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1. Introduction

Matching impulse responses is a widely used indirect inference procedure to estimate dynamic

general equilibrium models. Theoretical foundations for this estimation strategy are provided in

the seminal contributions by Gourieroux et al. (1993) and Smith (1993). Previous applications

include Rotemberg and Woodford (1998), Christiano et al. (2005), Iacoviello (2005), Boivin and

Giannoni (2006), Uribe and Yue (2006), DiCecio and Nelson (2007), Dupor et al. (2007), Jorda and

Kozicki (2011), and Altig et al. (2011). Information criteria are developed by Hall et al. (2012).

Bayesian versions are proposed by Christiano et al. (2011) and Guerron-Quintana et al. (2014).

Although indirect inference was initially proposed as a method to estimate nonlinear models (see

the examples in Gourieroux et al., 1993), most of the above applications concern linear or linearized

models where impulse responses are independent of the sign, size, and timing of the shock. Since

the response to a shock of size +1 (say, standard deviation) is one-half the response to a shock of

size +2, is the mirror image of a response to a shock of size �1, and is independent of the state
of the system when the shock takes place, it is su¢ cient to consider only one impulse response to

describe the model dynamics.

With advances in nonlinear solution methods and the increase in computing power, nonlinear

dynamic models in macroeconomics and �nance are now often estimated, rather than calibrated.

However, the use of impulse-response matching in this setup must address the fact that in nonlinear

systems a single response does not completely characterize the dynamic e¤ects of a shock. Instead,

the e¤ect depends on the sign, size, and timing of the shock (see Gallant et al., 1993, and Koop

et al., 1996). Of course, under the conditions in Gourieroux et al. (1993) and Dridi et al. (2007),

ignoring nonlinearity� that is, using a linear auxiliary model (e.g., a vector autoregression) and

a single impulse response as a binding function� delivers consistent estimates of the structural

parameters, but this approach may be ine¢ cient when the data-generating process is nonlinear.

As an alternative, I consider here a nonlinear auxiliary model based on Mittnik (1990), which,

like the economic model, generates nonlinear impulse responses. Speci�cally, the auxiliary model is a

projection on a higher-order polynomial of observable state variables of economic model. Nonlinear

impulse responses exploit information on the curvature of the model to provide more comprehensive

information about the model dynamics compared with a single linear response. Because the loss in

e¢ ciency of the indirect inference estimator, compared to the e¢ ciency of the maximum likelihood

estimator, depends on the size of the correct score vector that is not spanned by the estimating

equations of the auxiliary model, the use of a nonlinear, rather than a linear, auxiliary model may

deliver gains in statistical e¢ ciency. Monte-Carlo results reported here support this conjecture.
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The proposed estimation method is introduced through its application to a nonlinear macro-

�nance model of asset pricing under skewness risk. This application is important in its own right.

In contrast to literature based on either the capital asset pricing model or exogenous consumption

processes, this paper considers an equilibrium asset-pricing model where consumption is endogenous

and structural estimation tries to reconcile stock returns with key macroeconomic aggregates like

productivity and investment. Traders inhabit a production economy where �rms use labor and

capital as inputs, and the �nancial assets are a riskless bond and shares or claims on the dividends

of �rms. The only source of risk is a productivity shock. However, rather than treating productivity

as a latent variable, this project uses the series on U.S. productivity constructed by Fernald (2014)

as one of the observable variables.

I provide evidence of departures from Gaussianity in the data and, in particular, show that

productivity innovations, consumption, investment, and stock returns are all negatively skewed.

The model is estimated under the assumption that productivity innovations are drawn from an

asymmetric generalized extreme value (GEV) distribution (Jenkinson, 1955). This distribution

is attractive because it nests three extreme value distributions� namely, the Gumbel, Fréchet,

and Weibull distributions� as special cases. Since �rms are subject to potentially large negative

realizations from the long tail of the distribution, shareholders are subject to skewness risk. The

model is solved using a nonlinear perturbation method that makes explicit the dependence of asset

returns on the second- and third-order moments of productivity innovations.

Results show that the responses to productivity shocks are asymmetric in that negative shocks

induce larger responses than positive shocks (in absolute value). Since the unconditional skewness

of productivity innovations is much smaller than that of the other variables, it follows that the

nonlinear propagation mechanism plays a substantial role in amplifying the di¤erent way in which

negative and positive shocks are transmitted through the economy. Results also show that skewness

risk accounts for approximately one-quarter of the equity risk premium and that the nonlinear

model can endogenously generate conditional heteroskedasticity despite the fact that shocks are

homoskedastic. Finally, the use of a nonlinear auxiliary model, rather than a linear model, for the

estimation of the model turns out to make a meaningful di¤erence for the economic conclusions that

can be drawn from the analysis: Both auxiliary models suggest that investment is irreversible, but

only estimates under the nonlinear model are precise enough to allow the rejection of the hypothesis

that increasing and decreasing the capital stock are equally costly.

This paper is organized as follows. Section 2 presents a macro-�nance model of asset pricing in

a production economy subject to skewness risk. Section 3 proposes a simple nonlinear time-series

model designed speci�cally to play the role of auxiliary model in the indirect inference estimation
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of nonlinear dynamic equilibrium models, and discusses the use of nonlinear impulse responses as

binding function. Section 4 reports results from Monte Carlo experiments that examine the perfor-

mance of the proposed estimator. Section 5 describes the data used to estimate the model, reports

evidence of departures from Gaussianity and parameter estimates, and examines the economic

implications of asymmetric shocks and skewness risk. Section 6 concludes.

2. Asset Prices in a Production Economy with Skewness Risk

The representative trader has recursive preferences over consumption (Epstein and Zin, 1989),

Ut =

�
(1� �) (Ct)1�1= + �

�
Et

�
U1�t+1

��(1�1= )=(1�)�1=(1�1= ))
; (1)

where � 2 (0; 1) is the discount factor, Ct is consumption, Et is the expectation conditional on
information available at time t,  is the coe¢ cient of risk aversion, and  is the intertemporal

elasticity of substitution (IES). Time is discrete. In every period, the trader supplies a �xed time

endowment, N , in a competitive labor market and participates in a �nancial market where shares

and bonds are bought and sold. Shares are claims on the dividends of �rms and bonds are private,

riskless, one�period contracts that pay one unit of consumption at maturity.

The trader�s budget constraint is

Ct +QtSt+1 + PtBt+1 = XtN + (Qt +Dt)St +Bt; (2)

where Qt is the price of a share, St is the number of shares, Pt is the price of a bond, Bt is the number

of bonds, Xt is the hourly wage, N is hours worked, and Dt is dividends. Since consumption is the

numeraire, Pt, Qt, and Xt are real prices in terms of units of consumption. The Euler equations

that characterize the trader�s optimal demand for shares and bonds are

Qt = Et (��t;t+1(Qt+1 +Dt+1)) ; (3)

Pt = Et (��t;t+1) ; (4)

respectively, where �t;t+1 = (Vt+1=Wt)
1= � (Ct+1=Ct)

�1= , Vt � maxUt is the value function, and

Wt �
�
EtV

1�
t+1

�1=(1�)
is the certainty-equivalent future utility. The left-hand side of each of these

equations is the price of the asset and the right-hand side is its expected payo¤ evaluated using the

pricing kernel, ��t;t+1.

