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1 Introduction

When current policy rates are at or close to their effective lower bounds (ELB), central banks
often turn to communication about the future path of policy rates—known as forward guidance—
as an alternative means to stimulate economic activity. According to the standard sticky-price
model often used in academia and central banks to analyze monetary policy, forward guidance is
a powerful substitute for a change in the current policy rate and should be used by central banks
to improve welfare when the current policy rate is constrained by the ELB (see Eggertsson and
Woodford (2003); and Jung, Teranishi, and Watanabe (2005)). In particular, in this model, the
central bank finds it optimal to announce that it will keep the policy rate at the ELB for longer
than would be warranted by future output and inflation stabilization considerations alone.

An intriguing feature of this standard model is that the economic effects of forward guidance can
be implausibly large (Carlstrom, Fuerst, and Paustian (2015); Del Negro, Giannoni, and Patterson
(2015); and Kiley (2016)). This feature—often referred to as the forward guidance puzzle—has
generated concern among researchers that the standard model is of limited use for the analysis of
forward guidance policies and, as a result, has also generated an interest in modifying the standard
model to mitigate the implausibly large effects of forward guidance. As we will review shortly,
a number of recent papers have shown that various economically sensible departures from the
standard framework go a long way in attenuating the forward guidance puzzle, but they have done
so under the assumption that the interest rate policy is characterized by a simple feedback rule.

In this paper, we examine the implications of attenuating the forward guidance puzzle for the
optimal design of forward guidance policy. We do so by introducing private-sector discounting—
discounting of the expected future income in the Euler equation and discounting of the expected
future marginal costs of production in the Phillips curve—into an otherwise standard sticky-price
model and characterizing how the degree of discounting affects optimal commitment policy. We
assume that the central bank is concerned about inflation and output stabilization. Our setup is
motivated by McKay, Nakamura, and Steinsson (2016b) and Gabaix (2016), among others, who
relate their models of less powerful forward guidance to the discounted Euler equation and/or the
discounted Phillips curve. We begin our analysis by examining the effect of discounting on optimal
policy in a three-period model in which the cost and the benefit of adjusting future policy rates
can be transparently described. We then move on to examining the effect of discounting in a series
of infinite-horizon models and study how the degree of discounting affects optimal policy.

A priori, the implication of less powerful forward guidance for optimal policy is not clear. When
forward guidance is less powerful, the central bank may want to promise to keep the policy rate at
the ELB for longer, as the economy would not be sufficiently stimulated otherwise. However, it is
also plausible that the central bank wants to keep the policy rate at the ELB for a shorter period
when forward guidance is less powerful; in an extreme case in which forward guidance has no effect
on current economic activities, it would be pointless for the central bank to promise that it will
keep the policy rate at the ELB after the natural rate of interest becomes positive.

The main insight from the three-period model in the first part of the paper is as follows. The cost



of a commitment by the central bank during a crisis involving the binding ELB constraint to keep
the policy rate at the ELB for longer is that the economy experiences a temporary overheating in
the aftermath of the crisis. The benefit of such a commitment is that, because of the overheating,
the declines in output and inflation are mitigated during the crisis. Because the private-sector
discounting makes the economy less sensitive to a future rate change, the discounting reduces both
the cost and the benefit of a commitment to keep the policy rate at the ELB for longer. Since the
cost and the benefit are both lower, whether the discounting makes it optimal for the central bank
to promise to keep future policy rates low for longer or shorter than in the standard model is a
quantitative question and depends on the parameters of the model.

Turning to the infinite-horizon models, when there is discounting only in the Euler equation, we
find that optimal monetary policy in a liquidity trap entails committing to keeping the policy rate
at the ELB for longer than in the standard model without discounting. Even though the policy
rate is kept at the ELB for longer with higher discounting, the declines in output and inflation at
the outset of the liquidity trap are larger, as the extension of the ELB duration is not large enough
to compensate for the reduced power of forward guidance. Likewise, we find that the central bank
will find it optimal to keep the policy rate at the ELB for longer in the model with discounting
only in the Phillips curve than in the standard model without any discounting.

Even when we allow for discounting in both the Euler equation and the Phillips curve, the
optimal duration of keeping the policy rate at the ELB continues to be longer with discounting than
without discounting, unless the degree of discounting is large in both equations. When households
and price-setters heavily discount their expected future income and marginal costs, respectively,
in making their decisions, forward guidance becomes so ineffective that the central bank finds it
optimal to keep the policy rate at the ELB for a shorter period than in the standard model.

Given our finding that the implication of less powerful forward guidance importantly depends on
the degree of discounting, we will end our analysis by reviewing the evidence regarding the degree of
discounting in the Euler equation and the Phillips curve. We find that, through the lens of existing
micro-founded models of less powerful forward guidance, minor deviations of the standard Euler
equation and the standard Phillips curve are empirically plausible and are enough to meaningfully
attenuate the forward guidance puzzle. According to our analysis of the infinite-horizon models,
a small degree of discounting makes it optimal for the central bank to keep the policy rate at the
ELB for longer. The increase in the optimal ELB duration due to discounting can be quantitatively
large. Under some specifications considered in the literature, we find that the discounting increases
the expected ELB duration associated with optimal policy by about one year.

An important caveat to our analysis is that it is semi-structural. We are silent—and purposefully
so—about the model’s primitives that justify the discounting in the log-linearized equilibrium
conditions characterizing the households and price-setters. Also, we assume that the central bank’s
objective function is given by the standard quadratic function of inflation and the output gap.
Although this objective function can be justified as the second-order approximation to household

welfare in the standard model, it may not be necessarily consistent with household welfare in more



micro-founded models of Euler equation and/or Phillips curve discounting.

While it would be ideal to characterize the optimal commitment policy in each of the grow-
ing number of micro-founded models of less powerful forward guidance, we think that our semi-
structural approach has some merits. First, as we discussed, many different micro-founded models
will end up with something that looks like the discounted Euler equation and Phillips curve. As a
result, the insights from our analysis can be seen as providing a useful starting point for understand-
ing optimal policy in various micro-founded models of less powerful forward guidance. Second, the
minimal departure from the standard model entailed by our approach allows us to sharply charac-
terize the cost and benefit of keeping interest rates at the ELB for an extended period and the way
they are affected when the forward guidance becomes less powerful, and our approach facilitates
the interpretation of the results on optimal policy. Finally, from a more pragmatic perspective,
solving the optimal commitment policy problem in some of the micro-founded models discussed
above without abstracting from the ELB constraint is computationally very hard or infeasible.!

Our paper builds on recent papers that either examine the forward guidance puzzle in a stan-
dard sticky-price model, or propose ways to attenuate the puzzle, or both. Carlstrom, Fuerst, and
Paustian (2015) and Kiley (2016) show that the effects of a future rate cut are much smaller in
sticky-information models than in sticky-price models. Del Negro, Giannoni, and Patterson (2015)
attenuate the forward guidance puzzle by introducing an overlapping-generations structure into
an otherwise standard New Keynesian model, while Angeletos and Lian (2016); Gabaix (2016),
Haberis, Harrison, and Waldron (2017); and Wiederholt (2015) attenuate the puzzle by departing
from the assumption of common knowledge, rational expectations, perfect credibility, and per-
fect information, respectively. McKay, Nakamura, and Steinsson (2016a) and Kaplan, Moll, and
Violante (2016) show that the effect of forward guidance is much smaller in a model with het-
erogeneous households and incomplete markets than in the standard New Keynesian model with
a representative household and complete markets. All of these papers restrict the scope of their
analysis to Taylor-type interest rate rules in analyzing the dynamics of the economy at the ELB.?
Our contribution is to depart from the assumption of a suboptimal monetary policy and analyze
the implications of attenuated forward guidance for optimal commitment policy when the policy
rate is constrained by the ELB.

The two papers closest to ours are Bilbiie (2017) and Andrade, Gaballo, Mengus, and Mojon
(2017). Bilbiie (2017) uses a novel framework developed by Bilbiie (2016) to analyze the implications
of discounting in the Euler equation for the optimal ELB duration. Andrade, Gaballo, Mengus, and
Mojon (2017) build a model in which the presence of “pessimists” who do not believe in the central
bank’s commitment to keeping the policy rate at the ELB for an extended period attenuates the

forward guidance puzzle, and they examine their model’s implication for the optimal ELB duration.

In Appendix H, we characterize optimal commitment policy in a structural model of less powerful forward
guidance—an overlapping-generation New Keynesian model with perpetual youth—and find that the results from
the structural analysis are consistent with those from our semi-structural analysis.

2Gabaix (2016) studies optimal policy in his model but abstracts from the ELB constraint when characterizing
the optimal interest rate policy under commitment.



Our work differs methodologically from theirs, as we characterize the optimal commitment policy
whereas they compute the optimal ELB duration assuming that, after liftoff, the policy rate either
returns to its steady state immediately (Bilbiie (2017)) or is determined by a simple feedback rule
(Andrade, Gaballo, Mengus, and Mojon (2017)). There are also interesting substantive differences
between—and similarities across—these two papers on one hand and our paper on the other, which
will be discussed in detail in the main body of the paper.

Finally, our work is related to the literature on optimal monetary policy under commitment
in the New Keynesian model with the ELB constraint (Eggertsson and Woodford (2003); Jung,
Teranishi, and Watanabe (2005); Adam and Billi (2006); and Nakov (2008)). These papers estab-
lished the desirability of keeping the policy rate at the ELB for an extended period in the New
Keynesian model with the standard Euler equation and the standard Phillips curve. Our paper
extends their analysis to models with a discounted Euler equation and a discounted Phillips curve,
showing that the desirability of “low-for-long” policy survives even in models with discounting and
that the central bank often finds it optimal to keep the policy rate low for longer with discounting
than without discounting.

