
Shephard’s Lemma as a Partial Differential
Equation

Yuhki Hosoya∗†

Department of Economics, Kanto-Gakuin University
1-50-1 Mutsuurahigashi, Kanazawa-ku, Yokohama-shi,

Kanagawa 236-8501, Japan.

July 25, 2018

Abstract

This paper studies a partial differential equation that is called
Shephard’s lemma in economics. It is known that if the demand
function is continuously differentiable, then the local existence of this
equation is equivalent to the symmetry of the Slutsky matrix. We
extend this result to the class of locally Lipschitz function. Further-
more, we show by using this result that in locally Lipschitz environ-
ments with some additional requirements, the symmetry and negative
semi-definiteness of the Slutsky matrix is a necessary and sufficient
condition for reverse calculation to a utility function.
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1 Introduction

Hurwicz and Uzawa (1971) showed that if a continuously differentiable func-
tion f(p,m) satisfies the Walras’ law and some additional assumption, then
it is a demand function of some preference relation if and only if the Slutsky
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matrix is symmetric and negative semi-definite. This result is strengthened
by Hosoya (2017), which showed that ‘some additional assumption’ is not
needed. Moreover, Hosoya (2017) presented a concrete reverse calculation
procedure for utility function from this demand function. This result ex-
pected to be able to use in microeconometric theory.

In their results, a partial differential equation plays an important roll.
This equation is called the Shephard’s lemma. In classical consumer theory,
it is known that if f(p,m) is a demand function of some preference relation
and Ex(p) is the expenditure function of the same preference relation, then

DEx(p) = f(p, Ex(p))

for every p. This equation is called the Shephard’s lemma. Moreover, if the
given preference relation is continuous, then x is preferred to y if and only
if Ex(p) ≥ Ey(p). This result is crucial for the reverse calculation procedure
from a demand function to a preference relation.

We shall explain this reverse calculation method. The main idea is sepa-
rated into three steps.

• The first step. Suppose that f(p,m) is a demand function of u, and
we have already known u. Then, we can calculate the expenditure
function Ex(p). Fix any p̄ and consider the function x 7→ Ex(p̄). Then,
this function repair the information of u.

• The second step. Suppose that we know that f(p,m) is a demand
function of some u, but there is no known information on u. In this
case, we use the Shephard’s lemma to calculate the function Ex. That
is, we can obtain the expenditure function by solving the above partial
differential equation. If we can solve this equation, then x 7→ Ex(p̄)
have all information about u.

• The third step. In general, we do not know whether the given func-
tion f(p,m) is a demand function of some preference relation or not.
Hosoya (2017) showed that if f is continuously differentiable, then the
global existence of the concave solution of the Shephard’s lemma is the
necessary and sufficient condition of the existence of the corresponding
preference relation to f . Hosoya (2018) showed that even if f is not
continuously differentiable but only differentiable and locally Lipschitz,
this result still holds.

However, in economics, sometimes a demand function f is not neces-
sarily differentiable. For example, if u(x) = x1x2, then the corresponding
demand function is differentiable. However, u(x) = (x1 + ε)(x2 + ε) for
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some ε > 0, then the corresponding demand function is not necessarily dif-
ferentiable. That is, the differentiability of the demand function is a very
sensitive property to perturbation, and thus we remove the differentiability
assumption of the demand function from theory.

In this study, we treat the Shephard’s lemma, and show that even in
locally Lipschitz environments, almost the same results as in differential case
hold. That is, 1) the local existence of the solution is equivalent to the
symmetry of the Slutsky matrix, and 2) the global existence of the concave
solution is equivalent to the symmetry and negative semi-definiteness of the
Slutsky matrix. (Theorems 1-2, Corollary 1)

However, the existence of the concave solution of the Shephard’s lemma
does not assure the effectiveness of our reverse calculation procedure in locally
Lipschitz environments. To solve this problem, we need an additional require-
ment: that is, pseudo continuously differentiable requirement is needed. This
assumption is weaker than the differentiability, and under this assumption,
we can assure the effectiveness of our procedure. (Theorem 3, Corollaries
2-3)

There is an important class of pseudo continuosly differentiable functions:
that is, patchily smooth function must be pseudo continuously differentiable.
(Theorem 4) In consumer theory, almost all demand functions that admit
corner solutions are patchily smooth, and thus our results is applicable for
almost all cases.

In section 2, we introduce several definitions, and results of ordinary
differential equations that is needed in this paper. Moreover, we interpret
our main idea. In section 3, we exhibit main results. The proofs of all results
are in section 4.

2 Preliminary

2.1 Definitions of Notations

We consider that the notation Ω denotes the consumption space, and assume
that Ω is a subset of Rn

+, where n ≥ 2 be given. We write x ≫ y if xi > yi
for any i.

Choose any binary relation ≿ on Ω, that is, ≿⊂ Ω2. We write x ≿ y if
(x, y) ∈≿ and x ̸≿ y if (x, y) /∈≿. We say that ≿ is

• complete if for any x, y ∈ Ω, either x ≿ y or y ≿ x,

• transitive if for any x, y, z ∈ Ω, x ≿ y and y ≿ z imply x ≿ z,

• continuous if ≿ is closed in Ω2,
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• upper semi-continuous if for any x ∈ Ω, the set {y ∈ Ω|y ≿ x} is
closed in Ω,

• monotone if for any x, y ∈ Ω, x ≿ y and y ̸≿ x when x ≫ y,

• strictly convex if for any x, y ∈ Ω with x ≿ y and x ̸= y, and t ∈]0, 1[,
(1− t)x+ ty ≿ y and y ̸≿ (1− t)x+ ty.

We call a binary relation ≿ on Ω a preference relation if it is complete
and transitive. If ≿ is a preference relation, then we write x ≻ y if x ≿ y
and y ̸≿ x, and x ∼ y if x ≿ y and y ≿ x.

Suppose that u : Ω → R satisfies the following condition:

u(x) ≥ u(y) ⇔ x ≿ y.

Then, we say that u represents ≿, or u is a utility function of ≿. Note
that if some function u represents ≿, then ≿ is a preference relation, and ≿
is continuous (resp. upper semi-continuous) if u is continuous. (resp. upper
semi-continuous.)1

Next, we call a continuous function f : Rn
++ × R++ → Ω a candidate of

demand (CoD) function if it satisfies budget inequality: that is,

p · f(p,m) ≤ m,

for any (p,m) ∈ Rn
++ × R++. If

p · f(p,m) = m

for any (p,m) ∈ Rn
++ × R++, then this CoD function is said to satisfy the

Walras’ law.
Now, let ≿ be a binary relation on Ω and define

f≿(p,m) = {x ∈ Ω|∀y, p · y ≤ m ⇒ x ≿ y}.

If ≿ is strictly convex, then f≿ is a CoD function. In this case, we call f≿ a
demand function of ≿ and say that ≿ corresponds with f (or, f corresponds
with ≿) if f = f≿. If u represents ≿, then f≿ is sometimes written as fu,
and we say that u corresponds with f (or, f corresponds with u) if fu = f .
Note that if ≿ is monotone, then f≿ satisfies the Walras’ law.

Suppose that f : P → Rn and P ⊂ Rm ×Rℓ. Note that f is possibly not
a CoD function. This function f(x, y) is said to be locally Lipschitz in x

1Conversely, if a preference relation ≿ is continuous, (resp. upper semi-continuous,)
then there is a continuous (resp. upper semi-continuous) function u that represents ≿.
This result is obtained by the second countability of Ω. See Debreu (1954).
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if and only if for every compact set C ⊂ P , there exists L > 0 such that for
any y ∈ Rℓ and x1, x2 ∈ Rm with (xi, y) ∈ C,

∥f(x1, y)− f(x2, y)∥ ≤ L∥x1 − x2∥.

