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Abstract

This paper presents micro-econometric evidence for the mechanism of collabo-
rative knowledge creation at the level of individual researchers based on Berliant
and Fujita’s (2008) model. The key driver for developing new ideas is found
to be the exchange of differentiated knowledge among collaborators. To stay
creative, inventors seek opportunities to shift their technological expertise to un-
explored niches by utilizing the differentiated knowledge of new collaborators,
in addition to their own stock of knowledge. While collaborators” differentiated
knowledge raises all the average cited count, average technological novelty and
the quantity of patents for which an inventor contributes to the development, it
has the largest impact on the average novelty among the three.
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1 Introduction

Knowledge creation has been a key factor in various aspects of economic modeling.
Some of the new ideas result in innovations, which fuel economic growth.! The
structure of market and competition may be subject to the extent of diffusion and
imitations of invented technologies.? Furthermore, the concentration of research and
development (R&D) activities is the defining feature of the largest cities.® Yet, the
mechanism of knowledge creation — at the ultimate micro level of individual inven-
tors — has not been explicitly specified in these strands of the literature. Empirical
studies are necessarily scarce.* In this study, we investigate data on Japanese patents
applied between 1995 and 2009. Given that about 90% of patents were developed
in collaborations, we focus on causalities in collaborative knowledge creation based
primarily on the microeconomic model proposed by Berliant and Fujita (2008).

We consider two complementary measures of output from a given patent project:
one reflecting quality based on forward citation counts and the other reflecting novelty
based on the timing of each patent application in the relevant technological category.
The productivity of a given inventor is then defined in terms of the quality/novelty-
adjusted count of patents in which this inventor participated.

Under either measure, our data indicate the presence of substantial downward
pressure on inventor productivity: fewer than half of inventors with above-median
productivity in a given period maintain at least the same relative productivity in the
next period, where some top inventors stay highly productive, while some inferior
inventors overthrow superior ones and climb the productivity ladder.® Overall, the
substantial churning of relative productivities of inventors is observed over time.

The extant literature provides plausible explanations for the declining trend of
inventor productivity. On the one hand, inventors have an incentive to stick to
established technologies since they have accumulated expertise on them through
learning-by-doing (Horii, 2012). On the other hand, once made public, technologies
face incessant innovations by which new technologies replace old ones (e.g., Gross-
man and Helpman, 1991b; Klette and Kortum, 2004). Publicized technologies also
attract imitations that deprive opportunities to profit by refining them (e.g., Chu,
2009; Cozzi and Galli, 2014). The latter negative effects eventually dominate, since

For example, Romer (1990); Grossman and Helpman (1991a); Aghion and Howitt (1992); Kortum
(1997); Klette and Kortum (2004); Acemoglu et al. (2017); Akcigit and Kerr (2018).

2For example, Grossman and Shapiro (1978); Chang (1995); Matutes et al. (1996); Schotchmer
(1996); Konig et al. (2014); Panebianco et al. (2016).

3For example, Duranton and Puga (2001); Bettencourt et al. (2007); Davis and Dingel (2018).

4Somewhat informal studies can be found in, for example, Breschi et al. (2003); Garcia-Vega (2006);
Ostergaard et al. (2011); Huo and Motohashi (2015); Inoue et al. (2015); Akcigit et al. (2018).

5Since an applied patent does not necessarily result in an innovation, our analyses are essentially
about knowledge creation rather than innovation, although we use these two terms interchangeably.

®Here, three five-year periods between 1995 and 2009 are considered.
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learning-by-doing is subject to decreasing returns (Horii, 2012).

How do successful inventors stay productive in these circumstances? Horii (2012)
proposed a model of innovation associated with technological shifts. In his model,
consumers wish to satisfy an indefinite range of wants, which induces an inventor to
seek an unexplored technological niche where he or she can create demand for new
products realized by new technology. While his model lacks a micro mechanism
behind the technological shifts, it is complemented by Berliant and Fujita (2008).”

In the Berliant-Fujita model, agents communicate via common knowledge and
invent in pairs by utilizing their mutual differentiated knowledge, where an appro-
priate balance between common and differentiated knowledge facilitates collabo-
rative innovation. A longer duration of collaboration by the same pair increases
their common knowledge while decreasing their mutual differentiated knowledge,
which at the same time accumulates differentiated knowledge between them and the
remaining agents. To maintain the best knowledge composition, agents optimally
choose the set of their collaborators and the allocation of time for each collaboration.

Given these facts and theoretical backgrounds, we develop three separate regres-
sion models. The first model represents the pairwise “knowledge creation function”
proposed by Berliant and Fujita (2008). In this model, we focus on the differentiated
knowledge of collaborators, as this is an obvious source of new ideas that would
take an inventor to an unexplored technological niche. It is quantified in terms of the
quality/novelty-adjusted output of the collaborator excluding the patents developed
jointly with the inventor. We find that a 10% increases in collaborators” differen-
tiated knowledge for an inventor raises his or her quality- and novelty-adjusted
research output by around 2.8% and 3.5%, respectively, which thus implies positive
but decreasing returns of this knowledge, consistent with the theoretical model.

In the second model, we decompose the contribution by collaborators” differenti-
ated knowledge to the research output of an inventor (computed from the regression
of the first model) into the fraction accruing to the quality/novelty and that to the
quantity of his or her output. We find that the contribution is mostly dedicated
to increasing the quantity, rather than the quality, of research output under the
quality-adjusted productivity measure. But, as large as around 65% of the contribu-
tion accounts for increasing the novelty, rather than the quantity, of research output
under the novelty-adjusted productivity measure. It follows that a major role of col-
laboration is to induce the technological shift of an inventor to a new niche, which
is consistent with Berliant and Fujita (2008) as well as Horii (2012).

In the third model, we probe into the factors determining the amount of differen-

’The Berliant-Fujita model is to our knowledge the only explicit formalization of collaborative
innovation at the individual inventor level. Weitzman (1998) and Olsson (2000, 2005) proposed
formulations in which new ideas are generated by the recombinations of extant ideas. However, in
their models, the process through which such recombinations take place are passive.
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tiated knowledge that each inventor obtains from his or her collaborators. Here, we
focus on the role of collaborator recombinations and find that a more active recombi-
nation has a selection effect in collaborations, resulting in a set of new collaborators
with a larger average differentiated knowledge. We find that a 10% increase in the
new collaborators of an inventor raises the average quality- and novelty-adjusted
differentiated knowledge of collaborators by around 14% and 18%, respectively.
While we also find that more able collaborators tend to be attracted to the top
inventors with a particularly large stock of knowledge, inventors with a smaller
stock of knowledge may still be able to compensate for their shortage of knowledge
by more active recombinations of collaborators. These findings explain the observed
upgrading of inferior inventors as well as the persistent productivity of top inventors.
In these regressions, we control for individual fixed effects by exploiting panel
data, and a variety of firm, industrial as well as other local factors. Yet, we face
identification problems due to network endogeneity stemming from endogenous
collaborations of inventors to maximize their productivities. The identification and
estimation of models with endogenous networks are substantial challenges in the
literature on network econometrics (e.g., Jackson et al., 2017). We argue, however,
that each endogenous variable for an inventor in our models can be reasonably
instrumented by the average value of the same variable for his or her distant indirect
collaborators. Typically, adding degrees of separation in the network is double-
edged, since it not only reduces the reflection problem but also makes the instrument
weaker. But, we benefit from a special situation in which the relevance of the
instrument is extrinsic to the inventor network as it comes from the assortative
matching by productivity among firms and workers. The matching is essentially
exogenous to individual inventors given that it takes place prior to the formation
of research network, and is based on more diverse aspects than on R&D activities.®
As a consequence, the relevance of the instruments is maintained even when the
information of only distant indirect collaborators is used, as long as the assortative
matching affects the indirect collaborators and the targeted inventors simultaneously.
The rest of the paper is organized as follows. We start by making key observations
about the dynamics of knowledge creation and inventor productivities in Section 2.
The related literature is reviewed in Section 3. The Berliant-Fujita model is described
in Section 4 and the corresponding regression models are developed in Section 5.
Data are detailed in Section 6, the identification strategy is discussed in Section 7,
and the baseline regression results are presented in Section 8. A series of robustness

checks are done in Section 9. Concluding remarks are made in Section 10.

8See, for example, Mori and Turrini (2005); Mendes et al. (2010); Bartolucci and Devicienti (2013);
Behrens et al. (2014); Eeckhout and Kircher (2018); Gaubert (2018). In Section 7.3, we add supportive
evidence from the financial and ownership data of firms in Japan.
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2 Facts

To guide our analyses to follow, we make three observations on patent development

in Japan, while postponing the description of the data to Section 6.

2.1 Productivity of an inventor

Our panel data consist of three periods, each of which aggregates five consecutive
years: period 0 includes years from 1995 to 1999, period 1 from 2000 to 2004, and
period 2 from 2005 to 2009. We focus on the balanced set I of 107,724 inventors, each
of whom participated in at least one patent in each period.

Let Gi be the set of patents in which inventor i participates in period ¢, and G;
for j € Gj; be the set of inventors who participate in patent j. Denoting the output of
patent project j by a scalar g; > 0, the productivity of inventor i is defined in terms of
the total output of patents in which he or she participated, with the output of each

patent being discounted by the number of inventors involved in the patent:

7= 8/IG| (2.1)
JEGit

where IG]'I means the cardinality of set G]'. (Hereafter, the expression |X]| for any set
X means the cardinality of X.)

We consider two aspects of inventor productivity. One is quality based on cited
count, where g; represents the count of citations that patent j received in three years of
publication. The other is novelty, where g; represents the degree of technological novelty
of patent j defined by the reciprocal, 1/7}, of the order, r; =1,2,..., of j in terms of its
application date among all the patents classified in the same technological category
as j.210 The technological category of a patent is identified by the “subgroup” of the

International Patent Classification (IPC) in the baseline analyses.11

9Our data include all the patents applied in 1993 and thereafter as well as some older applications
published in 1993 or later. Thus, by construction, our measure of novelty tends to overstate the
novelty in technological categories defined before 1993. However, since our regression analyses use
novelty data from 2000 and later (i.e., periods 1 and 2), the effect of truncation should not be too
problematic as we have a seven-year lead time before 2000. The remaining overstatement is also
controlled by the period fixed effect.
1°Our novelty measure reflects nicheness of technological invention publicized by the patent. It can
also be interpreted as an inverse measure of crowdedness in the market for the technological category.
T About 40,000 IPC subgroups are active in each period, and a single primary IPC subgroup is
assigned to each patent. Refer to Section 6.1.2 for the details.
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2.2 Dynamics of the relative productivities of inventors

This section discusses the dynamics of relative productivities of inventors. Let
I ;rOP (x) represent the set of inventors in the top x% in I in terms of their productivity in
each period t = 0,1, and 2. The set of inventors in each 5% interval of the productivity
percentiles from 0% to 100% can then be expressed by I'+(x) = ItTOP(x)\ItTOP(x —5) for
x =5,10,...,100, where “\” is a set difference operator. Call I'y(x) the (productivity)
class x of inventors in period .

For classes, x =5,10,...,100, under quality- and novelty-adjusted productivities,
the height of each blue bar in Panels (a) and (b) in Figure 2.1, respectively indicates
the share of inventors of class x in period 0 who stay at least in the same class x’ (< x)

in period 1. The graphs reveal a clear pattern:'?

Observation 1 (Churning of relative productivities) Under either measure of produc-
tivity, fewer than half of inventors above the median productivity x < 50 in period t—1
remain at least as productive in period t € {1,2}, indicating a strong pressure to prevent
inventors from maintaining their relative productivity. In other words, a sizable proportion

of inferior inventors replace superior ones in their productivity ranking in each period.

(a) Quality adjusted (b) Novelty adjusted

1 1
00 = To the top 5% 00 = To the top 5%

= To the current ranking or higher 80 = To the current ranking or higher

80

60 60
Share (%) 50 ———————————=— B T
40 40

20 20

0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Quality-adjusted productivity percentile (top %) Novelty-adjusted productivity percentile (top %)

Figure 2.1: Change in the productivity class of inventors from period 0 to period 1

As discussed in the Introduction, a major reason for this downward pressure may
be the obsolescence and imitations of technologies as well as decreasing returns in
learning-by-doing from the extant technologies. Yet, we find that some top inventors
stay highly productive, while some inferior ones surpass superior inventors. Each
red bar in Figure 2.1 indicates the share of inventors in the corresponding class in
period 0 who transitioned to the top 5% class in period 1. Although upgrading to
the top 5% is less likely for inventors in a lower class, the transitions are observed

from a wide range of lower classes.!

12A similar result is obtained for the transition from periods 1 to 2.
13 A similar observation was made for US data between 1880 and 1940 by Akcigit et al. (2017), who
found evidence that new inventors receive more patent citations than incumbent inventors.
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2.3 Collaborator recombinations and technological shifts

We next present the key relationship among productivity, collaboration, and techno-
logical specialization of inventors that suggests the mechanism behind knowledge
creation. Let

Nit = Ujeg, G\ i} (2.2)

represent the set of collaborators of inventor i € I in period ¢ such that each inventor
in Nj; participates in the development of at least one common patent with i in period

t. The collaborator recombination of inventor i in period ¢ is then defined by
Anj = |Nj\Nj 11| (2.3)

i.e., the number of new collaborators in period t1% The average values of An; for
inventors in I are 9.84 and 6.37 in periods 1 and 2, respectively. Provided that the
number of collaborators is the same across periods, these values coincide with the
average numbers of collaborators that were replaced.

Next, define the technological specialization of inventor i in period t by set S;
of the IPC subgroups associated with the patents in which inventor i is involved
in period t. The technological shift of inventor i is then defined, similarly to the
collaborator recombination in (2.3), by the number of IPC subgroups in which i is

newly specialized in period ¢:
Asit = [Sit\Si -1l (2.4)

The average values of As;; are 4.41 and 2.66 in periods 1 and 2, respectively. High
correlations, 0.55 and 0.54, between In An;; and In As;; in periods 1 and 2, respectively
suggest that new collaborations result in a shift in inventors’ technological expertise.

For what purpose, do inventors shift their technological specialization? As dis-
cussed in the Introduction, Horii (2012) considered an economy in which demand
for new technologies always exists, so that inventors have incentives to shift their
technological expertise to unexplored niches and develop novel technologies. If
the collaborator recombination is an effective means for this purpose as modeled
by Berliant and Fujita (2008), other things being equal, he or she is more likely to
achieve a technological niche (i.e., a larger novelty-adjusted 7;;) in the current period
through the technological shift, As;;, realized by a larger collaborator recombination,
Anj, from the previous period.

In the Berliant-Fujita model, technological shifts are realized by utilizing the

4 Alternatively, it may be defined by the sum of the number of new collaborations and that of
separations from the collaborations in the previous period, i.e., Anj = [N;\Njt—1|+ [N;¢—1\Ni|. The
qualitative result remains the same under both definitions.
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differentiated knowledge of new collaborators. Our data are highly suggestive of
this causality, as the correlations between novelty-adjusted In;; and InAs;; are 0.30
and 0.29 in periods 1 and 2, respectively, in addition to the high correlation between
InAs;; and In Anj; mentioned above.

These high correlations naturally extend to include the quality-adjusted pro-
ductivity measure. To see this, consider the sets of inventors who stay in a given
quality-adjusted productivity class x = 5,10, ...,100 persistently in both periods 1 and
2,ie., I'(x) = Ni=1 2I't(x). Denote the average collaborator recombination by an inventor
in class x in period t by )

M) = s i;;) Anjy (2.5)

the average technological shift by an inventor in class x in period ¢ by

— 1 .
ASt(X) = m ZerZ(}() ASlt (26)

and the average productivity of an inventor in class x in period t by

_ 1 _
= ey 2 27
iel'(x)
20 _ 0.25
—An; — As; = Y1 (novelty-adjusted)
—Ang —— Asy J2 (novelty-adjusted) 0.20
0.15
Yt (novelty-adjusted)
0.10
0.05
0.00

0 10 20 30 40 50 60 70 80 90 100
Quality-adjusted productivity percentile (top %)

Figure 2.2: Recombinations, technological shifts, and productivities of inventors

Figure 2.2 plots An(x), As¢(x), and novelty-adjusted i for t = 1,2 for each quality-
adjusted productivity class x = 5,10,...,100. There is a clear increasing tendency of
all three measures for more quality-wise productive inventors (i.e., for a smaller x).

Taken together, our observation can be summarized as follows.

Observation 2 (Recombinations, technological shifts, and inventor productivities)
A more quality-wise productive inventor practices a more active recombination of collabora-
tors and is associated with a larger technological shift as well as higher novelty in the created

knowledge on average.
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2.4 Invention strategies by productivity level

Our final observation is on the difference in the actions taken by inventors with dif-
ferent productivity levels. Panels (a) and (b) in Figure 2.3 show the distributions of
collaborator recombinations and the novelty-adjusted productivity of inventors in
period 1 for the top 10% and bottom 10% inventors under quality-adjusted produc-
tivity.1>-16 Both distributions are substantially right skewed for the top 10% inventors.
That is, although both Anj and the novelty-adjusted 7;; are larger on average for the
top 10% than the bottom 10% inventors, a substantial population of the top 10% do

not seek new collaborations or novelty in developed technologies.

(a) Collaborator recombination (b) Novelty-adjusted productivity
1400 Top 10% 3000 — Top 10%
Bottom 10% Bottom 10%
1200 Average 2500 7Average
5 1000 2000
g
o 800
g 500 1500
—
= 1000
400
200 | 500
0 l I I I I | 0 -
0 10 20 30 40 50 60 70 80 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Any Y1 (novelty-adjusted)

Figure 2.3: Collaborator recombinations and novelty-adjusted productivity of the
top 10% and bottom 10% inventors quality-wise in period 1

On the one hand, the top 10% inventors appear to rely on their high innate
ability and/or a large stock of knowledge to maintain their high quality-adjusted
productivity without seeking novel technologies. On the other hand, in the context
of the Berliant-Fujita model, the right skewness of the red plots in Figure 2.3 implies
that an inventor without high innate ability or a large stock of knowledge may still
be able to raise his or her productivity by finding new collaborators who have more
relevant differentiated knowledge to enhance his or her technological expertise.

The difference in invention strategy between more and less established inventors
is actually suggested by the data directly. To see this, let the size of knowledge
stock of inventor i in period t be quantified by the cumulative number of techno-
, that inventor i has worked on in the past.!” Let

logical categories, kj; = |tUt Sy
'<

Top 5% . o :
An tOP (x) represent the average size of collaborator recombinations by inventors

who upgraded their productivity class from x in period t -1 to the top 5% in period
t. Similarly, let An?own(x) be the average size of the collaborator recombinations of

I5Namely I'(5) UT(10) and T(95) UT(100), respectively

16Similar distributions are obtained for period 2.

7The top 5% inventors quality-wise have on average 3.3 and 2.3 times more stock of knowledge
than the bottom 5% quality-wise in periods 1 and 2, respectively, so that established inventors can
potentially rely more on their stock of knowledge to create new knowledge than less established ones.
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inventors who downgraded their productivity class from x in period t—1 to x" > x
in period t for x =5, 10, .. .,95.18

Panels (a) and (b) in Figure 2.4 plot the ratio of relative size of collaborator
Top 5%
t

productivity class x under quality- and novelty-adjusted measures of productivity,

recombination, An (x)/An?own(x), of up- to downgrading inventors for each

respectively.
(a) Quality adjusted (b) Novelty adjusted
7 3.00+
— Period 1 2751 T Period 1
61 —— Period 2 ' — Period 2
2.50+
5
Angr % 2.25-
Down
Angon 4 2.00
3 1.75+
2 1.50+
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Knowledge stock percentile (top %) Knowledge stock percentile (top %)

Figure 2.4: Recombination of up- versus downgrading inventors in period 1

Although the case of novelty-adjusted productivities in period 2 shown in Figure

2.4(b) is an exception, one can find a general tendency summarized as follows.

Observation 3 (Collaborator recombination versus stock of knowledge) Inventors
with a larger stock of knowledge rely relatively more on their own stock of knowledge than
knowledge from new collaborators for inventing, while the opposite is true for inventors with
lower stock of knowledge.

3 Literature

The literature related to knowledge creation is diverse, including economic growth,

industrial organization, and regional economics. This section provides an overview.

3.1 Theories

The first formalization of intentional innovation was in the public research sector
by Shell (1966, 1967). A large variety of market-driven innovations by private
sectors were proposed in the 1990s and thereafter (e.g., Romer, 1990; Grossman
and Helpman, 1991b,a; Aghion and Howitt, 1992; Kortum, 1997), where investment
decisions on R&D were explicitly modeled. The positive externalities from the
accumulated human capital improved productivity in knowledge creation and drove
economic growth in these models. Klette and Kortum (2004) linked innovation

18The lowest class x = 100 is omitted since there is no further downgrade from there.
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technologies at the firm level to firm dynamics and then to growth at the economy
level by extending the quality ladder-model by Grossman and Helpman (1991b),
and a number of extensions of their model followed (e.g., Lentz and Mortensen,
2008; Akcigit and Kerr, 2018; Akcigit et al., 2016; Acemoglu et al., 2017). In their
model, the product scope of a firm is interpreted as the stock of knowledge, which
agrees with the argument by Weitzman (1998) that a new idea can generate a larger
number of other new ideas if recombined with a larger number of existing ideas.
These models, however, abstract from the mechanism through which the stock of
knowledge is utilized by inventors in a firm to make innovations happen.?

The strategic aspects of innovation by individual firms have been explored by
utilizing the techniques of industrial organization and network science. For ex-
ample, Konig et al. (2014) formulated a trade-off between R&D collaborations and
product market competition among firms when R&D investment of a firm reduces
not only the production cost of this firm, but also those of collaborating competi-
tors. Panebianco et al. (2016) formalized the mechanism of technology diffusion
among firms by modeling the market for innovation and the timing of diffusion in
a given network of firms. However, they still abstracted from the mechanism of
knowledge creation as well as from the endogeneity of firm network in which R&D
collaborations or innovation diffusion take place.??!