Denote the gross return on a share and on a bond purchased at time t by Rt+1 = (Qt+1 +

Dt+1)=Qt and rt+1 = 1=Pt, respectively. Rewrite equation (3) as

1 = Et (��t;t+1)Et(Rt+1) + �t; (5)
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where �t = covt (��t;t+1; Rt+1) is the risk premium. Then, use equations (4) and (5) to write the

excess return of equity over the safe asset as

Et(Rt+1)� rt+1 = �rt+1�t: (6)

Equation (6) has the usual implication that the excess return is positive if the stock return, Rt+1,

is negatively correlated with the pricing kernel, ��t;t+1, which means that the return is high when

the marginal utility of consumption is low.

The representative �rm produces output using the technology

Yt = (ZtLt)
1�� (Kt)

� ; (7)

where Yt is output, Zt is labor productivity, Lt is labor input, Kt is capital, and � 2 (0; 1) is a
constant parameter. Productivity growth follows the process

� lnZt+1 = (1� �)� + �� lnZt + �t+1; (8)

where � is the di¤erence operator, � 2 (�1; 1) is a constant coe¢ cient, � is the unconditional mean
of productivity growth, and �t is an independent and identically distributed (i.i.d.) innovation with

mean zero, constant conditional variance, and non-zero skewness. The assumption that productivity

innovations have non-zero skewness implies that the �rm may be subject to large realizations from

the long tail of the shock distribution and, hence, shareholders bear skewness risk. In the empirical

part of the paper, I assume that �t is drawn from a (reverse) generalized extreme value distribution

(GEV) with mean zero, scale parameter �, and shape parameter #. Depending on whether the

shape parameter is zero, larger than zero, or smaller than zero, the distribution corresponds to

either the Gumbel, the Weibull, or the Fréchet distribution (see Jenkinson, 1955).

The �rm directly owns its capital stock. The law of motion for capital is

Kt+1 = (1� �)Kt + It; (9)

where � 2 (0; 1) is the rate of depreciation and It is investment. The �rm does not issue new shares
and all investment is �nanced through retained earnings. Adjusting the capital stock involves a

convex cost of the form

�t = �(It=Kt) = �

�
exp (�� (It=Kt � ��)) + � (It=Kt � ��)� 1

�2

�
Kt; (10)

where � � 0 is a cost parameter and �� = � + (� � 1). The adjustment cost is proportional to
the capital stock and concerns investment beyond that required to replace depreciated capital and
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to keep up with the growth of labor productivity. The functional form (10) is the linex function

proposed by Varian (1974). Under this speci�cation adjustment costs depend on both the sign and

the magnitude of the adjustment. For instance in the case where � > 0, a decrease in the capital

stock involves a larger cost than an increase of the same magnitude. Thus, investment is partly

irreversible in that the �rm would �nd it very costly to recover the value of installed capital if

it were to disinvest. In the case where � ! 1, the cost function takes the shape of an �L�and
investment is completely irreversible. In the case where � ! 0, the cost function converges to the

quadratic function and, thus, capital decreases and increases of the same magnitude involve the

same cost. This implies that 1) it is straightforward to test for asymmetry in capital adjustment

costs by testing whether the parameter � is statistically di¤erence from zero or not, and 2) rejecting

the hypothesis that � is equal to zero against the alternative that it is larger than zero would be

evidence of irreversibility in investment.

The �rm chooses inputs to maximize

E�

1X
t=�

�t����;tDt; (11)

with the maximization subject to the technology (7), the law of motion (9), and the cost function

(10). Pro�ts, which are transferred to shareholders in the form of dividends, are

Dt = Yt �XtLt � It � �t: (12)

Due to the assumption of constant returns to scale, dividends are just the return on capital net of

new investment and adjustment costs.

In equilibrium, share holdings add up to 1 (St = 1), bonds are not held (Bt = 0), the labor

market clears (Lt = N), and the goods market clears (Ct + It + �t = Yt). Because the level of

productivity is non-stationary and there is long-run growth in this economy, the model is rendered

stationary by rescaling the variables by the lagged productivity shock, Zt�1.

Since the model does not have an exact analytical solution, I use a perturbation method to

compute an approximate nonlinear solution. Perturbation methods start from the exact solution

to a simpli�ed form of the original problem and then use a power series (or perturbation) to

characterize deviations from this exact solution.1 In particular, I use a perturbation method based

on Jin and Judd (2002) that involves taking a third-order expansion of the policy functions around

the deterministic steady state and characterizing the local dynamics. I use this solution method

for several reasons. First, I want to focus on the policy functions that solve the complete model, in

1For an introduction to perturbation methods in economics see Judd (1998). Additional references include Jin
and Judd (2002), Schmitt-Grohé and Uribe (2004), Andreasen (2012), and Ruge-Murcia (2012).
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contrast to the approach of previous research in �nance, which typically focuses on Euler equations

alone. I do this because, as we will see below, policy functions make explicit the dependence of

prices and quantities on the state variables of the model and on the moments of the innovations.

The second reason is that, as shown by Caldera et al. (2012), for models with recursive preferences,

a third-order perturbation is as accurate as projection methods in the range of interest but is much

faster to compute. Third, a third-order perturbation is necessary to fully identify the coe¢ cient of

risk aversion in models with Epstein-Zin preferences. As discussed in van Binsbergen et al. (2012),

the only di¤erence between Epstein-Zin preferences and preferences with constant relative risk

aversion (CRRA) in a second-order perturbation is a constant, while in a third-order perturbation

the di¤erence is also re�ected in the dynamics. Finally, a third-order perturbation is necessary to

accurately capture the e¤ect of the skewness on the solution.

Denote the policy function of a generic j variable in the model by [p(st; �)]j , where st is the

vector of state variables and � is a perturbation parameter that takes value zero in the deterministic

steady state. The state variables here are the current capital stock and productivity growth. The

deterministic steady state is computed analytically. Deviations from the steady state are computed

by taking a third-order Taylor series expansion around it, with the derivatives taken with respect

to st and �. These derivatives are high-dimensional arrays that are cumbersome to represent using

standard notation and for this reason researchers express the solution using tensor notation,

[p(st; �)]
j = [p(s; 0)]j + [ps(s; 0)]

j
a[(st � s)]a (13)

+ (1=2)[pss(s; 0)]
j
ab[(st � s)]

a[(st � s)]b

+ (1=2)[p��(s; 0)]
j [�][�] + (1=2)[ps��(s; 0)]

j
a[(st � s)]a[�][�]

+ (1=6)[psss(s; 0)]
j
abc[(st � s)]

a[(st � s)]b[(st � s)]c + (1=6)[p���(s; 0)]j [�][�][�];

where a; b, and c are indices, [p(s; 0)]j is the value of the variable j in the deterministic steady

state, and [ps(s; 0)]
j
a; [pss(s; 0)]

j
ab; p��(s; 0)]

j ; [psss(s; 0)]
j
abc; [ps��(s; 0)]

j
a, and p���(s; 0)]j are coef-

�cients that depend on the structural parameters of the model. The approximate policy function

includes linear, quadratic, and cubic terms in the state variables and its cross-products. It also

depends on higher-order moments of the innovations in the form of a risk-adjustment factor that

is proportional to their variance and skewness. The e¤ect of the skewness is given by the term