Similarly, f is said to be locally Lipschitz if for any compact set C ⊂
Rn

++ × R++, there exists L > 0 such that for any (x1, y1), (x2, y2) ∈ C,

∥f(x1, y1)− f(x2, y2)∥ ≤ L∥(x1, y1)− (x2, y2)∥.

Note that if f is a CoD function, the local Lipschitz condition in m is called
income-Lipschitzian.2

Finally, suppose that f : P → Rn and P ⊂ Rn × R is open, and is
differentiable at (p,m). We define

Sf (p,m) = Dpf(p,m) +Dmf(p,m)fT (p,m).

That is, the (i, j)-th element sij(p,m) of Sf (p,m) is

∂fi
∂pj

(p,m) +
∂fi
∂m

(p,m)fj(p,m).

This matrix-valued function Sf (p,m) is called the Slutsky matrix. We
say that f satisfies (S) (resp. (NSD)) if and only if f is differentiable at
everywhere and Sf (p,m) is always symmetric (resp. negative semi-definite).
Similarly, we say that f satisfies (S)-a.e. (resp. (NSD)-a.e.) if and only
if f is differentiable at almost everywhere and Sf (p,m) is symmetric (resp.
negative semi-definite) at almost everywhere.

2.2 The Basic Knowledge on Ordinary Differential Equa-
tions

In this section, we introduce several basic results on ordinary differential
equations (ODE). The proof of FACTs 1-3 are in Hosoya (2018). In proof
section, we provide proofs of FACTs 4-5.

Consider the following ODE:

ẋ(t) = h(t, x(t)), x(t0) = x0,

where ẋ denotes the derivative of x with respect to t. A solution of this
equation is a C1-class function x defined on an interval I containing t0 such

2This name is in Mas-Colell (1977).
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that x(t0) = x0 and ẋ(t) = h(t, x(t)) for any t ∈ I.3 We assume that
h : P → Rm, where P ⊂ R × Rm is open and (t0, x0) ∈ P , and that h is
continuous in (t, x) and locally Lipschitz in x. Then, the following fact holds.

FACT 1. There is a solution of the above equation defined on some open
interval including t0. Moreover, for any two solutions x, y, x(t) = y(t) for all
t included in the intersection of the domains of x and y. (This fact is known
as the Picard-Lindelöf’s theorem.)

A solution y is called an extension of a solution x if and only if the
domain of y includes the domain of x. A solution x is nonextendable
if and only if there is no extension of x except for x itself. Two facts on
nonextendable solutions hold.

FACT 2. There uniquely exists a nonextendable solution defined on an open
interval.

FACT 3. If x is a nonextendable solution defined on ]a, b[, then for any
compact set C ⊂ P , there exist t̂, t̄ ∈]a, b[ such that (t, x(t)) /∈ C if either
a < t ≤ t̂ or t̄ ≤ t < b.

Second, consider the following parametrized ODE:

ẋ(t) = h(t, x(t); y), x(t0) = x0.

We assume that h : P̃ → Rm, where P̃ ⊂ R × Rm × Rℓ is open, and that h
is continuous in (t, x, y) and locally Lipschitz in x. Then, the following fact
holds.

FACT 4. There uniquely exists a function x(t; y) defined on some open
set in R × Rℓ such that if y is fixed and (t0, x0, y) ∈ P̃ , then x(t; y) is a
nonextendable solution of the above problem. Moreover, x is continuous in
(t, y), and if h is locally Lipschitz in (x, y), then x is also locally Lipschitz.

We also call this function x(t; y) a nonextendable solution.
We can easily extend this result. Consider the following parametrized

ODE:
ẋ(t) = h(t, x(t); y), x(t0) = z.

The assumption of h is the same as above. Then, the following fact holds.

3In this paper, we call a subset I of R an interval if it is a convex set and includes at
least two elements.
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FACT 5. There uniquely exists a function x(t; y, z) defined on some open
set in R×Rℓ×Rm such that if (t0, y, z) ∈ P̃ , then x(t; y, z) is a nonextendable
solution of the above problem. Moreover, x is continuous, and if h is locally
Lipschitz in (x, y), then x is also locally Lipschitz.

Again, we call this function x(t; y, z) a nonextendable solution.

2.3 The Basic Knowledges on Shephard’s Lemma

Let f be a continuous CoD function that satisfies Walras’ law. Consider the
following two properties.

(I) For every (p,m) ∈ Rn
++ × R++, there exists a concave solution E :

Rn
++ → R++ of the following partial differential equation (PDE):

DE(q) = f(q, E(q)), (1)

with initial value condition E(p) = m.

(II) If x ̸= y, x = f(p,m), y = f(q, w), and w ≥ E(q) for a solution E of
PDE (1) with E(p) = m, then p · y > m.

Suppose that f is a demand function of some preference relation ≿. Fix
(p,m) ∈ Rn

++ × R++, and define

Ex(q) = inf{q · y|y ≿ x},

where x = f(p,m). Then, it is known that Ex is a concave solution of (1)
with Ex(p) = m. This result is called the Shephard’s lemma.4 Therefore,
f satisfies (I).

Next, suppose that f = f≿ is income-Lipschitzian, and choose any (p,m) ∈
Rn

++ × R++ and q ∈ Rn
++. Let x = f(p,m) and E : Rn

++ → R++ be a so-
lution of (1) with E(p) = m, and define c1(t) = Ex((1 − t)p + tq) and
c2(t) = E((1− t)p+ tq). Then,

ċi(t) = f((1− t)p+ tq, ci(t)) · (q − p), ci(0) = m.

By Picard-Lindelöf’s uniqueness theorem (FACT 1) of the solution of ODE,5

we have c1 ≡ c2, and especially,

E(q) = c2(1) = c1(1) = Ex(q).

4A modern proof of this result is in Hosoya (Lemma 7, 2017).
5To apply this theorem, we need the income-Lipschitzian property of f .
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Therefore, the solution of (1) is unique.
Thirdly, in addition to above assumptions, suppose that ≿ is upper semi-

continuous, and let x ̸= y, x = f(p,m), y = f(q, w) and w ≥ Ex(q). By
definition of Ex(q), for every ε > 0, there exists z ∈ Ω such that q · z <
Ex(q) + ε and z ≿ x. Because f(q, Ex(q) + ε) ≿ z, we have

f(q, Ex(q) + ε) ≿ x

by transitivity. Because f is continuous and ≿ is upper semi-continuous, we
have

f(q, Ex(q)) ≿ x,

and because w ≥ Ex(q), we have

y = f(q, w) ≿ f(q, Ex(q)).

Therefore, by transitivity,
y ≿ x,

and thus, we must have
p · y > m.

Hence, f satisfies (II).
The above arguments shows that under some mild requirements, f is a

demand function only if (I) and (II) hold. Conversely, suppose that f is
a continuous CoD function that satisfies income-Lipschitzian property and
Walras’ law. Actually, the statement (I) (resp. the statement (II)) is the
claim of Lemma 1 (resp. Lemma 4) of Hurwicz and Uzawa (1971). Suppose
these statements hold, and choose any p̄ ∈ Rn

++. If x is not in the range of
f , then define uf,p̄(x) = 0. If x = f(p,m), choose a solution E : Rn

++ → R++

of (1) with E(p) = m, and define uf,p̄(x) = E(p̄). Then, we can show, by
using the same arguments as Hurwicz-Uzawa, that f = fuf,p̄ , and thus f is
a demand function.

Therefore, (I) and (II) are the crucial condition for a CoD function to be
able to calculate the corresponding utility function. Particularly, an existence
result of the solution of PDE (1) has very important role in integrability
theory.