The literature on knowledge creation at the inventor level is scarce. To our
knowledge, Olsson (2000, 2005) was the first successful attempt to formalize the
notion of cogitation by an inventor in developing new ideas. Knowledge creation in
his models, however, is treated as passive, following a given stochastic process.

The work by Berliant and Fujita (2008) is, to our knowledge, the first to formal-
ize active knowledge creation by individual inventors, with a focus on collabora-

tive knowledge creation.?2-%

In their model, the steady-state size of a collaborating
set of agents depends on the relative importance of common versus differentiated
knowledge, where a larger size will result if differentiated knowledge is more ap-
preciated.The typical steady state of their model, however, does not replicate the

observed churning of relative productivity among inventors discussed in Section 2.

19 As an exception, a recent contribution by Akcigit et al. (2018) extended quality ladder models of
growth by introducing endogenous formation of a research team in which each ex ante homogeneous
individual inventor faces an endogenous choice to become a team leader or a team member.

20See also Yang and Maskus (2001); Glass and Saggi (2002); Tanaka (2006); Tanaka et al. (2007) for
related analyses in the context of economic growth.

2L This topic has often been studied in conjunction with cost and benefit of the properties of a given
patent system (e.g., Grossman and Shapiro, 1978; Chang, 1995; Matutes et al., 1996; Schotchmer, 1996).

2Jovanovic and Rob (1989) proposed a related search model in which collaborations with more
able partners are more likely to result in the development of better knowledge.

A variety of extensions of Berliant and Fujita (2008) have been proposed. Berliant and Fujita
(2011) augmented their model with foresights and the possibility of learning from public knowledge;
Berliant and Fujita (2012) introduced the variation in distance among agents; and Berliant and Mori
(2017) allowed for heterogeneity in the innovation technology among inventors.
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Horii (2012) complemented the Berliant-Fujita model in this aspect. In his model,
consumers have an indefinite range of wants and thus demand for new technologies
always exists. On the production side, learning-by-doing and local spillovers from
the technological vicinity induce innovations to take place at discrete locations in
the technological space. As the productivity improvement from learning-by-doing
is subject to decreasing returns, there is an incentive to deviate from the extant
technology and innovate in a distant unexplored niche in which a firm can rouse
demand for the new technology and make a profit. The cost of the technological
shift in this deviation is implicit in Horii (2012), and the collaborative knowledge
creation in Berliant and Fujita (2008) complements this aspect in return by providing

a micro mechanism for achieving the shift.

3.2 Empirics

A sizable literature on the effects of R&D investment on innovation, firm produc-
tivity, and economic growth in a country started in the 1960s (e.g., Griliches, 1964,
1979; Scherer, 1982; Coe and Helpman, 1995). In particular, after Kortum (1997) and
Klette and Kortum (2004), studies began to structurally estimate the variations of
their models by using firm-level micro data (e.g., Lentz and Mortensen, 2008; Akcigit
etal., 2016; Acemoglu et al., 2017; Akcigit and Kerr, 2018). While these studies relate
innovation behavior, size and growth of firms to aggregate economic growth, their
models are not designed to disclose the innovation mechanism at the inventor level
within a firm, and the innovation technologies are typically not estimated directly.

One exception is the work by Akcigit et al. (2018), who estimated a reduced-
form model of team-level innovation similar to the knowledge creation function
of the Berliant-Fujita model. Their key variable is the quantity and quality of the
interactions within a team. The crucial difference from our approach is that their
“interaction” effect comes from the past experience of the team leader, rather than
from the his or her present collaborators (as in our case).

Another large strand of the literature is on knowledge spillover and diffusion
(e.g., Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al., 2014; Kerr and
Kominers, 2015). Its concern is on the distance and routes on which innovated
technology and knowledge spread, not on how the knowledge is created.

Breschi et al. (2003); Garcia-Vega (2006); Ostergaard et al. (2011) developed mea-
sures of common and differentiated technological knowledge relevant for inno-
vation, showing that diversified knowledge as well as the mutual relatedness of
knowledge within a firm and the innovation productivity of the firm are positively
correlated. By using Japanese patent data similar to ours, Huo and Motohashi

(2015) found a positive correlation between differentiated knowledge among inven-
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tors within a firm and their innovation productivities, whereas Inoue et al. (2015)
focused on innovations by firm pairs, and argued that there is a decreasing return
to common knowledge between collaborators. However, these studies ignore the
endogeneity of collaborations, and thus the underlying causality is not clear.
Finally, this paper is also related to econometric identification and estimation in
the context of a linear model in which some regressors are derived from endoge-
nous network formation. The network endogeneity that arises in this study comes
from inventors’ strategic interactions to maximize their productivity by collabora-
tions. Most common way to deal with network endogeneity is to consider network
formation model to identify and estimate the parameters of interest (e.g., Goldsmith-
Pinkham and Imbens, 2013; Hsieh and Lee, 2016, Comola and Prina, 2014; Li and
Zhao, 2016; Patacchini et al., 2017; Johnsson and Moon, 2017).24 However, this ap-
proach imposes parametric restrictions on the network formation model, and the
estimation is biased when the model is misspecified. Since the model by Berliant
and Fujita (2008) provides no simple econometric model of network formation as
will be clear in Section 4, this traditional approach fails in our case. Thus, in con-
trast, in this paper we do not suppose any parametric model of network formation;
instead, we propose an alternative approach to deal with endogenous regressors for
an inventor by instrumental variables that are constructed from the information of

his or her indirect collaborators.

4 The Berliant-Fujita model

This section provides a brief overview of the theoretical model of knowledge creation
proposed by Berliant and Fujita (2008).

In a given period of time, each agent develops new knowledge either in isolation
or by collaborating in pairs, building on the stock of knowledge accumulated in the
past. Let I be the set of all the agents who engage in knowledge creation, where
all agents are assumed to be symmetric. Let §;; € [0,1] be the proportion of time
that agent i € I allocates for the collaboration with j € I. If agent i works in isolation
(i.e., collaborates with him- or herself), his or her knowledge creation is subject to

constant returns technology, given by

(4.1)

| aki, 6ii€10,1]
Yii = 0, otherwise

where a > 0, kj; is the knowledge stock of agent i, and y;; is the output. If he or she

24 Another typical approach assumes exogeneity of network structure (e.g., Bramoull¢ et al., 2009;
Bramoullé and Fortin, 2010; Akcigit et al., 2018).
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instead collaborates with agent j(+# i), the joint output, y;;, of this collaboration is

given by ) y y
b{k) (k7)™ (k5) ™ o€ 10,1]

0, otherwise

Yij = (4.2)
where b > 0, kZ.C]. is the common knowledge between i and j, kg is the knowledge
of agent i differentiated from that of j, and 0 € (0,1) is the relative importance of
common knowledge.

All knowledges are symmetric, and the output from the collaboration of agents i
and j becomes their common knowledge. Thus, the common knowledge between i
and j increases as their collaboration lasts longer, while the differentiated knowledge
between i with other agents also increases relative to their common knowledge.
To achieve the best combination of common and differentiated knowledge with
collaborators, agents collectively decide the group of collaborators, where each agent
i optimally chooses 6;; for each j of his or her collaborators.?

In this context, the steady-state group size that maximizes growth in the knowl-
edge stock is given by 1+1/0, and the time allocation for collaborations is given by
6;j=6=1/(1+1/0)foralli,jel®

5 Regression model

This section introduces three regression models to identify the causal relationship
among the quality/novelty of inventions, collaborators” differentiated knowledge,
and magnitude of collaborator recombination at the inventor level based on the
Berliant-Fujita model. In the regressions, we focus on collaborative inventions, and
do not address the choice between working in collaboration and working in isolation.
In other words, our formulation assumes a strictly positive number of collaborators
for each inventor in each period.

Lett=0,1,...,T be the consecutive periods in which data are available and let I;
be the set of all inventors who participated in the development of at least one patent
in period t. The subset of inventors, each of whom is involved in the development of
at least one patent in every period (introduced in Section 2.1), is denoted by I (C I;).

Let G; represent the set of all patents applied in period t. We call the development
of each patent j € G a project j. Then, G; introduced in Section 2.1 represents the set of
inventors who participated in project j, and the set of projects in which inventor i € I;
participated (also introduced in Section 2.1) can be rewritten as G;; = {j € G; : i € Gj}.

BMyopic core is adopted as the equilibrium concept.
26This is the steady-state equilibrium when agents initially have sufficient common knowledge,
which is a natural situation for collaborations to start (Berliant and Fujita, 2008, Proposition 1).
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Accordingly, set Nj; of the collaborators of inventor i in period ¢ is given by (2.2) in
Section 2.3, and output, ¥, of inventor i is given by (2.1) in Section 2.1.

51 Knowledge creation function

To bring the knowledge creation function (4.2) to the data, we modify the original
specification. First, while it is defined for each of multiple pairwise collaborations,we
formulate a regression model for a single average pairwise knowledge creation function:

Iny;=a+ ﬁlnkg +y1Inkjs +y2 (Ink;)? +InAj + A +7¢ + €3¢ (5.1)

in which y;; represents the average pairwise output by inventor i:

Yie = Jit/ Mt (5.2)

{|.%” The variation in pairwise productivities for a given inventor is

where n;; = |N;
assumed to be random and captured by inventor- and period-specific error term, &;;.

Second, in (5.1), we focus on the differentiated knowledge, kjl? , of collaborators in
(4.2), since this is a source of new ideas as discussed in Section 2, while abstracting
from the role of common knowledge, kg., and that of differentiated knowledge, kg ,of
inventor i him- or herself. This key variable appears as kg in the second term on the
right-hand side (RHS) of (5.1) in the form of the average pairwise differentiated knowledge
of collaborators of i, and is defined by the average output that the collaborators of i

produced outside the joint projects with i:

o y ¥ é—"H. (5.3)

it (X kGG

Here, k¥ includes only the fresh knowledge of collaborators that they create with
inventors other than i in the current period and not their knowledge stock from the
past. This definition reflects Observation 1 in Section 2.2 that past knowledge is
strongly associated with negative effects. The value of kl.[t) may also be interpreted
as the average productivity of i’s collaborators outside the joint projects with i. This
feature plays a role when we construct an instrument for this variable in Section 7.

Third, as for the common knowledge kz.C]. and differentiated knowledge kl.[; of
inventor i in (4.2), their effects are controlled for by his or her stock of knowledge:

ki = I U Sy
t'<t

: (5.4)

While this approach does not capture the roles of the common knowledge between

Z’Refer to Appendix A for the interpretation of average pairwise productivity.
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i and his or her collaborators and of the differentiated knowledge of i precisely,?®
they are by definition expected to be positively correlated with the knowledge stock
of 1.2 Moreover, the size of the knowledge stock is expected to control for a variety
of other effects, including learning-by-doing as well as imitations and obsolescence
effects on the extant technologies discussed in Section 2.2. We capture their overall
effects up to the second order, the fourth term on the RHS of (5.1).

Finally, in the fifth term, A; bundles the inventor- and time-specific productivity

shifters for inventor i:
Ay =X, (5.5)

where X; represents a vector including spillover effects from other inventors in
the geographical neighborhood, proximity to R&D expenditure, manufacturing em-
ployment/production, and residential population.

The last three terms, A;, 7, and ¢;;, on the RHS are the time-invariant inventor
fixed effect, period fixed effect, and inventor- and period-specific error, respectively.
The values of parameters a,3,)1,)2,m, and 7; are estimated by regressions.

5.2 Quality/novelty and quantity decomposition

The definition of quality and novelty of output by an inventor given by (2.1) implies
the log-linear relationship between quality and quality/novelty of his or her output:

Iny; =In yft +1n y?t . (5.6)

In the first term on the RHS of (5.6), yft denotes the quantity, i.e., the average count

of patents, of inventor i’s pairwise output given by
]/Z = yft/nit (5.7)

where yft = )jeg, 1/1Gjl which coincides with 7;; under gj =1 in (2.1) ; whereas in
the second term, y?t represents the average quality/novelty of i’s pairwise output:

v = vl (= 7a/7;)- (5.8)

2]deally, the knowledge stock may be defined in terms of productivities as in the case of kE in (5.3).
However, this leads to an identification problem because of the endogeneity induced by including
the lagged outcomes. Moreover, as shown in Section 2.2, publicized technologies are quickly imitated
and thus become obsolete. Hence, the output measures may be unsuitable for defining the knowledge
stock.

PIn principle, it is possible to define average pairwise common knowledge and average pairwise
differentiated knowledge of inventor i in terms of the technological categories as in knowledge stock,
kir. But, since these should strongly correlate with k;; by construction, and hence can be controlled
for by k;; to a large extent, we focus on the identification of the most interested causal relationship

between k2 and yj;, rather than allowing for multiple endogenous variables.
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We can thus decompose the effect of each explanatory variable in (5.1) into those
on the quantity and on the quality/novelty of inventors” pairwise output, y;, by
estimating the model given by

Iny? = a™ + " Ink + M Inki + 8 (Ink;)® + In AT + AT 4 7 4 € (5.9)

for m = p and g, where the coefficients of each explanatory variable for m = p and g
add up to that of the corresponding variable in (5.1). In particular, we have 5 = F + 7
for the effect of collaborators’” differentiated knowledge.

5.3 Recombinations and differentiated knowledge of collaborators

Finally, we introduce our third regression model (5.10) to identify the factors deter-

mining the value of kft) in (5.1):
InkE = @+ BInAny + 71 Ink;; + 7o (Inky)* +In Ay + A + T + €4 (5.10)

where An;; given by (2.3) is considered to be endogenous as it is a result of the active
efforts and/or random factors that influence the recombination of collaborators at
the individual or firm/establishment level.

The aim of this regression is twofold. One is to see if the more substantial re-
combination of collaborators results in acquiring knowledge associated with higher
quality/novelty from collaborators, as we interpreted Observation 2 in the context
of the Berliant-Fujita model. The other is to see if the substitutability between the
stock of knowledge and collaborator recombinations suggested by Observation 3 is
relevant in raising the quality/novelty of collaborators’ differentiated knowledge.

It is to be noted that we present the results of two separate estimations for (5.1)
and (5.10), rather than incorporating the collaborator recombination explicitly in the
knowledge creation function given by (5.1). The practical reason for the separation is
the estimation problem in combining the two models (refer to footnote 45 in Section
8). But, it is also true that only the former has a specific microeconomic foundation
according to Berliant and Fujita (2008). In the Berliant-Fujita model, each inventor
optimally chooses the size of collaborator recombination to balance the common and
differentiated knowledge between him or her and his or her collaborators, not just
to maximize the value of the differentiated knowledge of collaborators. Thus, (5.10)
captures only a part of the entire causality behind the determination of kg . To be
consistent with the Berliant-Fujita model, however, we expect that the overall effect
of Anj; through kg on y; exhibit positive but decreasing returns, since successful

collaborations requires a certain share of common knowledge.
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6 Data

In this section, we describe our dataset, focusing primarily on patent data.

6.1 Patent data

The patent data are taken from the published unexamined patent applications of Japan
(Artificial Life Laboratory, 2018) which provides information on the published patent
applications to be examined for approval rather than approved patents. The advan-
tage of using unexamined applications is that their flow at a given point in time
reflects the amount of research activities at that point more precisely than the flow
based on approved patents. In this data, each inventor is uniquely identified as long

as his or her name and affiliation have not changed.

6.1.1 Patent projects

Our analysis targets inventors who participated in the development of patents
applied between 1995 and 2009 in Japan. Since a patent development is a time-
consuming project whose underlying research could take several years, the produc-
tivity of an inventor is evaluated by his or her output over five years. The choice of
a five-year window also reflects the availability of other relevant data from census.

We construct a three-period panel in which period 0 consists of years from 1995
to 1999, period 1 from 2000 to 2004, and period 2 from 2005 to 2009. Since k;
and Anj; require information from the previous period, period 0 is not included
in the regressions. The information in 2010-2016 is used to account for the time
lag between the date of application and that of publication as well as to count the
forward citations for each patent. Consequently, our panel for regressions consists
of two periods, 1 and 2.

Table 6.1 summarizes the basic data.3? In particular, we focus on the (|I| =) 107,724
inventors who have been active in all the three periods, although the information on
other inventors is still used as long as they collaborated with the selected inventors.

The average number of inventors in a project throughout the study period is about
two (row 7), hence is consistent with the assumption of pairwise collaboration in the
Berliant-Fujita model. Since collaborations are typically polyadic: an inventor has

six to nine collaborators on average (row 9), which also agrees with the implication

30The fact that the number of patents per inventor is declining over time may reflect the influence
of the tendencies of block patents (e.g., Chu, 2009; Cozzi and Galli, 2014; Nicholas, 2014; Jell et al.,
2017). In particular, after the applied unexamined patents were made public in digitized form in
1993, firms have stronger incentives to block potential competitors from innovating in their common
technologies.
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from the Berliant-Fujita model. Moreover, about 90% of inventors have at least one

collaborator (row 8), which justifies our focus on collaborative knowledge creation.

Table 6.1: Descriptive statistics of basic variables

Period
e 2
Variable 1 2
(1) Number of patents |Uier G| 1,758,780 1,546,596
(2) Number of IPC classes 120 122
(3) Number of IPC subclasses 608 615
(4) Number of IPC subgroups | Uia S,-,| 40,691 38,339
(5) Number of inventors in period ¢ |I¢| 1,208,197 1,094,789
(6) Number of inventors active in all periods 1] 107,724 107,724
(7) Number of inventors per patent Gl 2.193 2.244
(1.538) (1.609)
(8) Share of collaborating inventors |{z' el; : [Ny > 0}|/|If| 0.896 0.868
(9) Number of collaborators per inventor INt| 8.518 6.323
(9.321) (7.579)
(10) Number of new collaborators per inventor Anjp 6.893 4.354
(7.907) (5.848)
(11) Number of patents per inventor |Gt 10.66 6.858
(16.21) (11.95)
(12) Number of IPC sections per inventor 1.812 1.533
(0.952) (0.799)
(13) Number of IPC classes per inventor 2473 1.918
(1.788) (1.381)
(14) Number of IPC subclasses per inventor 2.984 2.241
(2.409) (1.874)
(15) Number of IPC subgroups per inventor |Sit] 5.471 3.713
(5.223) (4.026)
(16) Size of cumulative IPC subgroups per inventor [Up <t S| 4.550 8.958

(4.659) (7.582)

Numbers in parentheses are standard deviations.

6.1.2 IPC

Each published patent application is associated with at least one technological clas-
sification based on the IPC, which is maintained by the World Intellectual Property
Organization.’! The IPC classifies technologies into eight sections: A (human ne-
cessities), B (performing operations; transporting),..., H (electricity). These sections
are divided into classes such as A01 (agriculture; forestry; animal husbandry; hunt-
ing; trapping; fishing) and then into subclasses such as A01C (planting; sowing;
fertilizing). Each subclass is further divided into groups, e.g., A01C1 (apparatus, or
methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing
or planting), and then into subgroups, e.g., A01C 1/06 (coating or dressing seed) and
A01C 1/08 (immunizing seed). The IPC’s labeling scheme is consistent over time,
and a newly introduced category is basically associated with a new technology (e.g.,
the classes B81 for microtechnology and B82 for nanotechnology introduced in 2000).
Taken together, the set of technological categories specified in the IPC at a given point

3lWebsite: http://www.wipo.int/portal/en/index.html.
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in time roughly represents the set of the state-of-the-art technologies at that time,
and hence makes an appropriate proxy for the set of technological knowledge.

Although an applicant can claim more than one IPC categories for his or her
patent, we adopt only the primary IPC category of each patent to represent its
technology in order to avoid subjective variation. Consequently, we have 121, 609,
and 40,691 (123, 616, and 38,339) relevant IPC classes, subclasses, and subgroups,
respectively for period 1 (period 2), associated with the applied patents in our data.

Let S denote the set of all the technological categories (in terms of either one of
IPC class, subclass, or subgroup) and the technological category assigned to patent
jbesj € S. The technological specialization of inventor i is then defined by

Sit= Ujegit{s]'}. (6.1)

In the baseline regressions, we adopt IPC subgroups to construct S;; and quantify
the cumulative stock of knowledge, k;;, defined by (5.4).

Similarly, to quantify the technological novelty defined in Section 2.1, we adopt
IPC subgroups as they exhibit the largest variation among inventors. We also con-
trol for the IPC class fixed effect to account for the possible incompatibility of the
quality/novelty adjustment of patents across different technology categories, where
each inventor is associated with his or her most frequently engaging IPC class.

6.2 Productivity and differentiated knowledge

Table 6.2 lists the descriptive statistics for productivity variables. Our preferred
measure of the quality of a given patent is the count of forward citations following
Trajitenberg (2002); Akcigit et al. (2018).32 In our baseline analysis, we count the
forward citations of each patent within three years of the publication date following
Akcigit et al. (2018) (row 1, columns 1 and 2).333* In our data, the cited counts in the
first three years from publication account for more than 75% of the total cited count
in the first 10 years for all samples. Thus, using the three-year window to evaluate
the patent quality appears to be reasonable.

%2Cited counts may not be an optimal measure of patent quality when there is an incentive to
block follow-up patents as discussed by Abrams et al. (2013).

33We also conduct the same analysis under the count of forward citations within five years of
publication to check the robustness (see Section 9.3.1).

34t is assumed that there is at least one (self-)citation, namely g; > 1, under the quality-adjusted
measure. That is, the cited count for each patent is inflated by 1 if there is no self-citation to avoid
dropping patents without citations. Some authors (e.g., Inoue et al., 2015) argue that the citation-
adjusted output of a patent project should exclude self-citations by inventors in the project. Our
analyses, however, include them since there is no clear incentive to inflate the cited counts for patents
(unlike the case of academic papers); hence, the self-citations tend to reflect genuine technological
dependence. In fact, we find no qualitative difference between the results with and without citation
weights (see Section 9.3.1).
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Alternatively, we use technological novelty based on the IPC subgroups intro-
duced in Section 2. Since cultivating a novel technology requires knowledge, there
may be a more direct relationship between knowledge input and technological nov-

elty (row 1, columns 3 and 4).