(1=6)[p���(s; 0)]
j [�][�][�], which is non-zero in the case where innovations follow an asymmetric

distribution. In addition to this direct e¤ect on the ergodic mean of the variables, the skewness

of the innovations also e¤ects the dynamics through the asymmetry it induces in the state (and,

hence, in the control) variables.
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3. Indirect Inference Estimation

Indirect inference requires the choice of an auxiliary model and a binding function, and these

choices depend on the economic model to be estimated. To examine the possible bene�ts of using

a nonlinear auxiliary model to estimate a nonlinear structural model, I consider here a nonlinear

time series model based on Mittnik (1990). The most general formulation of the model I have in

mind takes the form

yt = 
0 +
1xt +
2(xt 
 xt) + : : :+ 
m(xt 
 : : :
 xt) + �t; (14)

where yt is a k� 1 vector of observable variables, xt is an nk� 1 vector with n lags of each of the k
variables in yt, �t is a k�1 vector of residuals, 
0 is a k�1 vector of constants, 
i for i = 1; 2; : : : ;m
are conformable matrices with �xed parameters, and 
 denotes the Kronecker tensor product. This
multivariate nonlinear model is closely related to the univariate generalized autoregression (GAR)

due to Mittnik (1990), in which the conditional mean of the variable is a function of its lagged

values and a polynomial of lagged cross-products. Mittnik notes that since the relation between

the variable and its lags is linear and the error term is separable, it is possible to use least squared

methods to estimate the GAR coe¢ cients. These conditions also hold for the model in (14). Thus,

in the empirical application and Monte Carlo experiments below, I use ordinary least squares (OLS)

equation by equation to estimate the coe¢ cients of the auxiliary model. Note that (14) meets one

of the key attributes that an auxiliary model should have for the purpose of indirect inference,

namely that it should be relatively easy to estimate.

In practice I use a heavily restricted version of (14) for the estimation of the model. I do so for

several reasons. First, the number of parameters increases rapidly with the number of variables,

the number of lags, and polynomial order. Second, it is di¢ cult to impose conditions to insure the

stability and stationarity of the model. Finally, an unrestricted auxiliary model ignores features

of the economic model that can provide a tighter link between structural and auxiliary models.

In what follows, I illustrate the restrictions in the context of the asset-pricing model in section

2 and assume that the econometrician has access to data on the growth rates of productivity,

consumption, and investment and on stock and bond returns to estimate the model. That is,

yt = [� ln (Zt) ;� ln (Ct) ;� ln (It) ; Rt; rt]
0.2

Some restrictions on (14) are motivated by the process of the productivity shock in the economic

model. Because � ln(Zt) follows an exogenous linear process that depends only on its own lags,

2 I use the growth rates of consumption and investment for the estimation of the model, rather than the rescaled
variables Ct=Zt�1 and It=Zt�1, because they have a clearer empirical interpretation. It is straightforward to construct
the growth rates implied by the model from the simulated series of Zt=Zt�1, Ct=Zt�1 and It=Zt�1 in order to match
the variables in the data.
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I restrict to zero the coe¢ cients of lagged higher-order terms in productivity and all terms in the

other variables in the �rst equation of (14).3 With these restrictions imposed, the �rst equation

in the auxiliary model corresponds exactly to (8). Other restrictions are motivated by the model

solution. The solution (13) shows that the control variables of the model are functions of a third-

order polynomial on the state variables. Thus, � ln (Ct), � ln (It), Rt, and rt in the auxiliary

model should be functions of linear, quadratic and cubic terms in productivity growth. Because

the process for productivity growth is stationary and all other variables are speci�ed as functions of

productivity growth only, the above restrictions imply that the nonlinear auxiliary model computed

using data from a stationary model has a unique steady state and no explosive paths regardless of

the shock size. To see this, recall that the �rst equation in the model is the process for productivity

growth (8), which is stationary by assumption. The remaining equations of the model specify

� ln (Ct), � ln (It), Rt, and rt as functions of a constant and a third-order polynomial of lagged

productivity growth. Provided the �rst six moments of productivity growth exist, these variables

are stationary as well.

In related work, Aruoba et al. (2014) map the second-order perturbation solution for dynamic

general equilibrium models into a quadratic autoregression (QAR) and characterize its impulse

responses. My research complements their work by proposing a general nonlinear model that ac-

commodates perturbation solutions of any order and can be used in a multivariate environment.

Barnichon and Matthes (2014) construct nonlinear impulse responses by using Gaussian basis func-

tions to parameterize the coe¢ cients of an atheoretical moving average representation of a system.

Depending on the function parameters, impulse responses may be asymmetric, be hump-shaped,

and/or display overshooting and oscillations. Similarly, the impulse responses of the restricted ver-

sion of (14) can display these features depending on the lag length and the order of the polynomial.

The binding function maps the parameters of the economic model into those of the auxiliary

model. This role is played here by the nonlinear impulse responses. Recall that in linear models,

impulse responses are exactly proportional to the sign and size of the shock and independent of its

timing. Thus, one impulse response (of any size or sign) is su¢ cient to describe the model dynamics.

However, in this paper the auxiliary model is nonlinear and its impulse responses depend on the

sign, size, and timing of the shock in a non-trivial manner. Methods to compute impulse responses

in nonlinear systems have been proposed by Gallant et al. (1993) and Koop et al. (1996). One

3 In addition to this model-based argument there is a statistical argument. During the estimation procedure,
arti�cial data are generated from the structural model to compute a synthetic nonlinear auxiliary model and impulse
responses. Since (8) holds in the model, the coe¢ cients of the additional terms in the auxiliary model should not be
statistically di¤erent from zero. Imposing these restrictions on (14) delivers sharper estimates of the coe¢ cients and
impulse responses, and avoids the extra �noise� that arises because the coe¢ cients of the super�uous variables will
not be identically equal to zero in a �nite sample.
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could also consider computing impulse responses using local-projections or using shocks located

in di¤erent percentiles of the innovation distribution. In the latter case, shocks are of di¤erent

size and possibly a di¤erent sign, by construction. Any of these methods would provide a suitable

characterization of the model responses for the purpose of indirect inference estimation.

With the above elements in place, we are ready to formulate the indirect inference estimator in

this setup. Consider a nonlinear model with unknown parameters � 2 �; where � is a q � 1 vector
and � � <q is a compact set. The econometrician has at her disposal a sample of T+n observations
of k data series to estimate the model. Denote this sample by fytgTt=�(n�1), where yt an k�1 vector.
Assume that yt is stationary and ergodic, possibly as a result of a prior transformation of the raw

data by means of a detrending procedure. Denote by wt(�) the k � 1 vector with arti�cial data
simulated from the economic model using parameter values � and assume that wt(�) is stationary

and ergodic for all � 2 �. The size of the simulated sample is �T + n � 1 with � � 1 because, in
general, the simulated sample may be larger than the actual sample. Under the null hypothesis,

there exists a unique �0 2 �, where �0 is an interior point of �, such that the random sequences

fytgTt=�(n�1) and fwt(�)g
�T
t=�(n�1) have identical distributions.

