INTEGRATING SCHOOL DISTRICTS: BALANCE, DIVERSITY, AND WELFARE ${ }^{\dagger}$ (PRELIMINARY AND INCOMPLETE)

ISA E. HAFALIR, FUHITO KOJIMA, AND M. BUMIN YENMEZ*

Abstract

Inter-district school choice programs-where a student can be matched with a school outside of her district-is widespread in the US, yet the market-design literature has not considered such programs. We introduce a model of district integration to study interdistrict school choice and present two mechanisms that produce stable or efficient matchings. We consider three categories of policy goals on matching outcomes and identify when the mechanisms can achieve them. By introducing a novel framework of district integration, we provide a new avenue of research in market design.

1. Introduction

School choice is a program that uses preferences of children and their parents over public schools to determine placement. It has expanded rapidly in the United States and many other countries. Growing popularity and interest in school choice stimulated research in market design, which has not only studied this problem in the abstract but also contributed to designing specific placement mechanisms. $]^{1}$

Existing market-design research about school choice is, however, limited to intra-district choice, where each student can be matched with a school only in her own district. In other words, the literature has not studied inter-district choice, where a student can be matched with a school outside of her district. This is a severe limitation for at least two reasons. First, inter-district school choice is widespread; in the U.S., 43 states have some form of inter-district school choice. ${ }^{2}$ Second, as we illustrate in detail below, many policy goals

Date: September 3, 2018, First draft: July 15, 2017.
Keywords: School district integration, student assignment, diversity
Hafalir is with the UTS Business School, University of Technology Sydney, Sydney, Australia; Kojima is with the Department of Economics, Stanford University, 579 Serra Mall, Stanford, CA, 94305; Yenmez is with the Department of Economics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467. Emails: isa.hafalir@uts.edu.au, fkojima@stanford.edu, bumin. yenmez@bc.edu.
${ }^{1}$ See Abdulkadiroğlu et al. (2005a, b, 2009) for details of the implementation of these new school choice procedures in New York and Boston.
${ }^{2}$ See http://ecs.force.com/mbdata/mbquest4e?rep=0E1705, accessed on July 14, 2017. Among these, notable examples include the following: Interdistrict Public School Choice Program in New Jersey facilitates school districts to enroll students who do not reside within their districts (http://www. state. nj.us/education/choice/, accessed on July 14, 2017). Omaha Public Schools has School Transfer Request where students can apply to a non-neighborhood school (https://district.ops.org/DEPARTMENTS/ SchoolSupportandSupervision/Community, SchoolsFamilyEngagement/StudentPlacement.aspx, accessed on July 14, 2017). Lastly, Wisconsin Department of Public Instruction has the Integration Aid program
in inter-district school choice impose constraints across districts in reality, but the existing literature assumes away such constraints. This omission limits our ability to analyze policies of interest in the context of inter-district school choice.

In this paper, we propose a model of district integration to study inter-district school choice. Our paper builds upon matching models in the tradition of Gale and Shapley (1962). We study algorithms and inter-district admissions rules to assign students to schools under which a variety of policy goals can be established, an approach similar to the standard school choice literature (Abdulkadiroğlu and Sönmez, 2003). In our setting, however, policy goals are defined on the district level-or sometimes even on multiple districts-rather than the individual school level, making our model outside of the standard setting. To facilitate the analysis in this setting, we model the problem as matching with contracts (Hatfield and Milgrom, 2005) between students and districts in which a contract specifies the particular school within the district that the student attends.

Following the school choice literature, we begin our analysis by considering stability (we also consider efficiency, as explained later). To define stability in our framework, we assume that each district is endowed with an admissions rule represented by a choice function over sets of contracts. A matching is stable if it satisfies the following two properties. First, every district's admissions rule chooses all of the students assigned to it. Second, there exists no student who prefers to transfer to a school to which she will be admitted according to the district's admissions rule. We focus our attention on the studentproposing deferred-acceptance algorithm (SPDA), a generalization of Gale and Shapley (1962) to our setting. This mechanism is not only stable but also strategy-proof, i.e., it renders truthtelling a weakly dominant strategy for each student.

In this context, we formalize a number of important policy goals. The first is individual rationality in the sense that no student should be hurt compared to the outcome in the absence of the inter-district school choice mechanism. This is an important requirement because, if a district integration harms students, then a public opposition is expected and district integration may not be sustainable. The second policy is what we call the balancedexchange policy, that the number of students who each district receives from the other districts must be the same as the number of students that it sends to the others. Balanced exchange is also highly desired by school districts in practice because each district's funding depends on the number of students that it serves. Therefore, if the balanced-exchange policy is not satisfied then some districts lose funding, which may make district integration impossible. For each of these policy goals, we identify sufficient conditions for achieving that goal under SPDA as restrictions on district admissions rules. Moreover, we show that

[^0]each of these sufficient conditions is also necessary for the corresponding policy goal in a "maximal domain" sense, that is, if the admissions rule of even one district violates the condition, the policy goal is violated at some student preference profile.

Last, but not least, we also consider a requirement that there be enough student diversity across districts. In fact, diversity appears to be the main motivation for many district integration programs. To put this into context, we note that segregation is prevalent under intra-district school choice programs even though they often seek diversity by controlledchoice constraints. ${ }^{3}$ This is perhaps unsurprising given that only residents of the district can participate in intra-district school choice and there is often a severe residential segregation. In fact, a number of studies such as Rivkin (1994) and Clotfelter (1999, 2011) attribute the majority—as high as 80 percent for some data and measure-of racial and ethnic segregation in public schools to disparities between school districts rather than within school districts. Given this concern, many inter-district choice programs explicitly list achieving diversity as their main goals.

A case in point is the Achievement and Integration (AI) Program of the Minnesota Department of Education (MDE). Introduced in 2013, the AI program incentivizes school districts for integration. A district is required to participate in this program if the proportion of a minority group in the district is considerably higher than that of a neighboring district. In particular, every year the MDE commissioner analyzes fall enrollment data from every district, and when a district and one of its adjoining districts have difference of 20 percent or higher in the proportion of any group of enrolled protected students (American Indian, Asian or Pacific Islander, Hispanic, Black, not of Hispanic origin, and White, not of Hispanic origin), the district with the higher percentage is considered to be racially isolated. Racially isolated districts are required to be in the AI program. ${ }^{4}$ In the 2015-16 school year, more than 120 school districts participated in this program. Figure 1, taken from MDE's website, shows school districts in the Minneapolis-Saint Paul metro area that take part in an AI program. In this figure, districts with the same color are the adjoining districts that work together in the same AI program.

Motivated by Minnesota's AI program, we consider a policy goal requiring that the difference of the proportions of each student type across districts be within a given bound. Then, we provide a necessary and sufficient condition (in the maximal domain sense as before) for SPDA to satisfy the diversity policy. The condition is provided as a condition

[^1]

Figure 1. Minnesota Metro Area Participating School Districts
on district admissions rules that have a structure of type-specific ceilings, an analogue of the class of choice rules analyzed by Ehlers et al. (2014) in the context of a more standard intra-district school-choice problem.

Next we turn our attention to efficiency. Given that the policy goals work as constraints on matchings, we use the concept of constrained efficiency. We say that a matching is constrained efficient if it satisfies the policy goal and is not Pareto dominated by any matching that satisfies the same policy goal. In addition, we require individual rationality and strategy-proofness. We first demonstrate an impossibility result; when the diversity policy is given as type-specific ceilings at the district level, there is no mechanism that satisfies constrained efficiency, individual rationality, strategy-proofness, and the policy goal. By contrast, a version of top trading cycles (TTC) mechanism satisfies these three properties as well as the policy goal when the policy goal satisfies M-convexity, a concept in discrete mathematics (Murota, 2003). We proceed to show that the balanced-exchange policy
and an alternative form of diversity policy-type specific ceilings at the individual school level instead of at the district level—are M-convex , so TTC satisfies the desired properties for these policies. The same conclusion holds even when both of these policy goals are imposed simultaneously.

Related Literature. Our paper is closely related to the controlled school choice literature that studies student diversity in schools in a given district. Abdulkadiroğlu and Sönmez (2003) introduce a policy that imposes type-specific ceilings on each school. This policy has been analyzed by Abdulkadiroğlu (2005), Ergin and Sönmez (2006), and Kojima (2012), among others. More accommodating policies using reserves rather than type-specific ceilings have been proposed and analyzed by Hafalir et al. (2013) and Ehlers et al. (2014). The latter paper finds difficulties associated with hard floor constraints, an issue further analyzed by Fragiadakis et al. (2015) and Fragiadakis and Troyan (2017). 5 In addition to sharing the motivation of achieving diversity, our paper is related to this literature in that we extend the type-specific reserve and ceiling constraints to district admissions rules. In contrast to this literature, however, our policy goals are imposed on districts rather than individual schools, which makes our model and analysis different from the existing ones.

The feature of our paper that constraints are imposed on sets of schools (i.e., districts), rather than individual schools, is shared by several recent studies in matching with constraints. Kamada and Kojima (2015) study a model where the number of doctors who can be matched with hospitals in each region has an upper bound constraint. Variations and generalizations of this problem are studied by Goto et al. (2014, 2017), Biro et al. (2010), and Kamada and Kojima (2017, 2018), among others. While sharing the broad interest in constraints, these papers are different from ours in at least two major respects. First, they do not assume a set of hospitals is endowed with a well-defined choice function, while each school district has a choice function in our model. Second, the policy issues studied in these papers and ours are different given differences in the intended applications. These differences render our analysis distinct from those of the other papers, with none of their results implying ours nor vice versa.

One of the notable features of our model is that district admission rules do not necessarily satisfy the standard assumptions in the literature such as substitutability, which guarantees the existence of a stable matching. ${ }^{6}$ In fact, even a seemingly very reasonable district admissions rule may violate substitutability because a district can choose at most

[^2]one contract associated with the same student, namely just one contract representing one school that the student can attend. Rather, we make weaker assumptions following the approach of Hatfield and Kominers (2014). This issue is playing an increasingly prominent role in matching with contracts literature, for example, in matching with constraints (Kamada and Kojima, 2015), college admissions (Aygün and Turhan, 2016; Yenmez, 2018), and postgraduate admissions (Hassidim et al. 2017), just to name a few.

Our analysis of Pareto efficient mechanisms is related to a small but rapidly growing literature that uses discrete optimization techniques for matching problems. Closest to ours is Suzuki et al. (2017) who show that a version of the TTC mechanism satisfies desirable properties if the constraint satisfies M-convexity \mid Our analysis builds upon and generalizes theirs. While the use of discrete convex analysis for efficient object allocation is still rare, it has been utilized in an increasing number of matching problems such as two-sided matching with possibly bounded transfer (Fujishige and Tamura, 2006, 2007), matching with substitutable choice functions (Murota and Yokoi, 2015), matching with constraints (Kojima et al., 2018), and trading networks (Candogan et al., 2016).

At a high level, the present paper is part of research in resource allocation under constraints. Real-life auction problems often feature constraints (Milgrom, 2009), and a great deal of attention was paid to cope with complex constraints in a recent FCC auction for spectrum allocation (Milgrom and Segal, 2014). Handling constraints is also a subject of a series of papers on probabilistic assignment mechanisms (Budish et al., 2013; Che et al., 2013; Pycia and Ünver, 2015; Akbarpour and Nikzad, 2017; Nguyen et al. 2016). Closer to ours are Dur and Ünver (2015) and Dur et al. (2015). They consider the balance of incoming and outgoing members-a requirement that we also analyze-while modelling exchanges of members of different institutions under constraints. Although the differences in the model primitives and exact constraints make it impossible to directly compare their studies with ours, these papers and ours clearly share broad interests in designing mechanisms under constraints.

The rest of the paper is organized as follows. In Section 2, we introduce the model. In Sections 3 and 4, we study when the policy goals can be satisfied by SPDA and TTC, respectively. Section 5 concludes. Additional results, examples, and omitted proofs are presented in the Appendix.

2. Model

In this section, we introduce our concepts and notation.

[^3]2.1. Preliminary Definitions. There exist finite sets of students \mathcal{S}, districts \mathcal{D}, and schools \mathcal{C}. Each student s and school c has a home district represented by $d(s)$ and $d(c)$, respectively. Each student s has a type $\tau(s)$ that can represent different aspects of a student such as gender, race, socioeconomic status, etc. The set of all types is finite and denoted by \mathcal{T}. Each school c has a capacity q_{c}, which is the maximum number of students that the school can enroll. For each district d, k_{d} is the number of students whose home district is $d^{\prime \prime}$.In each district, schools have sufficiently large capacities to accommodate all students from the district, i.e., for every district $d, k_{d} \leq \sum_{c: d(c)=d} q_{c}$. For each type t, k^{t} is the number of type- t students.

Throughout this paper, we model district integration as a matching problem between students and districts. However, merely identifying the district with which a student is matched leaves the specific school she is enrolled in unspecified. To specify which school within the district the student is matched with, we use the notion of contracts: A contract $x=(s, d, c)$ specifies a student s, a district d, and a school c within this district, i.e., $d(c)=d]^{8}$ For any contract x, let $s(x), d(x)$, and $c(x)$ denote the student, district, and school associated with this contract, respectively. Let $\mathcal{X} \subseteq \mathcal{S} \times \mathcal{D} \times \mathcal{C}$ denote the set of all contracts. For any set of contracts X, let X_{s} denote the set of contracts in X associated with student s, i.e., $X_{s}=\{x \in X \mid s(x)=s\}$. Similarly, let X_{d} and X_{c} denote the sets of contracts in X associated with district d and school c, respectively.