Table 6.2: Descriptive statistics of productivity

variables
Productivity measure Cited counts Novelty
) @ ©) 4)
Period 1 2 1 2
(1) Output of a patent gjt 1.535 1.423 0.013 0.009
(2.527)  (3.850)  (0.056)  (0.049)
(2) Productivity of Tit 7.906 5.048 0.047 0.024
an inventor (16.83)  (163.31) (0.134)  (0.084)
(3) Pairwise productivity  y; 1.389 1.728 0.009 0.006
of an inventor (3.160)  (175.04) (0.049) (0.032)
(4) Avg. diff. knowledge kf 1411 1.053 0.008 0.005
of collaborators (7.520) (4.539) (0.043)  (0.034)

Numbers in parentheses are standard deviations.

As defined in (2.1), when the output of a project is attributed to each inventor, it is
discounted by the number of inventors involved in the project. Row 2 of Table 6.2 lists
the output, ;;, attributed to inventor i under each alternative productivity measure.
Row 3 of Table 6.2 lists the average pairwise productivity, y;, of each inventor
defined by (5.2), which corresponds to the output of the knowledge creation function
(4.2) proposed by Berliant and Fujita (2008) under these alternative productivity
measures. Finally, row 4 of Table 6.2 lists the average differentiated knowledge of
collaborators defined by (5.3) for each productivity measure.

6.3 Locational factors

Possible influence of various exogenous locational factors on productivity in knowl-
edge creation has been suggested by existing studies. We briefly describe each factor
included in the regression, with the precise definitions relegated to Appendix B.
R&D activities are disproportionately concentrated in large cities (see Figure
B.1(b) in Appendix I). If an urban agglomeration (UA) is defined as a contiguous area
of population density at least 1000/km? with the total population at least 10,000,%®
in 2000, 99% of all inventors concentrated in UAs, 81% in the largest three UAs, and
54% in the largest UA (Tokyo), while the corresponding shares for population are
75%, 54% and 32%, respectively. Inventors located within a 10km buffer of any of
all the 453 UAs are assigned to the closest UA, while otherwise their locations are
considered to be rural. In the regressions, the standard errors are clustered by UAs.3

%The population data are obtained from the Population Census (2010a) by MIAC.
% As UAs on average expand spatially over time, we used the boundaries of UAs in 2010, each of
which provides on average the largest spatial extent during the study period of 1995-2009. However,
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Local concentrations of four types of activities that potentially influence inventor

productivity are considered: the concentrations of inventors (ag\w), R&D expendi-
R&D MNF, MNF,
it it it

account for the factors specific to the firm and establishment that an inventor be-

ture (2;%"), manufacturing employment (a ) and output (a ). These partly
longs to. We also control for residential population (aEOP). Each local concentration

is defined by the size of concentration in a circle of given radius around inventor i.

7 Identification by instrumental variables

This section presents our strategy for identifying the causalities behind knowledge
creation by dealing with the endogeneity of the differentiated knowledge and re-
combinations of collaborators for individual inventors. There are two sources of
endogeneity. One comes from inventors” endogenous collaboration, i.e., network
endogeneity, where there exist unobservables which influence inventors’ collabora-
tion decisions as well as their productivities. The other comes from the mutual de-
pendence of productivities between an inventor and his or her collaborators through
kg in model (5.1) (as well as (5.9)). This is the so-called reflection problem in the
context of econometric network analysis (e.g., Manski, 1993; Bramoullé et al., 2009).
In our case, however, we argue that the endogenous variables, kll.? in model (5.1) and
Anj in model (5.10), for inventor i can be instrumented by the average value of the
same variable for the indirect collaborators of i.

Below, we formally define the instruments for the endogenous variables in Section
7.1, and explain their exogeneity and relevance in Sections 7.2 and 7.3, respectively.
(In Appendix C, we briefly discuss the similarity and difference in the nature of
endogeneity and the approach to get around the issue between the linear-in-means

models of social interactions as in Bramoullé et al. (2009) and our model.)

7.1 Instruments

Let th be the set of up to the ¢{-th indirect collaborators of inventor i given by
gt — xgt-1 —
N; =N U[UjENf;‘lN]'f] {=1,2,... (7.1)

where the set of the “0-th indirect collaborators” is defined by the set of inventors
consisting of i and his or her direct collaborators, Nl.ot = N;; U{i}. To obtain th from
th_l foreach {=1,2,..., we expand Nﬁ_l by the union of all the direct collaborators

the choice of the particular time point should not affect the basic results since most inventors are
concentrated in relatively large UAs whose spatial coverage is relatively stable over the study period.
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of j€ N‘~! as in (7.1). The set of the {-th indirect collaborators of i can then be given by
¢ O =
NC=NONCT 1212, (7.2)

The instruments, kZI.tV‘ for kf.-—t) and Ang/‘ for Anj;, are constructed as the average
value of the differentiated knowledge of collaborators and that of collaborator re-
combination, respectively for each ¢-th indirect collaborator j € Nf;:

1
Dlvf k and An'Y=— Anjy. (7.3)
it nt ]

Indirect collaborators may be weighted by the frequency of their appearance:

KOV ” Z ZkD and An' = = Z ZA”ﬂ (7.4)

My leN‘1 jENI My leN{1jEN]

where ﬁi

=), jent-171j. Inventor j may appear more than once in the construction of
it
the instruments in (7.4). Weighting by appearance frequency of indirect collaborators

in the linkage helps strengthen the relevance of the instruments.

7.2 Exogeneity

This section explains how our instruments can virtually eliminate the endogeneities

caused by the reflection problem and inventors” unobserved variables.

7.2.1 Reflection problem

The existing models of social interactions (e.g., Bramoullé et al., 2009; De Giorgi
et al., 2010; Calvé-Armengol et al., 2009) suggest two reasons that the reflection
effects in our context can be reduced by using instruments constructed from more
distant indirect collaborators. One is the distance effect that the farther an indirect
collaborator is from an inventor in the collaboration network, the smaller is the
influence of the indirect collaborator’s output on the inventor’s output through the
simultaneous equations of inventions and the indirect connections on the network.?”
Thus, by constructing instruments from sufficiently distant indirected collaborators,
the reflection effects can be virtually eliminated. The other is the averaging effect.
As long as the number of ¢-th indirect collaborators increases as ¢ increases, the
reflection effect on an inventor from each of his or her ¢-th indirect collaborators is

mitigated by averaging over a larger number of indirect collaborators.

37For example, in eq. (6) of Bramoullé et al. (2009), the endogenous peer effect from the ¢-th indirect
peer is given by !+, where g € (0,1) and £ =0,1,2,... with the O-th indirect peer being the direct peer.
The indirect peer effects, 8*¢, from the ¢-th indirect peers diminishes as ¢ increases.
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Fortunately, the research network in our data consists of a set of large network
components, so that we could identify up to fifth-indirect collaborators for a large
number of inventors. Column 1 of Table 7.1 lists the average number of the ¢-th
indirect collaborators of an inventor for € = 0 to 5, where the 0-th indirect collaborators
are the direct collaborators. The number of indirect collaborators of an inventor
increases dramatically from 8.52 to 4,251 (6.32 t02,563) for £ = 0 to 5in period 1 (period
2),%8 suggesting that the reflection emanating from each fifth indirect collaborator

have only marginal effect due to both distance and averaging effects.

7.2.2 Unobserved factors

We suppose that inventors with similar (observable and unobservable) character-
istics have proclivities to collaborate with each other, hence they might also have
influence on their mutual productivities, while we also suppose that more distant
indirect collaborators share less common characteristics with each other. Thus, by
constructing instruments from sufficiently distant indirect collaborators, we are sup-
posed to be able to eliminate the effects from unobserved factors.

The most plausible situation in which unobserved factors become problematic
perhaps is the case that inventors have similar technological specialization. These
inventors likely share opportunities and environment to exchange and learn ideas
from each other, for example, through seminars, conferences and journals of common
research subjects, which in turn affect their R&D productivities. Our data indicate,
however, that the commonality of research subjects between a pair of inventors
diminishes rapidly and eventually becomes negligible as the degrees of separation
in the network increases between the pair.

Columns 2-8 in Table 7.1 list the diversity, |S;|, of technological specialization of
indirect collaborators in terms of IPC sections, classes, subclasses and subgroups,
respectively. While an inventor on average specializes in 1.81, 2.47, 2.98 and 5.47
(1.53,1.92,2.24 and 3.71) in these categories, respectively in period 1 (period 2) (rows
12-15 in Table 6.1), the diversity in technological specialization increases for more
indirect collaborators. For their fifth indirect collaborators, these numbers reach 7.50,
83.07,275.8 and 1400 (7.29, 70.14, 213.3 and 1007), respectively in period 1 (period 2)
(rows 6 and 12 of columns 2-5 in Table 7.1). Since the total number of IPC sections
is eight, they are almost fully covered. For IPC classes, subclasses and subgroups,
they cover 98.8%, 96.9% and 64.6% (97.9%, 94.2% and 60.6%), respectively among all
the patents applied in period 1 (period 2). The set of the fifth-indirect collaborators
of an inventor thus consists of almost all the kinds of specialists.

3t is also to be noted that the average number of the ¢-th indirect collaborators more than doubles
that of (£ —1)-th indirect collaborators up to £ = 5. Thus, the fifth-indirect collaborators of an inventor
are still confined within a close neighborhood of the inventor relatively to the entire network.
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Table 7.1: Diversity and similarity of technological specialization of inventors

M @ ®) ) ®) ©) @) ® ©)

Indirectness £ Count Diversity in technological category |S;| Similarity in technological category ”ift

Section  Class  Subclass Subgroup Section Class  Subclass Subgroup
Period 1

1o 8.518 3.207 7.214 10.88 27.17 0.709 0.569 0.499 0.330

(9.321) (1.681)  (6.313)  (10.97) (29.65) (0.197)  (0.229)  (0.236) (0.214)

@1 51.36 4.670 17.38 32.49 94.83 0.567 0.370 0.280 0.087

(64.79) (2.057)  (14.62)  (32.57) (102.82) (0.215)  (0.228)  (0.220) (0.120)

(3)2 205.41 5.860 3248 72.72 242.03 0.493 0.280 0.193 0.045

(284.89)  (2.074)  (23.65 (64.70) (240.91) (0.202)  (0.202)  (0.186) (0.083)

“4)3 665.27 6.691 50.07 129.69 492.17 0.433 0.213 0.135 0.025

(944.31)  (1.869) (30.23)  (97.96) (433.84) (0.188)  (0.176)  (0.155) (0.062)

(5)4 1794.44 7.200 67.56 199.24 866.81 0.380 0.161 0.092 0.014

(2385.52)  (1.584) (33.33)  (126.37) (675.22) (0.172)  (0.148)  (0.123) (0.046)

6)5 4250.87 7.501 83.07 275.77 1399.86 0.341 0.125 0.064 0.009

(5076.27) (1.314) (33.31) (14628)  (969.11)  (0.156) (0.124)  (0.098) (0.036)

Period 2

(7)0 6.323 2.658 5.057 7.352 17.57 0.757 0.648 0.588 0.432
(7.579) (1.530) (4.642) (7.972) (21.84) (0.207)  (0.247) (0.263) (0.271)

8)1 36.79 4.073 12.35 22.07 63.30 0.582 0.404 0.312 0.100
(48.06) (2.006)  (10.85) (23.28) (74.30) (0.246)  (0.264) (0.258) (0.149)

9)2 137.59 5.306 23.84 50.43 164.62 0.505 0.309 0.218 0.054
(195.61) (2.147)  (18.70) (48.17) (179.36) (0.229)  (0.234) (0.219) (0.106)

(10) 3 424,14 6.256 38.60 93.40 343.90 0.443 0.237 0.153 0.030
(642.62) (2.022)  (25.89) (77.71) (341.13) (0.210)  (0.204) (0.182) (0.077)

(11)4 1115.16 6.888 54.59 148.78 617.58 0.390 0.182 0.106 0.018
(1693.19)  (1.771)  (30.70)  (106.36) (548.77) (0.191)  (0.175) (0.148) (0.063)

(12) 5 2563.23 7.286 70.14 213.31 1006.73 0.347 0.141 0.074 0.011

(3589.15)  (1.506) (32.81)  (129.82)  (793.74)  (0.171) (0.146)  (0.118) (0.049)

Numbers in parentheses are standard deviations.

The expanding technological diversity of more distant indirect collaborators of an
inventor reflects the shrinking commonality in technological specialization between
them and the inventor. To see this, let us compute the average Jaccar index between
the technological specialization S;; of inventor i and those of his or her ¢-th indirect
collaborators j € Nf; in period t:

1 1Sit N Sl

£

Jit = €[0,1] (7.5)

ltjENitl ! ]l

where ng = IthI. A larger value of JZ implies higher average similarity in techno-
logical specialization between inventor i and his or her ¢-th indirect collaborators.
In particular, it takes 0 if their specializations do not overlap (i.e., S; NS = 0 for all
jE th), while it takes 1 if they are identical (i.e., S; = Sj forall j € th).

Columns 6-9 of Table 7.1 show the average values of th in terms of IPC sections,

classes, subclasses and subgroups, respectively. These values between an inventor
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and his or her direct collaborators are on average 0.71, 0.57, 0.40 and 0.33 (0.76, 0.65,
0.59 and 0.43) in period 1 (period 2), respectively (rows 1 and 7 of column 6-9 in
Table 7.1). The numbers of technological categories that an inventor shares with his
or her collaborator are on average 1.39, 1.53, 1.62 and 2.05 (1.26, 1.35, 1.41 and 1.71)
at IPC section, class, subclass and subgroup levels, respectively in period 1 (period
2).

Between an inventor and his or her fifth-indirect collaborators, however, the com-
monality of technological specialization is substantially smaller. The corresponding
Jaccar indices reduce to 0.34, 0.13, 0.06 and 0.01 (0.35, 0.14, 0.07, 0.01), respectively
in period 1 (period 2) (rows 6 and 12 of columns 6-9 in Table 7.1). The numbers of
technological categories that an inventor shares with his or her fifth-indirect collab-
orator are as small as 0.79, 0.40, 0.24 and 0.07 (0.80, 0.43, 0.25 and 0.07) on average,
respectively in period 1 (period 2).

Thus, we conclude that as long as inventors are sufficiently far apart on the
collaborator network, say between the fifth-indirect collaborators, their research
fields are virtually irrelevant. Note, in addition, that the firm- and location-specific
effects underlying the similarity in productivity among indirect collaborators in the
outcome of models (5.1) and (5.10) are controlled for by inventors’ fixed effects as
well as a variety of local factors. Hence, there should remain little concern about the
endogeneity due to unobserved factors behind the productivity similarity among

indirect collaborators.

7.3 Relevance

In this section, we argue that the relevance of our instruments comes essentially from
the assortative matching by productivity at the firm level which is exogenous to the
inventor collaboration in our data. In Section 7.3.1, we start by showing evidence for
assortative matching among firms in their investment decisions by various financial
performance indicators as well as worker productivity. We then show in Section 7.3.2
that the pool of potential collaborators for an inventor is largely confined within a
single firm or its affiliated partners; hence, it can be considered as exogenous to each

inventor, and its members have similar productivities.

7.3.1 Assortative matching of firms by worker productivity

If firms with investment relations as well as firms and their workers exhibit assorta-
tive matching by productivity, we expect that the productivities of inventors in these
matched firms would be positively correlated. Evidence for assortative matching
between firms and workers can be found in the existing literature (e.g., Mendes et
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al., 2010; Bartolucci and Devicienti, 2013; Dauth et al., 2016).3° While direct evidence
for assortative matching among firms is not available from the existing literature,
we found supportive evidence from the financial and ownership data for Japanese
firms (Tokyo Shoko Research, 2014).40

From 315,347 tirms with financial information available in Japan in 2014, we
identified 58,634 firm pairs with investment relationships. We then constructed an
(undirected) network of firms with each firm as a node and each firm pair with
investment relation as an edge. Table 7.2 shows average values of Spearman’s rank
correlations for average wage together with four financial indices between a firm
and its directly/indirectly connected firms in the network of investment relations.
The “indirectness” is defined analogously to that of the inventor network, so that
value 0 indicates the direct investment relation, while value j > 1 indicates the j-th

indirect investment relation.

Table 7.2: Rank correlations of financial indices between firms with owner-

ship

Capital-asset  Pretax profit-  Third-party

Indirectness Avg. wage VA/worker ratio asset ratio evaluation
1) o 0.1267 0.0923 0.1824 0.1465 0.2577
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

@21 0.0930 0.0416 0.0490 0.0280 0.0926
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

) 2 0.0260 0.0087 0.0045 0.0067 0.0132
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

“) 3 0.0121 -0.0017 0.0010 0.0019 -0.0086
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

®) 4 0.0005 -0.0038 -0.0023 0.0013 -0.0216
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(6) 5 -0.0017 -0.0026 -0.0013 0.0003 -0.0263
(0.0000) (0.0000) (0.0000) (0.0064) (0.0000)

(/) The numbers in the parentheses are p-values of two-sided tests. (ii) “Avg. wage” represents the
average nominal wage per (regular) worker; “VA/worker” the value added per worker; “Capital-
asset ratio” the owned capital to total asset ratio; “Pretax profit-asset ratio” the pretax profit to total
asset ratio; Third-party evaluation is the score ranging in [0,100] based on over 200 financial indices
provided by the Tokyo Shoko Research.

One can see that the firms with investment relations exhibit positive correlations
in the listed financial indices as well as average wage of workers (row 1). While the
correlation quickly diminishes for more distant indirect partners, the relatively high
correlations persist up to the first-indirect relation. For example, the correlations are
0.126 and 0.093 for average wage among firms with direct and first-indirect relations,

39Gee, e.g., Eeckhout and Kircher (2018) for a theoretical model.

“0There are indirect evidences in the literature for assortative matching by productivity among
firms. Namely, Bettencourt et al. (2007); Gaubert (2018); Dauth et al. (2016) have shown evidence for
spatial sorting of firms and workers by productivity, while Nakajima et al. (2012) and Otazawa et
al. (2018) have shown that firms with transaction linkages are geographically concentrated. See, for
example, Mori and Turrini (2005); Behrens et al. (2014) for theoretical models of spatial sorting.
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respectively.4! It follows that firms with direct and first-indirect investment relations
exhibit relatively stronger assortative matching by their financial performance as
well as worker productivity. Since their workers include their inventors, the inventor

productivities are expected to be correlated among these firms.

7.3.2 Collaboration and firm affiliation of inventors

If the size of a firm/establishment in period ¢ is defined by the number of inventors
who belong to the firm/establishment at some point in the period, the average and
median of the firm size are 26,923 and 7,757 (23,025 and 8,207), while those of the
establishment size are 3,500 and 1,059 (2,972 and 962) in period 1 (period 2).

In Table 7.3, columns 1 and 2 show the average shares of the {-the indirect collab-
orators of an inventor in the same firm as the inventor (£ =0,1,...,5) and columns
3 and 4 shows similar shares for establishments in periods 1 and 2, respectively. It
is remarkable that on average more than 80% of collaborators are confined not only
within a single firm but also within a single establishment. Although the shares
steadily decrease as ¢ increases, they still remain as high as 25.6% and 31.7% for
the fifth-indirect collaborators for firms, and 20.6% and 25.3% for establishments in

periods 1 and 2, respectively.

Table 7.3: Firm affiliations of inventors
1) ) 3) 4) () (6)

Same firm share Same establishment  Path length to firm
share

Indirectness Period 1 Period2 Period1 Period2 Period1 Period 2

10 0.819 0.824 0.811 0.814 0.453 0.399
0.248)  (0261)  (0.263)  (0.275)  (0.498)  (0.490)
@1 0.721 0.731 0.687 0.694 0.887 0.789
(0271)  (0289)  (0.303)  (0.319)  (0.568)  (0.626)
3)2 0.616 0.640 0.565 0.584 1.179 1.107
0.294)  (0.308)  (0.325)  (0.338)  (0.543)  (0.630)
@3 0.501 0.539 0.440 0473 1.410 1.354
0.302)  (0.316)  (0.328)  (0.340)  (0.534)  (0.625)
(5) 4 0.377 0.430 0.318 0.360 1.633 1.584
0293)  (0.311)  (0.307)  (0.325)  (0.525)  (0.618)
6)5 0.256 0.317 0.206 0.253 1.843 1.794

0260)  (0.290)  (0.260)  (0.291)  (0.499)  (0.602)

(i) Numbers in parentheses are standard deviations. (if) “Same firm share” and “same
establishment share” are the shares of ¢-th indirect collaborators (£ =0,1,...,5) of an
inventor who belong to the same firm and the same establishment as the inventor, re-
spectively. (iif) “Path length to firm” means the average number of firms on the shortest
path from an inventor to the ¢-th indirect collaborator on the research collaboration
network of firms.

To see how many firms are involved to reach the ¢-th indirect collaborators, we
construct the collaboration network of firms with each firm as a node and each pair
of firms conducting a joint patent development as an edge. Columns 5 and 6 of Table

“INote that since “workers” include all regular employees, the correlation in the average wage
here tends to understate that in average wage among skilled workers including inventors.
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7.3 list the values for the average shortest-path length from the firm of an inventor
to the firm of his or her ¢-th indirect collaborator on this collaboration network in
periods 1 and 2, respectively. Although the shortest-path length, i.e., the smallest
number of distinct firms involved, to reach the ¢-th indirect collaborators, increases
as ¢ increases in both periods, it still remains to be smaller than two even at the fifth-
indirect collaborators. Provided that joint R&Ds take place more often among firms
with closer investment relations, it implies that up to the fifth-indirect collaborators
on average belong to firms with closer than the second-indirect investment relation.