Using the simulated sample fwt(�)g�Tt=�(n�1), estimate the nonlinear auxiliary model and com-
pute impulse responses. Denote the impulse responses by (�; �T; h), where h is the horizon of the

responses, and rearrange them as a �h � 1 vector where � is the number of responses computed.
Similarly for the actual data, estimate the same nonlinear auxiliary model and compute the impulse

responses (T; h). Then, the indirect inference estimator is

�̂ = argmin
�2�

((T; h)� (�; �T; h))0W ((T; h)� (�; �T; h)) ; (15)

where W is a �h��h weighting matrix. Intuitively, the indirect inference estimator minimizes the
weighted distance between the impulse responses computed using actual data and using arti�cial

data simulated from the economic model. Under the conditions in Gourieroux et al. (1993),

p
T (b� � �0)! N(0;(1 + 1=�)(J 0WJ)�1J 0WSWJ(J 0WJ)�1); (16)

where J = E(@(�; �T; h)=@�) is a �nite matrix of dimension �h � q and full column rank and S

is the asymptotic variance of
p
T ((T; h)� (h)). The multiplicative term (1 + 1=�) > 1 captures

the e¤ect of simulation uncertainty on the estimates.

4. Monte Carlo Experiments

This section reports the results of Monte-Carlo experiments used to evaluate the performance of

the indirect inference estimator. The experiments examine the properties of the estimator as a
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function of the sample size and compare the e¢ ciency of estimators using linear and nonlinear

auxiliary models. Results show that 1) estimates are quantitatively close to the true values even

in small samples and regardless of whether one uses a linear or a nonlinear auxiliary model, but 2)

standard errors are smaller when one uses a nonlinear, rather than a linear, model.

Tables 1A and 1B report results of experiments using samples of 100, 200, 400, 1; 000, and

5; 000 observations with innovations drawn from GEV and normal distributions, respectively. The

data generating process (DGP) is the asset-pricing model in section 2 solved using a third-order

perturbation and the auxiliary model is nonlinear, as described in section 3. The binding functions

are impulse responses to productivity shocks in the 5th and 95th percentiles of the innovation

distribution. The shocks take place when the variables are at the mean of the ergodic distribution

and their e¤ect is traced out by simulating the auxiliary model for h = 10 periods. The estimated

parameters are the intertemporal elasticity of substitution ( ), the coe¢ cient of risk aversion (),

the capital adjustment cost parameters (� and �), and the parameters of the productivity shock

process. The true parameter values (see the top row of the tables) are similar to those obtained

from the estimation of the model reported in section 5. The discount rate is �xed to � = 0:998,

depreciation rate is �xed to � = 0:0225, the labor share (1� �) is �xed to 0:65, and the mean
gross rate of productivity growth is �xed to � = 1:0026. Results are based on 200 replications with

arti�cial samples �ve times larger than the actual sample (that is, � = 5). Table 1C report results

of experiments where the auxiliary model is linear and the binding function is the impulse response

to a productivity shock in the 95th percentile of the innovation distribution. Since the DGP is

exactly the same as in table 1A, comparing tables 1A and 1C is informative about the performance

of the estimator across auxiliary models.

The tables show that regardless of whether one uses a normal or a GEV distribution, and a linear

or a nonlinear auxiliary model, indirect inference delivers point estimates that are quantitatively

close to the true parameter values, even when the sample size is small. This result is due to the fact

that the indirect inference estimator is consistent for the structural parameters (see Gourieroux et

al., 1993, and Dridi et al., 2007). Notice, however, by comparing tables 1A and 1C that standard

errors are smaller in the former table, where the auxiliary model is nonlinear, than in the latter

one, where the auxiliary model is linear. This observation supports the conjecture that estimates

based on the nonlinear auxiliary model are generally more e¢ cient than those based on the linear

model. Finally note that, as one would expect, standard errors generally decrease as the sample

size increases in all tables.
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5. Empirical Application

This section illustrates the application of indirect inference to the estimation of the nonlinear asset

pricing model in section 2. In particular, this section provides empirical evidence for relaxing the

assumption of normally distributed productivity shocks, discusses the implementation of impulse-

response matching using the auxiliary nonlinear model, reports parameter estimates, and examines

the economic implications of the model.

5.1 Data

The asset pricing model is estimated using quarterly observations of stock returns, bond returns,

productivity growth, consumption growth, and investment growth from 1960:Q1 to 2017:Q4. Pro-

ductivity growth is measured using the series on the growth rate of total factor productivity (TFP)

constructed by John Fernald (see Fernald, 2014), which is available from the Federal Reserve Bank

of San Francisco website (www.frbsf.org).4 Consumption is measured by personal consumption

expenditures on non-durable goods and services. Investment is measured by the sum of personal

consumption expenditures on durable goods and private non-residential �xed investment. Both

series were divided by the consumer price index (CPI) and the civilian non-institutional population

to transform them into real per-capita variables. Bond returns are measured by the average return

of the three-month Treasury Bill in each quarter. The raw data used to construct the series of

consumption, investment, and bond returns were taken from the Federal Reserve Bank of St. Louis

website (www.stlouisfed.org). Stock returns were constructed using the quarterly value-weighted

index (including distributions) of the New York Stock Exchange, available from the Center for

Research in Security Prices (www.crsp.com). Nominal stock and bond returns were converted into

real returns using CPI in�ation.

Figure 1 plots the data (expressed in quarterly rates) in the upper panel and their histograms

in the lower panel. Table 2 reports descriptive statistics. In this �gure and table, productivity

innovations are the residuals of an ordinary least squares (OLS) regression of productivity growth

on a constant and its lagged value (see equation (8)). During the sample period, the average growth

rate of U.S. productivity is about 0:26% per quarter (that is, about 1% per year), while that of

consumption and investment are 0:37% and 0:34% per quarter, respectively. The average return

on stocks and bonds are 1:74% per quarter (or 7% per year) and 0:2% per quarter (or 0:8% per

year), respectively. As it is well know, consumption growth and bond returns have lower standard

4Fernald�s measure of productivity is TFP, while productivity in the model is labor productivity. However, under
the assumption that the elasticity of labor in the production function (that is, 1� �) is constant, the rate of growth
of both productivity measures is exactly proportional.
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deviations than investment growth and stock returns, and there is a large quantitative di¤erence

between the return of stocks and bonds, with the equity premium being 1:54% per quarter (or

about 6:2% per year). The histograms and statistics show that all series are negatively skewed

(except bond returns) and leptokurtic meaning that their tails are fatter than those of a normal

distribution. To see the latter point, recall that the kurtosis of the normal distribution is three and

note that all kurtoses in table 2 are larger than three.