2.4 The Basic Idea

To solve (1) directly is very difficult because this PDE has a serious nonlin-
earity. However, there is a method to reduce the problem in a simple ODE.
First, let f be an arbitrary continuous income-Lipschitzian CoD function
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that satisfies the Walras’ law. Suppose that E : U → R is a solution of (1)
with E(p) = m, where U is open and convex. Consider the following ODE:

ċ(t) = f((1− t)p+ tq, c(t)) · (q − p), (2)

with c(0) = w. Let c(t; q, w) be the nonextendable solution of (2) with
c(0) = w. If we define c(t) = E((1− t)p+ tq), then this is a solution of (2),
and thus by Picard-Lindelöf’s theorem, we have c(1; q,m) = E(q).

Therefore, if U is an open and convex neighborhood of p, there exists a
solution E : U → R with E(p) = m only if the domain of (t, q) 7→ c(t; q,m)
includes [0, 1] × U . Moreover, in this case E(q) = c(1; q,m). Clearly,
c(t; p,m) ≡ m, and thus the domain of t 7→ c(t; p,m) is R. By FACT 4,
the domain of the nonextendable solution c(t; q, w) of ODE (2) is open, and
c is continuous in (t, q, w). Therefore, if q is sufficiently near to p, the domain
of t 7→ c(t; q,m) includes [0, 1].

Let U be some open and convex neighborhood of p such that for every
q ∈ U , c(t; q,m) is defined for every t ∈ [0, 1]. The following results are
well-known:

1. If f is continuously differentiable, then E : q 7→ c(1; q,m) is a solution of
(1) if and only if f satisfies (S). (Theorem 10.9.4, Dieudonne (2006))

2. If f is differentiable and locally Lipschitz, then E : q 7→ c(1; q,m) is a
solution of (1) if and only if f satisfies (S). (Nikliborc (1929), Hosoya
(2018))

However, we want to treat some nondifferentiable f , and thus the above re-
sults cannot be used. Fortunately, if f is locally Lipschitz, then by Rademacher’s
theorem, f is differentiable at almost everywhere, and hence the Slutsky ma-
trix Sf (p,m) can be defined at almost everywhere. The result in which we
want to obtain is as follows: E : q 7→ c(1; q,m) is a solution of (1) if and only
if f satisfies (S)-a.e..

However, there is a serious difficulty. Because the image of q 7→ (q, c(1; q,m))
is just n-dimensional, this set is probably Lebesgue measure zero, and thus
maybe f is not differentiable at every (q, E(q))! This is a serious problem.
Thus, we should use the parameter w and consider E(q, w) = c(1; q, w) in-
stead of E(q) = c(1; q,m). This is the main idea for our main theorem.

3 Results

3.1 Local Existence Theorem

Our first result is as follows.
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Theorem 1. Suppose that f : P → Rn, where P ⊂ Rn ×R is open and f is
locally Lipschitz. Then, the following two statements are equivalent.

1. For every (p,m) ∈ P , there exists an open and convex neighborhood U of
p such that the PDE (1) has a solution E : U → R with E(p) = m.

2. f satisfies (S)-a.e..

3.2 Global Existence Theorem

By Theorem 1, we have that the local existence of the solution of (1) is equiv-
alent to (S)-a.e.. However, our statement (I) requires the global existence of
the solution: that is, the domain U of E should be the same as Rn

++ itself.
The following result gives such a result.

Theorem 2. Suppose that f : P → Rn, where P ⊂ Rn × R is open and f
is locally Lipschitz. Moreover, suppose that f satisfies (S)-a.e.. Choose any
(p,m) ∈ P . Then, for any convex neighborhood C of p, the following two
statements are equivalent.

1. There uniquely exists a solution E : C → R of PDE (1) with E(p) = m.6

2. For every q ∈ C, the domain of the mapping t 7→ c(t; q,m) includes [0, 1],
where c is the nonextendable solution of ODE (2).

Moreover, in this case, E(q) = c(1; q,m) for every q ∈ C.

As its corollary, we can show the following result.

Corollary 1. Suppose that f is a CoD function that is locally Lipschitz and
satisfies Walras’ law. Then, the following statements are equivalent.

1. For every (p,m) ∈ Rn
++ × R++, there uniquely exists a concave solution

E : Rn
++ → R++ of the PDE (1) with E(p) = m.

2. f satisfies (S)-a.e. and (NSD)-a.e..

6If C is open, then E is a solution of (1) if and only if DE(q) = f(q, E(q)) for every
q ∈ C. If C is not necessarily open, then E is a solution of (1) if and only if for every
q ∈ C, there is a local extension Ẽ of E that is defined on some neighborhood of q and
DẼ(q) = f(q, Ẽ(q)).
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3.3 Pseudo Continuous Differentiability and Patchy Smooth-
ness

By Corollary 1, we have that for a locally Lipschitz CoD with Walras’ law, (I)
is equivalent to (S)-a.e. and (NSD)-a.e.. However, for (II), these requirements
are not sufficient.7 Thus, the following notion is needed.

Definition 2. Suppose that P ⊂ Rn×R is open and f : P → Rn is a locally
Lipschitz function. Let (q, w) ∈ Rn × R, and define

dfq,w(p,m) =

{
lim
k→∞

f(p+ tkq,m+ tkw)− f(p,m)

tk

∣∣∣∣ tk ↓ 0

}
,

for every (p,m) ∈ P . We say that f is pseudo continuously differentiable
if for every (p,m) ∈ P and (q, w) ∈ Rn × R, there exists v ∈ dfq,w(p,m) and
a convergent sequence ((pk,mk)) to (p,m) such that f is differentiable at
(pk,mk), and

v = lim
k→∞

Df(pk,mk)(q, w).

Theorem 3. If f is a Locally Lipschitz and pseudo continuously differen-
tiable CoD function that satisfies the Walras’ law. Then, (I) implies (II).

Clearly, if f is differentiable, then it is pseudo continuously differentiable.
(Choose (pk,mk) ≡ (p,m).) Therefore, the following corollary is immediately
obtained.

Corollary 2. If f is a Locally Lipschitz and differentiable CoD function that
satisfies the Walras’ law, then (I) implies that (II).

This result has a surprising corollary. In Hosoya (2018), the following
result is proved. If f is a Locally Lipschitz and differentiable CoD function,
then it is a demand function of some utility function if and only if (S) and
(NSD) hold. Meanwhile, we have already argued that (I) and (II) is a suf-
ficient condition for such CoD to be a demand function. Therefore, we can
obtain the following corollary.8

Corollary 3. If f is a Locally Lipschitz and differentiable CoD function that

7Actually, we do not obtain any counterexample. Thus, there may be no CoD that
satisfies (I) and violates (II). However, at least, we could not show that (I) implies (II)
under locally Lipschitz environment.

8If f is continuously differentiable, this result is trivial. However, we assume that f is
only differentiable.
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satisfies the Walras’ law, then (S) and (NSD) are equivalent to (S)-a.e. and
(NSD)-a.e..

There is a class of CoDs that is not differentiable but pseudo continuously
differentiable. This is the class of patchily smooth CoDs.

Definition 3. Suppose that f is a CoD function that is locally Lipschitz
and satisfies the Walras’ law. We say that f is patchily smooth if there exists
functions f 1, ..., fN : Rn

++ × R++ → Rn such that 1) all f i are continuously
differentiable and satisfies the Walras’ law, 2) there exists A1, ..., AN such
that f(p,m) = f i(p,m) for every (p,m) ∈ Ai, and ∪N

i=1Ai = Rn
++ × R++.

Theorem 4. Suppose that a CoD f is patchily smooth. Then, it is pseudo
continuously differentiable.