It follows that the pool of potential collaborators for an inventor is confined
mostly in a single firm or its closely affiliated firms.*? This in turn indicates that the
R&D is largely driven by firms, rather than inventors, and that the pool of potential
collaborators is essentially exogenous to inventors in our regression, since we focus
on the inventors who do not change their affiliation to firms and establishments.*3

Since we already know that the firms with direct investment relations exhibit
assortative matching in terms of worker productivity, it follows that in the exoge-
nous pool of potential collaborators, the productivities of inventors in the affiliated
tirms are expected to be positively correlated, and hence the values of differentiated
knowledge of collaborators, In le , of inventors in these affiliated firms are expected
to be positively correlated.

As for Anj;, recall Observation 2 in Section 2.3 that inventors with higher pro-
ductivities conduct more active recombination of collaborators. As a result, the size
of the collaborator recombination, Anj, is expected to be relatively similar among
indirect collaborators with similar productivities. Yet, between inventor i and his
or her indirect collaborator j, the relevance between An; and Anj; induced by the
assortative matching among firms and workers is weaker than that between k? and
kﬁ , since the former pair are not related to the productivities of i and j directly unlike
the latter pair. Thus, rather than (7.3), we adopt the alternative instrument given
by (7.4) for An;; that puts more weights on the indirect collaborators who are more
frequently connected to i.

8 Regression results

This section presents our main regression results for models (5.1), (5.9) and (5.10)
under the quality- and novelty-adjusted productivity measures. In all the regressions

#2More demanding matching between inventors and their firm/establishment affiliations in the
Japanese patent applications by Inoue et al. (2016) indicates that more than 90% of the inventions
take place within a single establishment, which further supports our argument.

8t is contrastive to academic research which is essentially driven by individual researchers, and
the set of potential collaborators highly depends on the effort and ability of individual researchers,
rather than their affiliated institutions.



COLLABORATIVE KNOWLEDGE KNOWLEDGE CREATION 29

conducted, the fixed effects of inventors, periods, and IPC classes (see Section 6.1.2)
are controlled for. The local factors described in Section 6.3 except for residential
population are constructed for a circle with a 1 km radius around each inventor to
approximate establishment-specific effects, while it is set to 20 km for residential
population to account for urban environment.

Standard errors in all the regressions are clustered by UAs (refer to Section 6.3),4
since the productivities of collaborative activities within each UA are expected to
be influenced by the stochastic shocks specific to the UA. In this context, since the
instruments lnkg’lw for lnkg in (5.1) and (5.9) as well as In Anftvf for InAnj; in (5.10)
involve inventors located in different UAs, one might suspect that standard cluster-
robust standard errors are incorrect because the instruments for any inventor i might
be correlated with errors ¢ in (5.1), e?Z in (5.6) and €j; in (5.10) for any inventor j
even if inventors i and j are located different UAs. However, we consider that the
standard cluster-robust standard errors still provide correct standard errors, since
the inventor fixed effects are controlled in all the regressions encompass UA specific
fixed effects, and that makes the errors free from the correlation with UAs, while
allowing for standard errors to vary across UAs.

8.1 The Berliant-Fujita model

Table 8.1 summarizes the regression results for model (5.1), with columns 1-5 (6-10)
presenting the results for quality-adjusted (novelty-adjusted) productivity. Columns
1 and 6 report the results from the ordinary least squares (OLS) regression for
quality- and novelty-adjusted productivity, respectively, while the rest report those
from the 2SLS-IV regressions. For the IV regressions, we used the third to fifth
indirect collaborators to construct IVs for lnkg . More specifically, we used all three
instruments, lnkitvf for £ =3,4 and 5, in column 2 (column 7), while we used only
one of £ =3,4 and 5 in columns 3, 4, and 5 (8, 9, and 10), respectively for quality-
(novelty-) adjusted productivity.*> To make the results comparable, the observations
are restricted to the set of 58,464 inventors (rather than the 107,724 considered in
Sections 2 and 6) with at least one fifth indirect collaborator.*®

The OLS results confirm our earlier finding in Section 2 on the implication from

4 As R&D activities are highly urban and agglomerative, almost all observations in I are found in
UAs. In fact, among the 56,464 inventors in I with at least one fifth-indirect collaborators, and are
chosen to be the basic set of observations in all the IV regressions in this section, only four inventors
locate outside the UAs.

4 Aside from the theoretical gap between (5.1) and (5.10) pointed out in Section 5.3, it in fact looks

as if the instrument In Aniw for In An;; also works as an instrument for In kg in the estimation of (5.1)

Ve

because In Ang has relevance with lnkllrtj via (5.10). However, the relevance turned out to be rather

t
weak between Anll.tvf and k2, although An;; has positive significant effect on k.
46The basic properties of each variable remain the same, as described in Table 6.1.
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Berliant and Fujita (2008) who predicted a positive effect of collaborators” differen-
tiated knowledge, lnkg (row 1, columns 1 and 6). The estimated positive effect of
the knowledge stock, Ink;;, of an inventor (row 2, columns 1 and 6) and the negative
effect of its squared term, (Ink;)? (row 3, columns 1 and 6), are consistent with the
positive but decreasing returns of learning-by-doing from the extant technologies
discussed in Sections 2 and 5.

However, since Inkj; > 0 from the definition of k;j; (> 1) in our data, the second-
order effects appear to dominate the first-order effects; in other words, the net effect
of the knowledge stock appears to be mostly negative. The overall negative effects
associated with the knowledge stock imply that the positive learning-by-doing ef-
fects are dominated by the negative effects from imitations and obsolescence, which
accounts for the persistent downward pressure on inventor productivity pointed out
in Observation 1 in Section 2.2.

Table 8.1: Regression results for (5.1) (Dependent variable: Iny;;)

Quality Novelty
Variables (1) OLS (2) IV3-5 3)IvV3 (4 1Iv4 (5)1V5 (6) OLS (7)IV3-5  (8)1IV3 (9)Iv4 (10) IV5
(1) In kﬁ’ 0.163"* 0.286* 0.286 0.287 0.273"* 0.164 0.344 0.341 0.353* 0.377*
(0.0102) (0.0254) (0.0257) (0.0353) (0.0399) (0.00493) (0.0310) (0.0335) (0.0296) (0.0629)
(2) Ink; 0.110™ 0.0931" 0.0931* 0.0929* 0.0949" 0.147 0.114™ 0.115"* 0.113" 0.108*
(0.0153) (0.0119) (0.0119) (0.0143) (0.0165) (0.0172) (0.0228) (0.0229) (0.0226) (0.0248)
(3) (Inky)*  -0.0890™  -0.0820"*  -0.0820"*  -0.0820"*  -0.0828™ -0.195™ -0.178™ -0.178™ -0.177 -0.175™*
(0.00967)  (0.00868)  (0.00865)  (0.00954)  (0.00991)  (0.00926)  (0.00594)  (0.00564)  (0.00665) (0.0108)
4) lnaH\IV 0.171 0.117 0.117* 0.117* 0.123" 0.310"* 0.200™ 0.202* 0.195" 0.180"*
(0.0579) (0.0633) (0.0635) (0.0597) (0.0540) (0.0913) (0.0939) (0.0965) (0.0887) (0.0672)
(5) In aE&D 0.0272" 0.0256™ 0.0256"* 0.0256"* 0.0258"* 0.0420"* 0.0364" 0.0365" 0.0362"* 0.0354™
(0.00786)  (0.00679)  (0.00679)  (0.00664)  (0.00670) (0.0156) (0.0127) (0.0128) (0.0125) (0.0120)
6) In a?[/mp‘? 0.0149 0.0240" 0.0240 0.0240 0.0230 -0.00859 0.0132 0.0128 0.0143 0.0172
(0.00566)  (0.00438)  (0.00436)  (0.00533)  (0.00598) (0.0105) (0.00989)  (0.00955) (0.0108) (0.0158)
@) lna?fn\lF ° 0.00832 0.00522 0.00522 0.00520 0.00555 -0.00362 -0.00512 -0.00509 -0.00519 -0.00539
(0.00581)  (0.00804)  (0.00806)  (0.00779)  (0.00732)  (0.00552)  (0.00721)  (0.00717)  (0.00732)  (0.00761)
8) In nﬁOP -0.449 -0.660 -0.660 -0.661 -0.637 0.793* 0.0701 0.0837 0.0346 -0.0611
(0.519) (0.490) (0.490) (0.493) (0.470) (0.442) (0.415) (0.427) (0.390) (0.358)
9) 7 0.227 0.173** 0.173** 0.172" 0.178* 0.304 0.173** 0.175"* 0.166" 0.149*
(0.0159) (0.0150) (0.0149) (0.0213) (0.0245) (0.0307) (0.0382) (0.0403) (0.0352) (0.0477)
(10) R? 0.151 0.184
(11) Hansen ] p-val. 0.928 0.768
(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4
(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (i) IPC class fixed effects are controlled. (i) *** p<0.01, ** p<0.05,
*p<0.1.

We now turn to the IV results. For all the choices of IVs, the first-stage F values
are large (row 12, columns 2-5 and 7-10), meaning that the relevance of the IVs does
not seem to be weak (see Table D.1 in Appendix D for the results of the first-stage
regressions). To confirm the exogeneity of the IVs, we used lnkgtvf forall £=3,4 and
5 in columns 2 and 7 for quality- and novelty-adjusted productivities, respectively
and conducted Hansen’s (1982) | test for overidentifying restrictions. The p-values
of the test are 0.928 and 0.768 for quality- and novelty-adjusted productivities, re-
spectively (row 11, columns 2 and 7), meaning that the exogeneity of the IVs cannot
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be rejected.*” Moreover, the estimated coefficients for the alternative choices of the
IVs are remarkably similar (compare columns 2-5 with columns 7-10), which is also
indicative of these IVs being reasonably exogenous.

The comparison between the OLS and IV results shows that the negative net
effect of the knowledge stock persists in the IV result; hence, our explanation above
for the OLS results continues to be valid.

For the effect of lnkll.? , we found downward bias in the OLS regression (compare
columns 1 and 2-5 with columns 6 and 7-10 in row 1).# A possible explanation for
the bias is that a more productive inventor attracts (or is assigned by his or her firm)
a larger number of relatively unexperienced collaborators and thus tends to end up
with more collaborators with lower productivity than he or she actively chose to
work with. The removal of this reverse causality left a larger positive selection effect
in the estimated coefficient of lnkg .

For the OLS regression, this selection effect may be partly picked up by the effect
of the local concentration of inventors, lnag\w, which has upward bias (compare
columns 1 and 2 with columns 6 and 7 in row 4). Larger differentiated knowl-
edge is not necessarily associated with a larger potential inventor population unless
inventors actively choose to start new collaborations. However, a larger inven-
tor concentration should naturally induce more fruitful collaborations, resulting in
larger differentiated knowledge from collaborators, than a smaller one does. As
a consequence, in the IV result, the part of the OLS estimate of the coefficient of
In ag\w for which the collaborator recombination is responsible is absorbed into the
coefficient of lnkﬁ) . What is left in the estimated effect of lnag\IV may be interpreted
as the positive spillover effect from the local inventor concentration. Specifically, a
10% increase in the inventor concentration results in 1.2% and 1.8-2.0% increases in
quality- and novelty-adjusted productivity, respectively.

It is intuitive that the concentration of R&D expenditure has a persistent positive
effect for all the specifications (row 5), where its 10% increase raises quality- and
novelty-adjusted productivities by 0.26% and 0.35-0.36%, respectively, while the
size of manufacturing output has essentially no impact on innovation productivity.

The positive significant effects of local manufacturing employment on quality-
adjusted productivity (row 6, columns 1-5), where its 10% increase raises produc-
tivity by 0.23-0.24%, reflect the fact that innovations are linked to production; and
citations are often made by the related production units of nearby firms. On the
contrary, the manufacturing employment concentration is insignificant for novelty-

adjusted productivity (row 5, columns 6-10), as technological novelty is not neces-

¥0f course, this result of Hansen's ] test by no means is sufficient to guarantee the exogeneity of
the instruments, if all the instruments are subject to the same type and magnitude of bias.

8 Akcigit et al. (2018) reported a similar downward bias on the effects of interaction levels on
innovation productivity within a patent team.
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sarily directly related to present production levels.

The local concentrations of residential population do not have a significant influ-
ence on inventor productivity as expected.

The estimated coefficients of In kft) for the IV regression are persistently posi-
tive, 0.27-0.29 (0.34-0.38) for quality-adjusted (novelty-adjusted) productivity, but
below 1 (row 1, columns 2-5 and 8-10), which is consistent with the Berliant-Fujita
model. This finding indicates decreasing returns to the differentiated knowledge of
collaborators, as the benefit from collaborators” differentiated knowledge will even-
tually be dominated by that of common knowledge with collaborators as well as the

differentiated knowledge of the inventor him- or herself.

8.2 Quality/novelty and quantity decomposition

In this section, the effect of each explanatory variable in (5.1) is decomposed into the
fraction that accrues to the quantity and to the quality/novelty of his or her output.
The result for the former is relegated to Appendix E.

The regression results are summarized in Table 8.2 which is organized similarly to
Table 8.1, except for the dependent variable. The first-stage of the regression is shared
with (5.1). To confirm the exogeneity of the IVs, we used lnkgyf forall¢=3,4and 5in
columns 2 and 7 for quality- and novelty-adjusted productivities, respectively and
conducted Hansen’s (1982) | test for overidentifying restrictions. The p-values of the
test are 0.419 and 0.314 for quality- and novelty-adjusted productivities, respectively
(row 11, columns 2 and 7), meaning that the exogeneity of the IVs cannot be rejected.

Together with the results summarized in Table 8.1, the results from the present
regressions in Table 8.2 reveal the extent to which each explanatory variable con-
tributes to quality/novelty and to the quantity in collaborative knowledge creation.

For the differentiated knowledge of collaborators, whereas we find that its con-
tribution is mostly (more than 90%) attributed to increasing the quantity, rather
than the quality, of research output under the quality-adjusted productivity mea-
sure (compare row 1 and columns 2-5 in Tables 8.1 and 8.2), as large as around 65%
of the contribution accrues to increasing the novelty, rather than the quantity, of
research output under the novelty-adjusted productivity measure (compare row 1
and columns 7-10 in Tables 8.1 and 8.2).

This result indicates that the collaborators” differentiated knowledge is an espe-
cially effective source of technological novelty, and thus, appears to be the key factor
for inducing the technological shift of an inventor to a new niche, which is consistent
with Berliant and Fujita (2008) as well as Horii (2012).
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Table 8.2: Regression results for (5.1) (Dependent variable: In y?t)

Quality Novelty
Variables (1) OLS ) IV3-5 B)IV3 (&) 1Iv4 (5)1V5 (6)OLS  (7)IV3-5  (8)IV3 9) V4 (10) IV5
(1) In kg 0.0273 0.0264™ 0.0269™ 0.0154 0.00321 0.119" 0.230"* 0.231* 0.221™ 0.247
(0.00169) (0.0120) (0.0119) (0.0192) (0.0221) (0.00278)  (0.0143) (0.0146) (0.0168) (0.0330)
(2) Ink;; 0.0104* 0.0106 0.0105 0.0121 0.0138" 0.0364 0.0162 0.0161 0.0179 0.0132

(0.00578)  (0.00714)  (0.00710)  (0.00832)  (0.00758)  (0.0240)  (0.0274)  (0.0274)  (0.0272)  (0.0272)

() (Inky)>  -0.00549™  -0.00554™  -0.00551"*  -0.00616™  -0.00684™  -0.108"™  -0.0976™  -0.0976™  -0.0985"  -0.0961*
(0.00101)  (0.00138)  (0.00136)  (0.00189)  (0.00202)  (0.00520)  (0.00651)  (0.00655)  (0.00653)  (0.00657)

(4) lnug\w -0.0364"* -0.0361* -0.0363* -0.0313* -0.0260* 0.0719* 0.00411 0.00368 0.00967 -0.00596
(0.0126) (0.0141) (0.0142) (0.0137) (0.0102) (0.0318) (0.0392) (0.0397) (0.0383) (0.0400)
) lnaﬁ&D -0.00252 -0.00251 -0.00252 -0.00236 -0.00220 0.0118" 0.00839 0.00837 0.00868 0.00789
(0.00414) (0.00421) (0.00422) (0.00409) (0.00377) (0.00638)  (0.00570)  (0.00569)  (0.00569)  (0.00598)
6) lntl:.\:[NFe 0.0271* 0.0271* 0.0271 0.0262** 0.0254** 0.00798 0.0215" 0.0216™ 0.0204 0.0235*
(0.00559) (0.00521) (0.00520) (0.00531) (0.00641) (0.00850)  (0.00929)  (0.00919)  (0.00949) (0.0112)
) lnu?:[NF“ 0.00861 0.00863 0.00862 0.00891* 0.00921* -0.00636 -0.00728 -0.00729 -0.00720 -0.00742
(0.00556) (0.00534) (0.00535) (0.00518) (0.00526) (0.00458)  (0.00656)  (0.00657)  (0.00637)  (0.00684)
()] lnagoP -0.582" -0.580™ -0.581" -0.562 -0.541" 0.610 0.163 0.160 0.200 0.0971
(0.238) (0.240) (0.239) (0.250) (0.251) (0.440) (0.477) (0.476) (0.479) (0.497)
9) 71 0.101* 0.102* 0.101" 0.107 0.112 0.151 0.0699 0.0694* 0.0765* 0.0578*
(0.0180) (0.0223) (0.0223) (0.0245) (0.0200) (0.0202) (0.0210) (0.0209) (0.0225) (0.0323)
(10) R? 0.086 0.140
(11) Hansen ] p-val. 0.419 0.314
(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 4714
(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05, *
p<0.1.

The decompositions of the effects of other explanatory variables are also worth
explanations. For both quality and novelty-adjusted productivity measures, the
inventor as well as R&D expenditure concentrations exhibit positive significant effect
on the quantity but not on the quality of inventions (rows 4 and 5 in Tables 8.2 and
E.1). The effects of manufacturing employment and production concentrations are
also similar between quality- and novelty-adjusted cases. But, they tend to raise the
quality rather than the quantity of inventions (rows 6 and 7 in Tables 8.2 and E.1).
The former result suggests that positive externalities from researcher agglomeration
primarily promote starting inventions, whereas the latter result may reflect the
tendency that the proximity to the manufacturing concentration and production
promotes more targeted inventions with higher quality and novelty.

The results of our regressions so far identified the causal relation suggested by
the Berliant-Fujita model behind the correlation between collaborators” differenti-
ated knowledge and the productivity of inventors in Observation 2 in Section 2.3,
except for the linkage between the collaborator recombination of an inventor and
the amount of differentiated knowledge of his or her collaborators that will be estab-
lished in Section 8.3.# Tt follows that technological shift, As;, which was found to be
correlated with higher productivity in Observation 2, is in fact intentionally directed
toward less explored niches because of inventors’ (or firms’) quest for more novel
invented technologies. The technological shift caused by utilizing collaborators’

¥ Although we used inventor productivity, 7, in Section 2 rather than pairwise productivity, y;,
these are highly correlated, with correlation coefficients of 0.73 and 0.76 in periods 1 and 2, respectively.
Thus, the observations made for § in Section 2 basically apply to y;; as well.
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differentiated knowledge appears to be a means to overcome the negative effects of
the past knowledge stock of inventors pointed out in Observation 1. This part of the
result is missing from the Berliant-Fujita model in which all knowledge is assumed
to be symmetric. However, this finding agrees with the theoretical result of Horii
(2012), who considered a more realistic economy with demand for new technologies.

8.3 Recombinations and differentiated knowledge of collaborators

This section presents the results for model (5.10), which incorporated the fundamen-
tal causality assumed in the Berliant-Fujita model that the collaborator recombination
is an effective means to collect novel ideas for innovations. Table 8.3 summarizes
the regression results. This table is organized similarly to Table 8.1, except that the
dependent variable is In AkZD , and lnAngtVf for £ = 3,4 and 5 serve as the IVs for an
endogenous variable, In An;;.

The OLS estimates suggest a positive effect of collaborator recombination on the
size of collaborators’ differentiated knowledge (row 1, columns 1 and 6) as expected.
However, given the correlations among inventor productivity, collaborators” differ-
entiated knowledge, and collaborator recombinations underlying the innovations,
the OLS estimates may be severely biased due to endogeneity. The IV estimates in
columns 2-5 and 7-10 indicate that this is indeed the case.

Now, we look at the IV results in detail. For all the different choices of IVs, the
tirst-stage F values are large (row 12, columns 2-5 and 7-10), suggesting that the
relevance of the IVs is not weak (see Table D.2 in Appendix D for the results from the
first-stage regressions). To confirm the exogeneity of the IVs, we used lnAnZI.;/" for
all £=3,4 and 5 in columns 2 and 7 for quality- and novelty-adjusted productivities,
respectively and conducted Hansen’s (1982) | test for overidentifying restrictions.
The p-values of the test are 0.255 and 0.363 for quality- and novelty-adjusted pro-
ductivities, respectively (row 11, columns 2 and 7), meaning that the exogeneity of
the IVs cannot be rejected.”® The estimated coefficients for the alternative choices
of the IVs are less stable than those for model (5.1), but they agree with each other
qualitatively (compare columns 2-5 with columns 7-10).

There is substantial downward bias in the coefficient estimate for In An;; from the
OLS (compare columns 1 and 2 with columns 6 and 7 in row 1). For the OLS result,
a part of the effect of collaborator recombination appears in that of local inventor
concentration, since a larger inventor concentration implies a larger pool of potential
collaborators. The downsized effect of hrm%tV in the IV regression is consistent with
this interpretation (compare columns 1 and 2-5 with columns 6 and 7-10 in row 5).

