-
adapted process ξn by

Bn

ξn //

∈

R

∈

d1d2 . . . dn
✤ ξn // 2dn − 1

Proposition 3.6. For a ∈ Bn with Pn(a) 6= 0,

Ef−

n (ξn+1)(a) =
∑

e∈In(1,a)

Pn+1(e)

Pn(a)
−

∑

e∈In(0,a)

Pn+1(e)

Pn(a)

= #(f−1
n (a))pn+1 −#In(0, a)

where
In(j, a) := {e ∈ f−1

n (a) | (e)n+1 = j}

for j = 0, 1, and #A denotes the cardinality of the set A.

Now we define two instruments tradable in our market.

Definition 3.7. [Stock and Bond Processes] Let µ, σ, r be three posi-
tive constants satisfying

(3.6) |µ− r| < σ.

(1) A stock process Sn : Bn → R over B is defined by

(3.7) S0(〈〉) := s0, Sn+1 := (Sn ◦ fn)(1 + µ+ σξn+1)

where 〈〉 ∈ B0 is the empty sequence.
(2) A bond process bn : Bn → R over B is defined by

(3.8) b0(〈〉) := 1, bn+1 := (bn ◦ fn)(1 + r).

Proposition 3.8. For any a ∈ Bn,

(1) Ef−

n (Sn+1) = Sn

(

(1 + µ)Ef−

n (1Bn+1
) + σEf−

n (ξn+1)
)

.

(2) Ef−

n (1Bn+1
)(a) = Pn+1(f

−1
n (a))

Pn(a)
.

(3) bn(a) = (1 + r)n.

Let us consider about the discounted stock process

(3.9) S ′

n := b−1
n Sn.

We want to find an ω-filtration with which S ′
n becomes a martingale.

Here is the shape of the filtration whose detail we will determine.
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Definition 3.9. [Filtration C] Let n be an object of the category ω.

(1) Qn : Σn → [0, 1] is a probability measure of (Bn,Σn),
(2) C̄n := (Bn,Σn,Qn),
(3) gn := fn.

We define an ω-filtration C by for n ∈ Obj(ω),

(3.10) C(n) := C̄n, C(∗n,n+1) := g−n .

ω

C ��

0
i0 // 1

i1 // . . .
in−1 // n

in // n+ 1
in+1 // . . .

Prob C̄0

g−
0 // C̄1

g−
1 // . . .

g−n−1 // C̄n

g−n // C̄n+1

g−n+1 // . . .

Figure 3.1. Filtration C

Theorem 3.10. A process S ′
n is a C-martingale , that is, for n ∈ N,

Eg−n (S ′
n+1) = S ′

n if and only if for all n ∈ N and a ∈ Bn,

(3.11) Qn({a}) = c1 Qn+1(In(1, a)) + c0 Qn+1(In(0, a))

where for j = 0, 1

(3.12) In(j, a) := {e ∈ f−1
n (a) | (e)n+1 = j}

and

(3.13) c1 :=
1 + µ+ σ

1 + r
, c0 :=

1 + µ− σ

1 + r
.

Proof. For a ∈ Bn

S ′
n(a)Qn({a}) = Eg−n (S ′

n+1)(a)Qn({a})

=
∑

e∈f−1
n (a)

S ′

n+1(e)Qn+1({e})

=
∑

e∈f−1
n (a)

b−1
n+1(e)(Sn ◦ fn)(e)(1 + µ+ σξn+1(e))Qn+1({e})

=
∑

e∈f−1
n (a)

(1 + r)−(n+1)Sn(a)(1 + µ+ σξn+1(e))Qn+1({e})

=S ′

n(a)
∑

e∈f−1
n (a)

1 + µ+ σξn+1(e)

1 + r
Qn+1({e}).

if and only if

Qn({a}) =
∑

e∈In(1,a)

1 + µ+ σ

1 + r
Qn+1({e}) +

∑

e∈In(0,a)

1 + µ− σ

1 + r
Qn+1({e})

=c1 Qn+1(In(1, a)) + c0 Qn+1(In(0, a)).

�
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In order to determine more detail of C, we need the following condi-
tion for Qn.

Proposition 3.11. The following conditions for Qn are equivalent.

(1) for all n ∈ N, a ∈ Bn,

(3.14) Qn+1({a0, a1}) = Qn({a})

(2) for all n ∈ N, f full
n is measure-preserving w.r.t. Qn, that is,

(3.15) Qn = Qn+1 ◦ (f
full
n )−1.