The remainder of the paper is organized as follows. Section 2 presents our stylized analysis based
on a three-period model. Section 3 extends the analysis to an infinite-horizon model. Section 4
reviews the evidence on the degree of discounting and Section 5 briefly summarizes the result of an
optimal policy analysis in a micro-founded model of less powerful forward guidance (discussed in

detail in Appendix H). Section 6 concludes.

2 A three-period model

In this section, we examine the implication of private-sector discounting for optimal policy in a
deterministic three-period model. For simplicity, we only allow discounting in the Euler equation.
The three-period structure allows us to transparently describe how the Euler equation discounting

affects the marginal costs and benefits of forward guidance and thus optimal policy.?

2.1 Private sector

Time is discrete and indexed by ¢. The economy starts at ¢ = 1 and ends in t = 3.* There
is no uncertainty. In periods 1 and 2, the private-sector equilibrium conditions are given by the

following two equations:

vy = (1—a)yy1r —o(iy — T — 1), (1)

T = Ky + B, (2)

3Note that another simple setup one could consider is an infinite horizon model with a one-period shock. We
opted for the three-period model because it allows us to obtain some analytical results. See Appendix A.

4More precisely, we are working with an infinite-horizon model in which the economy is assumed to be at the
steady state from period 4 onwards (in a pure three-period model, there would not be any demand for government
bonds at period 3). We simply refer to this setup as “the three-period model” for the sake of brevity.



where y; is the output gap, m; denotes the inflation rate between periods ¢ — 1 and ¢, 4; is the
nominal interest rate between periods ¢ and ¢ 4+ 1 on a risk-free bond, and r;’ is a demand shock
that captures exogenous fluctuations in the natural real rate of interest. Equation (1) is the Euler
equation, and equation (2) is the Phillips curve. « is a discounting parameter on the expected
output next period. If a = 0, these two equations represent the textbook New Keynesian model
studied in detail in Woodford (2003) and Gali (2015), among others. In the final period 3, the

private-sector equilibrium conditions are given by

ys = —oliz —r3), 3)
w3 = RY3. (4)

The demand shock is assumed to be negative in period 1 and stays constant at a positive value in
periods 2 and 3. That is, ' =} <0, and 7§ =y =" > 0.
2.2 Monetary policy

The central bank has the following objective function:

u(y, m) = —% (7T2 + )\y2) . (5)

At the beginning of the initial period ¢ = 1, the central bank chooses sequences of the output gap,
inflation, and the nominal interest rate in order to maximize the discounted sum of current and

future utility flows. The central bank’s optimization problem is given by

max_ u(y1,m) + Bu(ye, m2) + Bu(ys, m3),

{ye,me,ie 134

subject to the private-sector equilibrium conditions described earlier and the ELB constraint on
the policy rate:

it > 1ELB,

forall ¢t € {1,2,3}. As areference, we will also consider how the economy behaves when the nominal

interest rate is determined according to the following simple interest rate feedback rule:
it = max[r? + ¢7r77t;iELB]; (6)

where ¢, > 1.

2.3 Results

While our simple three-period model can be solved in closed form in principle, the solution

turns out to depend on the discounting parameter « in a complicated, nonlinear way. We therefore



use a numerical example to describe how discounting affects optimal policy.” Table 1 shows the
parameter values used for the numerical analysis. For this three-period model, they are chosen not

based on empirical realism, but to make the key takeaways from the analysis transparent.

Table 1: Parameter Values: Three-Period Model

Parameter Description Values
B Discount factor 0.9925
o Intertemporal elasticity of substitution 1

K Slope of the Phillips Curve 0.2

0 Relative price elasticity of demand 10

A Relative weight on output gap volatility (x/6) 0.02

« Discounting parameter in the Euler equation [0,0.5]
IELB The effective lower bound 0

r" Long-run natural real rate (1/5 — 1) 0.0075
ry Natural real rate in period 1 —0.03825

Figure 1 shows the paths of the output gap, inflation and the policy rate in the model with
discounting (a = 0.5) and in the model without discounting (o = 0).° Under the simple interest-
rate rule, output and inflation are fully stabilized at their steady state values from period 2—when
the crisis shock disappears—regardless of the value of a. Because the allocation in period 2 does
not depend on «, and because the policy rate in period 1 is constrained at the ELB regardless of
a, output and inflation in period 1 do not depend on a.” Output declines by about 4 percent and

inflation drops by 3 percentage points in period 1.

Figure 1: Optimal Policy in a Three-Period Model
with and without Discounting

Policy Rate Output Gap Inflation

—— Optimal Policy (a = 0)
= = =Optimal Policy (a = 0.5)
—&— Simple Rule

T

2 3
Time Time Time

Note: Units are annualized percent, annualized percentage points, and percent deviation for policy rate, inflation,
and output gap, respectively.

5In Appendix A, we provide some analytical results in a version of the three-period model with a static Phillips
curve.

5The parameterization o = 0.5 in the model with discounting is chosen for illustrative purposes.

"In the three-period model of this section and the infinite-horizon model of the next section, the allocation under
the simple interest rate rule is identical to the allocation under the optimal discretionary policy.



Under the optimal policy, the central bank keeps the policy rate at the ELB in period 2 and
chooses the policy rate below the natural rate of interest in period 3 (i3 < r%). This low-for-longer
policy results in overshooting of output and inflation in periods 2 and 3, which mitigates the declines
in output and inflation in period 1 through expectations. The policy rate in period 3 depends on
the degree of discounting, with the central bank in the economy with discounting choosing a lower
policy rate than the central bank in the economy without discounting. Even though the policy
rate in period 3 is lower under discounting, the initial declines in output and inflation are larger
under discounting, reflecting the reduced power of forward guidance under discounting. However,

regardless of the degree of discounting, the declines in output and inflation in period 1 are smaller

under optimal policy than under the interest rate feedback rule.

Figure 2: Effects of a Reduction in the Future Policy Rate on the Macroeconomy
with and without Discounting

(a) Model w/o Discounting (o = 0)
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Note: The thin solid line represents the steady states where u; is at maximum. Units are percent deviation and

annualized percentage points for output gap and inflation, respectively.

To understand how the degree of discounting affects optimal policy, Figure 2 shows how differ-

ently an announcement of a future rate cut—here a reduction in i3 by 75 basis points below the



optimal level—affects the paths of output and inflation in the models with and without discount-
ing. In both models, a promise to lower the policy rate further in period 3 from its optimal level
mitigates the declines in output and inflation in period 1, but amplifies the overshooting of output
and inflation in period 2, as the comparison of dashed and solid lines in each panel of Figure 2
demonstrates. Hence, the rate cut in period 3 bears the benefit of smaller output and inflation
deviations from their targets in period 1 and the cost of larger target deviations in period 2 in both
models.®

Because a rate cut in period 3 has a smaller effect on inflation and output in earlier periods,
it reduces and increases the target deviation in periods 1 and 2, respectively, by less in the model
with discounting than in the standard model. In our three-period model, for any given level of the
third-period policy rate, the degree of discounting does not matter for allocations in period 3, and
thus the level of overshooting in period 2 is smaller with discounting than without discounting for
any i3 < r"™. As a result, for any given level of the third-period policy rate, a smaller increase in
the target deviation in period 2 induced by a third-period rate cut means a smaller increase in the
welfare cost of overshooting in period 2 in the model with discounting than in the standard model.
However, the smaller reduction in the target deviation in period 1 induced by a smaller increase
in the target overshooting in period 2 does not necessarily mean that the welfare benefit of a less
severe recession is smaller in the model with discounting; for any given level of the third-period
policy rate, the recession is more severe to begin with in the model with discounting than in the
standard model, and the objective function is quadratic. Thus, a smaller increase in inflation and
output in period one can lead to a larger increase in welfare in the model with discounting than in
the standard model.

Figure 3 shows how the discounting affects the cost and benefit of a future rate cut in detail.
In each panel, solid and dashed lines are for the standard model and the model with discounting,
respectively. For different values of i3, the upper left panel plots the central bank’s utility flow in
period 1, while the upper right panel plots the discounted sum of utility flows in periods 2 and 3.
Consistent with the discussion in the previous paragraph, in both the models with and without
discounting, the utility flow of the initial period is decreasing in i3, whereas the discounted sum of
utility flows of the second and third periods is increasing in i3 (as long as i3 < r™). The bottom
left panel shows welfare, the sum of the top two panels. The optimal i3 that maximizes welfare
equates the marginal benefit and cost of reducing the third-period policy rate, which are shown in
the bottom right panel. Consistent with the discussion in the previous paragraph, the marginal
cost of reducing the third-period policy rate—in the form of a larger overshooting—is smaller in
the model with discounting than in the standard model for any level of i3. However, the marginal
benefit of reducing the third-period policy rate—in the form of a less severe recession—may be
smaller or larger in the model with discounting than in the standard model. In our numerical

example, the marginal benefit is higher in the model with discounting if 73 is sufficiently small, but

8The optimal commitment policy accounts for this tradeoff when choosing the level of the policy rate for period
3 so the central bank has no incentive in period 1 to announce a period-3 policy rate that deviates from the one that
solves the optimization problem under commitment.