4 Proofs

4.1 Proof of FACT 4

Recall the ODE
ẋ(t) = h(t, x(t); y), x(t0) = x0,

where h : P̃ → Rm and P̃ ⊂ R× Rm × Rℓ. If (t0, x0, y) ∈ P̃ , then by FACT
2, there exists a nonextendable solution xy : Iy → Rm. Therefore, x(t; y) can
be defined on the set U = {(t, y)|t ∈ Iy}.

Next, we introduce the following lemma.

Lemma 1. Suppose that a continuous function u : [t0, t̄] → R satisfies

u(t0) = 0, u(t) ≤
∫ t

t0

[Au(s) +B]ds,

for some A,B > 0. Then,

u(t) ≤ B

A
(eA(t−t0) − 1).

Proof of lemma 1. Let u0(t) = u(t), and when uk(t) is already defined,
define

uk+1(t) =

∫ t

t0

[Auk(t) +B]ds.
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Then, uk(t) is increasing in k, and

u2(t)− u1(t) ≤ A

∫ t

t0

(u1(s)− u0(s))ds

≤ A(t− t0)∥u1 − u0∥∞,

u3(t)− u2(t) ≤ A

∫ t

t0

(u2(s)− u1(s))ds

≤ A2(t− t0)
2

2
∥u1 − u0∥∞,

...

uk+1(t)− uk(t) ≤
Ak(t− t0)

k

k!
∥u1 − u0∥∞.

Thus, the sequence (uk) is a Cauchy sequence. Therefore, it converges uni-
formly to some function v and, clearly,

v(t) =

∫ t

t0

[Av(s) +B]ds.

This integral equation has a unique solution v(t) = B
A
(eA(t−t0) − 1), and

obviously u(t) ≤ v(t). This completes the proof. ■

Choose any y∗ such that (t0, x0, y
∗) ∈ P̃ , and define xy : t 7→ x(t; y) and

Iy =]ay, by[ as its domain. Choose any r1, r2 such that ay∗ < r1 ≤ t0 ≤ r2 <
by∗ . To prove that U is open and x is continuous, it suffices to show that
there exists a neighborhood V of y∗ such that if y ∈ V , then ay < r1 and
r2 < by, and on [r1, r2]× V , x is continuous.

Choose a > 0, b > 0 such that

Π̃ = {(t, x, y)|r1 ≤ t ≤ r2, ∥x− x(t; y∗)∥ ≤ a, ∥y − y∗∥ ≤ b} ⊂ P̃ .

Because Π̃ is compact, there exists L > 0 such that if (t, x1, y), (t, x2, y) ∈ Π̃,
then

∥h(t, x1, y)− h(t, x2, y)∥ ≤ L∥x1 − x2∥.

Moreover, because h is continuous on P̃ , it is uniformly continuous on Π̃,
and thus there exists a nondecreasing nonnegative function β(e) such that
lime↓0 β(e) = 0 and, if (t, x, y1), (t, x, y2) ∈ Π̃, then

∥h(t, x, y1)− h(t, x, y2)∥ ≤ β(∥y1 − y2∥).
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Choose any t ∈ [t0, r2]. For y1, y2, if x(t; yi) is defined and (s, x(s; yi), yi) ∈ Π̃
for all s ∈ [t0, t], then

∥x(t; y1)− x(t; y2)∥ ≤
∫ t

t0

∥h(s, x(s; y1), y1)− h(s, x(s; y2), y2)∥ds

≤
∫ t

t0

[∥h(s, x(s; y1), y1)− h(s, x(s; y2), y1)∥

+ ∥h(s, x(s; y2), y1)− h(s, x(s; y2), y2)∥]ds

≤
∫ t

t0

[L∥x(s; y1)− x(s; y2)∥+ β(∥y1 − y2∥)]ds.

By Lemma 1,

∥x(t; y1)− x(t; y2)∥ ≤ β(∥y1 − y2∥)
L

(eL(r2−t0) − 1) ≡ C2β(∥y1 − y2∥),

for some constant C2 > 0. Choose any ρ2 > 0 such that

ρ2 ≤ b, C2β(ρ2) < a.

Choose any y with ∥y − y∗∥ ≤ ρ2 and define t̄ = sup{t ∈ [t0, r2]|(t, y) ∈
U, (t, x(t; y), y) ∈ Π̃}. For any t ∈ [t0, t̄[,

t ∈ [r1, r2], ∥x(t; y)− x(t; y∗)∥ ≤ C2β(ρ2) < a, ∥y − y∗∥ ≤ b,

and thus, (t, x(t; y), y) ∈ Π̃. By FACT 3 and the continuity of xy(t), we have
the mapping t 7→ x(t; y) is defined at t̄, (t̄, x(t̄; y), y) ∈ Π̃, and ∥x(t̄; y) −
x(t̄; y∗)∥ ≤ C2β(ρ2) < a. If t̄ < r2, then we have that for all t > t̄ such that
t− t̄ is sufficiently small, x(t; y) is defined and

∥x(t; y)− x(t; y∗)∥ < a,

which contradicts the definition of t̄. Therefore, t̄ = r2 and xy(·) is defined
on [t0, r2]. Moreover, if ∥y1 − y∗∥ ≤ ρ2 and ∥y2 − y∗∥ ≤ ρ2, then

∥x(t; y1)− x(t; y2)∥ ≤ C2β(∥y1 − y2∥).

By symmetrical arguments, we can show that there exists ρ1 > 0 such that
if ∥y − y∗∥ ≤ ρ1, then xy(·) is defined on [r1, t0], and if ∥y1 − y∗∥ ≤ ρ1 and
∥y2 − y∗∥ ≤ ρ1, then

∥x(t; y1)− x(t; y2)∥ ≤ C1β(∥y1 − y2∥).
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Define
V = {y|∥y − y∗∥ < min{ρ1, ρ2}}.

If y ∈ V , then (t, y) ∈ U for all t ∈ [r1, r2]. Moreover, if (t1, y1), (t2, y2) ∈
[r1, r2]× V , then

∥x(t1; y1)− x(t2; y2)∥ ≤ ∥x(t1; y1)− x(t1; y2)∥+ ∥x(t1; y2)− x(t2; y2)∥
≤ max{C1, C2}β(∥y1 − y2∥) +M |t1 − t2|,

whereM = max(t,x,y)∈Π̃ ∥h(t, x, y)∥. Therefore, x is continuous on [r1, r2]×V .
Finally, if h is locally Lipschitz in (x, y), then we can choose β(e) = Le.

Therefore,

∥x(t1; y1)− x(t2; y2)∥ ≤ (max{C1, C2}L+M)∥(t1, y1)− (t2, y2)∥

on [r1, r2]×V . Now, suppose that x(t; y) is not locally Lipschitz. Then, there
exists a compact set C ⊂ U and there exists a sequence (tk, yk), (sk, zk) in C
such that

∥x(tk; yk)− x(sk; zk)∥ ≥ k∥(tk, yk)− (sk, zk)∥.
Because C is compact, we can assume without loss of generality that (tk, yk) →
(t∗, y∗) and (sk, zk) → (s∗, z∗). If (t∗, y∗) = (s∗, z∗), then we can choose
r1, r2 and ε > 0 such that r1 < t∗ < r2 and x is Lipschitz on W =
[r1, r2] × {y|∥y − y∗∥ < ε}. Then, for every sufficiently large k, we have
(tk, yk), (sk, zk) ∈ W , a contradiction. Thus,(t∗, y∗) ̸= (s∗, z∗). However, this
implies that

∥x(t∗; y∗)− x(s∗; z∗)∥ = +∞,

a contradiction. Therefore, x is locally Lipschitz. This completes the proof.
■

4.2 Proof of FACT 5

This is just a corollary of FACT 4. Choose any y0, z0 such that (t0, z0, y0) ∈ P̃ ,
and define the following equation.

h̃(t, x; y, z) = h(t, x+ z − z0; y).