Each district d has an admissions rule that is represented by a choice function $C h_{d}$. Given a set of contracts X, the district chooses a subset of contracts associated with itself, i.e., $C h_{d}(X)=C h_{d}\left(X_{d}\right) \subseteq X_{d}$.

Each student s has a strict preference order P_{s} over all schools and the outside option of being unmatched, which is denoted by \emptyset. Likewise, P_{s} is also used to rank contracts associated with s. Furthermore, we assume that the outside option is the least preferred outcome, so for every contract x associated with $s, x P_{s} \emptyset$. The corresponding weak order is denoted by R_{s}. More precisely, for any two contracts x, y associated with $s, x R_{s} y$ if $x P_{s} y$ or $x=y$.

A matching is a set of contracts. A matching X is feasible for students if there exists at most one contract associated with every student in X. A matching X is feasible if it is feasible for students and the number of contracts associated with every school in X is at most its capacity (i.e., for any $c \in \mathcal{C},\left|X_{c}\right| \leq q_{c}$). We assume that there exists a feasible initial matching $\tilde{X} \cdot 9$ For any student s, we call \tilde{X}_{s} the initial match of student s. Whenever \tilde{X}_{s} is nonempty, we call it the initial school of student s.

[^4]An integration problem is a tuple $\left(\mathcal{S}, \mathcal{D}, \mathcal{C}, \mathcal{T},\{d(a)\}_{a \in \mathcal{S} \cup \mathcal{C}},\left\{\tau(s), P_{s}\right\}_{s \in \mathcal{S}},\left\{C h_{d}\right\}_{d \in \mathcal{D}},\left\{q_{c}\right\}_{c \in \mathcal{E}}\right.$, $\tilde{X})$. In what follows, we assume that all the components of an integration problem are publicly known except for student preferences. Therefore, we sometimes refer to an integration problem by the student preference profile which we denote as $P_{\mathcal{S}}$. The preference profile of a subset of students $S \subset \mathcal{S}$ is denoted by P_{S}.
2.2. Properties of Admissions Rules. A district admissions rule $C h_{d}$ is feasible if it always chooses a feasible matching. It is acceptant if, for any contract x associated with district d and matching X that is feasible for students, if x is rejected from X, then at $C h_{d}(X)$, either

- the number of students assigned to school $c(x)$ is equal to $q_{c(x)}$, or
- the number of students assigned to district d is at least k_{d}.

In words, when a district admissions rule is acceptant, a contract $x=(s, d, c)$ can be rejected by district d from a set which is feasible for students only if either the capacity of school c is filled or district d has accepted at least k_{d} students. Equivalently, if neither of these two conditions is satisfied, then the district has to accept the student. Throughout the paper, we assume that admissions rules are feasible and acceptant. ${ }^{10}$
A district admissions rule satisfies substitutability if, whenever a contract is chosen from a set, then it is also chosen from any subset containing that contract (Kelso and Crawford, 1982; Roth, 1984). More formally, a district admissions rule $C h_{d}$ satisfies substitutability if, for every $x \in X \subseteq Y \subseteq \mathcal{X}$ with $x \in C h_{d}(Y)$, it must be that $x \in C h_{d}(X)$. A district admissions rule satisfies the law of aggregate demand (LAD) if the number of contracts chosen from a set is weakly greater than that of a subset (Hatfield and Milgrom, 2005). Mathematically, a district admissions rule $C h_{d}$ satisfies LAD if, for every $X \subseteq Y \subseteq \mathcal{X}$, $\left|C h_{d}(X)\right| \leq\left|C h_{d}(Y)\right|=11$ A completion of a district admissions rule $C h_{d}$ is another admissions rule $C h_{d}^{\prime}$ such that for every matching X either $C h_{d}^{\prime}(X)$ is equal to $C h_{d}(X)$ or it is not feasible for students (Hatfield and Kominers, 2014). Throughout the paper, we assume that district admissions rules have completions that satisfy substitutability and LAD $\overbrace{}^{[1 / 2}$ In Appendix B, we provide classes of district admisstions rule that satisfy our assumptions.
2.3. Matching Properties, Policy Goals, and Mechanisms. A feasible matching X satisfies individual rationality if every student weakly prefers the outcome in X to her initial match, i.e., for every student $s, X_{s} R_{s} \tilde{X}_{s}$.

A distribution $\xi \in\left(\mathbb{Z}_{+}\right)^{|\mathcal{C}| \times|\mathcal{T}|}$ is a vector such that the entry for school c and type t is denoted by ξ_{c}^{t}. The entry ξ_{c}^{t} is interpreted as the number of type- t students in school c.

[^5]Furthermore, $\xi_{d}^{t} \equiv \sum_{c: d(c)=d} \xi_{c}^{t}$ denotes the number of type- t students in district d at ξ. Likewise, for any feasible matching X, the distribution associated with X is $\xi(X)$ whose c, t entry $\xi_{c}^{t}(X)$ is the number of type- t students assigned to school c at X. Similarly, $\xi_{d}^{t}(X)$ denotes the number of type- t students assigned to district d at X.

We represent a policy goal as a set of distributions. Let Ξ denote a generic set of distributions. The policy that each student is matched without assigning any school more students than its capacity is denoted by Ξ^{0}, i.e., $\Xi^{0} \equiv\left\{\xi \mid \sum_{c, t} \xi_{c}^{t}=\sum_{d} k_{d}\right.$ and $\left.\forall c, q_{c} \geq \sum_{t} \xi_{c}^{t}\right\}$. A matching X satisfies the policy goal Ξ if the distribution associated with X is in Ξ.

A feasible matching X Pareto dominates another feasible matching Y if every student weakly prefers the outcome in X to the outcome in Y and at least one student strictly prefers the former to the latter. Given a policy goal, a feasible matching X that satisfies the policy goal satisfies constrained efficiency if there exists no feasible matching that satisfies the policy goal and Pareto dominates X.

A matching X is stable if it is feasible and

- districts would choose all contracts assigned to them, i.e., $C h_{d}(X)=X_{d}$ for every district d, and
- there exist no student s and district d who would like to match with each other, i.e., there exists no contract $x=(s, d, c) \notin X$ such that $x P_{s} X_{s}$ and $x \in C h_{d}(X \cup\{x\})$.
Stability was introduced by Gale and Shapley (1962) for the college admissions problem. In the context of assigning students to public schools, it is viewed as a fairness notion (Abdulkadiroğlu and Sönmez, 2003).

A mechanism ϕ takes a profile of student preferences as input and produces a feasible matching. The outcome for student s at the reported preference profile $P_{\mathcal{S}}$ under mechanism ϕ is denoted as $\phi_{s}\left(P_{\mathcal{S}}\right)$. A mechanism ϕ satisfies strategy-proofness if no student can misreport her preferences and get a more preferred contract. More formally, for every student s and preference profile $P_{\mathcal{S}}$, there exists no preference P_{s}^{\prime} such that $\phi_{s}\left(P_{s}^{\prime}, P_{\mathcal{S} \backslash\{s\}}\right) P_{s} \phi_{s}\left(P_{\mathcal{S}}\right)$. For any property on matchings, a mechanism satisfies the property if, for every preference profile, the matching produced by the mechanism satisfies the property.

3. Achieving Policy Goals with Stable Outcomes

To achieve stable matchings with desirable properties, we use a generalization of the deferred-acceptance algorithm of Gale and Shapley (1962).

Student-Proposing Deferred Acceptance Algorithm (SPDA).

Step 1: Each student s proposes a contract (s, d, c) to district d where c is her most preferred school. Suppose that X_{d}^{1} is the set of contracts proposed to district d.

District d tentatively accepts contracts in $C h_{d}\left(X_{d}^{1}\right)$ and permanently rejects the rest. If there are no rejections, then stop and return $\cup_{d \in \mathcal{D}} C h_{d}\left(X_{d}^{1}\right)$ as the outcome.
Step $\mathbf{n}(\mathbf{n}>\mathbf{1})$: Each student s whose contract was rejected in Step $n-1$ proposes a contract (s, d, c) to district d where c is her next preferred school. If there is no such school, then the student does not make any proposals. Suppose that X_{d}^{n} is the set of contracts that were tentatively accepted by district d in Step $n-1$ and contracts that were proposed to district d in this step. District d tentatively accepts contracts in $C h_{d}\left(X_{d}^{n}\right)$ and permanently rejects the rest. If there are no rejections, then stop and return $\cup_{d \in \mathcal{D}} C h_{d}\left(X_{d}^{n}\right)$.

When district admissions rules have completions that satisfy substitutability and LAD, SPDA is stable and strategy-proof (Hatfield and Kominers, 2014). Therefore, when we analyze SPDA, we assume that students report their preferences truthfully.

We illustrate SPDA using the following example. We come back to this example later to study the effects of district integration.

Example 1. Consider an integration problem with two school districts, d_{1} and d_{2}. District d_{1} has school c_{1} with capacity one and school c_{2} with capacity two. District d_{2} has school c_{3} with capacity two. There are four students: students s_{1} and s_{2} are from district d_{1}, whereas students s_{3} and s_{4} are from district d_{2}. The initial matching is $\left\{\left(s_{1}, c_{1}\right),\left(s_{2}, c_{2}\right),\left(s_{3}, c_{3}\right),\left(s_{4}, c_{3}\right)\right\}$.

Given any set of contacts, district d_{1} chooses students who have contracts with school c_{1} first and then chooses from the remaining students who have contracts with school c_{2}. For school c_{1}, the district prioritizes students according to order $s_{3} \succ s_{4} \succ s_{1} \succ s_{2}$ and chooses one applicant if there is any. For school c_{2}, the district prioritizes students according to order $s_{1} \succ s_{2} \succ s_{3} \succ s_{4}$ and chooses as many applicants as possible without going over the school's capacity while ignoring the contracts of the students who have already been accepted at c_{1}. Likewise, district d_{2} prioritizes students according to order $s_{3} \succ s_{4} \succ s_{1} \succ s_{2}$ and chooses as many applicants as possible without going over the capacity of school c_{3}. These admissions rules are feasible and acceptant, and they have completions that satisfy substitutability and LAD $\cdot{ }^{13}$ In addition, student preferences are given by the following table,

| $\frac{P_{s_{1}}}{c_{1}}$ | $\frac{P_{s_{2}}}{c_{3}}$ | $\frac{P_{s_{3}}}{c_{1}}$ | $\frac{P_{s_{4}}}{c_{2}}$ |
| :--- | :--- | :--- | :--- | :--- |
| c_{2} | c_{1} | c_{2} | c_{1} |
| c_{3} | c_{2} | c_{3} | c_{3} |

[^6]which means that, for instance, student s_{1} prefers c_{1} to c_{2} to c_{3}.
In this integration problem, SPDA runs as follows. At the first step, student s_{1} proposes to district d_{1} with contract $\left(s_{1}, c_{1}\right)$, student s_{2} proposes to district d_{2} with contract $\left(s_{2}, c_{3}\right)$, student s_{3} proposes to district d_{1} with contract $\left(s_{3}, c_{1}\right)$, and student s_{4} proposes to district d_{1} with contract $\left(s_{4}, c_{2}\right)$. District d_{1} first considers contracts associated with school $c_{1},\left(s_{1}, c_{1}\right)$ and $\left(s_{3}, c_{1}\right)$, and tentatively accepts $\left(s_{3}, c_{1}\right)$ while rejecting $\left(s_{1}, c_{1}\right)$ because student s_{3} has a higher priority than student s_{1} at school c_{1}. Then district d_{1} considers contracts of the remaining students associated with school c_{2}. In this case, there is only one such contract, $\left(s_{4}, c_{2}\right)$, which is tentatively accepted. District d_{2} considers contract $\left(s_{2}, c_{3}\right)$ and tentatively accepts it. The tentative matching is $\left\{\left(s_{2}, c_{3}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{2}\right)\right\}$. Since there is a rejection, the algorithm proceeds to the next step.

At the second step, student s_{1} proposes to district d_{1} with contract $\left(s_{1}, c_{2}\right)$. District d_{1} first considers contract (s_{3}, c_{1}) and tentatively accepts it. Then district d_{1} considers contracts $\left(s_{1}, c_{2}\right)$ and $\left(s_{4}, c_{2}\right)$ and tentatively accepts them both. District d_{2} does not have any new contracts, so tentatively accepts $\left(s_{2}, c_{3}\right)$. Since there is no rejection, the algorithm stops. The outcome of SPDA is $\left\{\left(s_{1}, c_{2}\right),\left(s_{2}, c_{3}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{2}\right)\right\}$.

In the rest of this section, we formalize three policy goals and characterize conditions under which SPDA satisfies them.
3.1. Individual Rationality. In our context, individual rationality requires that every student is matched with a weakly more preferred school than her initial school. As a result, SPDA does not necessarily satisfy individual rationality even though each student is either unmatched or matched with a school that is more preferred than being unmatched.