Figure 3: Tradeoff of Adjusting the Future Policy Rate
with and without Discounting
Discounted future utilities
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Note: The solid (dashed) vertical line denotes maximum welfare for @« = 0 (o = 0.5) in the bottom two panels. MB
and MC stand for marginal welfare benefit and cost, respectively.

is lower otherwise.

Appendix B reinforces the idea that the effect of discounting for optimal policy is ambiguous
by providing an alternative parameterization of the three-period model in which the optimal third-
period policy rate is higher with discounting than without discounting. Given our finding that the
effect of discounting for optimal policy depends importantly on the specifics of the model, we now
turn our attention to an infinite-horizon model that is stylized, but is parameterized in a way that

can speak to the implications of discounting in a more empirically relevant setup.

3 An infinite-horizon model

In this section, we examine the effect of the private-sector discounting on optimal policy in
infinite-horizon models. In addition to discounting in the Euler equation, we allow for discounting
in the Phillips curve. The economy is buffeted by two exogenous disturbances, a demand shock

(r") and a cost-push shock (e).

10



3.1 The private sector and monetary policy

The aggregate private-sector behavior is summarized by the following two loglinear equilibrium

conditions:

vy = (1 —a1)Ewyi1 — oy — Eympq —rf'), (7)
T = Ky + (1 — o) BEsmip1 + ey, (8)

where a1 and as are the discount parameters in the Euler equation and the Phillips curve, re-
spectively.” !’ The two exogenous shocks, (r?,e;), are perfectly correlated, as in Boneva, Braun,
and Waki (2016) and Hills and Nakata (2018), and follow a two-state Markov process. In the first
period, the economy is in the crisis state. It moves to the normal state—which is assumed to be
an absorbing state—with a positive probability (1 — i) each period.'! In the crisis state, r* = Ty
and e; = er. In the normal state, ' =r" =1/ — 1 and e; = 0.

At the beginning of the first period, the central bank chooses a state-contingent sequence of

(yt, m¢, 1) in order to maximize the expected discounted sum of future utility flows given by

o0

max [Eq Z ﬂtflu(yt, t)

{ye, 7,01 152, =1

subject to equations ((7) - (8)) and the ELB constraint on the policy rate (i; > igrp). The utility
flow, u(-), is given by the standard quadratic objective function (see equation (5)). Further details

on the optimization problem and the associated optimality conditions are provided in Appendix D.

3.2 Parameterization

Table 2 shows the baseline parameter values. Our choice of 5 = 0.9925 implies a real interest rate
in the normal state of 3 percent (annualized). o = 1 is consistent with the log-utility specification
of the household preference for consumption in the standard intertemporal optimization problem of
the household. # = 8 is within the range of values found in the literature (see Broda and Weinstein
(2006); Denes, Eggertsson, and Gilbukh (2013)). x = 0.007 is consistent with a Calvo parameter of
0.84 in the Calvo model of price-setting. Our choice of u = 5/6 is within the range of values used
in the literature and implies an expected duration of crisis of one and a half year. The value of A

is set to be consistent with the value implied by the second-order approximation of the household’s

9Some papers, including McKay, Nakamura, and Steinsson (2016b), have considered an alternative specification
of the discounted Euler equation in which there is an additional discounting parameter for the expected real rate.
The key results of our analysis are robust to this alternative specification of the discounted Euler equation. These
results are available upon request.

10Some, albeit not all, micro-founded models of discounted Euler equation and Phillips curve leads to a breakdown
of Ricardian equivalence. In those models, the specification of fiscal policy is of first-order importance for the dynamics
of the model. See, for example, Hagedorn, Luo, Manovskii, and Mitman (2018).

HThe assumption of an absorbing state is common in the literature and is without loss of generality for the
purpose of this paper. However, the departure from this assumption does have interesting implications, as explored
by Nakata (2018) and Nakata and Schmidt (2014).
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welfare.'> The main exercise of this section is to examine how a; and as affect optimal policy. We

will consider the range from 0 to 1 for both parameters.

Table 2: Parameter Values: Infinite-Horizon Model

Parameter Description Values
B8 Discount factor 0.9925
o Intertemporal elasticity of substitution 1

K Slope of the Phillips Curve 0.007
0 Relative price elasticity of demand 8

A Relative weight on output gap volatility (x/6) 0.875 x 1073
IELB The effective lower bound on the policy rate 0
o Discounting parameter in the Euler equation [0,1]
Qs Discounting parameter in the Phillips curve [0,1]
7 Persistence probability of the crisis state 5/6
(ri,er) (demand shock,cost-push shock) *Chosen so that

(y1,m) = (—0.07,—-0.01/4)
under the simple rule

Conditional on these parameter values, we choose the size of the two shocks, r? and ey, such
that output and inflation fall by 7 percent and 1 percentage point, respectively, if the central bank
follows the simple interest rate rule described earlier; see equation (6).'* This way of choosing
the shock size means that the values of r} and ey, are different when we choose different values of
a1 and ao. The approach of keeping the severity of the crisis constant as one varies the model’s
parameter values is adopted by Boneva, Braun, and Waki (2016) and Hills and Nakata (2018),
who adjust the size of shocks in their models to keep the magnitudes of the declines in output and

inflation unchanged when conducting sensitivity analyses.'*'?

3.3 Results

We will first examine the effect of «; on optimal policy while holding as = 0 (i.e., the model
with discounting only in the Euler equation). We then examine the effect of ap on optimal policy
while holding oy = 0 (i.e., the model with discounting only in the Phillips curve). Finally, we will
explore the implication of varying both a1 and as.

Figure 4 plots the impulse response functions of the policy rate, inflation and output under
the simple interest rate rule and under the optimal monetary policy for various degrees of Euler

equation discounting, when the crisis state persists for eight quarters.

2In Appendix E, we conduct an analysis in which the value of \ is much higher and is consistent with placing
equal weights on inflation and output stabilization objectives, a common practice in central banks.

3n the infinite-horizon model with an absorbing state, the allocation under policy rule (6) is identical to the
allocation under the optimal discretionary policy.

1 Unlike in the three-period model, the discounting factors in the private-sector behavioral constraints will influence
the level of output and inflation in the crisis state when monetary policy follows the simple rule. This dependency
reflects the fact that, conditional on being in the crisis state, the crisis shock will persist in the subsequent period
with positive probability u, affecting private-sector expectations about future output and inflation.

15Tn Appendix F, we conduct an alternative analysis in which the size of shocks are kept constant as we vary
discounting parameters.
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Figure 4: Optimal Policy w/ Discounting in the Euler Equation
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the policy rate, inflation, and the output gap, respectively.

By construction, the allocation under the simple rule does not depend on «q, because, as we
vary a1, we vary the size of the shocks so that the declines in output and inflation in the crisis
state are unchanged under the simple rule. A key feature of the economy under the simple rule is
that the economy returns to its steady state once the crisis shock disappears.

Under the optimal policy with a; = 0—which corresponds to the standard Euler equation—the
central bank keeps the policy rate at the ELB beyond the point in time where the shocks jump
back to the normal state. The policy of keeping the interest rate at the ELB for an extended period
stimulates the economy by raising expectations about future output and inflation. The optimality
of the low-for-long policy in this standard version of the model is well known (Jung, Teranishi, and
Watanabe (2005); Eggertsson and Woodford (2003)).

Comparing the optimal policy for alternative degrees of discounting, we find that the more
households discount expected future real interest rates, the longer the central bank keeps the pol-
icy rate at zero. When a1 = 0, the policy rate is kept at the ELB for 13 quarters. As « increases,
the ELB duration increases monotonically, reaching 26 quarters when oy = 1. Nevertheless, as a3
increases, the initial declines in output and inflation are larger, reflecting the diminished effective-
ness of a cut in future interest rates. The initial decline in output is more sensitive to the degree
of discounting than the initial decline of inflation, reflecting the fact that the discounting is in the
Euler equation.

One way to summarize the effect of discounting on optimal policy is to inspect the expected
ELB duration under different degrees of discounting. As shown in the left panel of Figure 6,
when a1 = 0, the expected ELB duration is about 10 quarters. As «; increases, the expected
ELB duration increases monotonically and in a quantitatively significant way. When «; = 1, the
expected ELB duration is about 18 quarters, two years longer than when o = 0.

We now turn to the analysis of optimal policy in the model with discounting only in the Phillips
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Figure 5: Optimal Policy w/ Discounting in the Phillips Curve
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the policy rate, inflation, and the output gap, respectively.

curve. Figure 5 plots the same set of impulse response functions with alternative degrees of a.s when
the crisis shock lasts for eight quarters. As in the previous model with discounting only in the Euler
equation, by construction, the allocations under the simple rule do not depend on the degree of
discounting. Under optimal policy, the central bank keeps the policy rate at the ELB for longer in
the models with discounting than in the model without discounting. However, unlike in the model
with discounting only in the Euler equation, the effect of discounting on the optimal ELB duration
is not monotonic, as can be seen in the right panel of Figure 6 which shows the effect of as on the
expected ELB duration.

As for the allocation, the initial decline in inflation is larger when «» is higher, as can be seen
in the right panel of Figure 5. Interestingly, the initial decline in output depends on the degree of
discounting in a non-monotonic way. As s increases from 0, the initial output decline becomes
smaller at first, but increases eventually as as approaches 1, as can be seen in the middle panel
of Figure 5. In this model with discounting only in the Phillips curve, the longer ELB duration
associated with a higher oo leads to larger output overshooting, because there is no discounting in
the Euler equation in this exercise. Such larger overshooting helps counteract the negative output
effect associated with a larger decline in inflation. The non-monotonicity is an outcome of these
two offsetting forces.