Consider the following ODE:

ẋ(t) = h̃(t, x(t); y, z), x(t0) = z0.

Then, by FACT 4, the nonextendable solution x̃(t; y, z) is defined on some
open set U and continuous. Moreover, if h is locally Lipschitz in (x, y), then
h̃ is locally Lipschitz in (x, y, z), and thus x̃ is locally Lipschitz. However,
this is the same as x(t; y, z)− (z − z0). ■
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4.3 Proof of Theorem 1

First, we will prove 1. implies 2.. Assume that 1. holds. Because of the
Rademacher’s theorem, we have f is differentiable at almost everywhere.
Suppose that f is differentiable at (p,m). By 1., there exist an open and
convex neighborhood U of p and E : U → R such that

DE(q) = f(q, E(q)), E(p) = m.

Because f is differentiable at (p,m), E is twice differentiable at p, and

D2E(p) = Sf (p,m).

We introduce the following theorem.

Young’s theorem. Suppose that U ⊂ R2 is open and g : U → R is
differentiable, and both ∂g

∂x
and ∂g

∂y
are differentiable at (x∗, y∗) ∈ U . Then,

∂2g
∂y∂x

(x∗, y∗) = ∂2g
∂x∂y

(x∗, y∗).9

Proof of Young’s theorem. Because U is open, there exists ε > 0 such
that if |h| ≤ ε, then (x∗ + h, y∗ + h) ∈ U . Define

∆(h) = g(x∗ + h, y∗ + h)− g(x∗ + h, x∗)− g(x∗, y∗ + h) + g(x∗, y∗).

Let
φ(x) = g(x, y∗ + h)− g(x, y∗).

If |h| ≤ ε, then there exists θ ∈ [0, 1] such that

∆(h) = φ(x∗ + h)− φ(x∗)

= hφ′(x∗ + θh)

= h

[
∂g

∂x
(x∗ + θh, y∗ + h)− ∂g

∂x
(x∗ + θh, y∗)

]
= h

[
∂g

∂x
(x∗, y∗) + θh

∂2g

∂2x
(x∗, y∗) + h

∂2g

∂y∂x
(x∗, y∗) + o(h)

−∂g

∂x
(x∗, y∗)− θh

∂2g

∂2x
(x∗, y∗) + o(h)

]
= h2 ∂2g

∂y∂x
(x∗, y∗) + o(h2).

9We do not know any article or textbook that includes this result and is written in
English. This result and its proof is in Takagi (1961). However, this textbook is written
in Japanese. Thus, we decide to write the proof of this fact.
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Thus,

lim
h→0

∆(h)

h2
=

∂2g

∂y∂x
(x∗, y∗).

Because the assumption is symmetric, we can also show that

lim
h→0

∆(h)

h2
=

∂2g

∂x∂y
(x∗, y∗),

and thus we have
∂2g

∂y∂x
(x∗, y∗) =

∂2g

∂x∂y
(x∗, y∗).

This completes the proof. ■

By Young’s theorem, we have that Sf (p,m) = D2E(p) is symmetric, and
thus (S)-a.e. holds.

Thus, it suffices to show that 2. implies 1.. Assume that 2. holds. Let
(p,m) ∈ P , and consider the following ODE:

ċ(t) = f((1− t)p+ tq, c(t)) · (q − p), c(0) = w.

Let c(t; q, w) be the nonextendable solution of the above problem. Choose
any q ∈ Rn such that qi ̸= pi for every i, and suppose that the domain of the
mapping t 7→ c(t; q,m) includes [0, t∗], where t∗ ∈]0, 1]. We fix i∗ ∈ {1, ..., n},
and use the following notations. If r̂ = (r1, ..., ri∗−1, ri∗+1, ..., rn) is given,
then r = (r1, ..., ri∗−1, qi∗ , ri∗+1, ..., rn). Conversely, if v = (v1, ..., vn) is given,
then v̂ = (v1, ..., vi∗−1, vi∗+1, ..., vn).

By FACT 5, there exists an open and convex neighborhood U ⊂ Rn−1×R
of (q̂, m) such that the closure Ū of U is compact, if (r̂, w) ∈ Ū , then ri ̸= pi
for every i, and the domain of the mapping t 7→ c(t; r, w) includes [0, t∗].
Define ξ : [0, t∗]× Ū → Rn+1 as follows:

ξ(t, r̂, w) = ((1− t)p+ tr, c(t; r, w)).

Step 1. c is increasing in w and ξ is one-to-one on ]0, t∗[×U .

Proof of step 1. Suppose that (ti, r̂i, wi) ∈]0, t∗[×U and (t1, r̂1, w1) ̸=
(t2, r̂2, w2). First, suppose that t1 ̸= t2, then

(1− t1)pi∗ + t1qi∗ ̸= (1− t2)pi∗ + t2qi∗ ,

and thus ξ(t1, r̂1, w1) ̸= ξ(t2, r̂2, w2). Second, suppose that t1 = t2 and r̂1 ̸=
r̂2. Then,

(1− t1)p̂+ t1r̂1 ̸= (1− t2)p̂+ t2r̂2,
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and thus ξ(t1, r̂1, w1) ̸= ξ(t2, r̂2, w2). Third, suppose that c is increasing in
w, and that t1 = t2, r̂1 = r̂2 and w1 < w2. Then,

c(t1; r1, w1) < c(t2; r2, w2),

and thus ξ(t1, r̂1, w1) ̸= ξ(t2, r̂2, w2). Therefore, it suffices to show that c
is increasing in w. Suppose that for some r and w1, w2 with w1 < w2,
there exists t+ such that c(t+; r, w1) ≥ c(t+; r, w2). Because c(0; r, w1) =
w1 < w2 = c(0; r, w2), by intermediate value theorem, we can assume that
c(t+; r, w1) = c(t+; r, w2). Then, by FACT 1, we have c(t; r, w1) = c(t; r, w2)
for every t, which contradicts the fact c(0; r, w1) ̸= c(0; r, w2). This completes
the proof. ■

Step 2. ξ is Lipschitz.

Proof of step 2. Because of FACT 5, c is Lipschitz on [0, t∗]× Ū . Thus, ξ
is also Lipschitz.

Step 3. Define
V ℓ = ξ([ℓ−1t∗, t∗[×U).

Then, ξ−1 is Lipschitz on V ℓ.

Proof of step 3. Define

t(v) =
vi∗ − pi∗

qi∗ − pi∗
,

r̂(v) =
1

t(v)
[(1− t(v))p̂+ v̂].

Suppose that (v1, c1), (v2, c2) ∈ V ℓ and (vi, ci) = ξ(ti, r̂i, wi). Then, we have
ti = t(vi) and r̂i = r̂(vi). Clearly, the functions t(v) and r̂(v) are Lipschitz on
ξ([ℓ−1t∗, t∗]× Ū), and thus it is Lipschitz on V ℓ. Next, consider the following
ODE:

ḋ(s) = f((1− (s+ t− t2))p+ (s+ t− t2)r(v), d(s)) · (r(v)− p), d(t2) = c.

Let d(s; t, v, c) be the nonextendable solution of above ODE. If (v, c) =
ξ(t, r̂, w) for some (t, r̂, w) ∈ [ℓ−1t∗, t∗]×Ū , then d(s; t, v, c) = c(s+t−t2; r, v)
by FACT 1. Moreover, the set

{(t, v, c)|t ∈ [ℓ−1t∗, t∗], (v, c) = ξ(t, r̂, w) for some (r̂, w) ∈ Ū}
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is compact, and thus (t, v, c) 7→ d(t2−t; t, v, c) is Lipschitz on this set. There-
fore,

|w1 − w2| = |d(t2 − t1; t1, v1, c1)− d(t2 − t2; t2, v2, c2)|
≤ L[|t1 − t2|+ ∥(v1, c1)− (v2, c2)∥]
= L[|t(v1)− t(v2)|+ ∥(v1, c1)− (v2, c2)∥]
≤ L(M + 1)∥(v1, c1)− (v2, c2)∥,

where L,M > 0 are some constant. This completes the proof. ■

Step 4. For almost all (r̂, w) ∈ U , f is differentiable at ξ(t, r̂, w) and the
Slutsky matrix Sf (ξ(t, r̂, w)) is symmetric for almost all t ∈]0, t∗[.