If individual rationality is violated so that some students prefer their initial schools to the outcome of SPDA, then there may be public opposition which may harm integration efforts. For this reason, individual rationality is a desirable property for policymakers. The following condition proves to play a crucial role to achieve this property.

Definition 1. A district admissions rule $C h_{d}$ respects the initial matching if, for any student s whose initial matching is $x=(s, d, c)$ for some school c in district d and matching X that is feasible for students, $x \in X$ implies $x \in C h_{d}(X)$.

When a district's admissions rule respects the initial matching, it has to admit those contracts in which students apply to their initial schools. The following theorem shows that this is exactly the condition for SPDA to satisfy individual rationality.

Theorem 1. If each district's admissions rule respects the initial matching, then SPDA satisfies individual rationality. Moreover, if at least one district's admissions rule fails to respect the initial matching, then SPDA does not satisfy individual rationality.

The intuition for the first part of this theorem is simple; When district admissions rules respect the initial matching, no student is matched with a school which is less preferred to her initial school under SPDA because she is guaranteed to be accepted by that school if she applies to it. For the second part of the theorem, we construct a specific student preference profile that makes one student strictly worse off whenever there exists one district with an admissions rule that does not respect the initial matching.

In the next example, we illustrate SPDA with district admissions rules that respect the initial matching.

Example 2. Consider the integration problem in Example 1. Recall that in this problem, the outcome of SPDA is $\left\{\left(s_{1}, c_{2}\right),\left(s_{2}, c_{3}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{2}\right)\right\}$. This matching is not individually rational because student s_{1} prefers her initial school c_{1} to school c_{2} that she is matched with. This observation is consistent with Theorem 1 because the admissions rule of district d_{1} does not respect the initial matching. In particular, $C h_{d_{1}}\left(\left\{\left(s_{1}, c_{1}\right),\left(s_{3}, c_{1}\right)\right\}\right)=\left\{\left(s_{3}, c_{1}\right)\right\}$, so student s_{1} is rejected from a matching that is feasible for students and includes the contract with her initial school.

Now modify the priority ranking of district d_{1} at school c_{1} so that $s_{1} \succ s_{2} \succ s_{3} \succ s_{4}$ but, otherwise, keep the construction of the district admissions rules and students preferences the same as before. With this change, district admissions rules respect the initial matching because each student is accepted when she applies to the district with her initial school.$\left[14\right.$ In particular, the proposal of student s_{1} to district d_{1} with her initial school c_{1} is always accepted. With this modification, it is easy to check that the outcome of SPDA is $\left\{\left(s_{1}, c_{1}\right),\left(s_{2}, c_{3}\right),\left(s_{3}, c_{2}\right),\left(s_{4}, c_{2}\right)\right\}$. This matching satisfies individual rationality.

In some school districts, such as Boston, each student gets a priority at her neighborhood school as in this example. In the absence of other types of priorities, neighborhood priority guarantees that SPDA satisfies individual rationality.
3.2. Balanced Exchange. When school districts are integrated, maintaining a balance of students incoming from and outgoing to the other districts is important. To formalize this idea, we say that a mechanism satisfies the balanced-exchange policy if the number of students that a district gets from the other districts and the number of students that the district sends to the others are the same for every district and for every profile of student preferences. Equivalently, the number of students assigned to a district must be equal to the number of students from that district.

This is an important policy because the funding that a district gets depends on the number of students it serves. Therefore, integration may not be sustainable if SPDA does not

[^7]satisfy the balanced-exchange policy. For achieving this policy goal, the following condition on admissions rules proves important.

Definition 2. A matching X is rationed if, for every district, it does not assign more students to the district than the number of students from there. A district admissions rule is rationed if it chooses a rationed matching from any matching that is feasible for students.

When a district admissions rule is rationed, then the district does not accept more students than the number of students from the district at any matching that is feasible for students. The result below establishes that this property is exactly the condition to guarantee that SPDA satisfies the balanced-exchange policy.

Theorem 2. If each district's admissions rule is rationed, then SPDA satisfies the balancedexchange policy. Moreover, if at least one district's admissions rule fails to be rationed, then SPDA does not satisfy the balanced-exchange policy.

To obtain intuition for this theorem, consider a student. Acceptance requires that a district can reject all contracts of this student only when the number of students assigned to the district is at least as large as the number of students from that district. As a result, all students are guaranteed to be matched with some school district. In addition, when district admissions rules are rationed, a district cannot accept more students than the number of students from the district. These two facts together imply that the number of students assigned to a district in SPDA is equal to the number of students from that district. Therefore, SPDA satisfies the balanced-exchange policy when each district's admissions rule is rationed. Conversely, when there exists one district with an admissions rule that fails to be rationed, then we can construct student preferences such that this district is matched with more students than the number of students from there in SPDA, which means that the outcome does not satisfy the balanced-exchange policy.

Now we illustrate SPDA when district admissions rules are rationed.
Example 3. Consider the integration problem in Example1. Recall that in this problem, the SPDA outcome is $\left\{\left(s_{1}, c_{2}\right),\left(s_{2}, c_{3}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{2}\right)\right\}$. Since there are three students matched with district d_{1} and that there are only two students from that district, SPDA does not satisfy the balanced-exchange policy. This is consistent with Theorem 2 because admissions rule of district d_{1} is not rationed. In particular, $C h_{d_{1}}\left(\left\{\left(s_{1}, c_{2}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{2}\right)\right\}\right)=$ $\left\{\left(s_{1}, c_{2}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{2}\right)\right\}$, so district d_{1} accepts more students than the number of students from there.

Suppose that we modify admissions rule of district d_{1} as follows. If the district chooses a contract associated with school c_{1}, then at most one student is admitted to school c_{2}. Therefore, the district never chooses more than two contracts, which is the number of students
from there. Therefore, the updated admissions rule is rationed. ${ }^{15}$ With this change, it is easy to check that the SPDA outcome is $\left\{\left(s_{1}, c_{2}\right),\left(s_{2}, c_{3}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{3}\right)\right\}$, which satisfies the balanced-exchange policy.
3.3. Diversity. The third policy goal we consider is that of diversity. More specifically, we are interested in how to ensure that there is enough diversity across districts so that the student composition in terms of demographics do not vary too much from district to district.

We are mainly motivated by a program that is used in the state of Minnesota. The state law in Minnesota identifies racially isolated (relative to one of its neighbors) school districts and requires them to be in the Achievement and Integration (AI) Program. The goal is to increase the racial parity between neighboring school districts. We first introduce a diversity policy in the spirit of the AI Program: Given a constant $\alpha \in[0,1]$, we say that a mechanism satisfies the α-diversity policy if for all submitted preferences, for each type t and districts d and d^{\prime}, the difference between the ratios of type- t students in districts d and d^{\prime} is not more than α. We interpret α to be the maximum ratio difference tolerated under the diversity policy; for instance, $\alpha=0.2$ for Minnesota.

We are interested in admissions rules that satisfy the α-diversity policy when school districts are integrated. A common method to achieve diversity is to use type-specific ceilings. Formally:

Definition 3. A district admissions rule $C h_{d}$ has a ceiling of q_{d}^{t} for type- t students if the number of type-t students admitted cannot exceed this ceiling. More formally, for any matching X that is feasible for students,

$$
\left|\left\{x \in C h_{d}(X) \mid \tau(s(x))=t\right\}\right| \leq q_{d}^{t} .
$$

A type- t ceiling limits the number of type- t students that the district can admit. It has two immediate implications. First, the district can allocate the rest of the school seats to students of other types. Second, type- t students who cannot be admitted to the district can be matched with the other districts.

Note that district admissions rules do not necessarily satisfy acceptance once typespecific ceilings are imposed. A weaker version of the acceptance assumption, however, can still be satisfied.

Definition 4. A district admissions rule $C h_{d}$ is weakly acceptant if, for any contract x associated with a type-t student and district d and matching X that is feasible for students, if x is rejected from X, then at $C h_{d}(X)$,

[^8]- the number of students assigned to school $c(x)$ is equal to $q_{c(x)}$, or
- the number of students assigned to district d is at least k_{d}, or
- the number of type-t students assigned to district d is at least q_{d}^{t}.

Weak acceptance requires that a student can be rejected only for one of the reasons listed above. In other words, if a district d considers a set of contracts that is feasible for students, no contract of a type- t student can be rejected as long as the number of contracts associated with type- t students is no more than its type- t ceiling, the number of contracts associated with the school is no more than its capacity, and there are at most k_{d} contracts for district d.
In SPDA, a student may be left unassigned because of type-specific ceilings even when district admissions rules are weakly acceptant. To make sure that every student is matched, we make the following assumption.

Definition 5. District admissions rules $\left(C h_{d}\right)_{d \in \mathcal{D}}$ accommodate unmatched students iffor any student s and feasible matching X in which student s is unmatched, there exists $x=(s, d, c) \in \mathcal{X}$ such that $x \in C h_{d}(X \cup\{x\})$.

When district admissions rules accommodate unmatched students, for any feasible matching in which a student is unmatched, there exists a school such that the district associated with the school would admit that student if she applies. For example, when admissions rules respect the initial matching, they also accommodate unmatched students. Lemma 1 in Appendix C shows that when district admissions rules accommodate unmatched students, every student is matched to a school in SPDA.
In general, accommodation of unmatched students may be in conflict with type-specific ceilings because there may not be enough space for a student type when ceilings are small for this type. We assume that type-specific ceilings are high enough so that there exists a feasible matching that matches each student with a school. ${ }^{16}$
In Appendix B.4, we provide a class of admissions rules that accommodate unmatched students and have type-specific ceilings. These admissions rules satisfy all of the assumptions that we make in this section. Furthermore, they generalize the concept of reserves in the context of schools to districts ${ }^{[7]}$ Specifically, as we formally define in the Appendix, we say that a district d has a reserve r_{d}^{t} for type-t students if district d accepts a type-t student at some school in its district whenever the number of type- t students currently matched in

[^9]the district is less than r_{d}^{t}. Note that using (high enough) reserves is one way to guarantee that district admissions rules accommodate unmatched students.

We focus on choice rules that would result in rationed matchings where every student is matched under SPDA. ${ }^{18}$ Note that with these choice rules, a type- t ceiling of district d may result in a floor of another type t^{\prime} in district d in the sense that the number of type- t^{\prime} students in the district should be at least a certain number. Moreover, this may further impose a ceiling for type t^{\prime} in another district d^{\prime}. To see this suppose, for example, that (i) there are two districts d and d^{\prime}, (ii) in each district, there is one school and 100 students, (iii) 100 students are of type t and 100 students are of another type t^{\prime}, and (iv) each district has type- t ceiling set to 60 and type- t^{\prime} ceiling set to 70 . In this environment, for all rationed matchings that match every student, each district has to have at least 40 type- t^{\prime} students (because otherwise the number of type- t students in that district would have to be more than 60). Moreover, this would mean that there cannot be more than 60 type- t^{\prime} students in any district (because otherwise there would need to be more than 40 type- t^{\prime} students in the other district, contradicting the floor we just calculated). Hence, in this example, in effect we have a floor of 40 and a (further restricted) ceiling of 60 for type- t^{\prime} students for each district.

Faced with this complication, our approach is to find the "tightest" lower and upper bounds induced by type-specific ceilings For this purpose, a certain optimization problem proves useful. More specifically, consider a linear-programming problem where for each type t and district d, we seek the minimum and maximum values of y_{d}^{t} subject to (i) $\sum_{t^{\prime} \in \mathcal{T}} y_{d^{\prime}}^{t^{\prime}}=k_{d^{\prime}}$ for all $d^{\prime} \in \mathcal{D}$, (ii) $\sum_{d^{\prime} \in \mathcal{D}} y_{d^{\prime}}^{t^{\prime}}=k^{t^{\prime}}$ for all $t^{\prime} \in \mathcal{T}$, and (iii) $y_{d^{\prime}}^{t^{\prime}} \leq q_{d^{\prime}}^{t^{\prime}}$ for all $t^{\prime} \in \mathcal{T}$ and $d^{\prime} \in \mathcal{D}$. Let \hat{p}_{d}^{t} and \hat{q}_{d}^{t} be the solutions y_{d}^{t} to the minimization and maximization problems, respectively.

Both of these optimization problems belong to a special class of linear-programming problems called a minimum-cost flow problem, and many computationally efficient algorithms to solve it are known in the literature. ${ }^{19}$ A straightforward but important observation is that \hat{p}_{d}^{t} (resp. \hat{q}_{d}^{t}) is exactly the lowest (resp. highest) number of type- t students who can be matched to district d in a rationed matching that match every student (Lemma 2

[^10]in Appendix C. Given this observation, we call \hat{p}_{d}^{t} the implied floor and \hat{q}_{d}^{t} the implied ceiling.

Now we are ready to state the main result of this section.
Theorem 3. Suppose that each district admissions rule is rationed and weakly acceptant, and has type-specific ceilings. Moreover, suppose that the district admissions rules accommodate unmatched students. If $\hat{q}_{d}^{t} / k_{d}-\hat{p}_{d^{\prime}}^{t} / k_{d^{\prime}} \leq \alpha$ for every type t and districts d, d^{\prime} such that $d \neq d^{\prime}$, then SPDA satisfies the α-diversity policy. Moreover, if $\hat{q}_{d}^{t} / k_{d}-\hat{p}_{d^{\prime}}^{t} / k_{d^{\prime}}>\alpha$ for some type t and districts d, d^{\prime} with $d \neq d^{\prime}$, then SPDA does not satisfy the α-diversity policy.