Finally, we examine the effect of discounting in the model that allows for discounting in both
the Euler equation and in the Phillips curve. Figure 7(a) plots the expected ELB duration for
various combinations of o and aw, while Figure 7(b) demarcates the parameter space into the part
in which the expected ELB duration is shorter or longer than the expected ELB duration in the
standard model (that is, the model with a1 = ag = 0). According to these figures, as long as either
«aq or g is sufficiently low, the expected ELB duration is higher with discounting than without

discounting, in line with our previous results. The forward-looking element in households’ and
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Figure 6: Expected ELB Durations
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Note: The thin dashed lines represent the expected duration of the crisis shock. Thin dash-dotted lines represent
expected ELB duration in the absence of discounting. Units are in quarters.

firms’ decision making is too small to allow for an effective use of forward guidance as a means to
steer private sector behavior and the expected ELB duration is lower with discounting than without
discounting, only when « and as are both high. The effect of discounting on the ELB duration
can be large. According to Figure 7(c), when both «; and ag are around 0.15, the expected ELB
duration is about five quarters longer than when they are 0. When both a; and «s are 1, the

expected ELB duration is about four quarters shorter than when they are 0.
Figure 7: Optimal Policy w/ Discounting in the Euler Equation and the Phillips Curve
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(7.b) Pairs of (a1, a2) under which
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3.4 Relation to Bilbiie (2017) and Andrade, Gaballo, Mengus, and Mojon
(2017)

Bilbiie (2017) studies the implication of discounting in the Euler equation in a model with a
static Phillips curve for the optimal ELB duration using a novel framework developed in Bilbiie
(2016) in which the central bank optimally chooses—before the crisis shock hits the economy—the
probability of keeping the policy rate at the ELB each period after the crisis shock disappears. He
finds that the optimal expected ELB duration is lower when the discounting in the Euler equation
is higher. A corresponding analysis in our paper is to vary a1 while keeping ae = 1. According to
Figure 7(a), the effect of increasing oy is non-monotonic when as = 1. One key factor accounting
for the difference in the result is that, as discussed in Section 3.2, we keep the severity of the shock
constant as we vary discounting parameters, whereas Bilbiie (2017) keeps the size of the exogenous
shock constant. Accordingly, as the discounting parameter increases in Bilbiie (2017), the crisis
becomes less severe, adding a force to reduce the optimal expected ELB duration.

Andrade, Gaballo, Mengus, and Mojon (2017) study the implication for the optimal ELB du-
ration of less powerful forward guidance associated with the presence of pessimists who do not
believe in the central bank’s commitment to keep the policy rate at the ELB after the natural
rate of interest becomes positive. They assume that the policy rate will be set according to a
feedback rule after liftoff and let the central bank to choose the duration of keeping the policy
rate at the ELB. They do find a nonlinear effect of less powerful forward guidance on the optimal
ELB duration, which is reminiscent of Figure 7(c) in which we vary discounting parameters in
both Euler equation and Phillips curve at the same time. The qualitative similarity makes sense,
as the fraction of pessimists affect both the Euler equation and the Phillips curve in their model.
Like Bilbiie (2017), they keep the size of the exogenous shock constant as they vary the fraction of
pessimists. Interestingly, their nonlinearity is much more pronounced than ours. Also, the optimal

ELB duration becomes the same as the ELB duration under optimal discretionary policy when a
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fraction of pessimists reaches a certain threshold in their model, while we find that the expected
ELB duration under a fully optimal policy gradually approaches the ELB duration under optimal

discretionary policy, as seen in Figure 7(c).

4 Discussion

A key finding from the previous two sections is that the implication of private-sector discounting
for optimal policy depends importantly on its degree. Given this finding, a natural question is,
“what are the plausible values of discounting parameters?” In this section, we investigate this
question by reviewing the values of the discounting parameters in the Euler equation and the
Phillips curve consistent with plausible parameterizations of different micro-founded models of less
powerful forward guidance in the literature.'®

Del Negro, Giannoni, and Patterson (2015) show that the New Keynesian model combined with
an overlapping-generations structure a la Blanchard (1985) and Yaari (1965) goes a long way in
attenuating the forward guidance puzzle. The log-linearized private-sector equilibrium conditions of
their overlapping-generations model feature a discounted Euler equation and a discounted Phillips
curve akin to those considered in our paper. The discounting parameters in their Euler equation and
the Phillips curve are related to the probability of death, which can be interpreted more broadly to
capture different forms of wealth resetting, such as a default. They consider two parameterizations;
one implies oy = 0.013 and as = 0.191 and the other implies ay = 0.04 and as = 0.209.

McKay, Nakamura, and Steinsson (2016a) show that the forward guidance puzzle is substan-
tially muted in an incomplete-markets model in which households face uninsurable income risks,
and McKay, Nakamura, and Steinsson (2016b) show that the dynamics of the model of McKay,
Nakamura, and Steinsson (2016a) is well approximated by the sticky-price model with the dis-
counted Euler equation and the standard Phillips curve. They show that oy = 0.03 and a3 = 0.06
are consistent with the dynamics of their incomplete-markets model with low-risk and high-risk
calibrations, respectively.

Gabaix (2016) proposes a version of the New Keynesian model in which agents are non-rational,
demonstrating that forward guidance is less powerful in his model and that the dynamics of his
model are characterized by a discounted Euler equation and a discounted Phillips curve. While his
analysis is mainly analytical, he presents a numerical example in which he sets a; = as = 0.15,
informed by the estimates of a hybrid Phillips curve from Gali and Gertler (1999). Angeletos
and Lian (2016) show the attenuation of the forward guidance puzzle in a sticky-price model with
imperfect common knowledge and derive the discounted Euler equation and the discounted Phillips
curve. In their numerical example, the values assigned to two parameters governing the degree of
departure from common knowledge imply a; = 0.003 and as = 0.037.

Carlstrom, Fuerst, and Paustian (2015) and Kiley (2016) show that the forward guidance puzzle

is attenuated in sticky-information models. In sticky-information models, inflation today depends

6 There are vast empirical literatures estimating the consumption Euler equation and Phillips curve. A compre-
hensive review of these literatures is beyond the scope of this section.
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on the infinite sum of the expected current marginal costs that were forecast in the past. As a
result, there is no straightforward one-to-one mapping between our discounted Phillips curve and
the sticky-information model. However, to the extent that the expected future inflation does not
show up at all in the sticky-information model, the corresponding as can be thought of as 1. Both
papers use the standard Euler equation (that is, a3 = 0).

Finally, Chung (2015) shows that the effect of a future interest rate change is much more muted
in FRB/US—a macroeconomic model used by the staff at the Board of Governors of the Federal
Reserve System for policy analysis—than in other more standard sticky-price models, such as Smets
and Wouters (2007). FRB/US developers in the 1990s introduced a discounting coefficient on the
expected future income in the consumption Euler equation on the grounds that (i) risk-averse
households would respond less to changes in the future income when they face uninsurable income
risks than when they do not and (ii) households are finitely-lived.'”. The discounting parameter
in the Euler equation in FRB/US is 0.06. While there is various built-in inertia in the FRB/US
Phillips curve, there is no explicit discounting of the expected inflation, so ap = 0.'%

All told, according to the existing models of less powerful forward guidance, minor deviations
from the standard Euler equation and the standard Phillips curve are empirically plausible and
are enough to meaningfully attenuate the forward guidance puzzle. According to our analysis in
the previous section, when the degree of discounting is small, the central bank wants to keep the
policy rate at the ELB for longer than in the standard model. Under some choices of a; and as
considered in the literature (Del Negro, Giannoni, and Patterson (2015); McKay, Nakamura, and
Steinsson (2016b); Angeletos and Lian (2016); and Chung (2015)), the optimal ELB duration is
only slightly longer than in the standard model. However, under other choices of a; and ay (Gabaix
(2016); Carlstrom, Fuerst, and Paustian (2015); and Kiley (2016)), the optimal ELB duration is
extended in a quantitatively significant way. With oy = ap = 0.15 considered in Gabaix (2016), the
expected ELB duration is more than one year longer than in the standard model, as can be seen in
Figure 7(c). With oy = 0 and a3 = 1 implied by the sticky-information model, the expected ELB
duration is about half a year longer than in the standard model, as can be seen in the right panel

of Figure 6.

Interestingly, Reifschneider (1996)—a technical document that describes the consumption sector of FRB/US—
motivates the introduction of the discounting parameter on the expected future income to the consumption Euler
equation by referring to the early literature on uninsurable income risk and precautionary saving, such as Carroll
(1997), as well as the models of perpetual youth by Blanchard (1985) and Yaari (1965).

8Kiley and Roberts (2017) find that inflation and output are better stabilized under an inertial interest rate rule
that implements low-for-long policy than under other more standard rules in the FRB/US model, whereas Brayton,
Laubach, and Reifschneider (2014) show that low-for-long policy is a key feature of optimal commitment policy in
FRB/US model. These results are consistent with our result that low-for-long policy remains desirable in the model
with discounting, unless the discounting parameter is close to one in both the Euler equation and Phillips curve.