Proof of step 4. Define W as the set of all (r, w) ∈ P such that f is
differentiable at (r, w) and Sf (r, w) is symmetric. By (S)-a.e., the Lebesgue
measure of P \ W is zero. Because ξ−1 is Lipschitz on V ℓ, we have the
Lebesgue measure of

ξ−1(V ℓ \W )

is zero. Therefore, the Lebesgue measure of

∪ℓξ
−1(V ℓ \W ) = {(t, r̂, w) ∈]0, t∗[×U |ξ(t, r̂, w) /∈ W}

is also zero.
Therefore, for almost every (t, r̂, w) ∈]0, t∗[×U , f is differentiable and the

Slutsky matrix is symmetric at ξ(t, r̂, w). The rest proof is just a simple
application of Fubini’s theorem. ■

Step 5. Let Ui∗ ⊂ U be the set of all (r̂, w) ∈ U such that for almost all
t ∈]0, 1[, f is differentiable and Sf is symmetric at ξ(t, r̂, w), and c(t; r, w) is
differentiable at (t, r̂, w). Then, for any i ∈ {1, ..., n} \ {i∗} and (r̂, w) ∈ Ui∗ ,
c(t; r, w) is partially differentiable w.r.t. ri for all t ∈ [0, t∗]. Moreover, if we
define

φi(t; r̂, w) =
∂c

∂ri
(t; r, w)− tfi((1− t)p+ tr, c(t; r, w)),

then for every (r̂, w) ∈ Ui∗ ,

φi(t; r̂, w) ≡ 0.
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Proof of step 5. First,10

lim
h→0

c(t; r + hei, w)− c(t; r, w)

h

= lim
h→0

1

h

[∫ t

0

[f((1− s)p+ s(r + hei), c(s; r̂ + hei, w)) · (r + hei − p)]ds

−
∫ t

0

[f((1− s)p+ sr, c(s; r̂, w)) · (r − p)]ds

]
=

∫ t

0

[
fi +

n∑
j=1

[
s
∂fj
∂pi

+
∂fj
∂m

∂c

∂ri

]
(rj − pj)

]
ds,

by the dominated convergence theorem. Therefore, c is partially differen-
tiable w.r.t. ri. Moreover, φi is absolutely continuous on [0, t∗], and thus is
differentiable at almost all t ∈ [0, t∗]. Further,

φ̇i = fi +
n∑

j=1

[
t
∂fj
∂pi

+
∂fj
∂m

∂c

∂ri

]
(rj − pj)

− fi − t

n∑
j=1

[
∂fi
∂pj

+
∂fi
∂m

fj

]
(rj − pj)

= t

n∑
j=1

[
∂fj
∂pi

− ∂fi
∂pj

− ∂fi
∂m

fj

]
(rj − pj)

+
n∑

j=1

∂fj
∂m

∂c

∂ri
(rj − pj)

=

(
∂c

∂ri
− tfi

)
×

n∑
j=1

∂fj
∂m

(rj − pj)

= a(t, r̂, w)φi.

Therefore, φi is an absolutely continuous function that is a solution for some
linear ODE, where a(t, r̂, w) is bounded on [0, t∗]× Ū . Thus,

φi(t; r̂, w) = φi(0; r̂, w)e
∫ t
0 a(s,r̂,w)ds.

However, it is obvious that φi(0; r̂, w) = 0. Hence, we have φi ≡ 0. This
completes the proof. ■

Step 6. If t∗ = 1, then ∂c
∂qi

(1; q,m) = fi(q, c(1; q,m)) for all i ̸= i∗.

10Hereafter, we frequently abbreviate the variables of functions.
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Proof of step 6. Choose any sufficiently small ε > 0 such that if we define

U ′ = {(r̂, w)||rj − qj| ≤ ε for j ∈ {1, ..., n} \ {i∗}, |w −m| ≤ ε},

V ′ = {(r̂, w) ∈ U ′|ri = qi},

then (r̂ + hêi, w) ∈ Ui∗ for almost all (r̂, w) ∈ V ′ and h ∈]− ε, ε[, where ei is
the i-th unit vector. Hence,

c(1; r + hei, w)− c(1; r, w) =

∫ h

0

fi(r + sei, c(1; r + sei, w))ds,

and thus, by dominated convergence theorem, we have

c(1; q + hei,m)− c(1; q,m) =

∫ h

0

fi(q + sei, c(1; q + sei,m))ds.

Thus, by Newton-Leibniz formula, we have

∂c

∂qi
(1; q,m) = fi(q, c(1; q,m)).

This completes the proof. ■

Because i∗ is arbitrary, step 6 means that

Dqc(1; q,m) = f(q, c(1; q,m))

for all q ∈ Rn such that t 7→ c(t; q,m) is defined on [0, 1] and qi ̸= pi for all i.

Step 7. Dqc(1; q,m) = f(q, c(1; q,m)) holds for all q such that the domain
of t 7→ c(t; q,m) includes [0, 1].

Proof of step 7. Let qk = (q1 + k−1, ..., qn + k−1). Then, there exists
ε > 0 and k0 such that qki ̸= pi whenever k ≥ k0, and if |h| ≤ ε, then both
t 7→ c(t; q + hei,m) and t 7→ c(t; qk + hei,m) are defined on [0, 1] for all
i ∈ {1, ..., n}. Then, for such h,

c(1; qk + hei,m)− c(1; qk,m) =

∫ h

0

fi(q
k + sei, c(1; q

k + sei,m))ds,

and thus by dominated convergence theorem,

c(1; q + hei,m)− c(1; q,m) =

∫ h

0

fi(q + sei, c(1; q + sei,m))ds.
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By Newton-Leibniz formula, we have

∂c

∂qi
(1; q,m) = fi(q, c(1; q,m)),

which completes the proof. ■

Because t 7→ c(t; p,m) ≡ m, we have its domain includes [0, 1], and thus
there exists an open and convex neighborhood U of p such that the domain
of t 7→ c(t; q,m) includes [0, 1]. By step 7, we have

∂c

∂qi
(1; q,m) = fi(q, c(1; q,m)),

and thus if we define E(q) = c(1; q,m), then we have that 1. holds. This
completes the proof of theorem 1. ■

4.4 Proof of Theorem 2

Suppose that 1. is correct. Then, for every q ∈ C, c(t; q,m) = E((1−t)p+tq)
is a solution of ODE (2) defined on [0, 1]. Thus, 2. holds.

Conversely, suppose that 2. holds. Let c(t; q, w) be the nonextendable
solution of (2) defined on U . Then, U includes [0, 1]× C̃ × {m}, where C̃ is
an open set including C. Now, choose any q ∈ C. Because of Theorem 1,
we have that for any r = (1− t)p+ tq with t ∈ [0, 1], there exists a solution
Er : Ur → R of (1), where Ur is an open ball {r′|∥r′− r∥ < ε} for some ε > 0
and Er(r) = c(t; q,m). We can assume that Ur ⊂ C̃.