The proof of this theorem, given in Appendix C, is based on a number of steps. First, as mentioned above, we note that \hat{p}_{d}^{t} and \hat{q}_{d}^{t} are lower and upper bounds, respectively, of the numbers of type- t students who can be matched in district d in any matching that satisfies type-specific ceilings. This observation immediately establishes the first part of the theorem. Then, we further establish that the implied floors and ceilings are not arbitrary lower and upper bounds, but "achievable" bounds in the sense that, for any pair of districts d and d^{\prime}, there exists a matching that satisfies type-specific ceilings and assigns exactly \hat{q}_{d}^{t} type- t students in district d and exactly $\hat{p}_{d^{\prime}}^{t}$ type- t students in district d^{\prime} (Lemma 3). In other words, we establish that the implied ceiling and floor are achieved in two different districts, and they are achieved at one matching at the same time. We complete the proof of the theorem by constructing preferences such that the outcome of SPDA achieves these bounds.

Let us now consider an example in which the conditions on the admissions rules stated in Theorem 3 are satisfied and, therefore, districts get a diverse student body as required by the law.

Example 4. Consider an integration problem with two school districts, d_{1} and d_{2}. District d_{1} has school c_{1} with capacity three and school c_{2} with capacity two. District d_{2} has school c_{3} with capacity two and school c_{4} with capacity one. There are seven students: students s_{1}, s_{2}, s_{3}, and s_{4} are from district d_{1} and have type t_{1}, whereas students s_{5}, s_{6}, and s_{7} are from district d_{2} and have type t_{2}.

To construct district admissions rules that satisfy the properties stated in Theorem 3, let us first specify type-specific ceilings and calculate implied floors and implied ceilings. Suppose that

$$
q_{d_{1}}^{t_{1}}=2, q_{d_{1}}^{t_{2}}=3, q_{d_{2}}^{t_{1}}=3, q_{d_{2}}^{t_{2}}=2
$$

These yield,

$$
\hat{p}_{d_{1}}^{t_{1}}=1, \hat{p}_{d_{1}}^{t_{2}}=2, \hat{p}_{d_{2}}^{t_{1}}=2, \hat{p}_{d_{2}}^{t_{2}}=0
$$

and

$$
\hat{q}_{d_{1}}^{t_{1}}=2, \hat{q}_{d_{1}}^{t_{2}}=3, \hat{q}_{d_{2}}^{t_{1}}=3, \hat{q}_{d_{2}}^{t_{2}}=1 .
$$

For any two districts d and d^{\prime}, denote $\hat{q}_{d}^{t} / k_{d}-\hat{p}_{d^{\prime}}^{t} / k_{d^{\prime}}$ by $\Delta_{d, d^{\prime}}^{t}$. Using the implied floors and ceilings above we get:

$$
\begin{aligned}
\Delta_{d_{1}, d_{2}}^{t_{1}} & =2 / 4-2 / 3 \\
\Delta_{d_{2}, d_{1}} & =3 / 3-1 / 4 \\
t_{1} & =3 / 4 \\
\Delta_{d_{1}, d_{2}}^{t_{2}} & =3 / 4-0 / 3=3 / 4, \text { and } \\
\Delta_{d_{2}, d_{1}}^{t_{2}} & =1 / 3-2 / 4=-1 / 6
\end{aligned}
$$

Hence, these type-specific ceilings satisfy the condition stated in Theorem 3 that $\Delta_{d, d^{\prime}}^{t} \leq \alpha$ for $\alpha=0.75$.

We construct district admissions rules that have type-specific ceilings, accommodate unmatched students, and are rationed and weakly acceptant. As in Appendix B.4, we consider type-specific reserves. Let us consider the reserves for schools as follows:

$$
r_{c_{4}}^{t_{2}}=0, \text { and } r_{c}^{t}=1 \text { for all other } c, t
$$

Consider the following district admissions rule. Suppose each district has a master priority list over students and schools are ordered. First, schools choose contracts for its reserved seats till the reserves are filled or all the applicants of the relevant type are processed. Then schools choose from the remaining contracts to fill the rest of their seats until the school capacity is filled or the district has k_{d} contracts or district type-specific ceilings are filled or there are no more remaining contracts.

To give a more concrete example, suppose that the master priority list for all schools is as follows: $s_{1} \succ s_{2} \succ s_{3} \succ s_{4} \succ s_{5} \succ s_{6} \succ s_{7}$ and schools are ordered from the lowest index to the highest. Then, for example, we have the following:

$$
C h_{d_{1}}\left(\left\{\left(s_{1}, c_{1}\right),\left(s_{2}, c_{1}\right),\left(s_{3}, c_{1}\right),\left(s_{4}, c_{2}\right),\left(s_{5}, c_{2}\right)\right\}\right)=\left\{\left(s_{1}, c_{1}\right),\left(s_{2}, c_{1}\right),\left(s_{4}, c_{2}\right),\left(s_{5}, c_{2}\right)\right\} .
$$

Let us elaborate on how we determine the chosen set of contracts in the above case. School c_{1} considers contracts with students s_{1}, s_{2}, s_{3}. Among these students student s_{1} has the highest priority, so she is admitted to school c_{1} and fills the reserve of c_{1}. Next, student s_{2} has the highest priority and school c_{1} still has two empty seats, so student s_{2} is admitted to school c_{1}. The type- t_{1} ceiling for district d_{1} is filled at this point. Therefore c_{1} rejects s_{3}. Next, school c_{2} considers contracts with students s_{4}, s_{5}. Among these students student s_{4} has the highest priority, so she is admitted to school c_{2} and fills the type- t_{1} reserve of c_{2}. Next, student s_{5} has the highest priority. When the school admits s_{2}, neither its school
capacity nor its type- t_{2} ceiling is violated, so student s_{5} is admitted to school c_{2}, resulting in the chosen set of contracts presented above.

To illustrate the SPDA outcomes with and without integration, consider student preferences given by the following table,

$\frac{P_{s_{1}}}{c_{2}}$	$\frac{P_{s_{2}}}{c_{3}}$	$\frac{P_{s_{3}}}{c_{4}}$	$\frac{P_{s_{4}}}{c_{2}}$	$\frac{P_{s_{5}}}{c_{1}}$	$\frac{P_{s_{6}}}{c_{1}}$	$\frac{P_{s_{7}}}{c_{2}}$
\vdots	c_{1}	c_{2}	c_{3}	c_{2}	c_{4}	c_{3}
	\vdots	\vdots	c_{1}	c_{3}	\vdots	\vdots
			c_{4}	c_{4}		

where the dots in the table mean that the corresponding parts of the preferences are arbitrary.

Without integration, each district runs its own SPDA, and the algorithm produces the following outcome:

$$
\left\{\left(s_{1}, c_{2}\right),\left(s_{2}, c_{1}\right),\left(s_{3}, c_{2}\right),\left(s_{4}, c_{1}\right),\left(s_{5}, c_{3}\right),\left(s_{6}, c_{4}\right),\left(s_{7}, c_{3}\right)\right\}
$$

With integration, we run SPDA with both districts on one side of the market and all students on the other.

It results in the following outcome:

$$
\left\{\left(s_{1}, c_{2}\right),\left(s_{2}, c_{3}\right),\left(s_{3}, c_{4}\right),\left(s_{4}, c_{2}\right),\left(s_{5}, c_{1}\right),\left(s_{6}, c_{1}\right),\left(s_{7}, c_{3}\right)\right\}
$$

Without integration, district d_{1} had four type- t_{1} students and district d_{2} had three typet_{2} students. With integration, district d_{1} gets two students of both types and district d_{2} gets two type- t_{1} students and one type- t_{2} student. As a result, the ratio difference for type- t_{1} students between these districts decreased from 1 to roughly 0.17 and the ratio difference for type- t_{2} students decreased from 1 to roughly 0.17 .

This example illustrates that the actual ratio differences change as the student preferences change. Theorem 3 guarantees that ratio differences are never more than $\alpha=0.75$, yet for the preference profile we considered it is much lower-only 0.17 .

4. Achieving Policy Goals with Efficient Outcomes

In this section, we study the existence of a mechanism that satisfies constrained efficiency together with strategy-proofness, individual rationality, and a given policy goal on the distribution of agents. We first consider a policy with type-specific ceilings in districts and establish an impossibility result.

Theorem 4. Suppose that, for every type t and district d, there is a ceiling q_{t}^{d} on the number of typet students in district d so that the policy goal is given by $\Xi \equiv\left\{\xi \mid \forall d \forall t q_{d}^{t} \geq \xi_{d}^{t}\right.$ and $\left.\forall c q_{c} \geq \sum_{t} \xi_{c}^{t}\right\}$.

Then there exist an integration problem and ceilings $\left(q_{t}^{d}\right)_{t \in \mathcal{T}, d \in \mathcal{D}}$ for which no mechanism satisfies constrained efficiency, individual rationality, strategy-proofness, and the policy goal Ξ.

We show this result using the following example.
Example 5. Consider the following integration problem with districts d_{1} and d_{2}. District d_{1} has schools c_{1}, c_{2}, and c_{3} and district d_{2} has schools c_{4}, c_{5}, and c_{6}. All schools have a capacity of one. There are six students: students s_{1} and s_{4} have type t_{1}, students s_{2} and s_{5} have type t_{2}, and students s_{3} and s_{6} have type t_{3}. Both districts have a ceiling of one for types t_{1} and $t_{2}: q_{d_{1}}^{t_{1}}=q_{d_{1}}^{t_{2}}=1$ and $q_{d_{2}}^{t_{1}}=q_{d_{2}}^{t_{2}}=1$. Initially, student s_{i} is matched with school c_{i}, for $i=1, \ldots, 6$. Student preferences are as follows.

$\frac{s_{1}}{c_{6}}$	$\frac{s_{2}}{c_{6}}$	$\frac{s_{3}}{c_{5}}$	$\underline{s_{4}}$	$\frac{s_{5}}{c_{3}}$	$\frac{s_{6}}{c_{3}}$
c_{1}	c_{2}	c_{4}	c_{4}	c_{5}	c_{2}
\vdots	\vdots	c_{3}	\vdots	\vdots	c_{6}
		\vdots			\vdots

In this example, there are two matchings that are constrained efficient and individually rational:

$$
\begin{aligned}
& X=\left\{\left(s_{1}, c_{6}\right),\left(s_{2}, c_{2}\right),\left(s_{3}, c_{4}\right),\left(s_{4}, c_{3}\right),\left(s_{5}, c_{5}\right),\left(s_{6}, c_{1}\right)\right\}, \text { and } \\
& Y=\left\{\left(s_{1}, c_{1}\right),\left(s_{2}, c_{6}\right),\left(s_{3}, c_{5}\right),\left(s_{4}, c_{4}\right),\left(s_{5}, c_{3}\right),\left(s_{6}, c_{2}\right)\right\} .
\end{aligned}
$$

If a mechanism satisfies constrained efficiency, individual rationality, and the policy goal Ξ, then its outcome at the above student preference profile must produce either matching X or Y.

Consider the case where the mechanism produces matching X at the above student preference profile. Suppose student s_{3} misreports her preference by ranking c_{4} below c_{3} while leaving c_{5} as the first choice. Under the new report, the mechanism produces matching Y because it is the only constrained-efficient and individually rational matching. Since student s_{3} strictly prefers her school in Y to her school in X, she has a profitable deviation.

Similarly, consider the case where the mechanism produces matching Y at the above student preference profile. Suppose student s_{6} misreports her preference by ranking c_{2} below c_{6} while leaving c_{1} as the first choice. In this case, the mechanism produces matching X because it is the only constrained-efficient and individually-rational matching. Since student s_{6} strictly prefers her school in X to her school in Y, she has a profitable deviation.

In both cases, there exists a student with a profitable misreporting, so the desired conclusion follows.

This example also shows that there is no mechanism that satisfies constrained efficiency, individual rationality, strategy-proofness, and the α-diversity policy goal for $\alpha=0$ introduced in Section 3.3. Consequently, without any assumptions, a policy goal may not be implemented with the desirable properties. To establish a positive result, we consider policy goals that satisfy the following notion of discrete convexity, which is studied by the mathematics and operations research literatures (Murota, 2003).

Definition 6. Let $\chi_{c, t}$ denote the distribution where there is one type-t student at school cand there are no other students. A set of distributions Ξ is M-convex if whenever $\xi, \tilde{\xi} \in \Xi$ and $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ for some school c and type then there exist school c^{\prime} and type t^{\prime} with $\xi_{c^{\prime}}^{t^{\prime}}<\tilde{\xi}_{c^{\prime}}^{t^{\prime}}$ such that $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in$ Ξ and $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in \Xi \cdot{ }^{20}$

To illustrate this concept, suppose that a set of distributions Ξ is M-convex. Consider two distributions ξ and $\tilde{\xi}$ in the set such that there are more type- t students in school c at ξ than at $\tilde{\xi}$. Then there exist school c^{\prime} and type t^{\prime} such that there are more type- t^{\prime} students in school c^{\prime} at $\tilde{\xi}$ than ξ with the following two properties. First, removing one type- t student from school c and adding one type- t^{\prime} student to school c^{\prime} in ξ produces a distribution in Ξ. Second, removing one type- t^{\prime} student from school c^{\prime} and adding one type- t student to school c in $\tilde{\xi}$ gives a distribution in Ξ (see Figure 2). Intuitively, from each of these two distributions we can move closer to the other distribution in an incremental manner, a property analogous to the standard convexity notion but adapted to a discrete setting. We illustrate this concept with the following example.