18



5 Analysis based on a micro-founded model of less powerful for-

ward guidance

So far, we have focused on analyzing the implication of less powerful forward guidance in New
Keynesian models with a discounted Euler equation and/or Phillips curve without taking a stance
on the structural model that generates discounting in these two equations. In Appendix H, we
characterize an optimal commitment policy in a structural model of less powerful forward guid-
ance. The structural model we examine is a New Keynesian model with overlapping generations
(OLG) developed by Piergallini (2006), Castelnuovo and Nisticé (2010), and Nisticé (2012). Re-
cently, Del Negro, Giannoni, and Patterson (2015) show that the log-linearization of the OLG New
Keynesian model leads to discounting in both the consumption Euler equation and the Phillips
curve and that the effects of anticipated monetary policy shock on today’s economic activities is
smaller in this model than in the standard New Keynesian model. In particular, the higher the
probability of dying, the smaller the effects of a future interest rate adjustment are on today’s
economic activities.

In Appendix H, we find that the result from the OLG New Keynesian model is consistent
with the main result from the model with a discounted Euler equation and Phillips curve. That
is, the higher the death probability is—the less powerful forward guidance is—the more future
accommodation the central bank would choose to promise.

It would be useful to characterize optimal commitment policy in other micro-founded models
of less powerful forward guidance. We leave that effort to future research. Our hope is that our
analysis based on the discounted Euler equation and Phillips curve can serve as a useful reference
for other researchers when they analyze the optimal conduct of forward guidance policy in other

micro-founded models of less powerful forward guidance.

6 Conclusion

Standard sticky-price models imply implausibly large responses of output and inflation to an-
nouncements about interest rate changes far in the future. As a result, there is widespread concern
that they may be of limited use as a framework for analyzing forward guidance policies. Researchers
have recently proposed various micro-founded modifications of the standard modeling framework
that attenuate the effect of forward guidance on economic activities. The dynamics of these modi-
fied models are often consistent with those of an otherwise standard New Keynesian model with a
discounted Euler equation and/or Phillips curve.

In this paper, we have examined the implication of less powerful forward guidance for the
optimal design of forward guidance policy by analyzing how discounting on the part of the private
sector affects the optimal commitment policy of the central bank caught in a liquidity trap. We
have shown that forward guidance not only continues to be part of the optimal policy toolkit, but

should also be used more heavily by the central bank than in the standard model under a wide range
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of the degree of discounting. In particular, it is optimal for the central bank to keep the policy rate
at the ELB for a longer period of time in the model with discounting than in the standard model.
This low-for-longer strategy allows the central bank to partially compensate for the reduced power

of forward guidance due to discounting on current economic activities.
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For Online Publication: Technical Appendix

The technical appendix is organized as follows. Appendix A provides necessary and sufficient
conditions under which the optimal time-three policy rate declines as the discounting parameter
increases in the three-period model with a static Phillips curve, while Appendix B shows a numerical
example from the three-period model in which an increase in the discounting parameter leads to
a higher time-three policy rate. Appendix C describes the details of optimal commitment policy
in the three-period model, while Appendix D does so in the infinite-horizon model, including the
solution method and its accuracy.

Appendix E analyzes the implication of discounting for optimal policy in an infinite-horizon
model with equal weights on inflation and output stabilization terms in the central banks objective
function, while Appendix F analyzes the implication of discounting for optimal policy in an infinite-
horizon model in a setup where we keep the shock size constant as we change discounting coefficients.
Appendix G considers a case in which the discount rate used by the central bank to evaluate future
utility flows depends on the discounting parameters in the Euler equation and the Phillips curve.
Appendix H analyzes the implication of less powerful forward guidance for optimal policy in a New
Keynesian model with overlapping generations and perpetual youth.

A Some analytical results in the three-period model

This section derives a necessary and sufficient condition for the marginal effect of an increase
in the degree of discounting for the optimal policy rate and output in period 3 to be positive and
negative, respectively. The condition is derived under the assumption that the ELB is binding in
periods 1 and 2 and not binding in period 3.

The perfect-foresight New Keynesian model with a static Phillips curve and a Consumption
Euler equation with discounting consists of the following two private sector behavioral constraints:

T = KUt (A.1)
yr = (1 — a)ypy1 — o(iy — mep1 — 1) (A.2)

We can substitute (A.1) into (A.2), and obtain

Yy =1 —a+ko)yy1 —o(iy — 1)) (A.3)

Assuming that the central bank faces the objective function introduced in the main text, the
optimization problem of a central bank acting under commitment is

r;w;XZﬂt[ (k2 4+ Ny + 6 (= (1 = ot noYyu + i =)+ oF P |, (M)

where we have used (A.1) to substitute out the inflation rate in the central bank objective function.
The first order necessary conditions can be combined to

l—a+ ko
o(k? 4+ Ny = —op P + t—p FhB, (A.5)
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where LB > 0.
As in the main text, we assume r{ =r} <0 and r§ =75 =r" > 0.

Assumption 1 (for local analysis): For a given parameterization of the model, 7} and r™ are such
that under the optimal commitment policy ¢F"F8, ¢FEB > 0 and ¢FFB = 0.

Define
Qa)=1—-a+ ko. (A.6)

The system of equilibrium conditions for the three-period model conditional on Assumption 1
being satisfied then reads

o(k? + Ny + ¢oFEP =0, (A7)
y1 — Qyo = o7y, (A.8)
Q
o(K + Ny2 + o5 "0 — Eqb{“ =0, (A.9)
Y2 — Qyz = or", (A.10)
Q
o(k* 4+ Nyz — 3 ELB — ), (A.11)
y3 + oiz = or”, (A.12)
where I use €2 as a shortcut for Q(a).
Substituting (A.9) into (A.11)
02 gL {1
Ys = ﬁ20.(,£2 +A) 1 - EyQ (A.13)
Substituting out ¢FL8 using (A.7)
0?2 Q
Y3 = —@yl - EyQ (A.14)
Substituting out y; and y, using (A.8) and (A.10), to get the policy function for ys3
02 ot 0 Q 93\,
1+?+@ y3:—0'@7"L—0' E—i—@ T (A15)
One can then show that % > 0 if and only if
QP Q n 1 02 ot Qb n

We can further simplify this expression. Note that from (A.11), y3 > 0. Hence, from (A.15),

we have g—;(—rﬁ) - (% + %—;) r™ > 0. Let us rewrite (A.16):

Q3 [Q? Q o 1.0 O Q
G- (5 %)+ G R ) -rmen.

where we know that the term in square brackets has to be positive. Further reorganizing terms,
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we get,

1 /04 0 Q 03\ 1 /Q6 n
25 (1) [mon-(5+ ) ) +3 (1) A

Again, we know that the term in square brackets is positive if Assumption 1 is satisfied. Also, we
know that Q(«) > 0.

Thus, % > 0 if and only if Q(a) > /B, or, equivalently, 1 — /8 + ko > a. An inter-
esting implication of this condition is that, if Assumption 1 is satisfied, a marginal increase in «

at a = 0 (no Euler equation discounting) will always lead to an increase in y3, and a reduction in 3.
Numerical example

We use the parameterization from Section 2 in the main text for the three-period model. The
only difference (besides having a static Phillips curve) is that we choose a slightly lower value of
—0.03 (instead of —0.03825) for r}. This ensures that Assumption 1 is satisfied for a € [0,0.9].

Figure A.1 shows {y1,ys,y3, 7B, ¢FEB i3} for a € [0,0.9].

Figure A.1: Allocations in the three-period model with a static Phillips curve
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Figure A.2 plots 1 — /B + ko — « (solid black line) as a function of . Hence, for those values of

« for which the solid black line is above the horizontal black zero line, the necessary and sufficient

condition for % > 0 is satisfied.

B Additional results for the three-period model

In Section 2 of the main text, we analyze the implications of discounting in the Euler equation
for optimal policy in a three-period model. One takeaway from that section is that whether the
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Figure A.2: Indicators for % > (0 and % <0
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Note: Solid black line: 1 — /B + ko — «. For those values of « for which the solid black line is above the horizontal

black zero line, the necessary and sufficient condition for % > 0 and % < 0 is satisfied.

discounting makes optimal policy more or less accommodative depends on parameter values. In this
section, we present a case in which the discounting make optimal policy less accommodative. The
parameter value for k = 0.02 in this example is excerpted from Eggertsson and Woodford (2003).
All other parameter values are the same as in Table 1. The setup is the same as in Section 2, i.e.
the contractionary shock lasts only for one period. As before, we set the discounting parameters
equal to 0.5 in the model with discounting.

Figure B.1: Optimal Policy in a Three-Period Model
(An Alternative Parameterization)
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Figure B.1 shows the paths of the policy rate, inflation and the output gap under the alternative
parameterization. Under the optimal policy, the central bank keeps the policy rate at zero in period
2 both in the model with a = 0 and in the model with o = 0.5. The optimal level of the policy
rate in period 3 is higher in the model with discounting than in the model without discounting.
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C Solving the three-period model under optimal commitment pol-
icy

The system of equilibrium conditions under optimal commitment policy are given by:

y1 = (1—a)ys —o(is —m) +orf
y2 = (1—a)ys —o(iz —m3) +or"
y3 = —oigor”
T = Ky + Bm
Te = Ky + 73
T3 = KRY3
1
0 = Ay1+/~e¢f0+;¢{“3
1 l—«
0 — Ao+ mdPC 4 LgELB _ ELB
Y2 + Ky +0_¢2 “Bo o1
1 11—«
0 = A rc L EgLB ELB
Y3 + K3 +U¢3 7/80 3
0 = m — 11DC
1
0 = W2—¢§C+¢fc—ﬁ¢{%3
1
0 = m—¢3C +65° — Zo5tP
B
and
(iv —ipLB)d P =0, (ia —ipLe)pS™® =0, (i3 —iprp)pt P =0

11 > IgLB, 12 > 1ELB, %3 > 1ELB
ELB ELB ELB
¢1 Z 07 (Z)Z 2 07 ¢3 2 O

where ¢'¢ and ¢FFP denote the Lagrange multipliers associated with the Phillips curve and the
ELB constraint.