(3) there exists a sequence of functions {qk : Bk → [0, 1]}k=1,2,...

such that for all n = 1, 2, . . . and dj = 0, 1,

(3.16) Qn({d1d2 . . . dn}) =
n
∏

k=1

qk(d1d2 . . . dk)

such that for every a ∈ Bn−1, qn(a0) + qn(a1) = 1.

In the following discussion, we assume the following assumption
which is the condition (2) of Proposition 3.11.

Assumption 3.12. For all n ∈ N, f full
n is measure-preserving w.r.t.

Qn.

By Assumption 3.12 and (3) of Proposition 3.11, we have

Qn+1({d1d2 . . . dndn+1}) = Qn({d1d2 . . . dn})qn+1(d1d2 . . . dn+1).

In the rest of this subsection, we will investigate the shape of Qn

under the assumption that S ′
n is C-martingale.

3.1. Classical Filtration. First, we prepare a lemma for for the proof
of the following propositions.

Lemma 3.13. If 1 = c1x+ c0(1− x), then

(3.17) x =
1

2
+

r − µ

2σ
and 1− x =

1

2
−

r − µ

2σ
.

Proposition 3.14. For a fixed n ∈ N, assume that fn = f full
n . Then

for a ∈ Bn with Qn({a}) 6= 0, we have

qn+1(a1) =
1

2
+

r − µ

2σ
,

qn+1(a0) =
1

2
−

r − µ

2σ
.

Note that the resulting probability depends neither on a nor on n.
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Proof. By observing the following diagram

a1

a

✐✐✐✐✐✐✐✐✐✐✐

❯❯❯
❯❯❯

❯❯❯
❯❯

a0

Bn

∈

Bn+1
f
full
noo

∈

a adn+1
✤f

full
noo

we have

(f full
n )−1(a) = {a0, a1}

In(1, a) = {a1},

In(0, a) = {a0}

By (3.11)

Qn({a}) = c1Qn+1(In(1, a)) + c0Qn+1(In(0, a))

= c1Qn+1({a1}) + c0Qn+1({a0})

Now since
Qn+1({adn+1}) = Qn({a})qn+1(adn+1)

and Qn({a}) 6= 0, we have

1 = c1qn+1(a1) + c0qn+1(a0).

Hence by Lemma 3.13, we have

qn+1(a1) =
1

2
+

r − µ

2σ
, qn+1(a0) =

1

2
−

r − µ

2σ
.

�

Corollary 3.15. If B is the classical filtration, then for any n ∈ N and
a ∈ Bn we have

(3.18) Qn(a) =
(1

2
+

r − µ

2σ

)n(1,a)(1

2
−

r − µ

2σ

)n(0,a)

where

(3.19) n(j, a) := #{k | (a)k = j}.

3.2. Drop-k Filtration.

Proposition 3.16. For a fixed n(= 1, 2, . . . ), assume that fn = f drop
n .

Then for a ∈ Bn−1 with Qn−1({a}) 6= 0, we have

qn(a1) = 0,

qn(a0) = 1,

qn+1(a01) =
1

2
+

r − µ

2σ
,

qn+1(a00) =
1

2
−

r − µ

2σ
.
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Proof. By observing the following diagram

a11
a1

❢❢❢❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

❳❳❳

a10
a

♠♠♠♠♠♠♠♠♠♠♠

◗◗
◗◗

◗◗
◗◗

◗◗
◗

a01
a0

❢❢❢❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

❳❳❳

a00

Bn−1

∈

Bn

f
full
n−1oo

∈

Bn+1
f
drop
noo

∈

a a0✤
f
full
n−1oo adndn+1

✤f
drop
noo

we have

(f drop
n )−1(a1) = ∅

In(1, a1) = In(0, a1) = ∅

(f drop
n )−1(a0) = {a00, a01, a10, a11}

In(1, a0) = {a01, a11}

In(0, a0) = {a00, a10}

By (3.11)

Qn({a1}) = c1Qn+1(In(1, a1)) + c0Qn+1(In(0, a1)) = 0.

Now since Qn({adn}) = Qn−1({a})qn(adn) and Qn−1({a}) 6= 0, we have

qn(a1) = 0, qn(a0) = 1− qn(a1) = 1.