Example 6. Consider the integration problem and the set of distributions Ξ defined in Example 5. We show that Ξ is not M-convex. Recall matchings X and Y in that example. By construction, both X and Y satisfy the policy goal Ξ. Furthermore, $\xi_{c_{3}}^{t_{1}}(X)=1>$ $0=\xi_{c_{3}}^{t_{1}}(Y)$ because (i) school c_{3} is matched with student s_{4} at X, whose type is t_{1}, while (ii) school c_{3} is matched with student s_{5} at Y, whose type is $t_{2} \neq t_{1}$. If the set of distributions Ξ is M-convex, there exist a school c and a type t such that $\xi_{c}^{t}(X)<\xi_{c}^{t}(Y)$ and $\xi(X)-\chi_{c_{3}, t_{1}}+\chi_{c, t}$ is in Ξ. Because each school's capacity is one, and at matching X all schools have filled their capacities, this means that the only candidate for (c, t) satisfying the above condition is such that $c=c_{3}$. But the only nonzero $\xi_{c_{3}}^{t}(Y)$ is for $t=t_{2}$ (corresponding to s_{5} matched with c_{3} at Y), but $\xi(X)-\chi_{c_{3}, t_{1}}+\chi_{c_{3}, t_{2}}$ does not satisfy the policy goal because district d_{1} 's ceiling for type t_{2} is violated (note $\xi_{c_{2}}^{t_{2}}(X)=1$ because student s_{2} is matched with c_{2} at X).

The above argument implies that $\Xi \cap \Xi^{0}$ is not M-convex either. To see this, note that both $\xi(X)$ and $\xi(Y)$ are in $\Xi \cap \Xi^{0}$ because all students are matched. Because we have shown that

[^11]

Figure 2. Illustration of M-convexity
no distribution of the form $\xi(X)-\chi_{c_{3}, t_{1}}+\chi_{c, t}$ is in Ξ, by set inclusion relation $\Xi \cap \Xi^{0} \subseteq \Xi$, there is no distribution of the form $\xi(X)-\chi_{c_{3}, t_{1}}+\chi_{c, t}$ in $\Xi \cap \Xi^{0}$ either.

Now we introduce an algorithm that achieves the desirable properties whenever the policy goal is M-convex. To do this, we first create a hypothetical matching market. On one side of the market, there are school-type pairs (c, t) where $c \in \mathcal{C}$ and $t \in \mathcal{T}$. On the other side, there are students from the original market, \mathcal{S}. Given any student $s \in \mathcal{S}$ and a preference order P_{s} of s in the original problem, define preference order \tilde{P}_{s} over schooltype pairs in the hypothetical market as follows: letting t be the type of student s and c_{0} be her initial matching in the original problem, $(s, c) P_{s}\left(s, c^{\prime}\right) \Longleftrightarrow(c, t) \tilde{P}_{s}\left(c^{\prime}, t\right)$ for any $c, c^{\prime} \in \mathcal{C}$, and $\left(c_{0}, t\right) \tilde{P}_{s}\left(c, t^{\prime}\right)$ for any $c \in \mathcal{C}$ and $t^{\prime} \neq t$. That is, \tilde{P}_{s} is a preference order over school-type pairs that ranks the school-type pairs in which the type is t in the same order as in P_{s}, while finding all school-type pairs specifying a different type as less preferred than the pair corresponding to her initial matching. Furthermore, let $\left(c_{0}, t\right)$ be the initial matching for s in the hypothetical market.

Next we define a priority ordering of students that school-type pairs use to rank students. For school-type pair (c, t), students initially matched with (c, t) havethe highest priority, and then all other students have the second highest priority. This gives us two priority classes for students. Then ties are broken according to a master priority list that every school-type pair uses.

We say that a type-t student s with initial matching school-type pair (c, t) is permissible to school-type pair $\left(c^{\prime}, t^{\prime}\right)$ at matching X if $\xi(X)+\chi_{c^{\prime}, t^{\prime}}-\chi_{c, t}$ is in Ξ. Note that a type- t
student with initial matching school-type pair (c, t) is always permissible to pair (c, t) at matching X whenever $\xi(X)$ is in Ξ.

The following is a generalization of Gale's top trading cycles algorithm (Shapley and Scarf, 1974), building on its recent extension by Suzuki et al. (2017).

Top Trading Cycles Algorithm (TTC).

Step 1: Let $X^{1} \equiv \tilde{X}$. Each school-type pair points to the permissible student at matching X^{1} with the highest priority. If there exists no such student, remove the schooltype pair from the market. Each student s points to the highest ranked remaining school-type pair with respect to \tilde{P}_{s}. Identify and execute cycles. Any student who is part of an executed cycle is matched with the school-type pair she is pointing to and is removed from the market.
Step $\mathbf{n}(\mathbf{n}>\mathbf{1})$: Let X^{n} denote the matching consisting of all students assigned in the previous steps, and initial matchings for all students who have not been processed in the previous steps. Each remaining school-type pair points to the unassigned student who is permissible at matching X^{n} with the highest priority. If there exists no such student, remove the school-type pair from the market. Each unassigned student s points to the highest ranked remaining school-type pair with respect to \tilde{P}_{s}. Identify and execute cycles. Any student who is part of an executed cycle is matched with the school-type pair she is pointing to and is removed from the market.

This algorithm terminates in the first step such that no student remains to be processed. The TTC outcome is defined as the matching at this step.

Our main result of this section is as follows.
Theorem 5. Suppose that the initial matching satisfies the policy goal Ξ. If $\Xi \cap \Xi^{0}$ is M-convex, then TTC satisfies constrained efficiency, individual rationality, strategy-proofness, and the policy goal Ξ.

A corollary of this result is that when the policy goal Ξ is such that no school is matched with more students than its capacity and it is M-convex, then TTC satisfies the desirable properties.

Corollary 1. Suppose that the policy goal Ξ is such that for every $\xi \in \Xi$ and $c \in \mathcal{C}, \sum_{t} \xi_{c}^{t} \leq q_{c}$. Furthermore, suppose that the initial matching satisfies Ξ. If Ξ is M-convex, then TTC satisfies constrained efficiency, individual rationality, strategy-proofness, and the policy goal Ξ.

In the proof of this corollary,we show that when Ξ is M-convex and no distribution in Ξ assigns more students to a school than its capacity, then $\Xi \cap \Xi^{0}$ is also M-convex. Therefore, the corollary follows directly from Theorem 5 .

Next we illustrate TTC with an example.

Example 7. Consider the integration problem introduced in Example 4. We modify the preferences of students s_{1} and s_{6}, so that the student preferences are as follows.

$\frac{P_{s_{1}}}{c_{2}}$	$\frac{P_{s_{2}}}{c_{3}}$	$\frac{P_{s_{3}}}{c_{4}}$	$\frac{P_{s_{4}}}{c_{2}}$	$\frac{P_{s_{5}}}{c_{1}}$	$\frac{P_{s_{6}}}{c_{4}}$	$\frac{P_{s_{7}}}{c_{2}}$
c_{3}	c_{1}	c_{2}	c_{3}	c_{2}	c_{1}	c_{3}
\vdots	\vdots	\vdots	c_{1}	c_{3}	c_{3}	c_{1}
			c_{4}	c_{4}	c_{2}	c_{4}

The initial matching is $\left\{\left(s_{1}, c_{1}\right),\left(s_{2}, c_{1}\right),\left(s_{3}, c_{2}\right),\left(s_{4}, c_{2}\right),\left(s_{5}, c_{3}\right),\left(s_{6}, c_{3}\right),\left(s_{7}, c_{4}\right)\right\}$.
In addition to the school capacities, there is only one additional constraint that school c_{1} cannot have more than one type- t_{2} student. As we show in the proof of Corollary 2, the set of distributions that satisfy this policy goal and the requirement that every student is matched is an M-convex set. Therefore, TTC satisfies constrained efficiency, individual rationality, strategy-proofness, and the policy goal.

To run TTC, we use a master priority list. Suppose that the master priority list ranks students as follows: $s_{1} \succ s_{2} \succ s_{3} \succ s_{4} \succ s_{5} \succ s_{6} \succ s_{7}$.

At Step 1 of TTC, there are eight school-type pairs. Consider $\left(c_{1}, t_{1}\right)$. Initially, students s_{1} and s_{2} are matched with it, so they are both permissible to this pair. We use the master priority list to rank them, so s_{1} gets the highest priority at $\left(c_{1}, t_{1}\right)$. Therefore, $\left(c_{1}, t_{1}\right)$ points to s_{1}. Now consider $\left(c_{1}, t_{2}\right)$. Initially, it does not have any students because there is no typet_{2} student assigned to c_{1} in the original market. Furthermore, s_{1} is permissible to $\left(c_{1}, t_{2}\right)$ because she can be removed from $\left(c_{1}, t_{1}\right)$ and a type- t_{2} student can be assigned to $\left(c_{1}, t_{2}\right)$ without violating the school quotas or the policy goal. Therefore, $\left(c_{1}, t_{2}\right)$ points to s_{1} as well, who gets a higher priority than the other permissible students because of the master priority list. The rest of the pairs also point to the highest-priority permissible students. Each student points to the highest ranked school-type pair of the same type as shown in Figure 3A. There is only one cycle: $s_{7} \rightarrow\left(c_{2}, t_{2}\right) \rightarrow s_{3} \rightarrow\left(c_{4}, t_{1}\right) \rightarrow s_{7}$. Therefore, s_{7} is matched with $\left(c_{2}, t_{2}\right)$ and s_{3} is matched with $\left(c_{4}, t_{1}\right)$.

At Step 2, there are six remaining school-type pairs: There are no permissible students for $\left(c_{4}, t_{1}\right)$ and $\left(c_{4}, t_{2}\right)$ because c_{4} has a capacity of one and it already is assigned to s_{3}. Each remaining school-type pair points to the highest-ranked remaining permissible student. Each student points to the highest-ranked remaining school-type pair (see Figure 3B). There is only one cycle: $s_{4} \rightarrow\left(c_{2}, t_{1}\right) \rightarrow s_{4}$. Hence, s_{4} is assigned to $\left(c_{2}, t_{1}\right)$.

Figure 3. The first four steps of TTC. In each step, there is only one cycle, which is represented by the dashed lines.

The algorithm ends in five steps. Steps 3 and 4 are also shown in Figure 3. In Step 5, s_{2} points to $\left(c_{1}, t_{1}\right)$, which points back to the student. The outcome of the algorithm is

$$
\left\{\left(s_{1}, c_{3}\right),\left(s_{2}, c_{1}\right),\left(s_{3}, c_{4}\right),\left(s_{4}, c_{2}\right),\left(s_{5}, c_{1}\right),\left(s_{6}, c_{3}\right),\left(s_{7}, c_{2}\right)\right\}
$$

It is easy to see that the distribution associated with this matching satisfies the policy goal because no school has more students than its capacity and c_{1} has only one type- t_{2} student.

Now that we have established a general result based on M-convexity of the policy goal in Theorem5, we proceed to apply it to a variety of situations. To begin, consider the set Ξ of distributions of feasible matchings. In other words, consider a situation in which no policy goal is imposed other than feasibility. Then it is rather straightforward to show that the set $\Xi \cap \Xi^{0}$ is an M-convex set. This implies that when there is no policy goal, TTC
is efficient, individually rational, and strategy-proof, a standard result in the literature (Abdulkadiroğlu and Sönmez, 2003). ${ }^{21}$

Now we are ready to apply Theorem5 5 to a variety of policy goals. This result turns out to be applicable to many specific cases, as a wide variety of policy goals induce distributions that satisfy M-convexity. To be more specific, first suppose that the policy goal Ξ sets typespecific floors and ceilings at each school, i.e., $\Xi \equiv\left\{\xi \mid \forall c, t q_{c}^{t} \geq \xi_{c}^{t} \geq p_{c}^{t}, \forall c q_{c} \geq \sum_{t} \xi_{c}^{t}\right\}$ where q_{c}^{t} is the ceiling and p_{c}^{t} is the floor for type t at school c. Therefore, for each school, the number of students of a given type must be within the ceiling and floor of this type at the school. We call Ξ the school-level diversity policy and show that $\Xi \cap \Xi^{0}$ is an M-convex set. This finding, together with Theorem5, implies the following positive result.

Corollary 2. Suppose that the initial matching satisfies the school-level diversity policy. Then TTC satisfies constrained efficiency, individual rationality, strategy-proofness, and the school-level diversity policy.