The system of nonlinear equations can be solved as follows. First, assume that the ELB con-
straint is never binding. Set ¢ = 0 for t = 1,2,3 and solve the resulting system of linear
equations. If 4; > 0 for all ¢, the model is solved. If i1 < igppB, set i1 = igrp and solve the system
of linear equations with (;SiELB > 0. If 49,43 > igrB, the model is solved. If is < igrp, set io = ipLB
and solve the system of linear equations with gbfLB, qﬁgLB > 0. If i3 > igrp, the model is solved.

If i3 < igpB, set i3 = iprp and solve the system of linear equations with qbfLB, gLB, qbgLB > 0.

D Details of the optimal commitment policy

D.1 The recursive characterization

Following the common practice in the literature, we characterize the optimal commitment policy
recursively based on the saddle-point functional equation. The saddle-point functional equation
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corresponding to the infinite-horizon problem of the Ramsey planner is given by,

n
Wt(Tt ,€t7w1,t—17w2,t—1)

. . n
:mln{'yl’t,727t}max{yt,7rt,it}h(yt’ Tty Uty W1t—1,W2,t—1, V1t 72,t) + /BEtWt+1 (TtH, €141, W1 t, w2,t)

where
R(ye, T, T, W11, W2,0—1, V1,65 V2,t)

1
= [—2 (7F + )\yf)} —wi-1((1 = a1y + omy) — way1(1 — az) B

+y1,e(ye + o (ie — (")) + y2,0(me — Kye — eq)

and the optimization is subject to the the ELB constraint, and the following law of motions for wy ;
and wa ¢,

Wit = Y1t

W2t = Y2t

Note that wy; (the Lagrange multiplier on the Euler equation) and wa; (the Lagrange multiplier
on the Phillips curve) are the only relevant state variables because the expectation terms show up
only in these two equations.'” Define the state S; := [, er, w1 t—1,w2¢—1]. A Ramsey equilibrium
can be defined as the set of time-invariant value and policy functions {W(S;), y(St), 7(St), i(St),
w1(St), wa(St), ws3(S¢)} that solve the saddle-point functional equation equation above. The FONC
are

1-— a7
Oy = =AMy +wiyp — 5 wi—1— kwayt =0
g
ony :+ —mp— Ewl,t—l +wot— (1 —ag)wa—1 =0
0iy @ owig+wss =0,

as well as the private sector behavioral constraints.

D.2 Solution method

The problem is to find a set of policy functions, {y(S;), 7(St), i(St), wi(St), wa(St), ws(Se)},
that solves the following system of functional equations

y(S) = (1= 0a1)Ey(Seq1) — o(i(Se) — Eam(Se1) — 17') (D.1)
7(St) = rky(St) + (1 — ag)BEm(Sey1) + e (D.2)
wi(S) = S + 2 (Sit) + walSy) (D.4)
wi(Sy) = m(Sy)+ %wl(St_l) + (1 — an)ws(Si_1) (D.5)
W3(St) = —0w1 (St) (D.G)

195+ is the Lagrange multiplier on the ELB constraint.
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Following the approach of Christiano and Fisher (2000), we decompose these policy functions
into two parts using an indicator function: one in which the policy rate is allowed to be less than
iELB, and the other in which the policy rate is assumed to be igrp. That is, for any variable Z,

Z(-) = I{R(')ZiELB}ZWlC(') + (1 - I{R(-)ZiELB})ZELB(')‘ (D'7)
The problem then becomes finding a set of a pair of policy functions, {[yunc(+), yerB()]; [Tunc(*),
7ELB ()], ltunc(+), iELB()], [Wiunc(?), w1,ELB()]s [W2une(+); w2,ELB(+)], [W3unc(*),
w3 prB(+)]} that solves the system of functional equations above. This method can achieve a given
level of accuracy with a considerable less number of grid points relative to the standard approach.
The time-iteration method starts by specifying a guess for the values policy functions take on
a finite number of grid points. The values of the policy function that are not on any of the grid
points are interpolated or extrapolated linearly. Let X(-) be a vector of policy functions that
solves the functional equations above and let X(® be the initial guess of such policy functions.?’
At the s-th iteration, given the approximated policy function X (3_1)(-), we solve the system of
nonlinear equations given by equations (D.1)-(D.6) to find today’s y, 7, ir, w1 ¢, w2, and w3y at
each point of the state space. In solving the system of nonlinear equations, we evaluate the value
of future variables that are not on the grid points with linear interpolation. The system is solved
numerically by using a nonlinear equation solver, dneqnf, provided by the IMSL Fortran Numerical
Library. If the updated policy functions are sufficiently close to the previously approximated policy
functions, then the iteration ends. Otherwise, using the former as the guess for the next period’s
policy functions, we iterate on this process until the difference between the guessed and updated
policy functions is sufficiently small (|vec(X*(d) — X*71(4)) Hoo < 1E-12 is used as the convergence
criteria).

D.3 Solution accuracy

We assess the accuracy of our solution for the allocation under the optimal commitment policy
through the following two residual functions:

Rit =y — (1 — a1)Eyir1 + o (i — Eymepr — 1)),
Ro¢ = |1 — kyr — (1 — a2) BEme1 — el

where the residual R; ; measures the difference between the chosen output gap today and today’s
output gap consistent with the optimization behavior of the household, as a percent deviation from
steady-state output gap. Similarly, the residual Ro; captures the same difference in inflation today.

It is common to simulate the economy once for a very long time, and report summary statistics
of these residuals from the simulated path to quantify the solution accuracy (Maliar and Maliar
(2015) and Nakata (2017), among others). However, such approach does not make sense in our
model with an absorbing state; after a certain point in time, the economy is at the steady state
forever in which the residuals are zero. We take the following approach to quantify the solution
accuracy. We simulate 500,000 different economies. In each economy, the initial state is given by
the crisis state in which r{* = r7 and e; = e;. How long the crisis shock lasts depends on the
realizations of the crisis shock. In each economy, we stop our simulation after 8 quarters from the
lift-off quarter so as not to include observations in which the economy are very close to or at the
steady state.?! Table D.1 reports the average and the maximum of the residuals collected from
500,000 economies of varying lengths for three values of oy = as =0, 0.5, 1.

20For all models and all variables, we use flat functions at the deterministic steady-state values as the initial guess.
21The choice of 8 quarters is somewhat arbitrarily, but the economy typically have returned to the steady state 8
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Table D.1: Solution Accuracy (Discounting in Euler Equation)

o ) E¢] masx¢]

k = 1: Euler equation error —11.0 —-2.9

a =az=0 k = 2: Sticky-price equation error —13.1 —5.7
k = 1: Euler equation error —13.5 -3.3

a =az =05 k = 2: Sticky-price equation error —15.6 —5.6
k = 1: Euler equation error —19.8 —-16.9

o =az=1 k = 2: Sticky-price equation error —29.2 —18.4

E Sensitivity analysis (I)

In this section, we examine the implications of less powerful forward guidance on optimal policy
when the weight on the output stabilization term in the central bank’s objective function—given
by A—is higher than in the baseline.

We consider two alternative values for A. The first value we consider—the value we focus on—is
1/64, which is substantially higher than the baseline and gives equal weights to the volatility of
annualized inflation and the volatility of employment gap.’> When the optimal policy analysis is
conducted for policy purposes in central banks, it is common to put equal weights to the price
stability and employment stability terms. See, for example, Yellen (2012), Reifschneider, Wascher,
and Wilcox (2015), and Carney (2017). The second value we consider is 0.0045, which is five times
as large as the baseline value and is lower than 1/64.

Figure E.1: IRFs in the Model with Discounted Euler Equation (A = 1/64)
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Figure E.1 shows the IRFs under the optimal commitment policy in the model with discounting
in the Euler equation only under A = 1/64. The IRFs with the standard Euler equation—shown by
the dashed black lines—are qualitatively similar to those under the baseline A shown in Figure 4.
Quantitatively, the deviation of inflation from the target is larger, and the deviation of output from
the target level is smaller, under A = 1/64 than under the baseline calibration.

The effect of discounting on the optimal interest-rate path is qualitatively different under A\ =
1/64 than under the baseline value of A. In Figure E.3, the liftoff quarter is the same under a = 0.5

quarters after liftoff, regardless of how long the crisis shock has lasted.
221/64 = 1/16  1/4. The first term, 1/16(= 1/4 x 1/4), is the term to take into account the fact that m; in the

model is a quarterly rate of inflation. The second-term, 1/4(= 1/2 % 1/2), translates the output gap volatility into
the employment volatility, using the Okun’s law with coefficient of 2.
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as that under @« = 0. Under a = 1, the liftoff quarter is earlier, albeit only by two quarters.
Interestingly, even though the lift-off quarter is earlier under @ = 1 than—or, the same under
a = 0.5 as—under o = 0, the speed of convergence to the steady state interest rate is slower the
higher the discounting parameter is.

The left panel of Figure E.3 shows the non-monotonic effect of the discounting on the expected
ELB duration under A = 1/64; although the expected ELB duration initially increases as « increases
from zero, an increase in « leads to a shorter expected ELB duration after some threshold value
of a around 0.2. Note that, for any given «, a higher X is associated with a shorter expected ELB

duration.