Another source of the bias is reverse causality. A higher productivity for an

%0The same caveat stated in footnote 47 applies here.
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inventor is on average associated with the larger differentiated knowledge of his
or her collaborators as well as a larger stock of knowledge. This bias appears to
be reflected in the estimated coefficient of the knowledge stock, Ink;, which has
substantial upward bias in the OLS (compare columns 1 and 2-5 with columns 6 and
7-10 in row 2). Once the endogeneity of InAn;; is controlled for, we find that the
first-order effect of the knowledge stock almost disappears (columns 2-5 and 7-10
of row 2), and instead the second-order effect becomes positive significant (columns
2-5 and 7-10 of row 3); thus, the effect of the knowledge stock exhibits increasing
returns. The size of differentiated knowledge is then not necessarily associated with
a larger number of new collaborators.

On the one hand, a highly established inventor with a large knowledge stock
can attract highly able collaborators selectively even without a large replacement of
collaborators. On the other hand, an inventor with only a small stock of knowledge
should place a large effort to find relevant collaborators for successful inventions (or
his or her firm should arrange so), which in turn results in a large number of new
collaborators. Other local factors play relatively minor roles.

We find that the elasticities of average quality- and novelty-adjusted differenti-
ated knowledge of collaborators with respect to the recombination of collaborators
for an inventor are around 1.4 and 1.8, respectively. While these estimated elastici-
ties are greater than 1, since the pairwise research productivity exhibits decreasing
returns in the input of collaborators’ differentiated knowledge, the positive effect
of the collaborator recombination on inventor productivity will be diminishing.
More specifically, putting the results from (5.1) and (5.10) together, we found that a
10% increase in collaborator recombination induces 12-15% and 17-20% increases in
quality- and novelty-adjusted differentiated knowledge of collaborators, which in
turn results in the 3-4% and 6-8% increases in quality- and novelty-adjusted pairwise
output of an inventor.

Taken together, we confirmed that collaborator recombinations are an effective
means to acquire differentiated knowledge from new collaborators to facilitate in-
vention, thereby identifying the causal relationship behind Observation 2. Moreover,
the results of our regressions also accounted for the mechanism behind Observation
3 in Section 2.4. In other words, we found that the knowledge stock and collab-
orator recombination remain two effective means for an inventor to improve his
or her productivity via collecting differentiated knowledge, even after controlling
for the individual fixed effects. Inventors with a larger past achievement attract
highly able collaborators with their large knowledge stocks, and thus can collect
differentiated knowledge without large replacements of collaborators. Meanwhile,
less experienced ones depend on relatively large recombination of collaborators to
collect differentiated knowledge.
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Taken all together, the rather intricate mechanism underlying the churning of

inventor productivities in Observation 1 has been disentangled, and explained from

the micro-level behavior of individual inventors.

Table 8.3: Regression results for (5.10) (Dependent variable: lnkft) )

Quality Novelty
Variables (1) OLS (2) IV3-5 (B)IV3  (4)1V4 (5)IV5 (6) OLS (7) IV3-5 (8)IV3 9) 1vV4 (10) IV5
(1) InAnjy 0.104 1.372% 1.400™ 1.523* 1.236™ 0.244™ 1.722" 1.718* 1.962™ 1.714™
(0.00626) (0.0629) (0.0748) (0.119) (0.132) (0.00792) (0.0847) (0.0914) (0.157) (0.131)
(2) Ink; 0.131 -0.0220 -0.0253 -0.0401 -0.00554 0.147* -0.0313 -0.0308 -0.0601 -0.0303
(0.0427) (0.0669) (0.0653) (0.0814) (0.0732) (0.0338) (0.0638) (0.0632) (0.0786) (0.0669)
(3) (Inkg)?  -0.0364* 0.223* 0.229 0.254* 0.195 -0.0422* 0.261 0.260" 0.310 0.259
(0.0156) (0.0197) (0.0167) (0.0422) (0.0392) (0.0161) (0.0233) (0.0223) (0.0476) (0.0360)
(4) Ina}g\‘v 0.387*** 0.0138 0.00580 -0.0304 0.0539 0.515 0.0800 0.0813 0.00957 0.0825
(0.0916) (0.0426) (0.0467) (0.0461) (0.0507) (0.118) (0.103) (0.107) (0.0878) (0.0939)
(5) Ina}j&D 0.0134 0.000705 0.000432  -0.000799 0.00207 0.0320* 0.0172* 0.0172* 0.0148 0.0173*
(0.0111) (0.00478)  (0.00487) (0.00571)  (0.00447) (0.0165) (0.00896)  (0.00895)  (0.00939)  (0.00915)
6) lna?fNF” -0.0706™* -0.0139 -0.0127 -0.00720 -0.0200 -0.110"* -0.0436™ -0.0438™ -0.0329 -0.0440"
(0.0220) (0.0147) (0.0151) (0.0183) (0.0137) (0.0186) (0.0219) (0.0213) (0.0302) (0.0239)
7) lna?fNF" 0.0214 0.00814 0.00786 0.00657 0.00957 0.00221 -0.0133 -0.0132 -0.0158 -0.0132
(0.0215) (0.00992) (0.0101) (0.0110) (0.00960) (0.0265) (0.00922)  (0.00923) (0.0107) (0.00920)
8) Inazop 1.371 -0.552 -0.594 -0.780 -0.345 3.574™ 1.332 1.338 0.968 1.345
(1.043) (1.229) (1.217) (1.403) (1.273) (1.137) (1.050) (1.037) (1.247) (1.103)
9) 1 0.415™ 0.514 0.517"* 0.526* 0.504" 0.698" 0.814™ 0.814 0.833 0.814™
(0.0269) (0.0504) (0.0525) (0.0481) (0.0428) (0.0373) (0.0285) (0.0287) (0.0310) (0.0291)
(10) R? 0.160 0.178
(11) Hansen | p-val. 0.255 0.363
(12) 1st stage F 237.7 639.9 338.5 253.9 237.7 639.9 338.5 253.9
(13) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05,

*p<0.1.

9 Robustness

In this section, we check robustness of our baseline results with emphasis on two
aspects: the influence of firm-specific factors in Section 9.1 and the exogeneity con-
dition for our baseline IVs in Section 9.2. We also investigate the sensitivity of our
baseline results under the alternative definitions for inventor productivities as well
as under the alternative spatial sizes at which local factors are defined in Section 9.3.

9.1 Influence of firm-specific factors

In this section, we examine the influence of the three time-varying properties of the
firm to which each inventor belongs to. Let F;; be the set of inventors who belong to
the same firm as inventor i at some point in period ¢, and let F_; ; = F;\ (N;; U {i}), i.e.,
Fit excluding i and his or her collaborators.

The first property taken into account is the firm size, f;i; = |[F_; |, representing the
magnitude of the R&D activities within the firm that inventor i belongs to, but outside
the projects that an inventor and his or her collaborators are directly involved. Given
that more than 80% of collaborations take place within a firm, the variation in kg as
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well as that of An;; may simply reflect that of firm size in period ¢.°!

The second property is the technological scope of a firm of a given inventor i defined
by s{; = |Ujer, Sjt\(Vuen;uiySut)l which counts the number of distinct technological
categories in which patents are developed in the firm of inventor i excluding those
associated with the patents developed by inventor i and by his or her collaborators.
The values of f;; and S£ reflect the potential scale effect of a firm. For example, the
availability of common research facilities, funding and other resource is the source

of increasing returns, and there may also be interdisciplinary spillovers.

Table 9.1: Regression results with firm-specific factors

(5.1) Dependent variable : Iny;; (5.10) Dependent variable : In kﬁ
Quality Novelty Quality Novelty
Variables (1) OLS (2)IvV3-5 (3)OLS (4)IV3-5 (5) OLS (6) IV3-5 (7)OLS (8)IV3-5
(1) In kﬁ’ 0.155"* 0.224" 0.156 0.284
(0.00932) (0.0256) (0.00517)  (0.0295)
(2) InAnyy 0.102* 1.425** 0.229 1.725*
(0.00582)  (0.0848)  (0.00636) (0.126)
3) In fi -0.0388 -0.0411 -0.202 -0.0858 0.00282 0.0385 -0.807" -0.0370
(0.0415) (0.0340) (0.124) (0.120) (0.109) (0.0581) (0.0681) (0.0809)
4) In s{t 0.0622" 0.0468™ 0.233" 0.0883 0.230 0.0257 1.006™* 0.106
(0.0157) (0.0189) (0.0450) (0.0602) (0.0325) (0.0266) (0.119) (0.0880)
(6) In y?; 0.498 0.487* 0.104* 0.186 0.181* 0.647 -0.493 0.407*
(0.0764) (0.0693) (0.0506) (0.0522) (0.108) (0.144) (0.158) (0.160)
(6) Ink;; 0.105 0.0964"* 0.133 0.115 0.115™ -0.0350 0.110™ -0.0468
(0.0118) (0.0104) (0.0168) (0.0211) (0.0424) (0.0580) (0.0301) (0.0517)
(7) (Ink;)? -0.0887*  -0.0851**  -0.192*** -0.182  -0.0332" 0.235 -0.0348™ 0.264
(0.00824)  (0.00813)  (0.00880)  (0.00578)  (0.0150) (0.0152) (0.0157) (0.0205)
(8) Inal™MV 0.168** 0.145"* 0.291** 0.234 0.292* -0.0255 0.350* 0.0287

(0.0284)  (0.0348)  (0.0468)  (0.0559)  (0.137)  (0.0351)  (0.140)  (0.0559)

9 In aE&D 0.00949" 0.00997*  0.0268"*  0.0259™*  -0.00811  -0.0226™*  0.00675 -0.00905
(0.00517)  (0.00482) (0.0101)  (0.00953)  (0.00707)  (0.00836)  (0.0125) (0.0115)

na. ¢ -U.! -U. -U. -U. -U.! -U.! -U. -U.
(10) InaY™F 00154 -0.00920"  -0.0239™*  -0.00710  -0.0880"*  -0.0416"  -0.121""  -0.0589""
(0.00449)  (0.00457)  (0.00829)  (0.00724)  (0.0220)  (0.0222)  (0.0209)  (0.0166)

(1) Ina)™% 000436 000268 0000106 -0.00348 00207 000151 00204  -0.00978
(0.00405)  (0.00534)  (0.00715)  (0.00779)  (0.0261)  (0.0125)  (0.0310)  (0.00975)

(12) Inafo? -0.233 -0.298 0.170 -0.0790 0.664 -0.331 1.724 0.469
(0.309) (0.299) (0.435) (0.440) (1.379) (1.086) (1.496) (1.124)

(13) 11 0.129"* 0.110"* 0.162" 0.109* 0.248"* 0.411* 0.394** 0.614*
(0.0184)  (0.0157) (0.0318)  (0.0394)  (0.0443)  (0.0354)  (0.0330)  (0.0277)

(14) R? 0.158 0.187 0.169 0.192

(15) Hansen ] p-val. 0.957 0.813 0.309 0.388

(16) 1st stage F 621.2 396.7 203.4 174.2

(17) #Obs. 114,258 114,258 114258 114,258 92,552 92,552 92,552 92,552

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, **
p<0.05, * p<0.1.

The third and the final property to be considered is the average pairwise produc-
tivity in the firm given by yf; = (1/ fit) Ljer,\(Nyutip) Yit which may be correlated with

the positive spillovers that prevail within a firm.

5INote that the firm size here is rather special, as it aggregates all the inventors affiliated with
a given firm at some point in the given period. The firm size may be slightly overstated, since
inventors who simply changed establishments within a firm in the same period counted multiple
times. Nonetheless, it should reflect the basic variation in the number of inventors involved in a
given firm.
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Columns 1-4 and 5-8 in Table 9.1 show the regression results under (5.1) and those
under (5.10), respectively with these additional controls on the RHS. For quality- and
novelty-adjusted productivity measures under each model, the table shows the OLS
and the IV results, where the IV results are shown only for the case in which IVs
are constructed by using all the third-, forth- and fifth-indirect collaborators, since
similar results are obtained when only one of them is used.

In all the specifications, the first-stage F values are reasonably large, so that the
relevance appears to be strong as in the baseline case. In terms of the Hansen (1982)’s
J-test, there is no evidence against the exogeneity of the instruments.

We found that the the coefficient of In kg in (5.1) is significantly different between
the baseline and the current specifications (in both the OLS and IV results and under
both the quality- and novelty-adjusted productivity), while the coefficient of In An;;
in (5.10) is not significantly different, except for the IV result for the quality-adjusted
productivity.>?

Nevertheless, the signs and significance levels of the explanatory variables in the
baseline specifications do not change for both the OLS and IV results. Although both
the productivity of each inventor and the knowledge level of his or her collaborators
are positively influenced by the average inventor productivity in a firm, they still
substantially depend on the individuals” decision on collaborations. A 10% increase
in the differentiated knowledge of collaborators raises the inventor productivity
by 2.24% and 2.84%, and a 10% increase in the collaborator recombination raises
the amount of differentiated knowledge of collaborators by 14.3% and 17.3% under
quality- and novelty-adjusted productivity, respectively, even after controlling for
the average productivity of a firm. The results in this section thus underscore the
relevance of the Berliant-Fujita model.

Regarding the effects of the firm specific factors, the IV results indicate that the
effect of firm size is insignificant for both (5.1) and (5.10). While the IV estimate of
the effect of technological diversity, sﬁ, of firms is positive significant for (5.1) under
the quality-adjusted productivity (row 4 of column 2 in Table 9.1), it is insignificant
otherwise. Hence, it is unlikely that the variation in the size or the scope of research
of a firm is driving that in the amount of differentiated knowledge of collaborators
and the magnitude of collaborator recombination.

The effect of the average pairwise productivity, In yﬁ, is positive significant under
all the specifications. A 10% increase in the average pairwise productivity in a
tirm is associated with 4.9% and 1.9% increase in the quality- and novelty-adjusted
average pairwise productivity of an inventor, respectively (row 5 of columns 2 and 4),

while it is associated with 6.5% and 4.1% increase, respectively in the differentiated

2]t is based on the Wald test in the GMM estimation which simultaneously estimates the baseline
and current models with the 2S5LS weighting matrix.
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knowledge of collaborators (row 5 of columns 6 and 8).

Given that most collaborations take place within a firm, the former result suggests
the presence of positive externalities from more productive colleagues within a firm
and/or increasing returns in quality/novelty-adjusted differentiated knowledge of
collaborators. The latter result, on the other hand, indicates that the given the same
number of new collaborators, the differentiated knowledge of collaborators is larger

in a more productive firm.

9.2 1IVs based on indirect collaborators in different firms

D,IV,
it

in (7.3) and In An?" in (7.4) except that the inventors in the same firm as i are excluded

Next, we consider alternative IVs for In kf? and In An;; which are the same as Ink

from th. By using these IVs, we are supposed to be able to mitigate unobserved
firm-specific factors associated with the IVs which may correlate with the error term.

The regression results for (5.1) and and (5.10) are shown in Tables F.1 and E2,
respectively in Appendix F.>® The results remain qualitatively the same as those
from the baseline analyses shown in Tables 8.1 and 8.3, except that the estimated
coefficient for lnkll.? in (5.1) is insignificant under the IVs constructed from the forth-
and fifth-indirect collaborators for the case of quality-adjusted productivity measure
(columns 4 and 5 in row 1 of Table F.1). This is not surprising provided that the
correlations of worker productivity among firms attenuate rather quickly as firms
become far from each other on the investment network as discussed in Section 7.3.
It is thus natural to loose the relevance of the instrument for an endogenous variable
for inventor i constructed from his or her indirect collaborators outside than inside
the firm that he or she belongs to.

Nevertheless, weak IVs are not found under the novelty-adjusted productivity
measures (columns 6-10 of Table F.1). Moreover, for all cases, if we use both baseline
and present IVs constructed from the ¢-th indirect collaborators for £ = 3,4 and 5, the
null hypothesis of the Hansen (1982)’s J-test was not rejected, which also suggest
that unobserved firm-specific factors are of minor concern.

For (5.10), we have qualitatively the same results under the alternative IVs as
those obtained in the baseline analyses in Section 8.3 (refer to Tables 8.3 and E.2).
Thus, our baseline results for (5.10) are found to be robust.

3The choices of IVs in Tables F.1 and F.2 are the similar to those in Tables 8.1 and 8.3, respectively.
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9.3 Other robustness analyses

9.3.1 Alternative productivity measures

The regressions for (5.1) and (5.10) are conducted under four alternative measures
of inventor productivity, where the output g; of patent j in (2.1) is given by (i) the
cited count in five years from publication, (i) technological novelty based on the IPC

subclass, (iif) count of patent claims;*

or (iv) count of patents, i.e., ¢ =1forall j. The
regression results are relegated to Appendix G, where Tables G.2 and G.3 present the
results from the second-stage regressions for models (5.1) and (5.10), respectively.
Under all alternative productivity measures, the signs and the magnitude of the
estimated estimated coefficients for the explanatory variables are highly consistent
with our baseline results in Tables 8.1 and 8.3. Hence, we conclude that our results

are robust under the alternative measures of inventor productivity.

9.3.2 Differentiated knowledge of collaborators by IPC

Here, we consider the differentiated knowledge of collaborators defined by the IPC
subgroups, instead of the productivity-based measures:

=Y [sins:

! jENit

, (9.1)

although it corresponds less precisely to the knowledge creation function (4.2). Re-
gression results for (5.1) and (5.10) are relegated to Table H.1 in Appendix H.

In all the specifications, the signs and significance of the estimated coefficient
values of the explanatory variables are highly consistent with our baseline results
shown in Tables 8.1 and 8.3 for (5.1) and (5.10), respectively. Hence, we conclude
that our results are robust even if the differentiated knowledge of collaborators are

defined in terms of the IPC categories.”

9.3.3 Alternative radius values for local concentrations

Finally, we consider alternative radius values (5, 10 and 20km) to quantify the mag-
nitude of local concentration of inventors, R&D and manufacturing and population
around each individual inventors in (5.1) and (5.10). The regression results are

relegated to Tables I.1-1.4 in Appendix L

Each claim indicates an aspect of the patent to be protected. Thus, its count reflects the tech-
nological novelty within a patent. While the claims are made by applicants, this is not an entirely
subjective measure of quality since each claim incurs monetary costs.

The qualitative results remain the same when the IPC subclass instead of subgroup is adopted
to define the differentiated knowledge of collaborators as well as the knowledge stock of inventors.
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The estimated coefficients of the key variables, In kft) and In An;; are robust under
all the alternative radius values at which the size of local concentrations are mea-
sured. The direct effects of the local concentrations on the outcome variables are also
generally robust under these alternative choice of radius values.

In particular, for (5.1), the effects of local concentrations are spatially confined
for the inventor, R&D and manufacturing concentrations in the sense that the effect

is significant up to 5km radius (if significant at all), while the effect of residential
POP
it

For (5.10), the negative effects of In ag\w and Ina

population concentration, Ina;,~", is insignificant for all the radius values for 5-20km.
MNF,
it

possibly reflecting the tougher competition for human resources with co-localizing

persist for larger radius values,

R&D activities as well as the manufacturing sector.

10 Discussion and further research directions

In this section, we summarize our findings and their implications, and discuss

possible immediate extensions and further research directions.

10.1 The Berliant-Fujita mechanism and beyond

We have shown evidence consistent with the polyadic collaborative knowledge
creation mechanism proposed by Berliant and Fujita (2008). To our knowledge, our
work is the first to provide micro-econometric evidence for knowledge creation at
the individual inventor level taking into account the endogeneity of collaborations.

We have also addressed two major counterfactual aspects of the Berliant-Fujita
model, guided by Horii’s (2012) result. One is that each inventor in their model
belongs to a fixed network component in a typical steady state, meaning that polyadic
interactions happen only within a given set of collaborators. However, in the data,
the set of collaborators evolves for each agent over time, and the inter-temporal
recombination of collaborators is found to revise inventors” technological expertise
by meeting new agents and adopting their differentiated knowledge.

The other is that inventors in their model face no imitation or obsolescence of
their technological knowledge since the number of potential knowledge is infinite
and they are symmetric. In reality, however, we found negative significant effects
from the knowledge stock of inventors on their productivity. If inventors stick to
their past achievement, they most likely lose their present level of creativity in the
long run. If, instead, agents are willing to explore new research directions by meeting
new collaborators with different backgrounds from theirs, they are more likely to
keep their creativity by shifting their technological expertise to unexplored niches.
We have explained this realistic causal relationship by estimating the second and the
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third regression models, (5.9) and (5.10), in addition to the original Berliant-Fujita
model (5.1). Specifically, collaborator recombinations are found to be effective in
raising the quality as well as novelty of the collaborators’ differentiated knowledge,
thereby enhance the quality and novelty of research output of an inventor.

These additional results reveal a so far overlooked aspect of collaborative knowl-
edge creation. Namely, the active collaborator recombinations are an effective strat-
egy for a fledgling inventor to improve his or her research productivity, as well as
for an established inventor to maintain his or her high productivity (although the
latter can also utilize his or her large stock of knowledge).

This evidence has an important policy implication: Firms, cities, regions and
countries that promote encounters and collaborations among individual inventors
across organizations and institutions, despite the possibility of imitations and un-
desired diffusions, may have better chances to foster innovation there. While lower
organizational and institutional barriers for research collaboration are not incompati-
ble with the protection of intellectual property by patents, our finding supports more

active coordination than divisions among researchers to encourage innovations.®

10.2 Extensions

Among a number of short-run and long-run extensions, we touch on three. First,
it is an obvious interest to further investigate the role of firms and establishments
in R&D activities. Since the financial resources for R&D are typically provided
by firms, firm-specific patterns of collaborations and R&D policies could affect the
productivity of individual inventors.”” By matching the addresses of establishments
in the patent database with those of the Census of Manufacturers, it is in principle
possible to investigate the impact of patent development on firm productivity.

Second, the non-technological diversity among collaborators in terms of, for
example, gender, age and cultural background may affect productivity. For example,
Ostergaard et al. (2011) and Inui et al. (2014) found positive influence of gender
diversity in innovation productivity of Danish and Japanese firms, respectively.

Finally, it is intriguing to explore the differences in the location patterns of R&D
activities and industries. Itis argued that disproportionately large cities are typically
associated with a concentration of knowledge-intensive activities (e.g., Davis and
Dingel, 2017, 2018). However, the fundamental distinction between knowledge-
intensive and non-intensive activities has not been made clear thus far.