The hypothesis that the data follow a normal distribution is tested using Jarque-Bera and

Lilliefors tests. The Jarque-Bera test is based on sample estimates of the skewness and excess

kurtosis, both of which should be zero if the data are normally distributed. The Lilliefors test is

a version of the Kolmogorov-Smirnov test used to evaluate the null hypothesis that the data are

drawn from a normal distribution with unknown mean and standard deviation. The p-values of

these tests are reported in table 2. These results provide statistical evidence of departures from

Gaussianity in the U.S. data in that the hypothesis of normality is rejected at the 5% signi�cance

level in all cases. The only exceptions are productivity growth and bond returns for which the

hypothesis is rejected at the 10% level by the Jarque-Bera and Lilliefors tests, respectively.

Although table 2 shows that the departures from Gaussianity in U.S. productivity growth are

statistically signi�cant, the table also shows that the unconditional skewness of productivity in-

novations and productivity growth are quantitatively smaller than that of the other series. This

observation suggests that a nonlinear propagation mechanism plays a substantial role in amplify-

ing the asymmetric e¤ects of productivity shocks on asset returns and on the rates of growth of

consumption and investment.

5.2 Estimation

The asset-pricing model is estimated using the indirect inference strategy proposed in section 3�

that is, by �nding the parameters that minimize the distance between impulse responses generated

by a projection of the U.S. data on a third-order polynomial of productivity growth and the re-

sponses generated by the same projection based on data simulated from the model. The binding

function are impulse responses to productivity shocks in the 5th and 95th percentiles of the in-

novation distribution for a horizon of 10 periods. For the computation of the impulse responses,

shocks are assumed to take place when the variables are at the mean of their ergodic distribution.

The simulated sample is 20 times larger than the U.S. sample. I estimate two versions of the

model with di¤erent distributions for productivity innovations, namely the GEV and the normal

distributions. Productivity growth is modeled as an AR(1), with this lag length selected using the

Bayes information criterion (BIC).
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The number of parameters in the auxiliary nonlinear model is 18. The parameters are �ve inter-

cepts, the autoregressive coe¢ cient of lagged productivity growth in the equation for productivity

growth, and the coe¢ cients for the linear, quadratic, and cubic terms of lagged productivity growth

in the equations for consumption growth, investment growth, stock returns, and bond returns. Note

that the parameters in the auxiliary equation for productivity growth correspond exactly to the

structural parameters in (8). The number of estimated structural parameters in the model with

normal innovations is six and in the model with GEV innovations is seven.

I also estimate the model with GEV innovations using a linear auxiliary model whereby pro-

ductivity growth, consumption growth, investment growth, stock returns, and bond returns are

projected on a constant and lagged productivity growth. In this case the binding function are

impulse responses to a productivity shock in the 95th percentile of the innovation distribution.

The number of parameters in the auxiliary model is 10: an intercept and a coe¢ cient of lagged

productivity growth for each of the �ve equations in the auxiliary model.

The weighting matrix, W , is the identity matrix. The Jacobian matrix, J , is computed by

taking numerical derivatives of (�; �T; h) with respect to � at the optimum. For the estimation of

the variance matrix, S, I follow Hall et al. (2012). Their bootstrap procedure involves estimating

synthetic regressions constructed using draws with replacement from the residuals of the regres-

sion estimated using the actual data, deriving the implied impulse responses, and computing the

variance-covariance matrix of these responses. I use 500 synthetic regressions, but results appear

robust to using similar values. For the minimization of the statistical objective function (equation

(15)), I use the derivative-free Nelder�Mead and switch to a gradient-based algorithm after 400

function evaluations to sped up convergence. For each model, I ran the estimation procedure sev-

eral times with starting values randomly chosen in a grid and report in section 5.3 the estimates

that correspond to the minimum value of the objective function across all runs.

Figure 2 plots the responses of U.S. consumption growth, investment growth, stock returns, and

bond returns to productivity shocks in the 5th and 95th percentiles of the innovation distribution.

Since the mean of the distribution is zero, the productivity shock in the 5th percentile is a negative

shock, while the shock in the 95th percentile is a positive shock. The responses are generated

from the estimated nonlinear auxiliary model and the plots are deviations from the mean of their

respective ergodic distributions. The horizontal axis in the �gure is quarters and the vertical axis

are quarterly rates (in percent). The most striking feature of this �gure is the asymmetry in the

e¤ects of positive and negative productivity shocks. In particular, the quantitative e¤ects of the

negative shock are larger than those of the positive shock in all cases. The positive shock to

productivity growth induces a temporary increase in all variables, except in stock returns which

13



decline on impact but increase thereafter approaching its long-run mean from above. The negative

shock induces the converse e¤ects but their magnitude is larger. Consumption growth decreases

�0:39 after the negative shock, but increases 0:17 after the positive shock; investment growth
decreases �1:11 after the negative shock, but increases 0:80 after the positive shock; and bond
returns decrease �0:11 after the negative shock, but increase 0:04 after the positive shock. The
asymmetry is the largest in the case of stock returns: the negative shock induces a decrease of

�2:29, while the positive shock has a non-monotonic e¤ect and induces an initial decrease of �0:39
followed by an increase of 0:12.

5.3 Parameter Estimates

Table 3 reports estimates of the intertemporal elasticity of substitution ( ), the coe¢ cient of risk

aversion (), the capital-adjustment cost parameters (� and �), the autoregressive coe¢ cient of

productivity growth (�), and the parameters of the distribution of productivity innovations. During

the estimation procedure the discount rate (�) was �xed to 0:998, the depreciation rate (�) was

�xed to 0:0225 meaning that the annual depreciation rate is approximately 9%, the mean of the

gross rate of quarterly productivity growth (�) was �xed to 1:0026 which is its mean during the

sample period, and the capital elasticity in the production function (�) was �xed to 0:35. The

latter �gure is consistent with data from the National Income and Product Accounts (NIPA) that

show that the share of capital in total income is approximately 35%.

Estimates of the intertemporal elasticity of substitution (IES) are about 0:012 for all auxiliary

models and distributions and they are statistically di¤erent from zero and one. These estimates

are consistent with values reported by Hall (1988), Epstein and Zin (1991), Vissing-Jørgensen

(2002), and Yogo (2006): Hall reports estimates between 0:07 and 0:35, Epstein and Zin between

0:18 and 0:87 depending on the measure of consumption and instruments used, Vissing-Jørgensen

between 0:30 and 1 depending on the households� asset holdings, and Yogo between 0:023 and

0:024 depending on the moments used to estimate the model. The meta-analysis of 169 studies

reported in Havranek (2015) suggests that the IES for asset holders is around 0:35. The coe¢ cient

of relative risk aversion varies from 83:1 (when innovations are GEV and the auxiliary model is

linear) to 155:1 (when innovations are normal and the auxiliary model is nonlinear). These estimates

are comparable to the estimate of 79 reported by van Binsbergen et al. (2012), but higher than

the value of 10 used as the upper limit by calibration studies in the �nance literature. Overall,

these results� low IES and large risk aversion� are typical of the macro-�nance literature with a

representative agent.