Figure E.2: IRFs in the Model with Discounted Phillips Curve (A = 1/64)
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Moving on to the effect of discounting in the Phillips curve, the effect of discounting on the
optimal policy-rate path under A = 1/64 is similar to that under the baseline A shown in Figure E.2.
As shown in the middle panel of Figure E.3, a higher discounting is associated with a longer expected
ELB duration, though the effect of increasing the discounting parameter is negligible when alpha is
sufficiently large. For any given «, a higher )\ is associated with a shorter expected ELB duration.

Figure E.3: Expected ELB Durations with various As
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Finally, the right panel of Figure E.3 shows the effect on the expected ELB duration of in-
creasing the discounting parameters in the Euler equation and the Phillips curve at the same time.
Qualitatively, the effect is similar to that under the baseline A; although the expected ELB duration
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increases initially as « increases from zero, an increase in « leads to a shorter expected ELB dura-
tion after some threshold value of . As in the model with discounting only in the Euler equation
or the Philip curve, for any given «, a higher A is associated with a shorter expected ELB duration.

F Sensitivity analysis (II)

Throughout the paper, we have examined the implications of less powerful forward guidance in
a setup where, as we vary «, the size of the shocks are modified to keep the severity of the recession
unchanged under the simple rule. In this section, we demonstrate the results from the alternative
experiment in which the size of the shocks are kept constant as we vary a.

Figure F.1: IRFs in the Model with Discounted Euler Equation under the Simple Rule:
Keeping the Magnitudes of the Shocks Constant
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Figure F.2: IRFs in the Model with Discounted Euler Equation under the Optimal Commitment
Policy:
Keeping the Magnitudes of the Shocks Constant
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With the size of shocks unchanged, a decline in @ makes the declines in output and inflation in
the crisis state smaller, as shown in Figure F.1. For any given «, faced with a less severe recession,
the central bank finds it optimal to keep the policy rate at the ZLB for a shorter duration in this
alternative experiment than in the baseline experiment, as captured by the fact that black line is
below the red line in the left panel of Figure F.5. Under the alternative setup—shown by the black
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line—an increase in « leads to a reduction in the expected ELB duration, whereas an increase in
a leads to an increase in the expected ELB duration under the baseline setup—shown by the red
line. The effect of increasing o on the IRFs are shown in Figure F.2.

Figure F.3: IRFs in the Model with Discounted Phillips Curve under the Simple Rule:
Keeping the Magnitudes of the Shocks Constant
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Figure F.4:

IRFs in the Model with Discounted Phillips Curve under the Optimal Commitment

Policy:
Keeping the Magnitudes of the Shocks Constant
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Moving on to the model with discounting only in the Phillips curve, a higher « is associated
with a less severe recession under the simple rule, as in the model with discounting only in the Euler
equation, and as shown in Figure F.3. For any given «, faced with a less severe recession, the central
bank finds it optimal to keep the policy rate at the ZLB for a shorter duration in this alternative
experiment than in the baseline experiment, as captured by the fact that black line is below the
red line in the middle panel of Figure F.5. Under the alternative experiment—shown by the black
line—an increase in « does not alter the expected ELB duration much, whereas an increase in «
leads to an increase in the expected ELB duration under the baseline experiment—shown by the
red line. The effect of increasing o on the IRFs are shown in Figure F.4.

Finally, the right panel of Figure F.5 shows the effect on the expected ELB duration of increasing
the discounting parameter in both the Euler equation and the Phillips curve. Similarly to the model
with the discounting only in the Euler equation, the expected ELB duration declines as « increases
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under the alternative experiment—shown by the black line.

Figure F.5: Expected ELB Duration:
Keeping the Magnitudes of the Shocks Constant
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G Sensitivity analysis (III)

Throughout the paper, we focus on analyzing how discounting of future economic activity in
the private sector decisions affects the optimal policy. In this section, we analyze the implication
of different degrees of discounting in the central banks objective function for the optimal policy.
Specifically, we consider the following objective function:

o nax 1E1 Z B —acp)] ™ ulys, )

This type of central bank discounting is consistent with models of imperfect policy credibility
as studied in Debortoli and Nunes (2014) and Schaumburg and Tambalotti (2007). Importantly, in
these models—Ilike in our semi-structural model with private sector discounting—today’s allocations
depend less on an announced future overshooting in output and inflation than in the standard NK
model with perfect credibility, since the private sector is not fully convinced that the policies that
are supposed to give rise to the overshooting will actually be implemented. We conduct three
exercises. In the first, we alter acp together with «q, while keeping cs = 0. In the second, we alter
acp together with ao, while keeping a; = 0. Finally, we alter acp together with a; and as.

Solid black lines in the three panels in Figure G.1 show the results of these three exercises in
terms of the expected ELB duration.?? In each panel, dashed black lines show the result from the
exercises reported in the main text in which aep is kept at zero as we vary «q and/or as.

According to the three panels, the central bank keeps the policy rate at the ELB for a longer
duration when it discounts future utility flows by more. With a higher discounting of future utility
flows, the overshooting in the aftermath of recession becomes less costly, and the improvement in
the stabilization outcomes during the recession becomes more beneficial, to the central bank at
time one. As a result, the central bank finds it optimal to create larger overshooting later on and

23Note that the range of the discounting parameter is narrow because our solution method did not converge for
lower values of acp.
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Figure G.1: Expected ELB Duration:
Keeping the Magnitudes of the Shocks Constant
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smaller reduction in inflation and output now by promising to keep the policy rate at the ELB for
longer.

H Analysis of optimal policy in a micro-founded model of less
powerful forward guidance

In the main text, we analyzed the implication of less powerful forward guidance in a New
Keynesian models with discounted Euler equation and Phillips curve without taking a stance on the
structural model that generates discounting in these two equations. In this section, we characterize
optimal commitment policy in a structural model of less powerful forward guidance. The structural
model we examine is a New Keynesian model with overlapping generations developed by Piergallini
(2006), Castelnuovo and Nisticé (2010), and Nisticé (2012). Recently, Del Negro, Giannoni, and
Patterson (2015) show that the effect of anticipated monetary policy shock is smaller in this model
than in the standard New Keynesian model.

H.1 Model
H.1.1 Household

Every period j, a new cohort is born with mass p, and each cohort has a constant probability
of dying—denoted by p—which does not depend on j. At time ¢, agents born in period j seek to
maximize their discounted sum of future utility flows subject to budget constraints.

o0

max 2(5(1 —p))tet [H Ottu—1
u=0

{45 Lje+s 3520 S

M Ctrs +vin(l— Ljiis)]
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subject to
1
P Cjiqs+ Bjiys + / Qi15(1) Zj1+s(1)di
0
. 1 Lo . o
=WiisLitrs + PrsTitrs + 7— p[Bj,t+th+s—1 + / (Qi45(1) + Dy () Zjars(1)di]
- 0

Cj and L;; are consumption and labor supply of cohort j at time t. B;; and Z;(¢) are respectively
a nominal bond holding and the equity share issued by monopolistic firms, i, owned by cohort j
at time ¢t. Q; (i) is the nominal price of equity and Dy (i) is the dividend. W} is the nominal wage
and T}, is the lump-sum transfer. * denotes the nominal price.

Each agent faces the constant death rate p for each period. As in Blanchard (1985), each agent
has entered an annuity contract in which the fraction p of the same cohorts dying in each period
leaves its wealth to those who remain alive. The wealth [(B;R¢—1 + fol(Qz‘(i) + Dj(4))Z;(1)di] is
divided by 1 — p fraction of cohort members alive. By adding the annuity and his own wealth, each
agent has (125 +1)[Bj i [t—1 + fol(Qf(i) + Dj (1)) Z;+(i)di] for each period.

The discount rate at time t is given by Bd; where §; is the discount factor shock altering the
weight of future utility at time ¢ 4+ 1 relative to the period utility at time ¢. The shock process is
described as follows:

1 otherwise.

{5H if 1<t<rt
5, =

Note that, unlike in the infinite-horizon model in the main text, there is no uncertainty. In partic-
ular, the duration of the shock, 7, is given.

For any variables X, aggregate variable X; is defined by X; = Z;Z_Oo p(1— p)t_ij,t.

H.1.2 Firms

There is a final good producer and a continuum of intermediate goods producers indexed by
i € [0, 1]. The final good producer purchases the intermediate goods Y; + at P, ;, produces the final
good by CES technology, and sells it to households. The problem is summarized as:

1
max PtY;f_/ P; 1Y 4di
{Kl,t iE[O,l]} 0

subject to the CES production function,

0
1 6—1 —1
Ytz[/ Y; ' dz’]
0 k)

Intermediate goods producers use labor as an input of producing intermediate goods according
to a linear production function(Y;; = L;;) and sell them to the final good producer. Each firm
faces a quadratic adjustment cost when he changes his price to maximize his profit. We assume
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that each firm receives a production subsidy 7* so that economy is fully efficient in the steady state.

P 2
(L+7%)PiyYiy — Wi Liy — B2 < uto 1> Yt]

o0
max Fie
{P;+} ; 2 \ Pt

subject to

where Fi; is the aggregate stochastic discount factor. That is,

t
Fio= Y p(l—p) T Fju

with

_1PiCja
F. = t—1 )
7,1t B Pth,t

The time zero price is assumed to be the same across firms (i.e. P;o= Py > 0).