We note a sharp contrast between this result and Theorem 4. The latter result demonstrates that no mechanism is guaranteed to satisfy the policy goal and other desiderata such as constrained efficiency, individual rationality, and strategy-proofness if the floors or ceilings are imposed at the district level. Corollary 2 , by contrast, shows that a mechanism with the desirable properties exists if the floors and ceilings are imposed at the school level. Taken together, these results inform policy makers about what kinds of diversity policies are compatible with the other desiderata.

Next, we study the balanced-exchange policy introduced in Section 3.2. We establish that the balanced-exchange policy induces a distribution that satisfies M-convexity. This implies the following result.

Corollary 3. TTC satisfies constrained efficiency, individual rationality, strategy-proofness, and the balanced-exchange policy.

One of the advantages of Theorem 5 is that M-convexity is so general that a wide variety of policy goals satisfy it, and that it is likely to be applicable for policy goals that one may encounter in the future. To highlight this point, we consider imposing the diversity and balanced-exchange policies at the same time. More specifically, define a set distributions $\Xi=\left\{\xi \mid \forall c, t q_{c}^{t} \geq \xi_{c}^{t} \geq p_{c}^{t}, \forall c q_{c} \geq \sum_{t} \xi_{c}^{t}\right.$ and $\left.\forall d \sum_{t} \sum_{c: d(c)=d} \xi_{c}^{t}=k_{d}\right\}$ and call it the combination of balanced-exchange and school-level diversity policies. This is the set of distributions that satisfy both the (school-level) floors and ceilings and the balanced-exchange requirement. We can establish this set is M-convex, implying the following result.

[^12]Corollary 4. Suppose that the initial matching satisfies the combination of balanced exchange and school-level diversity policies. Then TTC satisfies constrained efficiency, individual rationality, strategy-proofness, and the combination of balanced exchange and school-level diversity policies.

5. Conclusion

Despite increasing interest in inter-district school choice in the US, the scope of matching theory has been limited to intra-district choice. In this paper, we proposed a new framework to study district integration that allows for inter-district admissions, both from stability and efficiency perspectives. For stable mechanisms, we characterized conditions on district admissions rules that achieve a variety of important policy goals such as student diversity across districts. For efficient mechanisms, we showed that certain types of diversity policies are incompatible with desirable properties such as strategy-proofness, while alternative forms of diversity policies can be achieved by a strategy-proof mechanism: a variation of the top trading cycles algorithm. Overall, our analysis suggests that district integration may help achieve desirable policy goals such as student diversity, but only with an appropriate design of constraints, admission rules, and placement mechanisms.

We regard this paper as a first step toward formal analysis of school district integration based on tools of market design. As such, we envision a variety of directions of future research. For example, it may be interesting to study cases in which the conditions for our results are violated. Although we already know the policy goals are not guaranteed to be satisfied for our stability results (our results provide necessary and sufficient conditions), how serious the failure of the policy goals studied in the present paper is an open question. Quantitative measures or an approximation argument like those used in "large matching market" studies (e.g., Roth and Peranson (1999), Kojima and Pathak (2009), Kojima et al. (2013), and Ashlagi et al.(2014)) may prove useful, although this is speculative at this point and beyond the scope of the present paper.

We studied policy goals that we regarded as among the most important ones, but they are far from being exhaustive. Other important policy goals may include a diversity policy requiring certain proportions of different student types in each district (see Nguyen and Vohra (2017) for a related policy at the level of schools), as well as a balanced exchange policy requiring a certain bound on the difference in the numbers of students received from and sent to other districts (see Dur and Ünver (2015) for a related policy at the level of schools). Given that the existing literature has not studied district integration, we envision that many policy goals await to be studied within our framework.

While our paper is primarily theoretical and aimed at proposing a general framework to study school district integration, the main motivation comes from applications to actual integration programs such as Minnesota's AI program. Given this motivation, it would be
interesting to study district integration empirically. For instance, evaluating how well the existing integration programs are doing in terms of balanced exchange, student welfare, and diversity, and how much improvement could be made by a conscious design based on theories such as the ones suggested in the present paper are important questions left for future work. In addition, implementation of our designs in practice would be interesting. For instance, doing so may shed new light on the tradeoff between SPDA and TTC-that has been studied in the intra-district school choice from a practical perspective (e.g., Abdulkadiroglu et al. (2006), Abdulkadiroğlu et al. (2017)). We are only beginning to learn about the district integration problem, and thus we expect that these and other questions could be answered as more researchers analyze it.

References

Abdulkadiroğlu, Atila, "College admissions with affirmative action," International Journal of Game Theory, 2005, 33 (4), 535-549.
Abdulkadiroglu, Atila, Parag Pathak, Alvin E. Roth, and Tayfun Sonmez, "Changing the Boston School Choice Mechanism," Working Paper 11965, National Bureau of Economic Research January 2006.
Abdulkadiroğlu, Atila and Tayfun Sönmez, "School choice: A mechanism design approach," American Economic Review, June 2003, 93 (3), 729-747.
Abdulkadiroğlu, Atila, Parag A. Pathak, Alvin E. Roth, and Tayfun Sönmez, "The Boston Public School Match," American Economic Review, May 2005, 95 (2), 368-371.
__ , and ___ "The New York City High School Match," American Economic Review, 2005, 95 (2), 364-367.
___, and ___ "Strategy-proofness versus Efficiency in Matching with Indifferences: Redesigning the NYC High School Match," American Economic Review, 2009, 99, 1954-1978.
___ Yeon-Koo Che, Parag A. Pathak, Alvin E. Roth, and Olivier Tercieux, "Minimizing Justified Envy in School Choice: The Design of New Orleans' OneApp," 2017. Working paper.
Ahuja, Ravindra K, Network flows: theory, algorithms, and applications, Pearson Education, 2017.

Aizerman, Mark A. and Andrew V. Malishevski, "General theory of best variants choice: Some aspects," Automatic Control, IEEE Transactions on, 1981, 26 (5), 1030-1040.
Akbarpour, Mohammad and Afshin Nikzad, "Approximate random allocation mechanisms," 2017. Working paper.
Alkan, Ahmet, "A class of multipartner matching models with a strong lattice structure," Economic Theory, June 2002, 19 (4), 737-746.
and David Gale, "Stable schedule matching under revealed preference," Journal of Economic Theory, 2003, 112 (2), 289 - 306.
Ashlagi, Itai, Mark Braverman, and Avinatan Hassidim, "Stability in large matching markets with complementarities," Operations Research, 2014, 62 (4), 713-732.
Aygün, Orhan and Bertan Turhan, "Dynamic Reserves in Matching Markets," Unpublished paper, 2016.
and Inácio Bó, "College admission with multidimensional privileges: The Brazilian affirmative action case," Unpublished paper, WZB Berlin Social Science Center.[869], 2016.

Aygün, Orhan and Tayfun Sönmez, "Matching with Contracts: Comment," American Economic Review, 2013, 103 (5), 2050-2051.
Biro, P., T. Fleiner, R.W. Irving, and D.F. Manlove, "The College Admissions Problem with Lower and Common Quotas," Theoretical Computer Science, 2010, 411 (34-36), 31363153.

Bó, Inácio, "Fair implementation of diversity in school choice," Games and Economic Behavior, 2016, 97, 54-63.
Budish, Eric, Yeon-Koo Che, Fuhito Kojima, and Paul R. Milgrom, "Designing Random Allocation Mechanisms: Theory and Applications," American Economic Review, 2013, 103 (2), 585-623.
Candogan, Ozan, Markos Epitropou, and Rakesh V Vohra, "Competitive equilibrium and trading networks: A network flow approach," in "Proceedings of the 2016 ACM Conference on Economics and Computation" ACM 2016, pp. 701-702.
Chambers, Christopher P. and M. Bumin Yenmez, "Choice and Matching," American Economic Journal: Microeconomics, August 2017, 9 (3), 126-47.
\qquad and \qquad ,"A simple characterization of responsive choice," Games and Economic Behavior, 2018, 111, 217 - 221.
Che, Yeon-Koo, Jinwoo Kim, and Konrad Mierendorff, "Generalized Reduced-Form Auctions: A Network-Flow Approach," Econometrica, 2013, 81 (6), 2487-2520.
Clotfelter, Charles T, "Public school segregation in metropolitan areas.," Land Economics, 1999, 75 (4).
__, After Brown: The rise and retreat of school desegregation, Princeton University Press, 2011.

Doğan, Battal, "Responsive affirmative action in school choice," Journal of Economic Theory, 2016, 165, 69-105.
Dur, Umut and M Utku Ünver, "Two-sided matching via balanced exchange," 2015. Working paper.
\qquad , Onur Kesten, and M Utku Ünver, "Flexible Top Trading Cycles and Chains Mechanism: Maintaining Diversity in Erasmus Student Exchange," 2015. Working paper.
\qquad , Parag Pathak, and Tayfun Sönmez, "Explicit vs. Statistical Targeting in Affirmative Action: Theory and Evidence from Chicago's Exam Schools," NBER Working Paper, 2016, 22109.

__ Scott D. Kominers, Parag A. Pathak, and Tayfun Sönmez, "Reserve Design: Un- intended Consequences and The Demise of Boston's Walk Zones," 2014. Forthcoming in Journal of Political Economy.

Echenique, Federico and M. Bumin Yenmez, "How to Control Controlled School Choice," American Economic Review, August 2015, 105 (8), 2679-2694.
Edmonds, Jack and Richard M Karp, "Theoretical improvements in algorithmic efficiency for network flow problems," Journal of the ACM (JACM), 1972, 19 (2), 248-264.
Ehlers, Lars, Isa E. Hafalir, M. Bumin Yenmez, and Muhammed A. Yildirim, "School choice with controlled choice constraints: Hard bounds versus soft bounds," Journal of Economic Theory, 2014.
Erdil, Aytek and Taro Kumano, "Prioritizing Diversity in School Choice," 2012. Working paper.
Ergin, Haluk and Tayfun Sönmez, "Games of school choice under the Boston mechanism," Journal of Public Economics, 2006, 90 (1-2), 215 - 237.
Fragiadakis, Daniel and Peter Troyan, "Improving matching under hard distributional constraints," Theoretical Economics, 2017, 12 (2), 863-908.
__ Atsushi Iwasaki, Peter Troyan, Suguru Ueda, and Makoto Yokoo, "Strategyproof Matching with Minimum Quotas," ACM Transactions on Economics and Computation, December 2015, 4(1), 1-40.
Fujishige, Satoru and Akihisa Tamura, "A General Two-sided Matching Market with Discrete Concave Utility Functions," Discrete Applied Mathematics, 2006, 154 (6), 950-970. and ___ , "A Two-sided Discrete-concave Market with Possibly Bounded Side Payments: An Approach by Discrete Convex Analysis," Mathematics of Operations Research, 2007, 32 (1), 136-155.
Gale, David and Lloyd S. Shapley, "College Admissions and the Stability of Marriage," The American Mathematical Monthly, January 1962, 69 (1), 9-15.
Goto, Masahiro, Atsushi Iwasaki, Yujiro Kawasaki, Yosuke Yasuda, and Makotoo Yokoo, "Improving Fairness and Efficiency in Matching with Distributional Constraints: An Alternative Solution for the Japanese Medical Residency Match," 2014. https:// mpra.ub.uni-muenchen.de/53409/1/MPRA_paper_53409.pdf, last accessed on March 9th, 2018.
\qquad , Fuhito Kojima, Ryoji Kurata, Akihisa Tamura, and Makoto Yokoo, "Designing