The estimate of the parameter that determines the asymmetry of the capital adjustment-cost
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function (�) is positive and statistically di¤erent from zero for the model where innovations are

GEV and the auxiliary model is nonlinear, but it is not statistically di¤erent from zero for the other

two models. This means that for the latter models, it is not possible to reject the hypothesis that

decreases and increases in the capital stock of the same magnitude are equally costly (that is, that

� = 0). In contrast, for the former model the hypothesis can be rejected at standard signi�cance

levels in favor of the alternative � > 0. The alternative implies that a decrease in the capital stock is

more costly than an increase of the same magnitude and, in this sense, investment is irreversible. I

examine this result in more detail below in section 5.4.3. Overall, however, this result illustrates the

importance of using a nonlinear auxiliary model for the estimation of nonlinear structural models,

because its more e¢ cient estimates can make a meaningful di¤erence for inference, in this case

about the irreversibility of investment.

Estimates of the autoregressive coe¢ cient of productivity growth and the standard deviation of

the innovations are similar across the three versions of the model. For the version where innovations

are GEV and the auxiliary model is nonlinear, the shape parameter is positive but quantitatively

small and not statistically di¤erent from zero. Thus, among extreme value distributions, the one

that best describes productivity innovations is the (reverse) Gumbel distribution. For the version

where innovations are GEV and the auxiliary model is linear, the shape parameter is positive

and statistically di¤erent from zero, which implies that productivity innovations follow a (reverse)

Fréchet distribution. However, the point estimate is quantitatively very close to zero and, thus,

the distribution resembles the (reverse) Gumbel distribution. In both cases the implied skewness

is relatively small, as it is the case in the U.S. data.

Figure 3 plots the estimated probability density function (PDF) of productivity innovations for

the three versions of the model. In this �gure, the units in the horizontal axis are standard deviations

from the mean. The panels for the GEV distribution also plot the PDF of a symmetric normal

distribution with the same variance (thin line). The negative skewness of the GEV distribution is

clear from this �gure: the distribution has less mass in the right tail and more mass in the left tail

than does the normal distribution. This means that large negative productivity innovations are

more likely than large positive innovations of the same magnitude. Since large negative draws from

the long tail of the distribution reduce output and dividends, shareholders are subject to skewness

risk.

5.4 Economic Implications

This section examines the implications of the model for the unconditional moments of the vari-

ables and the irreversibility of investment, it quanti�es the contribution of skewness risk to the
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equity premium, and it shows that the nonlinear model can endogenously generate conditional

heteroskedasticity in asset returns.

5.4.1 Moments

Figure 4 compares the moments predicted by the model (vertical axis) with those computed using

the U.S. data (horizontal axis). The moments are the mean, standard deviation, skewness, and

cross-correlations of productivity growth, consumption growth, investment growth, stock returns,

and bond returns. The continuous line is the 45 degree line. If the model were to perfectly match

the moments of the U.S. data, all dots would lie on this line. The �gure shows that in general all

models perform relatively well, and suggests that the version with GEV innovations and a nonlinear

auxiliary model does marginally better than the two other models in matching the moments of the

data. This impression is statistically con�rmed by the root mean squared errors (RMSE) reported

in the �gure, which the lowest for this model. However, the overall di¤erence in RMSE across

models is quantitatively very small.

A key moment of interest in the literature is the mean return of stocks compared with the mean

return of bonds. Their respective annual returns in the U.S. data are 6:98% and 0:79%. (These are

the values reported in table 2 multiplied by four to convert them into an annual rate.) Thus, the

excess return of stocks over the safe asset� that is, the equity premium� is approximately 6:2% per

year. When innovations are GEV and the auxiliary model is nonlinear, the model predicts mean

stock and bond returns of 7:92% and 1:02%, respectively, and, thus, an equity premium of 6:9%.

When innovations are GEV and the auxiliary model is linear, the predicted mean returns are 6:64%

and 0:90%, respectively, and when innovations are normal and the auxiliary model is nonlinear,

they are 7:94% and 0:85%, respectively. Hence, all versions of the model generate mean stock and

bond returns and equity premia in line with the historical data.

This result is primarily due to the large estimates of risk aversion coupled with low elasticity

of intertemporal substitution and adjustment costs to capital, which generate a volatile stochas-

tic discount factor (Jerman, 1998, and Campanale et al., 2010). Moreover, note that asymmetric

adjustment costs and negatively skewed productivity shocks render capital �riskier�in that poten-

tially large realization from the long tail of the shock distribution may require costly disinvestment

and a large, and potentially persistent, drop in dividends. This is why the models with negatively

skewed GEV innovations deliver the same equity premium as the model with normal innovations,

but with a much lower coe¢ cient of risk aversion.
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5.4.2 Composition of the Equity Premium

The third-order perturbation used to solve the model allows one to express the risk premia as a

function of the variance and skewness of the shock innovations (see Andreasen, 2012). In terms of

the solution written as in (13), the equity risk premium is

[p(st; �)]
j = (1=2)[p��(s; 0)]

j [�][�] + (1=2)[ps��(s; 0)]
j
a[(st � s)]a[�][�] (17)

+ (1=6)[p���(s; 0)]
j [�][�][�]:

The premium consists of a constant term in the variance of the productivity innovations, a time-

varying term in the variance and the current value of the state variables, and a constant term in

the skewness of the innovations. In the special case where the innovation distribution is symmetric,

and skewness is zero, the equity premium depends only on the variance terms (that is, the �rst two

terms in the right-hand side of (17)). Then, the key di¤erence is the term (1=6)[f���(s; 0)]j [�][�][�],

which is zero when the innovation distribution is symmetric and non-zero in the more general case

where the distribution is skewed.

Writing the solution for the equity premium as (17) is helpful because it permits its decompo-

sition into the parts attributable to the variance and to the skewness of productivity innovations

in the three versions of the model, and hence, to quantify the importance of skewness risk. For the

version where innovations are normal and skewness is zero, the model predicts (by construction)

that all equity premium is due to variance risk. In contrast, for the version where innovations are

GEV and the auxiliary model is nonlinear, estimates imply that skewness risk constitutes 24:4% of

the equity premium. For the version where innovations are GEV and the auxiliary model is linear,

estimates imply a similar share of 22%. These results suggests that skewness risk is a quantitatively

important part of the equity premium in the U.S. data.

5.4.3 Investment Irreversibility

Figure 5 plots the capital adjustment-cost functions implied by the estimated parameters reported

in table 3. The horizontal axis is the investment rate beyond that required to replace depreciated

capital and to keep up with the growth of labor productivity (that is, It=Kt � ��). The vertical

axis is the cost as proportion of steady state output. As reported in table 3, for the model where

innovations are GEV and the auxiliary model is nonlinear the estimate of the asymmetry parameter

in the cost function (�) is positive, quantitatively large, and statistically signi�cant. The fact that

� is statistically di¤erent from zero implies that the hypothesis that the adjustment cost function

is quadratic� and, thus, that increases and decreases of the capital stock of the same magnitude

involve the same cost� can be rejected. Moreover, the large positive value of � implies an L-shaped
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cost function whereby increasing the capital stock involves relatively low adjustment costs, but

decreasing the capital stock can be prohibitively costly for the �rm. In this sense, investment is

irreversible.