H.1.3 Government policies

The supply of the government bond is assumed to be zero. With this assumption, the govern-
ment budget constraint is given by

t
TRY,+ P Y p(1-p) T =0

j=—o00

We will consider two cases regarding how the central bank sets the short-term nominal interest
rate. In the first case, the central bank sets the interest rate according to the following interest-rate
feedback rule;

R
R; = max{—=21I}¢, 1}
Ot
. _P
where II; := B and, )
Reyg = ——+
B(1-n$)
Rss is the steady state nominal interest rate and where n = ﬁ%});ﬁ’). The intercept of the policy

rule is time-varying and depends on d; in such a way that, in the absence of the ZLB constraint,
the effect of variation in § would be fully neutralized by a corresponding variation in the policy
rate.

In the second case, the central bank choose the sequence of interest rates at time one in order
to maximize the household’s welfare subject to the private-sector equilibrium conditions.
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H.1.4 Market clearing conditions

The market clearing conditions for the final good, labor, government bond and equity are given
by

Yi=Cit & (1 - 1Y,

1
Lt:/ Ly(i) di
0
BtIO

LK&@le

H.1.5 Private-sector equilibrium conditions

Private sector equilibrium conditions are given by:

p (1-—pwpt1 1
Cy = + —T1;4,C
R T L
1
Qr = ﬁﬂtﬁ-l(Qt—&—l + Dyy1)
t
UCt = Wt(l — Lt)
Dy = QY—WY—QH—WY
t 0_1 t tit 2 t t
Cr=[1- g(ﬂt - 1)%Y;
1 Y, 0
el = 1) = T (Mo = 1) =3 = G1=W)
Yi= L

where - )
w =1+ 31— pp 8 ([ b))
s=1 u=1

As death rate p rises, n also increases and households respond more to the asset price at time ¢.
If p = 0 holds, n = 0 and this economy degenerates into a standard NK model. In this case, the
wealth effect of an asset price (J; does not directly affect the movement of consumption.

For notational simplicity, we will also write the consumption Euler equation as follows.

I 41 Cipa

Cy =k + K
t 1,6 Q¢ 2.t i

H.2 Welfare

Welfare function at ¢y is defined as the weighted average of time-zero value functions of all
cohorts, including those who are already born and those who are yet to be born. ¢ is the subjective
discount factor of the social planner.’® For expositional simplicity, we abstract from the time-

24The second term of the first line shows that the policy maker discounts time ¢ instantaneous utilities of already-
born agents back to birth dates, rather than the current period. This assumption looks odd, but, without the
assumption, the problem of the time-inconsistency in preference arises, as noted by Calvo and Obstfeld (1988).
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variation in the household’s discount rate.

o0

to
Siu(g,t) | + Z o’

j=—o00

<p > 1B = p) T u(j, )

t=to

)

Wi, = Z o’ pZ[ﬁ(l_P)]
Jj=to+1 t=j
) unborn
=r > |2
J=to+1 | t=j
o] [ t
—p> ot | S (ﬁ(la—p)
t=to _j:—oo
= Z B'u(Ch, Ly)
t=to

The last equality follows from the following two assumptions. The first assumption is that the
social planner can implement a distributional policy so that the aggregate consumption and labor
supply becomes equal for each cohort at time t. That is, C;; = Cy, Lj; = Ly, and u;; = uz. The
second assumption is that the subjective discount factor of social planner and that of each cohort

are the same, that is 0 = 5.2°

H.3 Ramsey Problem

At time t = 1, the government’s problem is to find an allocation that maximizes the household

(P0=0)" 0

~

to
+p >

j=—00

>t_j u(j, )

already born

(5“—1’)

g

o0

>

)H e t)at]

welfare and price and policy variables that decentralize the allocation as an equilibrium.

max iﬁt_l(H 0s—1)[InC; + vin (1 = Y})]

t=1

subject to

Ci = K1,1Q¢ + Koy

1

Q= 7,

s=1

IT; 41 Cipa
Ry

IIi1(Q1 + Digr)

vCy = Wi(1 - Y)

0

¢ 2
Dy = Y; — WiY; — =(II; — 1)%Y;
t 0_115 t¥t 2(t ) t
Ct:[1—§(nt—1)2]yt
1 Yi
(I, —1) = =12, (T4 — 1) —~—
t( t ) Rt +1( t+1 )}/%
R >1

B(1—p)

o

=1
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*Notice that 322 (

3
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The associated Lagrangian problem is given by:

0 t
Ly=max » BN [[ds-){InCi+vn(1-Y)

t=1 s=1
I, 1C
+ A (R1,6Qr + KQ,t% - Cy)
t
1
+ )\27t(EHt+l(Qt+1 + Dyy1) — Q1)
t

+ )\3,t(Wt(1 -Y;) —vC)

+ A AT §<Ht - 1%, - Dy)

ef1n
+ X54([1 = %(Ht —1D?Y; - Cy)

1 Yig1r 0
Neg(—T12, (Mg — 1) 4= — —(1 — I (T, — 1
+ G’t(Rt i1 (Mg — 1) Y, ¢( W) — I (I — 1))

+ )\7,t(Rt — 1)}

FONCs are given by:

Kot 1
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R% 2.t Rt2 6,t Rt Y
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H.4 Calibration and solution method

We solve the model in its original nonlinear form using the modified Newton method developed
by Juillard, Laxton, McAdam, and Pioro (1998). This method modifies the standard Newton
algorithm to take advantage of the recursive structure common in infinite-horizon macroeconomic
models. Nakata (2017) uses this method to solve optimal fiscal and monetary policy in New
Keynesian model with the ZLB constraint. See the former paper for the general description of the
method and the latter for how to apply the method to fully nonlinear New Keynesian models with
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the ZLB constraint.

Parameter values are listed in Table H.1. The weight on leisure in the utility function is close to
those values used in Castelnuovo and Nistic6 (2010), Nistic6 (2012), and Del Negro, Giannoni, and
Patterson (2015). Price adjustment costs implies a slope of the Phillips curve that is consistent with
Calvo parameter of 0.9. This adjustment cost parameter is a bit higher than what is commonly
used in the literature and is chosen so that inflation does not decline too much in recessions. We
consider 21 different values of p between 0 and 0.1. For each, p, the size of the discount rate shock
is chosen so that the initial decline in consumption is 10 percent.

Table H.1: Parameter Values

Parameter Description Values
B8 Discount factor 0.9925
v Utility weight on L, 1.25
D Turnover rate [0,0.1]
0 Relative price elasticity of demand 11
©® Price adjustment cost 1200
U Coefficient of the Taylor rule 1.5
Rerp The effective lower bound 1
Chosen so that
OH Demand shock C1 declines 10% from the SS

under the time varying Taylor rule

H.5 Results

Figure H.1 shows the dynamics of the economy for three different values of p under the simple
rule. According to the figure, allocations are not noticeably different across different values of p.
For all values of p, consumption declines 10 percent and inflation declines by 2 percentage points in
period one. They gradually increase and, once the shock disappears at period 21, the economy is
at the steady state. One unique feature of the model is that the steady state nominal interest rates
depends on p. In particular, a higher p is associated with a higher steady state nominal interest
rate.”0

Note that, in this model, the magnitudes of the declines in consumption and inflation at the
ZLB depend on the time, whereas they do not in the infinite-horizon model considered in Section
3 in the main text. This difference is driven by the difference in the shock process. In the model
of this section, the shock is not stochastic; the duration of the shock is set to 20 periods. In
the infinite-horizon model considered in Section 3 in the main text, the shock is stochastic and is
governed by a Markov process.

Figure H.2 shows the dynamics of the economy for three different values of p under the optimal
commitment policy. For any values of p, the policy rate is kept at the ZLB even after the shock dis-
appears. Consistent with what we saw in models with discounted Euler equation and Phillips curve,
this low-for-long policy creates overshooting of consumption and inflation, which in turn mitigates
the decline in consumption and inflation at the beginning of recessions through expectations.

The additional duration of holding the policy rate at the ZLB is shorter when p is higher. With
p = 0, the additional ZLB duration is 4 periods, whereas it is 3 periods under p = 0.02 and p = 0.04.
The allocations are similar, but there is slightly more overshooting in a model with a higher p.

26Tf we modify S8 as we modify p, the power of forward guidance will not get weakened.
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Figure H.1: IRFs under the simple rule
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Figure H.2: IRF's under optimal policy
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In this model, it would be misleading to use the additional ZLB duration as the measure of
the extent to which the central bank uses forward guidance to stimulate economic activities at the
ZLB, because the steady state nominal interest rates are different across different values of p. For
example, when the central bank keeps the policy rate at the ZLB for one additional period in the
model with p = 0, it is setting the interest rate 3 percentage points below the rate required to
stabilize the economy. However, when the central bank keeps the policy rate at the ZLB for one
additional period in the model with p = 0.04, it is setting the interest rate 5.5 percentage points
below the rate required to stabilize the economy. Thus, by keeping the policy rate at the ZLB
for one additional period, the central bank is providing more future policy accommodation under
p = 0.04 than under p = 0.

To account for the difference in steady state nominal interest rates across different value of
p, we use the following statistics—which we call “EA (Extra Accommodation)”—which is the
cumulative difference between the path of policy rates under the simple rule (R;f) and that under
the optimal commitment policy (RY“T))—as the measure of how actively the central bank uses
forward guidance:

BA = (RS - ROCP)
t=0
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Figure H.3 shows how this measure of future policy accommodation varies with p. According to
the figure, the central bank promises more future accommodation when p is higher—that is, when
forward guidance is less powerful. This result is consistent with the analysis of the infinite-horizon
model in the main text; the central bank finds it optimal to compensate the reduced power of
forward guidance by more extensively using it.

Figure H.3: Extra accommodation
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