Next, again by (3.11)

Qn({a0}) = c1Qn+1(In(1, a0)) + c0Qn+1(In(0, a0))

= c1
(

Qn+1({a01}) + Qn+1({a11})
)

+ c0
(

Qn+1({a00}) + Qn+1({a10})
)

By dividing both hands by Qn−1({a}) 6= 0,

qn(a0) = c1
(

qn(a0)qn+1(a01) + qn(a1)qn+1(a11)
)

+ c0
(

qn(a0)qn+1(a00) + qn(a1)qn+1(a10)
)

Then, since qn(a1) = 0 and qn(a0) = 1,

1 = c1qn+1(a01) + c0qn+1(a00).

Hence, by Lemma 3.13, we have

qn+1(a01) =
1

2
+

r − µ

2σ
, qn+1(a00) =

1

2
−

r − µ

2σ
.

�



A BINOMIAL ASSET PRICING MODEL IN A CATEGORICAL SETTING 13

We have to check that both f full
n and f drop

n are null-preserving w.r.t.
Qn.

Bn

dropn

��

∋ d1 . . . dn−1dn
❴

��

Bn+1

f
full
n

88qqqqqqqqqq

f
drop
n &&▼▼

▼▼
▼▼

▼▼
▼▼

Bn ∋ d1 . . . dn−10

If Qn(d1 . . . dn−11) 6= 0, then dropn is null-preserving, and so is f drop
n

since f full
n is measure-preserving.

a11
a1

❢❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

❳

a10
a

♠♠♠♠♠♠♠♠♠♠♠

◗◗
◗◗

◗◗
◗◗

◗◗
◗

a01
a0

❢❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

❳

a00

Bn−1 Bn

f
full
n−1oo Bn+1

f
drop
noo

Figure 3.2. f drop
n

Remark 3.17. We have the following remarks for Figure 3.2.

(1) Since the agent evaluates stock and bond along the function
f drop
n , she can recognise only the nodes a0, a01 and a00 and can
not recognise the nodes a1, a11 and a10. We interpret these
nodes a1, a11 and a10 as invisible.

(2) The values qn+1(a11) ∈ [0, 1] can be arbitrarily selected, and
qn+1(a10) is computed by 1−qn+1(a10). That is, the probability
measure Qn+1 is not determined uniquely, so is not the risk-
neutral filtration C.

(3) The probability measure Qn is not equivalent to the original
measure Pn. Therefore, it is not an EMM.

Remark 3.18. Let C : ω → Prob be a risk-neutral filtration, and
Y : BT → R be a payoff at time T .

Then, for the agent who has a drop-k filtration as her subjective
filtration, the price of Y at time n with a unique arrow i : n → T is
given by

Yn := ECi(b−1
T Y ).
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a111
a11

❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

a110
a1

♠♠♠♠♠♠♠♠♠♠

◗◗
◗◗

◗◗
◗◗

◗◗

a101
a10

❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

a100
a

③③③③③③③③③③③③③③③

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉

a011
a01

❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

a010
a0

♠♠♠♠♠♠♠♠♠♠

◗◗
◗◗

◗◗
◗◗

◗◗

a001
a00

❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

a000

Bk−2 Bk−1

f
full
k−2oo Bk

f
full
k−1oo Bk+1

f
drop
koo

Figure 3.3. drop-k filtration

n

i

��

✤ C // C̄n

Ci

��

✤ E // E(C̄n) := L1(C̄n) ∋ Yn = ECi(b−1
T Y )

T ✤ C // C̄T
✤ E // E(C̄T ) :=

E(Ci)

OO

L1(C̄T ) ∋ b−1
T Y
❴

E(Ci)

OO

You can see in Figure 3.4 that at time n − 1 the value of Yn(a1) is
discarded and use only the value of Yn(a0) for computing Yn−1(a).

Yn+1(a11)

Yn(a1)
❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

Yn+1(a10)

Yn−1(a) := Yn(a0)

❥❥❥❥❥❥❥❥❥❥❥❥❥

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚

Yn+1(a01)

Yn(a0)
❢❢❢❢❢❢❢❢

❳❳❳❳
❳❳❳❳

Yn+1(a00)

Bn−1 Bn

f
full
n−1oo Bn+1

f
drop
noo

Figure 3.4. Valuation along f drop
n
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4. Concluding Remarks

We formulated an infinitely growing sequence of binomial probabil-
ity spaces in the category Prob. We gave some concrete (possibly
distorted) filtrations. We determined the shape of the risk-neutral fil-
trations to the above examples. We showed the valuations of claims
given at time T through the distorted filtrations.
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