For the model where innovations are GEV and the auxiliary model is linear the estimate of the

asymmetry parameter is also positive but not statistically di¤erent from zero. Thus, although the

point estimate is suggestive of investment irreversibility, it is not possible to reject the hypothesis

that the adjustment cost function is quadratic. Thus, the use of a nonlinear versus a linear auxiliary

model for the indirect inference estimation of the model a¤ects the economic conclusions that can

be drawn about the irreversibility of investment and its implications for asset pricing.

Finally, for the model where innovations are normal and the auxiliary model is nonlinear the

estimate of the asymmetry parameter is negative but not statistically di¤erent from zero.

5.4.4 Conditional Heteroskedasticity

Most �nancial and macroeconomic series feature time-varying volatility and a large literature has

developed in econometrics and �nance to study this phenomenon. For the U.S. data examined

here, table 5 reports p-values of the Lagrange Multiplier (LM) test of hypothesis of no conditional

heteroskedasticity (Engle, 1982). The test is carried out on the residuals of the �rst-order autore-

gression of each series and the statistic is calculated as the product of the number of observations

and the uncentered R2 of the OLS regression of squared residuals on a constant and two of its lags.

Under the null hypothesis, the statistic is distributed chi-square with 2 degrees of freedom. As in

previous literature, the hypothesis can be rejected for stock returns, bond returns, and consumption

growth, but it cannot be rejected for investment growth and productivity growth.

Table 5 also reports results of tests carried out on arti�cial data generated from the models.

The length of the arti�cial data is twenty time larger than the actual U.S. data. For all versions of

the model, the hypothesis of no conditional heteroskedasticity cannot be rejected for productivity

growth, but it can be rejected for stock returns, bond returns, and investment growth. The key

observation here is that the conditional heteroskedasticity in asset returns arises despite the fact

that productivity shocks are conditionally homoskedastic (both in the models and the data) and

it is instead the endogenous result of the nonlinear propagation of the model. The result that

a nonlinear model can generate ARCH e¤ects, even when shocks are i.i.d. and parameters are

time-invariant, was �rst made by Granger and Machina (2006) and the result reported here is a

real-world illustration of their conjecture.

In order to understand this result further, it is helpful to refer back to the generic formulation

of the policy function in (13) and to notice that it includes a time-varying term in the variance,
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(1=2)[fx��(x; 0)]
j
a[(xt � x)]a[�][�]. This term makes the function resemble the ARCH-M model use

by Engle et al. (1987) to study the term structure, where the conditional variance directly a¤ects

the mean. However, the key di¤erence is that while in the ARCH-M model the conditional variance

is time-varying and its coe¢ cient is constant, in this model the conditional variance is constant (by

assumption) and its coe¢ cient is time-varying because it is a linear function of the state variables.

6. Conclusions

This paper proposes an impulse-response matching procedure for the estimation of nonlinear dy-

namic models by indirect inference. The procedure uses as auxiliary model a simple nonlinear

model based on Mittnik (1990) where variables are projected on a higher-order polynomial of ob-

servable state variables of economic model. Monte Carlo experiments indicate that estimates based

on the nonlinear auxiliary model are more e¢ cient than those based on a linear auxiliary model.

The proposed estimation method is introduced through its application to a nonlinear macro-�nance

model of asset pricing under skewness risk. The motivating evidence for studying skewness risk is

the empirical observation that productivity innovations, consumption growth, investment growth,

and stock returns are negatively skewed, and that test results reject the hypothesis that these data

are drawn from a symmetric, normal distribution.

Results show that the responses to productivity shocks are asymmetric in that negative shocks

induce larger responses than positive shocks. Since the skewness of productivity innovations is

relatively small, I conclude that a nonlinear propagation mechanism ampli�es the di¤erent way in

which positive and negative productivity shocks are transmitted through the economy. In addition,

I �nd that skewness risk accounts about for about approximately one-quarter of the equity risk

premium and that the nonlinear model can endogenously generate conditional heteroskedasticity.

Finally, the use of a nonlinear auxiliary model, rather than a linear model, for the estimation of

the model turns out to make here a meaningful di¤erence for the economic conclusions that can be

drawn from the analysis because only in the former case statistical inference supports the notion

that investment is irreversible.

In future research I examine the small sample properties of the proposed indirect inference esti-

mator and seek to relax the assumption that variables are projected on a polynomial of observable

state variables. This assumption is extremely convenient because it makes it easier to insure that

the nonlinear auxiliary model is stable and has no explosive paths regardless of the shock size, but

it may be restrictive in nonlinear models where all state variables are latent. Another important

issue to be addresses in future research is developing information criteria for the horizon of impulse

responses in the case where the auxiliary model is nonlinear.
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Table 1A. Monte Carlo Results:

GEV Innovations and Nonlinear Auxiliary Model

Parameter � �   � � #
True value 0:4000 0:0050 0:0200 80:000 200:000 1; 000:00 0:0950

T = 100
Mean 0:3976 0:0052 0:0193 77:367 192:133 1; 061:13 0:1006
Median 0:4036 0:0051 0:0193 78:176 185:651 1; 038:14 0:0969
S.E. 0:0026 0:0001 0:0003 1:291 2:795 42:03 0:0071

T = 200
Mean 0:3898 0:0050 0:0191 81:002 182:573 1; 005:61 0:0980
Median 0:3917 0:0050 0:0191 81:153 177:785 1; 022:24 0:0949
S.E. 0:0018 0:0001 0:0002 1:029 1:565 43:25 0:0061

T = 400
Mean 0:4062 0:0049 0:0196 79:127 191:116 907:37 0:1074
Median 0:4063 0:0050 0:0197 79:170 186:324 872:52 0:1019
S.E. 0:0014 0:0001 0:0001 0:850 1:428 31:35 0:0057

T = 1000
Mean 0:4037 0:0050 0:0199 78:106 187:447 1; 037:26 0:1049
Median 0:4048 0:0050 0:0199 78:063 184:824 1; 049:27 0:1004
S.E. 0:0009 0:0001 0:0001 0:5689 0:804 26:09 0:0036

T = 4000
Mean 0:4010 0:0050 0:0202 80:124 198:835 1; 033:57 0:0917
Median 0:4009 0:0050 0:0204 80:228 198:048 1; 013:45 0:0929
S.E. 0:0003 0:0001 0:0001 0:179 0:292 6:63 0:0012

Notes: T is the sample size, Mean and Median are respectively the mean and median of the

estimated coe¢ cients, and S.E. is standard error. In all experiments the following parameters were

�xed: � = 0:998, � = 0:0225, � = 0:35, and � = 1:0026. Arti�cial samples are �ve times larger

than the actual sample size (� = 5). The number of replications is 200.
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Table 1B. Monte Carlo Results:

Normal Innovations and Nonlinear Auxiliary Model

Parameter � �   � �
True value 0:4000 0:0050 0:0200 80:000 200:000 1; 000:00

T = 100
Mean 0:3795 0:0058 0:0209 74:669 234:067 935:20
Median 0:3622 0:0056 0:0207 71:552 212:403 974:80
S.E. 0:0022 0:0001 0:0004 2:315 2:953 77:42