From our findings, obviously knowledge-intensive R&D activities are expected to

%6See Boldrin and Levine (2013) for a related survey of the literature arguing that the patent system
hinders rather than promotes innovations.

See Akcigit and Kerr (2018) for an initial attempt in this direction, as they distinguish R&D that
is internal and external to firms and study the firm dynamics that arise from this distinction.
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be more concentrated geographically given their incentive for frequent collaborator
recombinations than industrial activities whose concentrations are typically induced
by input-output linkages, demand, and production externalities.

Figure 10.1(a) plots the aggregate novelty-adjusted patent output and manufac-
turing output against the population size of a UA in period 1, where all values
are expressed by shares in all UAs.”® The solid and dashed lines indicate the fitted
OLS lines for the patent count and manufacturing output plots, respectively. While
both plots are super-linear in UA size (i.e., per-capita productivity is increasing in
agglomeration size), it is substantially more so for patent output. In fact, doubling
the population size of a UA raises R&D productivity by 2.5 times,” while raising
manufacturing productivity only by 1.2 times.

Figure 10.1(b) plots the diversity in IPC subclasses of applied patents as well as
industrial diversity in terms of the number of four-digit Japanese SIC manufacturing
industries against the population size of UAs in 2000, where all values are in shares
again.®? Comparing UAs in terms of the diversity in IPC subclass and SIC four-digit
industry categories is reasonable, since they are comparable in the total number of
active categories, which is 608 for the former and 562 for the latter. The solid and
dashed lines indicate the fitted OLS lines for the patent class and industrial diversity
plots, respectively. While diversity is increasing in the population size of a UA
for both patent categories and manufacturing industries, the former is substantially
more so: doubling the population size of a UA almost doubles the diversity in the
technological category of patents applied in the UA, whereas it only increases the
industrial diversity by 55%. Thus, while a larger UA is associated with both larger
intensive (i.e., per-capita output) and extensive margins (i.e., diversity) in both R&D
and production activities, this tendency is substantially stronger for the former.

These findings are suggestive of a positive association between population con-
centration and matching externalities promoting collaborator recombinations in
large cities.®! However, the mechanism behind the difference between R&D and
industrial location patterns has not been fully explored either theoretically or em-
pirically, and this remains a future research subject.®?

The location of the patent is identified by the location of the patent applicant. Manufacturing
output is obtained from the micro data of the Census of Manufacturers in 2000.

»Estimated elasticities of patent output with respect to UA population are similar among alterna-
tive output measures: Under IPC subclass and cited count, they are 1.516 and 1.458, respectively.

®0The industrial diversity of a given UA is defined as the number of four-digit manufacturing
industries that have positive employment in the UA.

61See, for example, Agrawal et al. (2017); Perlman (2016); Mori and Takeda (2018) for recent
empirical studies on geographic agglomeration of R&D activities. In particular, Mori and Takeda
(2018) found that the nation-wide development of high-speed railway network had a substantially
larger positive impact on the agglomeration of R&D activities than on population agglomeration.

®2]t is also possible to ask if there is any particularly relevant geographic scope of collaborations,
e.g., within an establishment, a district, a metropolitan area and an island, and so on. See Gordon
(2013) for evidence on the geographic scope of co-authorship in academic research.
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APPENDIX

A Average pairwise productivity of an inventor

To understand pairwise productivity a la Berliant and Fujita (2008), consider two
groups of inventors. In group A, two inventors together produce two patents, while
in group B, three inventors together produce three patents. For simplicity, let g; =1
for all patents j. It follows that the proportion of output in each project accruing to
one inventor is one-half in group A and one-third in group B. The total output of
inventor iis then §; =1/2x2=11in group A and ; = 1/3x3 =1in group B. However,
we assume that knowledge is always created in pairs as in the Berliant-Fujita model.
For an inventor in group A, his or her share (one-half) of a given patent is an outcome
of the pairwise collaborations with his or her only collaborator; in other words, the
proportion of the output of a pairwise collaboration in a given project accruing to him
or her is one-half (= 1/2+1). Since group A produces two patents, the total pairwise
output is given by y; =1/2x2 =1 for each inventor i. Since an inventor in group
B has two collaborators, the proportion of the output of the pairwise collaboration
accruing to an inventor for each patent is one-sixth (= 1/3 +2), and the total pairwise
output for each inventor i is 1/6 X3 = 1/2. Thus, inventors in group A are more
productive in pairwise collaborations than those in group B.

B Locational factors

In this section, the description of UAs and precise definitions for the measures of the
local factors discussed in Section 6.3 are given.

UAs — Panels (a) and (b) in Figure B.1 show the spatial distribution of inventors in I
and 453 UAs as of 2010, respectively, where the warmer colors in each panel indicate
higher population density. Each inventor is assigned to the closest UA if there is any
UA within 10 km of his or her location.

INV
0 it
tance, d, of the location of inventor 7 is defined as

Inventor population — The local population, a;;"", of inventors within a given dis-

ANV =|{je 1AN; + dii,j) <d)

it

, (B.1)

where d(i, j) represents the great-circle distance between inventors i and j (rows 1-
4, Table B.1). To evaluate the pure spillover effects, this population excludes the
collaborators, Nj;, of i.%3

3The effects of externalities from the nearby inventors and firms that have been recognized in
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(a) Spatial distribution of inventors (b) Urban agglomerations in 2010

Figure B.1: Spatial distribution of researchers and UAs

R&D expenditure — Focusing on manufacturing, we first aggregate firm-level R&D
expenditure at the industry level according to the three-digit Japanese SIC in each
period t. Denote the industry-level R&D expenditure (in million yen) by v,, for
each industry m € M;, where M; is the set of three-digit manufacturing industries in
period t.%4

Next, from the micro data of the Establishment and Enterprise Census as well as
the Economic Census (MIAC, 1996, 2001, 2006; 2009), we find the set of establish-
ments, E;;, in each industry m € M; in period t, and compute the employment share,

ext, of each establishment k € E,;;; within industry m.

the literature (e.g., Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al., 2014; Kerr and
Kominers, 2015).

®4Data on R&D expenditure at the firm level are available for firms with at least four employees
for every year from 1997 to 2009 from the Survey of Research and Development. Since we do not
have data in 1995 and 1996, the total expenditure in 1997-1999 has been inflated by 1.67 times to
obtain the value of R&D expenditure in period 0.
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Table B.1: Descriptive statistics of the locational fac-

tors
(1) ()
Period 1 2
(1) inventor population 1km 5,750 5,629
(7,225) (7,282)
) 5km 31,026 30,158
(42,143) (42,269)
3) 10km 70,720 66,011
(79,277) (77,330)
@) 20km 140,204 127,470
(129,401) (120,751)
(5) R&D investment 1km 10,454 18,480
(78,020) (180,284)
(6) 5km 150,581 278,911
(338,668) (703,381)
7) 10km 300,256 520,066
(466,130) (920,505)
®8) 20km 550,420 899,652
(584,891) (1,098,091)
(9) Manufacturing employment  1km 2,240 6,676
(1,505) (7,106)
(10) 5km 52,974 76,491
(32,395) (74,655)
11 10km 182,597 212,371
(106,414) (166,473)
(12) 20km 551,875 509,703
(318,789) (322,326)
(13) Manufacturing output 1km 21,801,942 20,774,589
(in thousand) (58,182,730)  (83,883,736)
(14) 5km 158,183,183 104,957,604
(129,167,825)  (129,388,708)
(15) 10km 445,908,195 317,846,559
(255,976,915)  (226,259,080)
(16) 20km  1,213,122,353 956,808,207
(626,842,420)  (532,719,932)
(17) Residential population 5km 595,461 615,722
(386,442) (399,930)
(18) 10km 2,100,541 2,156,271
(1,388,078) (1,432,171)
(19) 20km 6,386,959 6,573,357
(4,252,098) (4,416,168)

Numbers in parentheses are standard deviations.

Assuming that the R&D expenditure of each establishment in each industry
is proportional to the employment size of the establishment, the value of R&D
expenditure of each establishment in period t is approximated by vytep:. Assuming
that the R&D expenditure in the previous period t—1 affects the productivity of
inventors in the current period ¢, the R&D around inventor i in period t is given as
follows (rows 5-8, Table B.1):9°

R&D _
Ay = Z Z

meM;  ke{jeE,, : d(i,j)<d)

Uy t—1€k t—1- (B.2)

®5The R&D expenditure values are obtained from the Survey of Research and Development (1997-
2010b) by MIAC and from METI Basic Survey of Japanese Business Structure and Activities (1995-
2010) by METL
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a;~ naturally influences patent development (e.g., Griliches, 1979; Coe and Help-

man, 1995; Ulku, 2007).

&D
t

Manufacturing concentration — Assuming that the employment size and output
of an establishment correlate with demand for new knowledge, we proxy the local
market size for an invented technology around inventor i by the local manufacturing

employment and output around #:%

MNF;
a, = Z et (B.3)

ke{jeE; :d(i,j)<d}

where E; = Uyem, Emt, and ey represents the total output value (employment) of
establishment k for j = o (j = ) (rows 9-16, Table B.1).5”

Residential population — The local residential population is defined as

agop = Z Tkt (B.4)

ke{jeR:d(i,j)<d}

where R represents the set of 1km-by-1km cells covering the relevant location space
in Japan; the centroid of each cell is considered to be the representative location of
the cell in measuring the distance from the cell; r; is the residential population in
cell k € R at the beginning of period t (rows 17-19, Table B.1).%

C Similarity and difference with linear-in-means mod-

els

In this section, we discuss the similarity and difference of instruments between the
linear-in-means models of social interactions as in Bramoullé et al. (2009) and our
model.

The most relevant similarity is the reflection problem intrinsic to the agent net-
work in both cases, while the most fundamental difference is whether the relevance
of the IVs is intrinsic or extrinsic to the network of agents in the model.

In the case of the peer effects in the linear-in-means models, the relevance accrues

from the simultaneous equation structure of the model, and thus it is intrinsic to

6 Another interpretation of a)™F
in period .

’The manufacturing employment values are obtained from the Establishment and Enterprise
Census for (1996, 2001, 2006) and Economic Census for Business Frame (2009) by MIAC; the manu-
facturing output values are obtained from the micro data of the Census of Manufacturers (1995, 2000,
2005) and Economic Census for Business Frame (2009) by MIAC.

8The residential population in the 1 km-by-1 km cells is available from the Population Census

(1995, 2000, 2005) by MIAC.

is the spillover from the manufacturing concentration around i
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the network. As a consequence, adding degrees of separation in the network is
double-edged: the IVs constructed from more distant indirect collaborators can gain
exogeneity only at the cost of loosing the relevance. For this reason, the IVs in
Bramoullé et al. (2009) are constructed from the exogenous variables of relatively
close indirect collaborators in order to retain sufficiently strong relevance. A great
advantage in their model is that their IVs formally satisfy the exclusion restriction,
provided that the network is exogenous.

In our case, the relevance of the IVs is extrinsic to the inventor network, since it
comes from the similarity in inventor productivity as a result of assortative matching
between firms and workers that happened prior to the formation of the inventor
network. As a consequence, the relevance is maintained even when the information
of the distant indirect collaborators is solely used, as long as the assortative matching
affects the indirect collaborators and the targeted inventors simultaneously. That
is, the increasing the separation in the network is not double edged. While the
endogeneity of the IVs is only virtually (but never completely) eliminated by using
sufficiently distant indirect collaborators to construct IVs in our case unlike the case
of the linear-in-means models, we instead can allow for the endogenous network

formation.

D First-stage regressions

This section presents the results of the first-stage regressions for the 2SLS IV regres-
sions corresponding to columns 2-5 and 7-10 in Table 8.1 and those in Table 8.3 in
Tables D.1 and D.2, respectively.
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Table D.1: Regression results (Dependent variable: lnkg )

Citations Novelty
Variables (1) IV3-5 @1IV3 (3)Iv4 @) IV5 G)IV3-5  (6)IV3 (7)IV4 (8) IV5
@ k™ 0.436™ 0.453" 0.340™ 0.402
0.0266)  (0.0169) 0.0146)  (0.0132)
@ K™ 0.0235" 0.349" 0.0880" 0.347"
(0.0128) (0.0136) (0.0149) (0.0149)
@) ks 0.00544 0.249 0.0411" 0.266™
(0.0409) 0.0271)  (0.0225) (0.0250)
(@) Inky 0.124* 0.124* 0.131* 0.134* 0.156™ 0.156 0.166™ 0.176™
0.0212)  (0.0210)  (0.0266)  (0.0304)  (0.0126)  (0.0128)  (0.0130)  (0.0145)
() (Inkz)>  -0.0491**  -0.0491"™*  -0.0524™*  -0.0545"*  -0.0900"*  -0.0892**  -0.0934"*  -0.0949*"
(0.00741)  (0.00738)  (0.0107)  (0.0126)  (0.00766)  (0.00777)  (0.00967)  (0.0114)
(6) InaNV 0.359" 0.360" 0.390" 0.402" 0.504" 0.515" 0.538" 0.561"
(0.0787)  (0.0772)  (0.0845)  (0.0859)  (0.0969)  (0.0988) (0.108) (0.115)
(7) InaR&D 000240  0.00259  0.00553  0.00979 0.0140 0.0158 0.0178 0.0252
it

(0.00909)  (0.00921)  (0.0104)  (0.0113)  (0.0137)  (0.0142)  (0.0166)  (0.0181)

(8) lnﬂ?:[NF“ -0.0668™  -0.0663™*  -0.0745"*  -0.0759"*  -0.0954™"  -0.0943™" -0.111™ -0.118™
(0.0196) (0.0189) (0.0244) (0.0266) (0.0221) (0.0197) (0.0238) (0.0239)

©) InaNF 0.0227 0.0227 0.0242 0.0242 0.0160 0.0151 0.0149 0.00968
0.0207)  (0.0204)  (0.0247)  (0.0246)  (0.0294)  (0.0273)  (0.0320)  (0.0317)
(10) Inafo” 1.139 1.143 1.391 1510 3041 3.084™  3466™  3.699™
(0.935) (0.918) (1.112) (1.148) (1.042) (0.985) (1.163) (1.240)
ann 0285™ 0288 0333  0369™  0474™  0504™ 0548  0.611™
(0.0211)  (0.0190)  (0.0233)  (0.0288)  (0.0346)  (0.0345)  (0.0382)  (0.0443)
(12) R? 0.205 0.205 0.183 0.171 0.203 0.201 0.188 0.179
(13)F 4432 718.4 652.5 84.21 398.6 925.4 5412 113.2
(14) p-value  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(15) #Obs. 116928 116928 116928 116928 116928 116928 116928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects are
controlled. (iif) **p<0.01, *p<0.05, * p<0.1
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Citations Novelty
Variables (1) IV3-5 (2)1IV3  (3)IV4 (4)1V5 (5)IV3-5  (6)IV3 (7) IV4 (8) IV5
(1) InAn}? 0.244" 0.278 0.244" 0.278"
(0.0212)  (0.0138) (0.0212)  (0.0138)
@ InAmy*  0.00997 0.231" 0.00997 0.231"
(0.0321) (0.0304) (0.0321) (0.0304)
(3) InAn's 0.106™ 0208  0.106™ 0.208
(0.0339) (0.0392)  (0.0339) (0.0392)
(4) Ink; 0.114™ 0.116™ 0.117 0.117 0.114™ 0.116™ 0.117 0.117
(0.0268)  (0.0266)  (0.0261)  (0.0255)  (0.0268)  (0.0266)  (0.0261)  (0.0255)
(5) (Inky)? -0.202"* <0202 -0.203**  -0.204"™  -0.202**  -0.202**  -0.203"  -0.204™
(0.00986)  (0.00962)  (0.00971)  (0.00984)  (0.00986)  (0.00962)  (0.00971)  (0.00984)
(6) InalNV 0.232" 0.237" 0.261 0.273 0.232" 0.237 0.261 0.273"
(0.0529)  (0.0542)  (0.0600)  (0.0651)  (0.0529)  (0.0542)  (0.0600)  (0.0651)
(7) InaR&D 0.00704  0.00845  0.00680  0.00712  0.00704  0.00845  0.00680 0.00712
(0.00751)  (0.00733)  (0.00840)  (0.00874)  (0.00751)  (0.00733)  (0.00840)  (0.00874)
(8) Ina)NFe 0.0329  -0.0326"  -0.0412*  -0.0427*  -0.0329  -0.0326"  -0.0412*  -0.0427*
(0.0200)  (0.0194)  (0.0220)  (0.0240)  (0.0200)  (0.0194)  (0.0220)  (0.0240)
@ Ina)™* 000479  0.00514 000793  0.00868 000479 000514  0.00793 0.00868
(0.0142)  (0.0142)  (0.0155)  (0.0170)  (0.0142)  (0.0142)  (0.0155)  (0.0170)
(10) Inab©? 1.053* 1.106™ 1.210* 1.338* 1.053* 1.106™ 1.210 1.338™
(0.506) (0.539) (0.585) (0.585) (0.506) (0.539) (0.585) (0.585)
(1) 7 0167 -0.146™  -0.139**  -0.131™* 0167  -0.146"*  -0.139"  -0.131"™
(0.0206)  (0.0187)  (0.0252)  (0.0263)  (0.0206)  (0.0187)  (0.0252)  (0.0263)
(12) R? 0.197 0.196 0.190 0.189 0.197 0.196 0.190 0.189
(13) F 142.2 406.1 57.40 28.24 142.2 406.1 57.40 28.24
(14) p-value 0.000 0.000 0.000 3.44e-07 0.000 0.000 0.000 3.44e-07
(15) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standard errors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects are

controlled. (iii) ***p<0.01, *p<0.05, * p<0.1

E Results for model (5.9) withm =p

Tables E.1 shows the second stage regression results for model (5.9) with m = p.

57
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Table E.1: Regression results (Dependent variable: In yft)

Quality Novelty
Variables (1) OLS (2)1V3-5 (3)IV3  (4)1v4 (5) IV5 (6) OLS (7)IV3-5  (8)1V3 9) 1v4 (10) IV5
(1) In kft’ 0.135™* 0.260™* 0.259™ 0.272* 0.270"™* 0.0451" 0.114™ 0.110™* 0.132™ 0.130"*
(0.0103) (0.0283) (0.0290) (0.0271) (0.0373) (0.00521) (0.0214) (0.0246) (0.0170) (0.0416)
(2) Ink; 0.0999"* 0.0825™ 0.0826™" 0.0808™ 0.0811"* 0.111* 0.0982"* 0.0989™* 0.0949"* 0.0952™*

(0.0110)  (0.00729)  (0.00725)  (0.00844)  (0.0125)  (0.0144)  (0.0112)  (0.0106)  (0.0125)  (0.0194)

() (Inky)>  -0.0835™  -0.0765™  -0.0765™  -0.0758™  -0.0759*  -0.0868"*  -0.0803™  -0.0807  -0.0787"*  -0.0788"
0.00921)  (0.00761)  (0.00759)  (0.00796)  (0.00884)  (0.0104)  (0.00821)  (0.00800)  (0.00869)  (0.0115)

4) In ag\w 0.207"* 0.153" 0.153" 0.148 0.149 0.238" 0.196™ 0.199* 0.185™ 0.186™*
(0.0678) (0.0752) (0.0755) (0.0700) (0.0574) (0.0651) (0.0659) (0.0683) (0.0612) (0.0389)
(5) InaR&P 0.0298"* 0.0281" 0.0281"* 0.0279"* 0.0280™ 0.0302"* 0.0280" 0.0282™ 0.0275"* 0.0276™

it

(0.0105) (0.00925)  (0.00927)  (0.00892)  (0.00867) (0.0112) (0.0101) (0.0102) (0.00967)  (0.00885)

(6) In ua/[NFe -0.0122" -0.00309 -0.00313 -0.00222 -0.00236 -0.0166™ -0.00823 -0.00872 -0.00604 -0.00626
(0.00702)  (0.00616)  (0.00611)  (0.00725)  (0.00869)  (0.00772)  (0.00745)  (0.00756)  (0.00718)  (0.00950)

7) InaNFo -0.000286 -0.00341 -0.00340 -0.00371 -0.00366 0.00274 0.00217 0.00220 0.00202 0.00203
it
(0.00354)  (0.00438)  (0.00438)  (0.00435)  (0.00426)  (0.00420)  (0.00344)  (0.00345)  (0.00339)  (0.00343)

8) In a’y;or’ 0.133 -0.0794 -0.0785 -0.0997 -0.0965 0.183 -0.0932 -0.0768 -0.165 -0.158
(0.461) (0.420) (0.420) (0.409) (0.387) (0.535) (0.509) (0.517) (0.495) (0.458)

9 7 0.126™* 0.0708™ 0.0710"* 0.0655"* 0.0663" 0.153* 0.103"* 0.106™* 0.0898"* 0.0911*
(0.0183) (0.0215) (0.0217) (0.0199) (0.0223) (0.0179) (0.0236) (0.0254) (0.0206) (0.0342)

(10) R? 0.102 0.087 0.087 0.084 0.084 0.089 0.078 0.079 0.072 0.072

(11) Hansen | p-val. 0.878 0.177

(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) **p<0.01, ** p<0.05, *
p<0.1.