Let ri = (1 − ti)p + tiq for i ∈ {1, 2}, ti ∈ [0, 1], and without loss
of generality, assume t1 ≤ t2. Suppose that there exists Ur1 ∩ Ur2 ̸= ∅.
Because both Uri are open balls, we have there exists t0 ∈ [t1, t2] such that
r = (1− t0)p+ t0q ∈ Ur1 ∩ Ur2 . Consider the following ODE:

ḋ(t) = f((1− t)p+ tq, d(t)) · (q − p), d(t1) = c(t1; q,m).

Then, both d1(t) = c(t; q,m) and d2(t) = Er1((1− t)p + tq) are the solution
of above ODE defined on [t1, t0], and thus these are the same. Thus, we
have Er1(r) = c(t0; q,m). By the same reason, we have Er2(r) = c(t0; q,m).
Therefore,

Er1(r) = Er2(r).

Choose any r′ ∈ Ur1 ∩ Ur2 . Because Uri is convex for each i, (1− s)r + sr′ ∈
Ur1 ∩ Ur2 for every s ∈ [0, 1]. Define γi(s) = Eri((1− s)r + sr′). Then,

γ̇i(s) = f((1− s)r + sr′, γi(s)) · (r′ − r), γi(0) = c(t0; q,m),
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and thus we have Er1(r
′) = Er2(r

′).
Thus, Er1 ≡ Er2 on Ur1 ∩ Ur2 . Now, define V = ∪r∈[p,q]Ur and

v(r′) = Er(r
′)

if r′ ∈ Ur. Then, v : V → R is a solution of PDE (1) with v(p) = m. Because
V is a neighborhood of [p, q], there exists a open neighborhood W of q such
that if r ∈ W and t ∈ [0, 1], then (1− t)p+ tr ∈ V . Then, the functions

t 7→ c(t; r,m), v((1− t)p+ tr)

are solutions of the same ODE, and thus we have v(r) = c(1; r,m). This
implies that

Dqc(1; q,m) = Dv(q) = f(q, v(q)) = f(q, c(1; q,m)).

Therefore, if we define E(q) = c(1; q,m), then E : C → R is a solution of
(1), and 1. holds.11 This completes the proof. ■

4.5 Proof of Corollary 1

Suppose that 1. holds. Because f is locally Lipschitz, it is differentiable at
almost everywhere in Rn

++ ×R++. Suppose that f is differentiable at (p,m).
By 1., there exists a concave solution E : U → R++ of (1) with E(p) = m,
where U is an open and convex neighborhood of p. By the same arguments
as in the proof of Theorem 1, we have

D2E(p) = Sf (p,m).

Because of Young’s theorem, we have Sf (p,m) is symmetric. Also, because
E is concave, we have Sf (p,m) is negative semi-definite. Therefore, (S)-a.e.
and (NSD)-a.e. hold.

Conversely, suppose that 2. holds. Fix any (p,m) ∈ Rn
++ × R++. Let

c(t; q, w) be the nonextendable solution of ODE (2), and U be the domain of
c. By Theorem 2, if [0, 1]× Rn

++ × {m} ⊂ U , then 1. holds.
Now, we introduce the following lemma.

Lemma 2. Suppose that q ∈ Rn
++,m > 0, and the domain of t 7→ c(t; q,m)

includes [0, t∗], where t∗ > 0. Define p(t) = (1− t)p+ tq and x = f(p,m), y =
f(p(t∗), c(t∗; q,m)). Then, we have p · y ≥ m and p(t∗) · x ≥ c(t∗; q,m).

11The uniqueness of the solution immediately follows from FACT 4.
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Proof. First, suppose that qn ̸= pn. To choose i∗ = n and to apply almost
the same arguments in steps 1-4 of the proof of Theorem 1, we have that there
exists U∗ and V ∗ ⊂ U∗ such that U∗ is an open and convex neighborhood
of (q̂, m) and the domain of the mapping t 7→ c(t; r, w) includes [0, t∗] for all
(r̂, w) ∈ U∗, the Lebesgue measure of U∗ \V ∗ is zero, and if (r̂, w) ∈ V ∗, then
for almost all t ∈ [0, t∗], f is differentiable at ξ(t, r̂, w) and Sf (ξ(t, r̂, w)) is
symmetric and negative semi-definite, where12

ξ(t, r̂, w) = ((1− t)p+ tr, c(t; r, w)).

Choose any sequence ((r̂k, wk)) on V ∗ such that limk→∞(r̂k, wk) = (q̂, m),
and let pk(t) = (1− t)p+ trk and xk = f(p, wk), yk = f(pk(t

∗), c(t∗; rk, wk)).
We will show that p · yk ≥ wk and pk(t

∗) · xk ≥ c(t∗; rk, wk). Define d(t) =
p · f(pk(t), c(t; rk, wk)). Then, d is an absolutely continuous function defined
on [0, t∗] and if f is differentiable at ξ(t, r̂k, wk), then

ḋ(t) = pTSf (pk(t), c(t; rk, wk))(r − p).

Meanwhile, for such t, by Walras’ law,

(pk(t))
TSf (pk(t), c(t; rk, wk))(r − p) = 0.

Therefore, we have

ḋ(t) = −(rk − p)TSf (pk(t), c(t; rk, wk))(rk − p) ≥ 0,

for almost all t ∈ [0, t∗]. Thus, d is a nondecreasing function, and especially,

p · yk = d(t∗) ≥ d(0) = p · xk = wk.

The rest inequality can be verified symmetrically. If k → ∞, then we have

p · y ≥ m, p(t∗) · x ≥ c(t∗; q,m),

and thus the claim of this lemma is correct.
In the general case, let qε = (q1, ..., qn−1, qn + ε), and define pε(t) =

(1− t)p+ tqε and yε = f(pε(t), c(t; qε,m)). Then, for sufficiently small ε > 0,
qε,n ̸= pn, and thus

p · yε ≥ m, pε(t
∗) · x ≥ c(t∗; qε,m).

If ε → 0, then we have

p · y ≥ m, p(t∗) · x ≥ c(t∗, q,m),

12Recall that if r̂ = (r1, ..., rn−1), then r = (r1, ..., rn−1, qn).
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which completes the proof. ■

Choose any q ∈ Rn
++, and suppose that the domain of t 7→ c(t; q,m)

is ]t̂, t̄[, where t̄ ≤ 1. Choose any sequence (tk) of nonnegative numbers
such that tk ↑ t̄. Define p(t) = (1 − t)p + tq and x = f(p,m), yk =
f(p(tk), c(tk; q,m)). Then, by Lemma 2, we have

p · yk ≥ m = p · x, p(tk) · x ≥ c(tk; q,m) = p(tk) · yk.

Therefore, we must have
q · x ≥ q · yk

for every k. Thus, (yk) is a sequence of a compact set {z ∈ Rn
+|q·z ≤ q·x}. By

FACT 3, we have either lim supk→∞ c(tk; q,m) = +∞ or lim infk→∞ c(tk; q,m) =
0. However, because c(tk; q,m) ≤ maxt∈[0,1] p(t) · x < +∞, we have that
lim infk→∞ c(tk; q,m) = 0. Taking subsequences, we can assume that

lim
k→∞

c(tk; q,m) = 0, lim
k→∞

yk = y∗ ∈ Rn
+.

Because p · y∗ ≥ m, we have y∗ ̸= 0. Thus,

0 = lim
k→∞

c(tk; q,m) = lim
k→∞

p(tk) · yk = p(t∗) · y∗ > 0,

a contradiction. Therefore, U includes [0, 1]× {q,m}, and because q is arbi-
trary, we have 1. holds. This completes the proof. ■

4.6 Proof of Theorem 3

Because (I) holds, we have that Sf (p,m) is symmetric and negative semi-
definite whenever f is differentiable at (p,m).