T = 200
Mean 0:3987 0:0052 0:0208 78:599 214:080 1; 017:30
Median 0:3940 0:0050 0:0202 77:920 201:354 979:46
S.E. 0:0016 0:0001 0:0003 1:829 1:995 57:44

T = 400
Mean 0:3954 0:0051 0:0204 78:642 206:996 1; 064:71
Median 0:3895 0:0051 0:0203 78:376 198:686 1; 017:68
S.E. 0:0012 0:0001 0:0002 1:336 1:301 43:13

T = 1000
Mean 0:3943 0:0051 0:0202 78:762 207:016 1; 090:52
Median 0:3957 0:0051 0:0201 78:847 203:016 1; 062:82
S.E. 0:0007 0:0001 0:0002 0:869 0:749 26:59

T = 4000
Mean 0:3996 0:0050 0:0201 79:763 200:828 1; 024:73
Median 0:3998 0:0050 0:0201 79:775 200:311 998:60
S.E. 0:0002 0:0001 0:0001 0:3137 0:250 8:15

Notes: See notes to table 1A.
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Table 1C. Monte Carlo Results:

GEV Innovations and Linear Auxiliary Model

Parameter � �   � � #
True value 0:4000 0:0050 0:0200 80:000 200:000 1000:00 0:0950

T = 100
Mean 0:3969 0:0050 0:0203 80:652 212:420 915:12 0:0935
Median 0:3967 0:0049 0:0201 81:268 211:688 913:41 0:0935
S.E. 0:0029 0:0002 0:0004 3:677 6:142 134:690 0:0258

T = 200
Mean 0:3938 0:0050 0:0199 79:813 194:692 984:19 0:0970
Median 0:3962 0:0050 0:0199 80:393 199:768 978:08 0:0953
S.E. 0:0027 0:0002 0:0003 5:611 4:997 240:53 0:0416

T = 400
Mean 0:4002 0:0050 0:0200 79:516 200:061 1; 051:48 0:0957
Median 0:4021 0:0050 0:0200 79:769 201:147 995:43 0:0960
S.E. 0:0017 0:0001 0:0002 3:038 3:445 142:72 0:0260

T = 1000
Mean 0:4077 0:0050 0:0200 78:146 182:710 1; 139:51 0:0973
Median 0:4054 0:0050 0:0200 78:552 185:599 1; 100:36 0:0971
S.E. 0:0012 0:0001 0:0001 2:821 2:151 134:01 0:0231

T = 4000
Mean 0:4010 0:0050 0:0201 79:715 193:954 941:97 0:0956
Median 0:3994 0:0050 0:0201 79:967 194:056 940:71 0:0951
S.E. 0:0003 0:0001 0:0001 1:136 1:057 69:45 0:01049

Notes: See notes to table 1A.
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Table 2: Descriptive Statistics

Standard Jarque-Bera Lilliefors
Variable Mean Deviation Skewness Kurtosis Test Test

Productivity innovations 0:000 0:763 �0:059 3:970 0:018 0:005
Productivity growth 0:262 0:781 �0:018 3:674 0:087 0:013
Consumption growth 0:366 0:561 �0:455 5:393 < 0:001 0:004
Investment growth 0:340 1:984 �0:648 5:078 < 0:001 < 0:001
Stock returns 1:744 8:399 �0:740 4:179 < 0:001 0:002
Bond returns 0:197 0:656 0:457 3:654 0:009 0:074

Notes: The table reports descriptive statistics of the data and p-values of the Jarque-Bera and Lil-

liefors tests. Productivity innovations are the residuals of an ordinary least squares (OLS) regression

of productivity growth on a constant and its lagged value. The rates of growth (productivity, con-

sumption,and investment) and return (bond and stocks) are quarterly and expressed as a percent.

The sample consists of 232 quarterly observations between 1960Q1 and 2017Q4.
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Table 3. Parameter Estimates

Model
GEV GEV Normal

Description Notation Nonlinear Linear Nonlinear

IES  0:0121� 0:0137� 0:0124�

(0:0006) (0:0024) (0:0006)
Risk aversion  103:68� 83:08� 155:10�

(21:00) (24:27) (40:39)
Capital-adjustment cost � 481:18� 0:545 12:07

(122:22) (16:795) (18:660)
Asymmetry parameter � 26; 838:7� 1; 616:7 �1; 633:8

(5; 627:7) (28; 954:4) (991:9)
Autoregressive coe¢ cient � 0:0726� 0:2614� 0:2716�

(0:0056) (0:0382) (0:0679)
Scale parameter � 0:0054� 0:0062� 0:0049�

(0:0012) (0:0021) (0:0012)
Shape parameter # 0:0935 0:00003� �

(0:0693) (< 0:00001)

Notes: The table reports indirect inference estimates of the model parameters. The �gures in

parenthesis are standard errors. The superscript � denotes statistical signi�cance at the 5% level.

For the versions where the auxiliary model is nonlinear, the binding function is impulse responses

to productivity growth innovations in the 5th and 95th percentiles of the respective distributions.

For the version where the auxiliary model is linear, the binding function is impulse responses to

productivity growth innovations in the 95th percentile of the distribution. In the case of the Normal

distribution, the scale parameter is the standard deviation.
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Table 4. Composition of the Equity Risk Premium (in %)

Model
GEV GEV Normal

Nonlinear Linear Nonlinear

Variance risk 75:59 77:99 100
Skewness risk 24:42 22:01 0

Note: The tables reports the decomposition of the equity risk premia between variance and skewness

risk in percent.
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Table 5. Test of No Conditional Heteroskedasticity

Model
U.S. GEV GEV Normal

Description Data Nonlinear Linear Nonlinear

Productivity growth 0:143 0:665 0:647 0:420
Consumption growth 0:009 0:193 0:659 0:480
Investment growth 0:116 < 0:001 < 0:001 < 0:001
Stock returns 0:079 < 0:001 < 0:001 < 0:001
Bond returns 0:072 < 0:001 < 0:001 < 0:001

Note: The table report p-values of the test of the hypothesis of no conditional heteroskedasticity

(Engle, 1982). Tests on data generated from the model were carried out on arti�cial series with

4640 observations.
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Figure 1: U.S. Data
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Figure 2: Impulse Responses to a Productivity Shock



-3 -2 -1 0 1 2 3

GEV
Nonlinear

Standard Deviation
-3 -2 -1 0 1 2 3

GEV
Linear

Standard Deviation
-3 -2 -1 0 1 2 3

Normal
Nonlinear

Standard Deviation

Figure 3: Estimated Probability Density Functions



-2 0 2 4 6 8
-2

0

2

4

6

8

GEV
Nonlinear

Moments U.S. Data

Pr
ed

ic
te

d 
M

om
en

ts

-2 0 2 4 6 8
-2

0

2

4

6

8

GEV
Linear

Moments U.S. Data

Pr
ed

ic
te

d 
M

om
en

ts

-2 0 2 4 6 8
-2

0

2

4

6

8

Normal
Nonlinear

Moments U.S. Data

Pr
ed

ic
te

d 
M

om
en

ts

RMSE = 1.52 RMSE = 1.55 RMSE = 1.54
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Figure 5: Estimated Capital Adjustment-Cost Functions