F Results under alternative I'Vs

Table E.1: Regression results for (5.1) under alternative IVs

Quality Novelty
Variables (1) OLS (2)IV3-5 (3)IV3 (4 1V4 (5)IV5 (6) OLS (7)IV3-5  (8)1V3 9) 1v4 (10) IV5
1) lnkg 0.166™ 0.225™ 0.240™ 0.0980 -0.0272 0.167 0.284 0.288" 0.268" 0.291
0.0106)  (0.0455)  (0.0404) (0.111) 0.191)  (0.00529)  (0.0412)  (0.0418)  (0.0444)  (0.0702)
(2) Ink; 0.115™ 0.107"* 0.105 0.125™ 0.142" 0.155" 0.134™ 0.133* 0.137* 0.133"

0.0165)  (0.0198)  (0.0183)  (0.0339)  (0.0497)  (0.0169)  (0.0237)  (0.0236)  (0.0242)  (0.0270)

() (Inky)>  -0.0887""  -0.0855™  -0.0847**  -0.0924"*  -0.0992"*  -0.194"*  -0.183*  -0.183™  -0.185"  -0.183"
0.0105)  (0.0123)  (0.0118)  (0.0174)  (0.0231)  (0.00999)  (0.00675)  (0.00641)  (0.00742)  (0.0119)

(4) Ina™V 0.187 0.161* 0.154" 0217 0.272 0334 0262 0.259* 0.272 0.258"
0.0603)  (0.0613)  (0.0618)  (0.0684)  (0.0919)  (0.0927)  (0.0940)  (0.0966)  (0.0912)  (0.0582)
G)InaR&P 00279 0.0274"*  0.0273™ 00285  0.0295* 00434  0.0403™  0.0402"  0.0407™  0.0401"

' (0.00781)  (0.00734)  (0.00723)  (0.00838)  (0.00945)  (0.0151)  (0.0132)  (0.0132)  (0.0133)  (0.0121)

©ma™NFe 00117 00156~ 00166 000724  -0.00102  -0.0130 000138 000189  -0.000597  0.00222
(0.00695)  (0.00576)  (0.00559)  (0.00774)  (0.0100)  (0.0115)  (0.00923)  (0.00884)  (0.00978)  (0.0164)

7) InaYNFo 0.00630 0.00492 0.00457 0.00788 0.0108" -0.00250 -0.00317 -0.00319 -0.00308 -0.00321
it
(0.00670)  (0.00716)  (0.00755)  (0.00481)  (0.00616)  (0.00642)  (0.00801)  (0.00808)  (0.00778)  (0.00804)

()] lnllgop -0.644 -0.713 -0.731 -0.565 -0.419 0.818 0.405 0.390 0.462 0.381
(0.533) (0.514) (0.508) (0.601) (0.731) (0.503) (0.495) (0.504) (0.488) (0.411)

9) 11 0.225™ 0.201" 0.195" 0.253 0.306"* 0.303* 0.222" 0.219 0.233* 0.217
(0.0168) (0.0257) (0.0231) (0.0562) (0.0934) (0.0346) (0.0545) (0.0550) (0.0557) (0.0610)

(10) R? 0.153 0.186

(11) Hansen ] p-val. 0.494 0.373

(12) 1st stage F 3226 944.7 5222 209 3721 1041 694.2 387.1

(13) #Obs. 103,862 103,862 103,862 103,862 103,862 103,862 103,862 103,862 103,862 103,862

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05, *
p<0.1.
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Table E.2: Regression results for (5.10) under alternative IVs
Quality Novelty
Variables (1)OLS  (2)IV3-5 G)IV3  (4)1V4 (5)1V5 (6)OLS  (7)IV3-5  (8)IV3 (9) IV4 (10) IV5
(1) InAny 0.0993™ 0.900"* 0.901* 0.956™" 0.986™* 0.236™ 1.216™ 1.217* 1.280™ 1.316™
(0.00687)  (0.0293)  (0.0299)  (0.0352)  (0.0301)  (0.00901)  (0.0482)  (0.0491)  (0.0621)  (0.0611)
(2) Ink; 0.133 0.0365 0.0363 0.0296 0.0260 0.152™ 0.0341 0.0339 0.0263 0.0221
0.0423)  (0.0562)  (0.0562)  (0.0567)  (0.0580)  (0.0328)  (0.0483)  (0.0482)  (0.0480)  (0.0492)
3) (lnk,',)2 -0.0390" 0.123" 0.123" 0.135"* 0.141™ -0.0458 0.153™* 0.153" 0.166™ 0.173"
(0.0148)  (0.0162)  (0.0160)  (0.0153)  (0.0165)  (0.0142)  (0.0135)  (0.0133)  (0.0114)  (0.0127)
4) lruzg\IV 0.376™* 0.146™* 0.146™ 0.130™* 0.121 0.501™* 0.220™* 0.219™ 0.201™ 0.191
0.0928)  (0.0354)  (0.0352)  (0.0324)  (0.0319) (0.114) 0.0777)  (0.0779)  (0.0794)  (0.0778)
(5) lnaﬁ&D 0.0100 0.00329 0.00328 0.00281 0.00256 0.0290" 0.0208™ 0.0208™ 0.0202™ 0.0199"
(0.0109) (0.00561) (0.00560)  (0.00541) (0.00528) (0.0165) (0.0102) (0.0102) (0.01000) (0.00984)
(6) lnu?:[NFe -0.0680" -0.0322* -0.0321* -0.0296™ -0.0283" -0.109 -0.0653"* -0.0653™  -0.0624™ -0.0608™*
0.0269)  (0.0151)  (0.0151)  (0.0149)  (0.0146)  (0.0219)  (0.0150)  (0.0150)  (0.0154)  (0.0159)
7) lna:\:[NF“ 0.0210 0.0118 0.0118 0.0112 0.0108 0.000656 -0.0106 -0.0106 -0.0113 -0.0118
0.0231) (00115  (0.0115)  (0.0109)  (0.0107)  (0.0266)  (0.0106)  (0.0106)  (0.00974)  (0.00940)
8) lnaﬁop 1.018 -0.161 -0.163 -0.245 -0.289 3.127 1.683* 1.681* 1.588" 1.536
(1.124) (1.130) (1.129) (1.136) (1.148) (1.194) (0.960) (0.959) (0.945) (0.950)
9) 1 0.393* 0.456™* 0.456™ 0.460™* 0.463™* 0.668™ 0.745™* 0.746™ 0.751™ 0.753™*
(0.0325)  (0.0443)  (0.0443)  (0.0455)  (0.0457)  (0.0312)  (0.0269)  (0.0269)  (0.0279)  (0.0280)
(10) R? 0.159 0.175
(11) Hansen ] p-val. 0.194 0.185
(12) 1st stage F 2800 8401 6651 5010 2800 8401 6651 5010
(13) #Obs. 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05, *
p<0.1.

G Results under alternative productivity measures

This section presents the regression results for (5.1) and (5.10) under the four alter-
native measures of inventor productivity, where the output, g;, of patent j in (2.1)
is given by (i) the cited count within five years from publication, (ii) technological
novelty based on the IPC subclass, (iif) count of patent claims; or (iv) count of patents,
i.e, gj=1forall j. Table G.1 shows the descriptive statistics for productivities and

differentiated knowledge of collaborators under these measures.

Table G.1: Descriptive statistics of knowledge and productivity variables

Unit of productivity Citations (5 years)  Novelty (IPC subclass) Claim counts Patent counts
() (@) ©)] 4) ©) (6) @) 8)
Period 1 2 1 2 1 2 1 2
(1) Output of a patent Sjt 1.789 1.595 0.000 0.000 7.231 8.906 1.000 1.000
(3.676) (4.186) (0.002) (0.003) (9.555) (81.53) (0.000)  (0.000)
(2) Productivity of an inventor Yit 9.369 5.597 0.001 0.000 36.67 40.89 4.824 3.099
(22.02)  (163.73)  (0.004) (0.003) (109.14)  (4173.48)  (7.749)  (5.936)
(3) Pairwise productivity of an inventor Yit 1.622 1.838 0.000 0.000 6.682 25.48 0.894 0.677
(3.730)  (175.40)  (0.001) (0.001) (88.27) (4478.60)  (1.911)  (1.739)
(4) Avg. diff. knowledge KD 1.666 1.186 0.008 0.005 6.579 5.647 0.874 0.748
of collaborators (8.940) (5.391) (0.043) (0.034) (49.51) (25.86) (4.699)  (3.057)

Numbers in parentheses are standard deviations.

Tables G.2 and G.3 present the results from the second-stage regressions for

models (5.1) and (5.10), respectively. Under each alternative measure, the tables
show the OLS and the IV results, where the IVs for In kf? and In An;; are constructed
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by using all indirect collaborators for £ = 3,4 and 5, since the result is similar if only

one of them is used (just like in our baseline results).

Table G.2: Regression results for (5.1) under alternative productivity mea-

sures
Citations (5 years) Novelty (IPC subclass) Claim count Patent count
Variables (1) OLS (2) IV3-5 (3)OLS 4)1v3-5 (5)OLS (6) IV3-5 (7)OLS (8) IV3-5
(1) In kﬁ’ 0.163"* 0.282" 0.179"* 0.323"* 0.198"* 0.339" 0.163"* 0.326"*
(0.0109) (0.0276) (0.00882) (0.0347) (0.0133) (0.0383) (0.0112) (0.0304)
(2) Ink; 0.116™* 0.0991* 0.0586™* 0.0394* 0.140™* 0.115" 0.0981** 0.0775"
(0.0155) (0.0117) (0.0199) (0.0186) (0.0135) (0.0152) (0.0114) (0.00723)
(3) (Ink;)? -0.0887**  -0.0820"* -0.159" -0.146™  -0.0953"*  -0.0858**  -0.0826™*  -0.0742"*
(0.01000)  (0.00892) (0.0184) (0.0121) (0.00337)  (0.00338)  (0.00911)  (0.00715)
4) lna,ItNV 0.167** 0.118* 0.232"* 0.153* 0.212"* 0.142* 0.187* 0.109
(0.0539) (0.0606) (0.0644) (0.0707) (0.0559) (0.0579) (0.0658) (0.0734)
(5) In u}}&D 0.0269 0.0254" 0.0415 0.0379* 0.0276* 0.0251" 0.0290" 0.0265"
(0.00744)  (0.00650) (0.0127) (0.0106) (0.0101) (0.00865)  (0.00971)  (0.00767)
(6) lnuz/INF" 0.0188"* 0.0269* 0.00689 0.0214* 0.0148" 0.0274* -0.00502 0.0120*
(0.00566)  (0.00465) (0.0107) (0.00993)  (0.00658)  (0.00542)  (0.00639)  (0.00504)
(7) In aﬁ‘NFU 0.00857 0.00546 -0.00516 -0.00643 0.0127* 0.00860 0.000798 -0.00151
(0.00616)  (0.00835)  (0.00456)  (0.00637)  (0.00508)  (0.00604)  (0.00344)  (0.00586)
(8) lnu}zOP -0.435 -0.626 0.394 0.00176 0.594 0.154 0.0162 -0.331
(0.527) (0.494) (0.533) (0.466) (0.478) (0.484) (0.450) (0.409)
9) 11 0.272"* 0.214" 0.433"* 0.327" 0.122" 0.0788" 0.133* 0.0801**
(0.0175) (0.0156) (0.0247) (0.0352) (0.0236) (0.0230) (0.0160) (0.0155)
(10) R? 0.165 0.236 0.105 0.107
(11) Hansen ] p-val. 0.845 0.184 0.399 0.629
(12) 1st stage F 712.6 500.8 889.2 774.7
(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.

Table G.3: Regression results for (5.10) under alternative productivity mea-

sures
Citations (5 years) Novelty (IPC subclass) Claim count Patent count
Variables (1) OLS (2) IV3-5 (3)OLS 4)1v3-5 (5)OLS (6) IV3-5 (7)OLS (8) IV3-5
(1) InAng 0.107" 1.383 0.174" 1.427 0.110™ 1.525" 0.0851* 1.318™
(0.00587) (0.0683) (0.00853) (0.0920) (0.00630) (0.0540) (0.00595) (0.0512)
(2) Ink;; 0.137 -0.0166 0.122" 0.000294 0.166™* -0.00414 0.116™ -0.0324
(0.0452) (0.0688) (0.0467) (0.0914) (0.0234) (0.0526) (0.0307) (0.0563)
(3) (Ink;)? -0.0366™ 0.225" -0.0551 0.242" -0.0456" 0.244 -0.0343"* 0.218™
(0.0160) (0.0191) (0.0340) (0.0389) (0.0103) (0.0200) (0.0131) (0.0200)
(4) lnu}tNV 0.365™* -0.00994 0.479* 0.144* 0.445™* 0.0288 0.450" 0.0876
(0.0965) (0.0387) (0.0967) (0.0611) (0.131) (0.0561) (0.0913) (0.0534)
5) lnaE&D 0.0129 0.000127 0.0239 0.00825 0.0186 0.00446 0.0156 0.00330
(0.0106) (0.00535) (0.0151) (0.00960) (0.0129) (0.00568) (0.0140) (0.00545)
6) lnuf.\fNF" -0.0666™*  -0.00955  -0.0990"*  -0.0673"*  -0.0916"* -0.0283 -0.106™* -0.0505"*
(0.0212) (0.0150) (0.0220) (0.0176) (0.0233) (0.0203) (0.0219) (0.0139)
(7) In a?fNF” 0.0221 0.00871 0.00282 -0.0220* 0.0225 0.00768 0.00888 -0.00401
(0.0204) (0.0112) (0.0265) (0.0130) (0.0257) (0.0132) (0.0253) (0.00891)
8) lnaEOP 1.238 -0.698 2.201* -0.0572 2.924™ 0.778 1.808* -0.0609
(1.058) (1.278) (0.879) (1.056) (0.886) (1.167) (0.951) (1.000)
9) 711 0.459™ 0.560"* 0.674™ 0.522" 0.287" 0.398™ 0.301 0.398™
(0.0289) (0.0539) (0.0265) (0.0398) (0.0262) (0.0322) (0.0215) (0.0319)
(10) R? 0.177 0.217 0.089 0.111
(11) Hansen | p-val. 0.254 0.297 0.245 0.251
(12) 1st stage F 237.7 251.2 237.7 237.7
(13) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, * p<0.05, * p<0.1.
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H Results under the alternative definition of collabora-
tors” knowledge

Table H.1 shows the regression results for (5.1) under quality- and novelty-adjusted
productivity measures in columns 1-2 and 3-4, respectively, and those for (5.10) in
columns 5-6 when kg is defined in terms of IPC subgroups as given by (9.1). For
each specification, we compare the OLS and IV results, where the latter are shown
only for the case in which IVs are constructed by using all the third-, forth- and
tifth-indirect collaborators, since the result is similar, even if only either of the third-,
forth- or fifth-indirect collaborators were used.

In all the specifications, the first-stage F values are reasonably large, so that the
relevance appears to be strong as in the baseline case. In terms of the Hansen (1982)’s

J-test, there is no evidence against the exogeneity of the instruments.

Table H.1: Regression results with knowledge in terms of IPC subgroups

(5.1) Dependent variable : Iny; (5.10) Dependent
Quality Novelty variable : In An;;
Variables (1) OLS (2) IV3-5 (3)0OLS (4)IV3-5 (5)OLS (6) IV3-5
1) lnkl‘? 0.169" 0.604" 0.287 1.331
(0.0431) (0.118) (0.0597) (0.244)
(2) InAn;; -0.0210™ 0.368™*
(0.00386) (0.0160)
(3) Ink; 0.128" 0.1117 0.167" 0.126" 0.0432 -0.00226

0.0201)  (0.0166)  (0.0163)  (0.0246)  (0.00642)  (0.0157)

(4) (Inky)? -0.0983*  -0.0936" -0.208" -0.197 -0.0179" 0.0611

(0.0116)  (0.0107)  (0.0106)  (0.00802)  (0.00184)  (0.00651)

(5) InaNV 0.230™ 0.189 0.386™" 0.287 0.105" -0.00729
it

(0.0596) (0.0610) (0.103) (0.109) (0.0277) (0.0213)

6) lna}}&D 0.0281* 0.0270 0.0448" 0.0422* 0.00259 -0.00116

(0.00879)  (0.00771)  (0.0170)  (0.0143)  (0.00380)  (0.00188)

(7) In o INFe 0.00313 0.00820 -0.0293* -0.0171 -0.0148™ 0.00371
it

(0.00823)  (0.00705)  (0.0114)  (0.0110)  (0.00461)  (0.00650)

()] InaMNFe 0.0113* 0.0112* -0.00369 -0.00392 -0.00126 -0.00551
it

(0.00431)  (0.00555)  (0.00661)  (0.00810)  (0.00579)  (0.00378)

9) In uEOP -0.375 -0.727 1.238" 0.392 0.903* 0.299
(0.627) (0.635) (0.535) (0.587) (0.200) (0.247)

(10) 74 0.279* 0.256™ 0.399* 0.344™ 0.0453" 0.0754*
(0.0195) (0.0176) (0.0339) (0.0387) (0.00639)  (0.00867)

(11) R? 0.132 0.169 0.018

(12) Hansen | p-val. 0.931 0.109 0.235

(13) 1st stage F 328.8 328.8 235.2

(14) #Obs. 113,454 113,454 113,454 113,454 92,098 92,098

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) *** p<0.01, ** p<0.05, * p<0.1.

I Results for the alternative radiuses for locational fac-
tors

This section presents the results from the second-stage regressions for (5.1) in Section
8.1 and (5.10) in Section 8.3 under the alternative radius values for the local factors
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defined in Section 6.3 in Tables 1.1 and 1.2 (1.3 and 1.4), respectively for quality-
adjusted (novelty-adjusted) productivity.

One can see that the choice of radius values for the local factors does not alter
the qualitative results obtained in the baseline setup shown in Tables 8.1 and 8.3
in Section 8 regarding the effect of collaborators’ differentiated knowledge and that
of the knowledge stock of an inventor on his or her productivity as well as the
role of the collaborator recombination in the size of collaborators’ differentiated
knowledge. The values of the estimated coefficients for the endogenous variables,
lnkg and InAn;;, as well as those for the knowledge stock, Ink;; and (Ink;;)?, appear

to be stable in all cases.

Table I.1: Regression results (Dependent variable: Iny;;)

Citations (IV3-5)

Variables (1) 2) 3) 4) (5) 6) ()
(1) Ink? 0.293* 0.296™ 0.294 0.286™" 0.288" 0.288 0.286™
(0.0225)  (0.0193)  (0.0214)  (0.0254)  (0.0239)  (0.0242)  (0.0254)
(2) Ink; 0.0923**  0.0893**  0.0889**  0.0931**  0.0917°*  0.0911**  0.0931**
(0.0124)  (0.0135)  (0.0141)  (0.0119)  (0.0121)  (0.0121)  (0.0119)
(3) (Ink;)? -0.0814™  -0.0803*  -0.0802**  -0.0820**  -0.0815**  -0.0816™  -0.0820*"
(0.00886)  (0.00903)  (0.00911)  (0.00868)  (0.00879)  (0.00866)  (0.00868)
@) InaN¥
1km 0.117* 0.126* 0.125* 0.117*
(0.0633)  (0.0634)  (0.0709)  (0.0633)
5km 0.162*
(0.0624)
10km 0.0886
(0.108)
20km 0.127
(0.135)
(5) InaR&D
1km 0.0267**  0.0260™*  0.0270** 0.0256™
(0.00611)  (0.00734)  (0.00838) (0.00679)
5km 0.0256"*
(0.00679)
10km 0.0294*
(0.0106)
20km 0.0314*
(0.00865)
(6) Ina)™Fe
1km 0.0113 0.0176*  0.0209**  0.0240*  0.0277**  0.0202**
(0.00825)  (0.00799)  (0.00487)  (0.00438)  (0.00597)  (0.00427)
5km 0.0240
(0.00438)
(7) Inal™Fo
1km 0.00492 0.00563 0.00650  0.00522  0.00534  0.00588 0.00522
(0.00863)  (0.00821)  (0.00880)  (0.00804)  (0.00667)  (0.00722)  (0.00804)
(8) lnagop
1km -0.624 -0.628 -0.628 -0.660 -0.939" -0.522 -0.660
(0.472) (0.517) (0.546) (0.490) (0.497) (0.504) (0.490)
Ok 0.165" 0.166™ 0.163* 0.173" 0.164™ 0.166™ 0.173*
(0.0143)  (0.0174)  (0.0190)  (0.0150)  (0.0196)  (0.0117)  (0.0150)
(10) H. ] p-value  0.952 0.972 0.974 0.928 0.938 0.878 0.928
(11) F 768.5 775.2 758.3 727.1 734 733.4 727.1
(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iti) **p<0.01, ** p<0.05, * p<0.1.
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Table I.1: Regression results continued (Dependent variable: Iny;;)

Citations (IV3-5)

Variables o) V) 3) () 5) 6) @)

(1) InkP 0284™  0286™  0284™ 0287  0280™  0.285™ 0.280"
(0.0249)  (0.0248)  (0.0274)  (0.0248)  (0.0280)  (0.0249)  (0.0264)

() Ink; 00932 0.0923™  0.0913**  0.0931**  0.0907**  0.0921**  0.0903"*
0.0115)  (0.0105)  (0.0121)  (0.0119)  (0.0117)  (0.0107)  (0.0117)

() (Ink)? 0.0822"*  -0.0820™  -0.0817**  -0.0821**  -0.0817**  -0.0815*  -0.0809™"

(0.00864)  (0.00848)  (0.00867)  (0.00857)  (0.00861)  (0.00834)  (0.00861)
4) In ath
1km 0.117* 0.124* 0.119* 0.118* 0.115* 0.116* 0.108*
(0.0634) (0.0599) (0.0609) (0.0608) (0.0632) (0.0654) (0.0598)
(5) In ag&D
1km 0.0251* 0.0240" 0.0209* 0.0274* 0.0177+ 0.0275** 0.0271**
(0.00780)  (0.00911)  (0.00498)  (0.00570)  (0.00635)  (0.00634)  (0.00530)

(6) Ina)yNFe

1km 0.0488™ 00155  0.0283™  0.0218™  0.0217*
0.0159)  (0.0157)  (0.00899)  (0.00515)  (0.00695)