Matching Mechanisms under General Distributional Constraints," American Economic Journal: Microeconomics, May 2017, 9 (2), 226-62.
Hafalir, Isa E., M. Bumin Yenmez, and Muhammed A. Yildirim, "Effective affirmative action in school choice," Theoretical Economics, May 2013, 8 (2), 325-363.
Hassidim, Avinatan, Assaf Romm, and Ran I. Shorrer, "Redesigning the Israeli Psychology Master's Match," American Economic Review, May 2017, 107 (5), 205-09.
Hatfield, John William and Fuhito Kojima, "Substitutes and stability for matching with contracts," Journal of Economic Theory, 2010, 145 (5), 1704-1723.
and Paul R. Milgrom, "Matching with Contracts," American Economic Review, September 2005, 95 (4), 913-935.
\qquad and Scott Duke Kominers, "Hidden substitutability," 2014. Working Paper.
Kamada, Yuichiro and Fuhito Kojima, "Efficient Matching under Distributional Constraints: Theory and Applications," American Economic Review, 2015, 105 (1), 67-99.
\ldots and ___ "Stability concepts in matching with distributional constraints," Journal of Economic theory, 2017, 168, 107-142.
and ___ "Stability and strategy-proofness for matching with constraints: a necessary and sufficient condition," Theoretical Economics, 2018, 13 (2), 761-794.
Kelso, Alexander S. and Vincent P. Crawford, "Job Matching, Coalition Formation, and Gross Substitutes," Econometrica, 1982, 50, 1483-1504.
Kojima, Fuhito, "School choice: Impossibilities for affirmative action," Games and Economic Behavior, 2012, 75 (2), 685 - 693.
\qquad Akihisa Tamura, and Makoto Yokoo, "Designing matching mechanisms under constraints: An approach from discrete convex analysis," Journal of Economic Theory, 2018, 176, 803 - 833.
and Parag A Pathak, "Incentives and stability in large two-sided matching markets," The American Economic Review, 2009, pp. 608-627.
__ , and Alvin E Roth, "Matching with couples: Stability and incentives in large markets," The Quarterly Journal of Economics, 2013, 128 (4), 1585-1632.
Kominers, Scott Duke and Tayfun Sönmez, "Matching with slot-specific priorities: Theory," Theoretical Economics, 2016, 11 (2), 683-710.
Kurata, Ryoji, Naoto Hamada, Chia-Ling Hsu, Takamasa Suzuki, Suguru Ueda, and Makoto Yokoo, "Pareto efficient strategy-proof school choice mechanism with minimum quotas and initial endowments," in "Proceedings of the 2016 International Conference on Autonomous Agents \& Multiagent Systems" International Foundation for Autonomous Agents and Multiagent Systems 2016, pp. 59-67.
Milgrom, Paul, "Assignment messages and exchanges," American Economic Journal: Microeconomics, 2009, 1 (2), 95-113.
and Ilya Segal, "Deferred-acceptance auctions and radio spectrum reallocation.," in "EC" 2014, pp. 185-186.
Murota, Kazuo, Discrete Convex Analysis, Society for Industrial and Applied Mathematics, 2003.
and Yu Yokoi, "On the Lattice Structure of Stable Allocations in Two-Sided Discrete-Concave Market," Mathematics of Operations Research, 2015, 40, 460-473.
Nguyen, Thành, Ahmad Peivandi, and Rakesh Vohra, "Assignment problems with complementarities," Journal of Economic Theory, 2016, 165, 209-241.
and Rakesh Vohra, "Stable Matching with Proportionality Constraints," in "Proceedings of the 2017 ACM Conference on Economics and Computation" ACM 2017, pp. 675-676.
Pycia, Marek and M Utku Ünver, "Decomposing random mechanisms," Journal of Mathematical Economics, 2015, 61, 21-33.
Rivkin, Steven G., "Residential Segregation and School Integration," Sociology of Education, 1994, 67 (4), 279-292.
Roth, Alvin E., "Stability and Polarization of Interests in Job Matching," Econometrica, January 1984, 52 (1), 47-57.
and Elliott Peranson, "The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design," American Economic Review, September 1999, 89 (4), 748-780.
Shapley, Lloyd and Herbert Scarf, "On cores and indivisibility," Journal of Mathematical Economics, 1974, 1 (1), 23-37.
Sönmez, Tayfun, "Bidding for Army Career Specialties: Improving the ROTC Branching Mechanism," Journal of Political Economy, 2013, 121 (1), 186-219.
Suzuki, Takamasa, Akihisa Tamura, Naoto Hamada, and Makoto Yokoo, "Efficient allocation mechanism with endowments and distributional constraints," 2017. Working Paper.
Wells, Amy Stuart, Bianca J Baldridge, Jacquelyn Duran, Courtney Grzesikowski, Richard Lofton, Allison Roda, Miya Warner, and Terrenda White, "Boundary Crossing for Diversity, Equity and Achievement," Technical Report, Harvard Law School 2009.

Westkamp, Alexander, "An analysis of the German university admissions system," Economic Theory, 2013, 53 (3), 561-589.
Yenmez, M. Bumin, "A college admissions clearinghouse," Journal of Economic Theory, 2018, 176, 859 - 885.

Appendix A. Improving Student Welfare for Centralized Districts

In Section 3.1. we studied when SPDA satisfies individual rationality, which requires that under integration, every student is matched with a school that is weakly more preferred than her initial matching. In this appendix, we consider an alternative setting where each district uses SPDA to assign its students to schools when districts are not integrated. More explicitly, each student ranks schools in their home districts (or contracts associated with their home districts) and SPDA is used between a district and students from that district. Note that each student's ranking over contracts associated with the home district is the same as the relative ranking in the original preferences. Thus, the initial matching is not fixed but is determined by student preferences and district admissions rules. In this setting, we characterize district admissions rules which guarantee that no student is hurt from integration.

The next property of district admissions rules proves to play a crucial role to achieve this policy.

Definition 7. A district admissions rule $C h_{d}$ favors own students if for any matching that is feasible for students,

$$
C h_{d}(X) \supseteq C h_{d}(\{x \in X \mid d(s(x))=d\}) .
$$

When a district admissions rule favors own students any contract that is chosen from a set of contracts associated with students from a district is also chosen from a superset that includes additional contracts associated with students from the other districts. Roughly, the intuition is that a district should prioritize its own students that it used to admit over students from the other districts even though an out-of-district student can still be admitted when a student from the district is rejected.

The following theorem shows that this is exactly the condition which guarantees that district integration weakly improves student welfare.

Theorem 6. If each district's admissions rule favors own students, then every student is weakly better off when school districts integrate under SPDA. Moreover, if at least one district's admissions rule fails to favor own students, then there exists a student preference profile such that at least one student is strictly worse off when school districts integrate under SPDA.

In the proof, we show that in the no-integration case the SPDA outcome can alternatively be produced when students rank contracts with all districts and districts have modified admissions rules: For any set of contracts X, each district d chooses the following contracts: $C h_{d}(\{x \in X \mid d(s(x))=d\})$. Since district admissions rules favor own students, the chosen set is a subset of $C h_{d}(X)$ when X is feasible for students. Then the conclusion that students are weakly better off when school districts integrate follows from a comparative statics
property of SPDA that we show (Lemma 4)..22 To show the second statement, when there exists a district admissions rule that fails to favor own students, we construct preferences of students such that integration makes at least one student strictly worse off.

Appendix B. Examples of District Admissions Rules

In this appendix, we first provide a class of district admissions rules that are feasible and acceptant (or weakly acceptant) and, furthermore, they have completions that satisfy substitutability and LAD. Then, based on this class, we identify admissions rules that also satisfy the properties stated in Theorems 1, 2, 3, and 6.

Before we proceed, we introduce another admissions rule property. An admissions rule $C h$ satisfies path independence if for every $X, Y \subseteq \mathcal{X}, C h(X \cup Y)=C h(X \cup C h(Y))$. Path independence states that a set can be divided into not-necessarily disjoint subsets and the admissions rule can be applied to the subsets in any order so that the chosen set of contracts is always the same. Path independence is equivalent to substitutability and a consistency condition (Aizerman and Malishevski, 1981). Furthermore, an admissions rule satisfies substitutability and LAD if, and only if, it satisfies path independence and LAD ${ }^{23}$
B.1. An Example of District Admissions Rule. Consider a district d with schools c_{1}, \ldots, c_{n}. Each school c_{i} has an admissions rule $C h_{c_{i}}$ such that, for any set of contracts $X, C h_{c_{i}}(X)=C h_{c_{i}}\left(X_{c_{i}}\right) \subseteq X_{c_{i}}$. District d^{\prime} s admissions rule $C h_{d}$ is defined as follows. For any set of contracts X,

$$
C h_{d}(X)=C h_{c_{1}}(X) \cup C h_{c_{2}}\left(X \backslash Y_{1}\right) \cup \ldots \cup C h_{c_{n}}\left(X \backslash Y_{n-1}\right),
$$

where Y_{i} for $i=1, \ldots, n-1$ is the set of all contracts in X associated with students who have contracts in $C h_{c_{1}}(X) \cup \ldots \cup C h_{c_{i}}\left(X \backslash Y_{i-1}\right)$. In words, we order the schools and let schools choose in that order. Furthermore, if a student is chosen by some school, we remove all contracts associated with this student for the remaining schools.

We study when district admissions rule $C h_{d}$ satisfies our assumptions.
Claim 1. Suppose that for every school c_{i} and matching $X,\left|C h_{c_{i}}(X)\right| \leq q_{c_{i}}$. Then district admissions rule $C h_{d}$ is feasible.

Proof. Since every student-school pair uniquely defines a contract, for every X, every school c_{i}, and every student s, there is at most one contract associated with s in $C h_{c_{i}}(X)$. In addition, whenever a student's contract with a school c_{i} is chosen, her contracts with the remaining schools are included in Y_{j} for every $j \geq i$ by the construction of $C h_{d}$. Hence,

[^13]for every $X, C h_{d}(X)$ is feasible for students. Furthermore, by assumption, $\left|C h_{c_{i}}(X)\right| \leq q_{c_{i}}$ for each c_{i}. Therefore, $C h_{d}$ is feasible.

Claim 2. Suppose that for every school c_{i} and matching $X,\left|C h_{c_{i}}(X)\right|=\min \left\{q_{c_{i}},\left|X_{c_{i}}\right|\right\}$. Then district admissions rule $C h_{d}$ is acceptant.

Proof. Suppose that matching X is feasible for students and $x \in X_{d} \backslash C h_{d}(X)$. There exists $i \leq n$ such that $c_{i}=c(x)$. Since X is feasible for students, $x \in X \backslash Y_{i-1}$ where Y_{i-1} is as defined in the construction of $C h_{d}$. Because $x \in X_{d} \backslash C h_{d}(X), x \notin C h_{c_{i}}\left(X \backslash Y_{i-1}\right)$. Then $\left|C h_{c_{i}}\left(X \backslash Y_{i-1}\right)\right|=q_{c_{i}}$ by assumption, which implies that district admissions rule $C h_{d}$ is acceptant.

Next we study when district admissions rule $C h_{d}$ has a completion that satisfies path independence and LAD. Consider the following district admissions rule $C h_{d}^{\prime}$: For any set of contracts X,

$$
C h_{d}^{\prime}(X)=C h_{c_{1}}(X) \cup \ldots \cup C h_{c_{n}}(X)
$$

Claim 3. Suppose that for every school $c_{i}, C h_{c_{i}}$ satisfies path independence and $L A D$. Then district admissions rule $C h_{d}^{\prime}$ is a completion of $C h_{d}$ and it satisfies path independence and $L A D$.

Proof. To show that $C h_{d}^{\prime}$ is a completion of $C h_{d}$, suppose that X is a set of contracts such that $C h_{d}^{\prime}(X)$ is feasible for students. By mathematical induction, we show that $C h_{c_{i}}(X)=$ $C h_{c_{i}}\left(X \backslash Y_{i-1}\right)$ for $i=1, \ldots, n$ where Y_{i} is defined as above for $i>1$ and $Y_{0}=\emptyset$. The claim trivially holds for $i=1$. Suppose that it also holds for $1, \ldots, i-1$. We show the claim for i. Since $C h_{d}^{\prime}(X)$ is feasible for students, $C h_{c_{i}}(X)$ and $C h_{c_{1}}(X) \cup \ldots \cup C h_{c_{i-1}}(X)$ do not have any contracts associated with the same student. Therefore, $C h_{c_{i}}(X) \cap Y_{i-1}=\emptyset$. Since $C h_{c_{i}}$ is path independent, $C h_{c_{i}}(X)=C h_{c_{i}}\left(X \backslash Y_{i-1}\right) 4^{24}$ As a result, $C h_{d}(X)=C h_{d}^{\prime}(X)$, which completes the proof that $C h_{d}^{\prime}$ is a completion of $C h_{d}$.

Since all school admissions rules satisfy path independence and LAD, so does $C h_{d}^{\prime}$.
All of the assumptions on school admissions rules stated in Claims 1, 2, and 3are satisfied when school admissions rules are responsive: Each school has a ranking of contracts associated with itself. From any given set of contracts, each school chooses contracts with the highest rank until the capacity of the school is full or there are no more contracts left. Responsive admissions rules satisfy path independence and LAD. Furthermore, for every school $c_{i},\left|C h_{c_{i}}(X)\right|=\min \left\{q_{c_{i}},\left|X_{c_{i}}\right|\right\} .^{25}$ By the claims stated above, when school admissions rules are responsive, district admissions rule $C h_{d}$ is feasible and acceptant, and it has a completion that satisfies path independence and LAD.

[^14]Based on these results, we provide examples of district admissions rules that rules that further satisfy additional assumptions considered in different parts of our paper.
B.2. District Admissions Rules Satisfying the Assumptions in Theorem 1. We use the district admissions rule construction above and we further specify each school's admissions rule. Each school has a responsive admissions rule. If a student is initially matched with a school, then her contract with this school is ranked higher than contracts of students who are not initially matched with the school. As before, district admissions rule $C h_{d}$ is feasible and acceptant, and it has a completion that satisfies path independence and LAD.

Claim 4. District admissions rule $C h_{d}$ respects the initial matching.
Proof. Let $x=(s, d, c)$ be the initial matching of student s. By construction, for any matching X that is feasible for students, $x \in X$ implies $x \in C h_{d}(X)$ because c chooses x from any set of contracts and s does not have any other contract in X. Therefore, $C h_{d}$ respects the initial matching.
B.3. District Admissions Rules Satisfying the Assumptions in Theorem 2, We modify the district admissions rule construction in Appendix B.1. Each school has a ranking of contracts associated with itself. When it is the turn of a school, it accepts contracts that have the highest rank until the capacity of the school is full or the number of contracts chosen by the district is k_{d} or there are no more contracts left. The remaining contracts of a chosen student are removed.

District admissions rule $C h_{d}$ is feasible because no school admits more students than its capacity and no student is admitted to more than one school.