Suppose that x ̸= y, x = f(p,m), y = f(q, w), and w ≥ E(q), where E :
Rn

++ → R++ is the unique concave solution of the PDE (1) with E(p) = m.
If c(t; r,m) is the nonextendable solution of ODE (2), then clearly E(r) =
c(1; r,m) for every r ∈ Rn

++. Let F : Rn
++ → R++ be the unique concave

solution of the PDE (1) with F (q) = w.
If w = F (q) > E(q), then by the uniqueness of the solution of the PDE

(1), we have F (r) > E(r) for every r ∈ Rn
++. Particularly, F (p) > E(p) = m.

Consider the following ODE:

ḋ(t) = f((1− t)q + tp, d(t)) · (p− q), d(0) = w.

Then, we have d(t) = F ((1− t)q + tp) is the unique solution of above ODE,
and by Lemma 2, we have

p · y = p · f(q, w) ≥ d(1) = F (p) > E(p),
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and thus (II) holds in this case.
Therefore, we can assume that w = E(q), and thus F ≡ E. Suppose

p · y ≤ m. Let d(t) = p · f((1 − t)p + tq, c(t; q,m)). By Lemma 2, we have
that d(t) is nondecreasing, and p · y = d(1), p · x = d(0). Thus, we have that
ḋ(t) = 0 for all t ∈]0, 1[. Define p(t) = (1− t)p + tq, X(r) = f(r, E(r)) and
Y (t) = X(p(t)). Because Y is absolutely continuous and Y (1) = y ̸= x =
Y (0), there exists t∗ ∈]0, 1[ such that Ẏ (t∗) ̸= 0. Let w∗ = d

ds
E(p(s))

∣∣
s=t∗

,
and choose a sequence (pk,mk) and v ∈ dfq−p,w∗(p(t∗), E(p(t∗))) such that f
is differentiable at (pk,mk), (pk,mk) → (p(t∗), E(p(t∗))), and

lim
k→∞

Df(pk,mk)(q − p, w∗) = v.

Let Sk denote Sf (pk,mk). Because Sk is symmetric and negative semi-
definite, there exists a symmetric and positive semi-definite matrix Ak such
that Sk = −A2

k.
13 Then,

−t(q − p)Sk(q − p) = t∥Ak(q − p)∥2.

For t > t∗, we have∣∣∣∣d(t)− d(t∗)

t− t∗
− p · f(p(t), E(p(t∗)) + (t− t∗)w∗)− f(p(t∗), E(p(t∗)))

t− t∗

∣∣∣∣
≤ ∥p∥

∥∥∥∥f(p(t), E(p(t)))− f(p(t), E(p(t∗)) + (t− t∗)w∗)

t− t∗

∥∥∥∥
≤ L∥p∥

∣∣∣∣E(p(t))− E(p(t∗))− (t− t∗)w∗

t− t∗

∣∣∣∣
→ 0 as t ↓ t∗,

for some L > 0.14 Because ḋ(t∗) = 0, we have that

pTDf(pk,mk)(q − p, w∗) → p · v = 0.
13If

Sk = PT


λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ... λn

P

for some orthogonal matrix P , then

Ak = PT


√
|λ1| 0 ... 0

0
√

|λ2| ... 0
...

...
. . .

...

0 0 ...
√
|λn|

P.

14Recall that f is locally Lipschitz.
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Meanwhile,

Df(pk,mk)(q − p, w∗)

= [Dpf(pk,mk) +Dmf(pk,mk)f
T (p(t∗), E(p(t∗)))](q − p)

= Sk(q − p)

+Dmf(pk,mk)(f
T (p(t∗), E(p(t∗)))− fT (pk,mk))(q − p),

and pTk Sk = 0T by Walras’ law. Therefore,

pTDf(pk,mk)(q − p, w∗)

= − t∗(q − p)TSk(q − p) + (p(t∗)− pk)
TSk(q − p)

+ pTDmf(pk,mk)(f
T (p(t∗), E(p(t∗)))− fT (pk,mk))(q − p),

where the second and third terms of the right-hand side goes to zero as
k → ∞.15 This implies that

∥Ak(q − p)∥ → 0

as k → ∞. Meanwhile, for t > t∗, we have∣∣∣∣Y (t)− Y (t∗)

t− t∗
− f(p(t), E(p(t∗)) + (t− t∗)w∗)− f(p(t∗), E(p(t∗)))

t− t∗

∣∣∣∣
≤ L

∣∣∣∣∣E(p(t))− E(p(t∗)) + (t− t∗) d
ds
E(p(s))

∣∣
s=t∗

t− t∗

∣∣∣∣∣
→ 0 as t ↓ t∗,

and thus

0 ̸= Ẏ (t∗) = v = lim
k→∞

Df(pk,mk)(q − p, w∗)

= lim
k→∞

[Sk(q − p)

+Dmf(pk,mk)[f
T (p(t∗), E(p(t∗)))− fT (pk,mk)](q − p)]

= lim
k→∞

Ak(Ak(q − p)) = 0,

a contradiction. This completes the proof. ■

15Again, recall that f is locally Lipschitz, and thus the operator norm of Sk is bounded.
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4.7 Proof of Theorem 4

Fix (q, w) ∈ Rn × R. Clearly, f is locally Lipschitz, and by Rademacher’s
theorem, it is differentiable at almost every point. If f is differentiable at
(p,m), there exists i and a sequence (tk) of positive real numbers such that
tk ↓ 0 and (p + tkq,m + tkw) ∈ Ai. By continuity of f and f i, we have
f(p,m) = f i(p,m), and thus,

Df(p,m)(q, w) = lim
k→∞

f(p+ tkq,m+ tkw)− f(p,m)

tk

= lim
k→∞

f i(p+ tkq,m+ tkw)− f i(p,m)

tk
= Df i(p,m)(q, w).

Therefore, if we define

Bi = {(p,m) ∈ Rn
++×R++|f(p,m) = f i(p,m), Df(p,m)(q, w) = Df i(p,m)(q, w)},

then ∪iBi is dense in Rn
++ × R++.

Choose any (p,m) ∈ Rn
++ ×R++ and v ∈ dfq,w(p,m), and a sequence (tk)

of positive real numbers such that tk ↓ 0 and

v = lim
k→∞

f(p+ tkq,m+ tkw)− f(p,m)

tk
.

Taking a subsequence, we can assume that there exists i such that for every
k, (p + tkq,m + tkw) is in the closure of Bi. Then, (p,m) is also in the
closure of Bi, and by continuity of f and f i, we have f(p,m) = f i(p,m) and
f(p+ tkq,m+ tkw) = f i(p+ tkq,m+ tkw). Clearly,

v = Df i(p,m)(q, w),

and thus, if we choose any sequence ((pk,mk)) in Bi such that (pk,mk) →
(p,m), then

Df(pk,mk)(q, w) = Df i(pk,mk)(q, w) → Df i(p,m)(q, w) = v,

which completes the proof. ■
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[2] Dieudonné, J. (2006) Foundations of Modern Analysis. Hesperides press.

[3] Hosoya, Y. (2017) “The Relationship between Revealed Preference and
the Slutsky Matrix.” Journal of Mathematical Economics 70, pp.127-
146.

[4] Hosoya, Y. (2018) “First-Order Partial Differential Equations and Con-
sumer Theory.” Discrete and Continuous Dynamical Systems - Series
S 11, pp.1143-1167.

[5] Hurwicz, L. and Uzawa H. (1971) “On the Integrability of Demand
Functions.” in, Chipman, J. S., Hurwicz, L., Richter, M. K., Sonnen-
schein, H. F. (eds.) Preference, Utility and Demand, Harcourt Brace
Jovanovich, Inc., New York, pp.114-148.

[6] Mas-Colell, A. (1977) “The Recoverability of Consumers’ Preferences
from Market Demand Behavior.” Econometrica 45, pp.1409-1430.
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