10km -0.0245
(0.0165)
20km -0.105
(0.0783)
MNF,
(7) Ina,
1km -0.00201 -0.00280 0.00736 0.0102*
(0.0119) (0.0129) (0.00539)  (0.00619)
5km 0.0573*
(0.0199)
10km -0.0122
(0.0481)
20km 0.137
(0.0483)
POP
(8) Inay,
5km 0.0295
(0.276)
10km 0.666
(0.547)
20km -0.592 -0.491 -0.217 -0.806 0.232
(0.562) (0.542) (0.533) (0.749) (0.592)
9) 0.177 0.190" 0.160* 0.178 0.162 0.189 0.203"*
(0.0153) (0.0173) (0.0132) (0.0159) (0.0162) (0.0213) (0.0271)
(10) H. ] p-value  0.943 0.944 0.875 0.934 0.846 0.920 0.935
anF 721.8 728.7 728.5 728.6 722.6 729.1 709.6
(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(i1i) *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.2: Regression results (Dependent variable: In ki[t)

Citations (IV3-5)

Variables @ @ ®) @) ) (6) %)
(1) InAny 1381 1403 1404™  1372* 1378 1372 1372
0.0616)  (0.0560)  (0.0571)  (0.0629)  (0.0583)  (0.0634)  (0.0629)
(2) Ink; 00243 00279  -0.0257  -00220  -0.0212  -0.0225 -0.0220
0.0660)  (0.0671)  (0.0671)  (0.0669)  (0.0673)  (0.0675)  (0.0669)
3) (Ink;)? 0226™  0231™  0230™ 0223 0224 0223 0223
(0.0184)  (0.0200)  (0.0216)  (0.0197)  (0.0207)  (0.0199)  (0.0197)
INV
(4) Ina®
1km 0.0138 0.0109 0.0144 0.0138
(0.0426)  (0.0473)  (0.0418)  (0.0426)
5km -0.0460
(0.0699)
10km -0.287°
(0.100)
20km -0.338"
(0.171)
R&D
(5) Inak
1km 0.000665  0.00203  -0.000853 0.000705
(0.00443)  (0.00617)  (0.00529) (0.00478)
5km 0.000705
(0.00478)
10km -0.0150°
(0.00821)
20km 0.00480
(0.0109)
MNF.
(6) Ina
1km 00106 000436  -0.00815  -0.0139  -0.0161  -0.0144
(0.0167)  (0.0151)  (0.0141)  (0.0147)  (0.0175)  (0.0146)
5km -0.0139

(0.0147)

(7) Ina)™Fe

1km 000833 000795  0.00566 000814 00117 000741  0.00814
(0.00995)  (0.00980)  (0.0111)  (0.00992)  (0.0112)  (0.00973)  (0.00992)

8) lna}:op
20km -0.539 -0.458 -0.471 -0.552 -0.688 -0.464 -0.552

(1.231) (1.061) (1.023) (1.229) (1.247) (1.179) (1.229)

9) 7 0.520" 0.555" 0.557* 0.514* 0.494* 0.520" 0.514"
(0.0550) (0.0441) (0.0358) (0.0504) (0.0552) (0.0471) (0.0504)

(10) H. J p-value  0.253 0.243 0.251 0.255 0.253 0.254 0.255

(11)F 266 258.3 249.5 237.7 238 239.6 237.7

(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iif) **p<0.01, ** p<0.05, * p<0.1.
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Table 1.2: Regression results continued (Dependent variable: lnkft) )

Citations (IV3-5)

Variables 1) @) (3) (4) (5) (6) 7)
(1) InAnyy 1.371 1.377 1.379* 1.381 1.375 1.366" 1.366
(0.0601)  (0.0652)  (0.0631)  (0.0595)  (0.0628)  (0.0614)  (0.0537)
(2) Ink; -0.0228 -0.0232 -0.0212 -0.0205 -0.0228 -0.0233 -0.0227
(0.0666)  (0.0661)  (0.0664)  (0.0648)  (0.0659)  (0.0652)  (0.0647)
(3) (Ink;)? 0.223** 0.224* 0.224* 0.225" 0.224* 0.223* 0.223*
(0.0206)  (0.0194)  (0.0194)  (0.0197)  (0.0192)  (0.0185)  (0.0204)
INV
(4) Inal!
1km 0.0148 0.0176 0.0124 0.0220 0.0127 0.0117 0.0120

(0.0421)  (0.0429)  (0.0443)  (0.0440)  (0.0434)  (0.0446)  (0.0491)

(5) InaR&d
1km 0.000500  9.21e-05  0.00515  0.0153* 0000744 000240  0.00211
(0.00483)  (0.00500)  (0.00487)  (0.00729)  (0.00518)  (0.00631)  (0.00686)

(6) Ina)y™Fe

1km -0.0372 -0.0761* -0.0190" -0.0183 -0.0154
(0.0268) (0.0386) (0.00986) (0.0151) (0.0163)

10km -0.0345
(0.0464)
20km -0.0559
(0.0614)
MNF,
(7) Inay,
1km 0.00762 0.00926 0.0107 0.0103
(0.00909)  (0.00726) (0.00763)  (0.00854)
5km -0.0337
(0.0369)
10km -0.152*
(0.0809)
20km 0.0171
(0.0579)
(8) lnugop
5km 0.135
(0.450)
10km 0.111
(1.355)
20km -0.566 -0.524 -0.954 -1.760 -0.529
(1.298) (1.304) (1.278) (1.340) (1.368)
9 o 0.516"" 0.522"* 0.529"* 0.553" 0.517 0.529"* 0.529"
(0.0531) (0.0574) (0.0503) (0.0535) (0.0512) (0.0384) (0.0501)
(10) H. ] p-value  0.256 0.252 0.258 0.258 0.256 0.258 0.252
(1) F 238.6 2411 238.8 239.2 2384 2429 230.5
(12) #Obs 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standarderrors clustered by UAs are in parentheses. (i) IPC class fixed effects are controlled.
(ifi) *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.3: Regression results (Dependent variable: Iny;;)

Novelty (IV3-5)

Variables 1) ) ®3) @) (%) (6) @)
(1) Ink? 0.355* 0.358™ 0.351" 0.344" 0.344 0.345™ 0.344"
(0.0290)  (0.0303)  (0.0312)  (0.0310)  (0.0285)  (0.0306)  (0.0310)
(2) Ink; 0.112* 0.108™ 0.107* 0.114" 0.113* 0.111% 0.114"
(0.0227)  (0.0211)  (0.0204)  (0.0228)  (0.0219)  (0.0231)  (0.0228)
(3) (Ink)? -0.176% 0175 -0.175"*  -0.178*  -0.177**  -0177**  -0.178*
(0.00650)  (0.00698)  (0.00731)  (0.00594)  (0.00608)  (0.00621)  (0.00594)
4) lnaﬁNV
1km 0.200* 0.213* 0.212* 0.200*
(0.0939)  (0.0957) (0.104) (0.0939)
5km 0.256™"
(0.0789)
10km 0.223
(0.149)
20km 0.397*
(0.155)
(5) InaR&D
1km 0.0381**  0.0366™  0.0395* 0.0364"
(0.0116)  (0.0124)  (0.0137) (0.0127)
5km 0.0364"
(0.0127)
10km 0.0399*
(0.0189)
20km 0.0492*
(0.0154)
(6) Ina)™Fe
1km -0.00656  -0.00148  0.00538 0.0132 0.0181 0.00757
(0.00776)  (0.00851)  (0.00928)  (0.00989)  (0.0126)  (0.0110)
5km 0.0132
(0.00989)
(7) Inal™Fo
1km -0.00532  -0.00412  -0.00151  -0.00512  -0.00445  -0.00496  -0.00512
(0.00882)  (0.00790)  (0.00931)  (0.00721)  (0.00467)  (0.00493)  (0.00721)
8) lnagop
20km 0.112 0.0752 0.0741 0.0701 -0.340 0.361 0.0701
(0.414) (0.426) (0.489) (0.415) (0.377) (0.443) (0.415)
Ok 0.158" 0.150" 0.137" 0.173* 0.159* 0.171% 0.173*
(0.0376)  (0.0377)  (0.0338)  (0.0382)  (0.0366)  (0.0426)  (0.0382)
(10) H. ] p-value ~ 0.663 0.619 0.642 0.768 0.823 0.782 0.768
(11) F 588.2 593.8 568.5 557.6 564.3 563.9 557.6
(12) #Obs. 116,928 116,928 116,928 116928 116928 116928 116,928

(i) Standarderrors clustered by UAs are in parentheses. (i7) IPC class fixed effects are controlled.
(ii) **p<0.01, ** p<0.05, * p<0.1.
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Table 1.3: Regression results continued (Dependent variable: Iny;;)

Novelty (IV3-5)

Variables o) ) ®3) 4) (5) (6) @)
(1) InkB 0338 0.344™ 0342 0345 0340  0.343* 0.332+
(0.0300)  (0.0299)  (0.0301)  (0.0313)  (0.0303)  (0.0289)  (0.0302)
) Ink; 0.114*  0.113*  0.112*  0114™ 0111  0.113* 0.109*
(0.0225)  (0.0235)  (0.0233)  (0.0226)  (0.0235)  (0.0237)  (0.0229)
(3) (Inky)? 0.178% 0178 -0177% 0178  -0.177% 0177 0177
(0.00592)  (0.00566)  (0.00622)  (0.00596)  (0.00618)  (0.00549)  (0.00558)
(4) InaNV 0.203* 0.212* 0.202* 0.199* 0.195* 0.198* 0.180"
(0.0917)  (0.0878)  (0.0912)  (0.0893)  (0.0950)  (0.100)  (0.0886)
(5) InaR&P 0.0356"  0.0341*  0.0285*  0.0355**  0.0252*  0.0367**  0.0353"
(0.0147)  (0.0160)  (0.00994)  (0.0107)  (0.0120)  (0.0122)  (0.00869)
(6) Ina)™Fe
1km 0.0557*  0.0182  0.0276"  0.00800 0.0110
(0.0202)  (0.0382)  (0.0101)  (0.0126)  (0.00690)
10km -0.0728%
(0.0294)
20km -0.169
(0.106)
(7) Inal™Fo
1km -0.0147%  -0.0128 -0.00360  0.00286
(0.00740)  (0.00967) (0.00616)  (0.00574)
5km 0.0767
(0.0259)
10km 0.00257
(0.0890)
20km 0.168"
(0.0404)
(8) Inal©?
5km 0.248
(0.331)
10km 1.870
(0.672)
20km 0.155 0.286 0.803" 0.144 1.293*
(0.500) (0.457) (0.474) (0.885) (0.535)
©) 7 0.184*  0.199™  0.150** 0169  0.153*  0.177* 0.214"
(0.0398)  (0.0322)  (0.0414)  (0.0358)  (0.0424)  (0.0299)  (0.0355)
(10) H. ] p-value  0.776 0.654 0.850 0.729 0.842 0.809 0.767
anF 550.6 563.4 555.8 557.7 552.2 562.4 537.2
(12) #Obs. 116928 116928 116928 116928 116928 116928 116,928

(i) Standarderrors clustered by UAs are in parentheses. (i7) IPC class fixed effects are controlled.
(i1i) *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.4: Regression results (Dependent variable: In ki[t)

Variables

Novelty (IV3-5)

@ 2) ®3) (C)) ) (6) ?)
(1) InAnyy 1.743* 1.764* 1.743* 1.722% 1.730%  1.727* 1.722%
(0.0748)  (0.0706)  (0.0784)  (0.0847)  (0.0799)  (0.0815)  (0.0847)
(2) Ink; -0.0355 -0.0397 -0.0359 -0.0313 00310  -0.0342 -0.0313
(0.0635)  (0.0655)  (0.0659)  (0.0638)  (0.0647)  (0.0654)  (0.0638)
(3) (Ink;)? 0.266" 0.271* 0.266™ 0.261" 0.262**  0.262™ 0.261"
(0.0226)  (0.0241)  (0.0243)  (0.0233)  (0.0250)  (0.0241)  (0.0233)
INV
(4) Ina?
1km 0.0800 0.0820 0.0849 0.0800
(0.103) (0.112) (0.106) (0.103)
5km 0.0170
(0.132)
10km -0.208
(0.150)
20km 0.00578
(0.208)
(5) InaR&D
1km 0.0177* 0.0186*  0.0177* 0.0172*
(0.00874)  (0.00989)  (0.00861) (0.00896)
5km 0.0172
(0.00896)
10km -0.00246
(0.0159)
20km 0.0285
(0.0177)
MNF.
(6) Ina)
1km -0.0451"  -0.0307*  -0.0441*  -0.0436"  -0.0442  -0.0464"
(0.0172)  (0.0159)  (0.0195)  (0.0219)  (0.0276)  (0.0218)
5km -0.0436™
(0.0219)
(7) Ingy™Fe
1km -0.0133 -0.0134 -0.0132 -0.0133  -0.00819  -0.0142 -0.0133
(0.00886)  (0.00828)  (0.00945)  (0.00922)  (0.00928)  (0.0101)  (0.00922)
POP
(8) Inay,
20km 1.361 1.429 1.365 1.332 0.966 1.594* 1.332
(1.039) (0.896) (1.030) (1.050) (1.078) (0.895) (1.050)
12000 0.820™ 0.850" 0.821 0.814™ 0.780*  0.821™ 0.814
(0.0324)  (0.0283)  (0.0333)  (0.0285)  (0.0390)  (0.0280)  (0.0285)
(10) H.  p-value ~ 0.358 0.348 0.363 0.363 0.352 0.363 0.363
(1) F 266 258.3 2495 237.7 238 239.6 237.7
(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standarderrors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iif) **p<0.01, ** p<0.05, * p<0.1.
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Table 1.4: Regression results continued (Dependent variable:

D
Ink.)
Novelty (IV3-5)
Variables 1) 2) 3) 4) ) (6) 7)
(1) InAny 1.719" 1.734™ 1.720™ 1.724 1.7177 1.728™ 17117
(0.0840) (0.0892)  (0.0827)  (0.0786)  (0.0817) (0.0811) (0.0761)
(2) Ink;; -0.0339 -0.03 49 -0.0293 -0.0278 -0.0305 -0.0333 -0.0337
(0.0627) (0.0624)  (0.0647)  (0.0628)  (0.0642) (0.0618) (0.0605)
(3) (Ink)? 0.261* 0.264* 0.260"  0.261* 0.260" 0.262* 0.259*
(0.0234) (0.0224)  (0.0235)  (0.0237)  (0.0234) (0.0232) (0.0238)
(4) Inal™V
1km 0.0832 0.0902 0.0800 0.0935 0.0811 0.0756 0.0647
(0.103) (0.102) (0.106) (0.0974) (0.102) (0.114) (0.108)
(5) In aE&D
1km 0.0165* 0.0156* 0.0187*  0.0348" 0.0156 0.0143 0.0125

(0.00931)  (0.00926)  (0.0107)  (0.0154)  (0.0104)  (0.00888)  (0.00974)
6) lnaf\fNFe

1km -0.0511 -0.114 -0.0338" -0.0512* -0.0425*
(0.0434)  (0.0779)  (0.0192) (0.0272) (0.0221)
10km -0.107*
(0.0572)
20km -0.148*
(0.0729)
MNF,
(7) Inay,
1km -0.0147* -0.00892 -0.0138 -0.0108
(0.00890)  (0.00783) (0.00843) (0.0109)
5km -0.0346
(0.0540)
10km -0.219
(0.156)
20km -0.00425
(0.0639)
(8) In agor’
5km 0.494
(0.529)
10km 1.445
(1.530)
20km 1.287 1.390 1.178 -0.112 1.461
(1.112) (1.129) (1.043) (1.348) (1.194)
9) 1 0.819* 0.834* 0.817*  0.856™* 0.807* 0.795** 0.809**
(0.0296) (0.0348)  (0.0330)  (0.0489)  (0.0301) (0.0177) (0.0318)
(10) H. J p-value  0.361 0.359 0.361 0.359 0.362 0.356 0.348
(1) F 238.6 241.1 238.8 239.2 2384 2429 230.5
(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standarderrors clustered by UAs are in parentheses. (i) IPC class fixed effects are controlled.
(iif) *** p<0.01, ** p<0.05, * p<0.1.

J First-stage results for the IV regressions based on in-

direct collaborators in different firms

Tables J.1 and ].2 show the results form the first-stage regressions corresponding to
Tables F.1 and F.2, respectively.
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Table J.1: First-stage regression results for (5.1) under alternative IVs

Quality Novelty
Variables 1) IV3-5 @1IV3 (3)Iv4 @) IV5 (G)IV3-5  (6)IV3 (7)IV4 (8) IV5
@ kM 0.239" 0.267" 0.251" 0.313™
(0.0254)  (0.0110) (0.0203)  (0.0111)
@ K™ 0.0592* 0.226" 0.106™* 0.314
(0.0235) (0.0215) (0.0279) (0.0150)
@) ks -0.0131 0.163" 0.0282 0.277*
(0.0493) 0.0417)  (0.0338) (0.0267)
(4) Ink; 0.130™ 0130 0134  0.136™ 0.158™ 0159 0167  0.170"
(0.0331)  (0.0330)  (0.0356)  (0.0369)  (0.0126)  (0.0128)  (0.0163)  (0.0163)
() (Inky)?  -0.0513™  -0.0513**  -0.0525™  -0.0532"*  -0.0878"*  -0.0882**  -0.0891"*  -0.0897*
0.0117)  (0.0116)  (0.0131)  (0.0136)  (0.00845)  (0.00836)  (0.0102)  (0.0107)
(6) InalNV 0419™  0419™ 0428 0431 0553* 0561 0573 0581
0.0777)  (0.0770)  (0.0779)  (0.0784) (0.104) (0.105) (0.108) (0.112)
(7) InaR&D 000353  0.00387 000520  0.00810 0.0145 0.0153 0.0186 0.0242
0.0100)  (0.0102)  (0.0105)  (0.0110)  (0.0150)  (0.0157)  (0.0162)  (0.0175)
@®) Ina)™  00640"  -0.0640"  -0.0652"  -0.0652"  -0.110™  -0.110™  -0.117"  -0.120"™
0.0270)  (0.0265)  (0.0295)  (0.0302)  (0.0201)  (0.0177)  (0.0232)  (0.0259)
(9) Ina}yNFo 0.0191 0.0198 0.0182 0.0196 000403 000514 000312  0.00233
0.0245)  (0.0236)  (0.0255)  (0.0251)  (0.0283)  (0.0260)  (0.0304)  (0.0296)
(10) Inako” 0.652 0.708 0.674 0.855 2,930 3.063" 2.971* 3.219*
(1.281) (1.199) (1.326) (1.297) (1.249) (1.136) (1.326) (1.300)
an 0318™  0324™ 0343  0.369™ 0.498™  0524™  0549™ 0587
(0.0383)  (0.0314)  (0.0396)  (0.0430)  (0.0276)  (0.0300)  (0.0299)  (0.0332)
(12) R? 0.182 0.181 0.172 0.165 0.194 0.193 0.185 0.177
(13)F 268.1 593.7 110 15.33 494 799 4372 108.1
-value B
(14) p-val 0 0 0 0.000129 0 0 0 0
(15) #Obs. 103862 103,862 103,862 103862 103,862 103,862 103,862 103,862

(i) Standarderrors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects are

controlled. (iif) **p<0.01, *p<0.05, * p<0.1
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Table ]J.2: First-stage regression results for (5.10) under alternatie IVs

Quality Novelty
Variables (1) IV3-5 @1IV3  (3)IV4 (4)1v5 (5)IV3-5  (6)IV3 (7) IV4 (8)1V5
(1) InAn}? 02477 0.233" 02477 0.233"
(0.00775)  (0.00780) (0.00775)  (0.00780)
@) InAny*  -0.0345" 0.219* -0.0345* 0.219*
(0.0153) (0.00834) (0.0153) (0.00834)
(3) InAny's 0.0209 0.200 0.0209 0.200
(0.0160) (0.00837)  (0.0160) (0.00837)
(4) Inky 0.0655%  0.0657%  0.0746"*  0.0811**  0.0655*  0.0657*  0.0746™  0.0811"
(0.0268)  (0.0267)  (0.0285)  (0.0296)  (0.0268)  (0.0267)  (0.0285)  (0.0296)
(5) (Ink;)? 0.165% <0165 -0.171% 0175  -0.165"  -0.165"  -0.171**  -0.175"*
(0.00833)  (0.00829)  (0.00939)  (0.00999)  (0.00833)  (0.00829)  (0.00939)  (0.00999)
(6) Ina™NV 0.136™ 0135 0.134* 0.156* 0.136™ 0135 0.134™ 0.156*
(0.0433)  (0.0430)  (0.0511)  (0.0615)  (0.0433)  (0.0430)  (0.0511)  (0.0615)
(7) InaR&P 0.00555  0.00583  0.00413  0.000824  0.00555  0.00583  0.00413  0.000824
(0.00561)  (0.00546)  (0.00584)  (0.00599)  (0.00561)  (0.00546)  (0.00584)  (0.00599)
(8) Ina)™Fe 00210  0.0217* 0.0233 0.0126 0.0210¢  0.0217* 0.0233 0.0126
(0.0127)  (0.0123)  (0.0144)  (0.0189)  (0.0127)  (0.0123)  (0.0144)  (0.0189)
(9) Ina)y™Fo 0.0106 0.0104 0.0133 0.0164 0.0106 0.0104 0.0133 0.0164
(0.00826)  (0.00797)  (0.00856)  (0.0104)  (0.00826)  (0.00797)  (0.00856)  (0.0104)
(10) Inab©? 0.403 0.409 0.568" 0.671* 0.403 0.409 0.568™ 0.671*
(0.278) (0.280) (0.281) (0.304) (0.278) (0.280) (0.281) (0.304)
anm 0177 0175 -0.189%  -0.202%*  -0.177**  -0.175"  -0.189**  -0.202*
(0.0140)  (0.0132)  (0.0128)  (0.0142)  (0.0140)  (0.0132)  (0.0128)  (0.0142)
(12) R? 0.329 0.329 0.305 0.284 0.329 0.329 0.305 0.284
(13)F 470 892 692 571 470 892 692 571
(14) p-value 0 0 0 0 0 0 0 0
p
(15) #Obs. 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204

(i) Standarderrors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects are

controlled. (iif) ***p<0.01, *p<0.05, * p<0.1

71