Claim 5. District admissions rule $C h_{d}$ is acceptant.
Proof. To show acceptance, suppose that matching X is feasible for students and $x \in X_{d} \backslash$ $C h_{d}(X)$. There exists $i \leq n$ such that $c_{i}=c(x)$. Since X is feasible for students, $x \in X \backslash Y_{i-1}$ where Y_{i-1} is the set of all contracts in X associated with students who are chosen by schools c_{1}, \ldots, c_{i-1}. Because $x \in X_{d} \backslash C h_{d}(X), x$ is not chosen by c_{i}. Then, by construction, either c_{i} fills its capacity or the district admits k_{d} students, both of which imply that $C h_{d}$ is acceptant.

Claim 6. District admissions rule $C h_{d}$ has a completion that satisfies substitutability and LAD.
Proof. First, we construct a completion of $C h_{d}$. Define the following district admissions rule: Given a set of contracts X, when it is the turn of a school, it chooses from all the contracts in X. Each school chooses contracts using the same priority order until the school capacity is full or the district has k_{d} contracts or there are no more contracts left. Denote
this admissions rule by $C h_{d}^{\prime}$. Suppose that $C h_{d}^{\prime}(X)$ is feasible for students. Then, by construction, $C h_{d}^{\prime}(X)=C h_{d}(X)$. Therefore, $C h_{d}^{\prime}$ is a completion of $C h_{d}$.

Next, we show that $C h_{d}^{\prime}$ satisfies LAD. Suppose that $Y \supseteq X$. Every school c_{i} chooses weakly more contracts from Y than X unless the number of contracts chosen from Y by the district reaches k_{d}. Since the number of chosen contracts from X cannot exceed k_{d} by construction, $C h_{d}^{\prime}$ satisfies LAD.

Finally, we show that $C h_{d}^{\prime}$ satisfies substitutability. Suppose that $x \in X \subseteq Y$ and $x \in C h_{d}^{\prime}(Y)$. Therefore, the number of contracts chosen from Y by schools preceding $c(x)$ is strictly less than k_{d}. This implies that the number of contracts chosen from X by schools preceding $c(x)$ is weakly less than this number as weakly more contracts are chosen by schools preceding school $c(x)$ in Y than X. As a result, for school $c(x)$, weakly more contracts can be chosen from X than Y.

The ranking of contract x among Y in the ranking of school $c(x)$ is high enough that it is chosen from set Y. Therefore, the ranking of contract x among X in the ranking of school $c(x)$ must be high enough to be chosen from set X because weakly more contracts can be chosen from X than Y for school $c(x)$.

Furthermore, by construction, district admissions rule $C h_{d}$ never chooses more than k_{d} students. Therefore, it is also rationed.

B.4. District Admissions Rules Satisfying the Assumptions in Theorem 3. District ad-

 missions rules can accommodate unmatched students by reserving seats for different types of students:Definition 8. A district admissions rule $C h_{d}$ has a reserve of r_{d}^{t} for type-t students if, for any feasible matching X that does not have any contract associated with type-t student s, if $\left|\left\{x \in X_{d} \mid \tau(s(x))=t\right\}\right|<r_{d}^{t}$, then there exists $x=(s, d, c) \in \mathcal{X}$ such that $x \in C h_{d}(X \cup\{x\})$.

A reserve for a student type guarantees space for this type at some school in the district ${ }^{26}$ Therefore, when a student is unmatched and the reserve for her type is not yet filled in the district, the district will accept this student at some school if she applies with the corresponding contract. Note that this definition does not imply that the reserves will always be filled when there are enough applicants of the corresponding type. This may not be the case, for example, when all students apply to the same school. The condition guarantees that an unmatched student will be accepted at some school if she applies there.

[^15]Claim 7. Suppose that districts have admissions rules with reserves such that $\sum_{t} r_{d}^{t}=k_{d}$ for every district d and $\sum_{d} r_{d}^{t}=k^{t}$ for every type t. Then district admissions rules accommodate unmatched students.

Proof. Suppose that student s is unmatched at a feasible matching X. Let $t \equiv \tau(s)$. Then there exists a district d such that the number of type- t students in d at X is strictly less than r_{d}^{t}. By definition of reserves, there exists a contract $x=(s, d, c)$ such that $x \in C h_{d}(X \cup$ $\{x\}$).

A district can reserve its seats for types in different ways. In the rest of this example, we use school admissions rules with reserves introduced by Hafalir et al. (2013) to construct a general example in which a district has type-specific reserves. Each school reserves some of its seats for every type of student. Let $r_{c_{i}}^{t}$ be the number of seats reserved by school c_{i} for type- t students. Suppose that the type-specific ceilings are given and they satisfy the assumptions in Section 3.3. Furthermore, for every district d, assume that $\sum_{t} r_{d}^{t}=k_{d}$, $\sum_{d} r_{d}^{t}=k^{t}$ and, for every type $t, r_{d}^{t} \leq q_{d}^{t}$. We set the reserves at each school so that, for every district d,

$$
\begin{aligned}
\sum_{d\left(c_{i}\right)=d} r_{c_{i}}^{t} & =r_{d}^{t}, \text { for every type } t, \text { and } \\
\sum_{t} r_{c_{i}}^{t} & \leq q_{c_{i}} \text { for every school } c_{i}
\end{aligned}
$$

This is possible because the sum of capacities of schools in d is weakly greater than k_{d}.
Consider the following district admissions rule. Each school has a ranking of contracts associated with itself. Schools are ordered. When it is the turn of a school all contracts of students chosen previously are removed. First, schools choose contracts for its reserved seats in the specified order so that, for every type, either reserved seats are filled or there are no more contracts of students of that type remaining. Then schools choose from the remaining contracts to fill the rest of their seats in the specified order until the school capacity is filled or the district has k_{d} contracts or district ceilings are filled or there are no more remaining contracts. Denote this district admissions rule by $C h_{d}$.

District admissions rule $C h_{d}$ is feasible because a student cannot have more than one contract and a school cannot have more contracts than its capacity at any chosen set. It is also weakly acceptant and rationed by construction. Furthermore, for every type t, it cannot admit more than q_{d}^{t} students, so it has a ceiling of q_{d}^{t} for type- t students.

Claim 8. District admissions rule $C h_{d}$ has a completion that satisfies substitutability and $L A D$.
Proof. Use the same construction as above, i.e., the construction of $C h_{d}$, but do not remove contracts of students who are chosen previously. Denote this district admissions rule by
$C h_{d}^{\prime}$. To show that $C h_{d}^{\prime}$ is a completion of $C h_{d}$, suppose that $C h_{d}^{\prime}(X)$ is feasible for students for some X. Since the only difference in the constructions of $C h_{d}$ and $C h_{d}^{\prime}$ is the removal of contracts of previously chosen students, it must be that $C h_{d}^{\prime}(X)=C h_{d}(X)$. Therefore, $C h_{d}^{\prime}$ is a completion of $C h_{d}$.

To show substitutability, let $x \in X \subseteq Y$ and $x \in C h_{d}^{\prime}(Y)$. Let $c \equiv c(x)$. If contract x was chosen from Y at the first stage because of reserves, then it is also chosen from X at the first stage because of reserves since X is a subset of Y. Likewise, if x is chosen from Y at the second stage, then x is chosen from X either at the first or second stage. Thus, $C h_{d}^{\prime}$ is substitutable.

To show LAD, let $X \subseteq Y$. If $\left|C h_{d}^{\prime}(X)\right|=k_{d}$, then $\left|C h_{d}^{\prime}(Y)\right|=k_{d}$ as well. If $\left|C h_{d}^{\prime}(Y)\right|=k_{d}$, then LAD holds. Consider the case when $\left|C h_{d}^{\prime}(X)\right|,\left|C h_{d}^{\prime}(Y)\right|<k_{d}$. In this case, $C h_{d}^{\prime}$ can be written as the union of choice rules of schools where each school c_{i} in the district has a reserve of $r_{c_{i}}^{t}$ for type t and where the schools stop accepting a type of a student as soon as the ceiling of the type is filled in the district. We show by mathematical induction that the number of contracts chosen by the first i schools from Y is weakly greater than that of X. LAD proof to be completed...

Claim 9. District admissions rule $C h_{d}$ accommodates unmatched students.
Proof. If X is a feasible matching that does not have any contract associated with type- t student s and $\left|\left\{x \in X_{d} \mid \tau(s(x))=t\right\}\right|<r_{d}^{t}$ there exists a school c_{i} such that the number of type- t students in school c_{i} at X is less than $r_{c_{i}}^{t}$. Let $x=\left(s, d, c_{i}\right)$. Then $x \in C h_{d}(X \cup\{x\})$ by the construction of $C h_{d}$. Therefore, $C h_{d}$ has a reserve of r_{d}^{t} for type- t students. As a result, district admissions rules accommodate unmatched students.
B.5. District Admissions Rules Satisfying the Assumptions in Theorem6. Consider the district admissions rule construction in Appendix B.1. In this example, let each school use a priority ranking in such a way that all contracts of students from district d are ranked higher than the other contracts.

Claim 10. District admissions rule $C h_{d}$ favors own students.
Proof. Suppose that X is feasible for students. When it is the turn of school c_{i}, it considers $X_{c_{i}}$. Therefore, $C h_{d}(X)=C h_{c_{1}}\left(X_{c_{1}}\right) \cup \ldots \cup C h_{c_{k}}\left(X_{c_{k}}\right)$. Furthermore, $C h_{c_{i}}\left(X_{c_{i}}\right) \supseteq$ $C h_{c_{i}}\left(\left\{x \in X_{c_{i}} \mid d(s(x))=d\right\}\right)$ by construction. Taking the union of all subset inclusions yields $C h_{d}(X) \supseteq C h_{d}\left(\left\{x \in X_{d} \mid d(s(x))=d\right\}\right)$. Therefore, $C h_{d}$ favors own students.

Appendix C. Omitted Proofs

In this appendix, we include the omitted proofs.

Proof of Theorem 1. First, suppose that all district admissions rules respect the initial matching. In SPDA, each student s goes down in her preference order, and either SPDA ends before student s reaches her initial school (which is a preferred outcome than the initial school), or student s reaches her initial school. In the latter case, she is matched with her initial school because the district's admissions rule respects the initial matching and the district always considers a set of contracts that is feasible for students at any step of SPDA. From this step on, the district accepts this contract, so student s is matched with her initial school. Therefore, SPDA satisfies individual rationality.

To prove the second statement, suppose that there exists a district d with an admissions rule that fails to respect the initial assignment. Hence, there exists a matching X, which is feasible for students, that includes $x=(s, d, c)$ where school c is the initial school of student s and $x \notin C h_{d}(X)$. Now, consider student preferences such that every student associated with a contract in X_{d} prefers that contract the most and all other students prefer a contract associated with a different district the most. Then, at the first step of SPDA, district d considers matching X_{d} and tentatively accepts $C h_{d}\left(X_{d}\right)$. Since $x \notin C h_{d}\left(X_{d}\right)$, contract x is rejected at the first step. Therefore, student s is matched with a less preferred school than her initial matching school, which implies that SPDA does not satisfy individual rationality.

Proof of Theorem 2. We first prove that when each district admissions rule is rationed, then SPDA satisfies the balanced-exchange policy. Let μ be the matching produced by SPDA for a given preference profile. We show that each student must be matched with a school in μ using acceptance.

Suppose, for contradiction, that student s is unmatched. Since μ is a stable matching, every contract $x=(s, d, c)$ associated with the student is rejected by the corresponding district, i.e., $x \notin C h_{d}(\mu \cup\{x\})$. Otherwise, student s and district d would like to match with each other using contract x contradicting stability of matching μ. Since $\mu \cup\{x\}$ is feasible for students, acceptance implies that, for every district d, either every school in the district is full or that the district has at least k_{d} students at matching μ. Both of them imply that the district has at least k_{d} students in matching μ since the sum of the school capacities in district d is at least k_{d}. But this is a contradiction to the assumption that student s is unmatched since the existence of an unmatched student implies that there is at least one district d such that the number of students in μ_{d} is less than k_{d}. Therefore, all students are matched in μ.

Because μ is the outcome of SPDA, it is feasible for students. Therefore, because district admissions rules are rationed, the number of students in district d cannot be more than k_{d} for every district d. Furthermore, since every student is matched, the number of students
in district d must be exactly k_{d} because, otherwise, at least one student would have been unmatched. As a result, SPDA satisfies the balanced-exchange policy.

Next, we prove that if at least one district's admissions rule fails to be rationed, then there exists a student preference profile under which SPDA does not satisfy the balancedexchange policy. Suppose that there exist district d and a matching X, which is feasible for students, such that $\left|C h_{d}(X)\right|>k_{d}$. Consider a feasible matching X^{\prime} where (i) all students are matched, (ii) $X_{d}^{\prime}=C h_{d}(X)$, and (iii) for every district $d^{\prime} \neq d,\left|X_{d^{\prime}}^{\prime}\right| \leq k_{d^{\prime}}$. The existence of such X^{\prime} is guaranteed since every district has enough capacity to serve its students (i.e., for every district $\left.d^{\prime}, \sum_{c: d(c)=d^{\prime}} q_{c} \geq k_{d^{\prime}}\right)$, and $\left|C h_{d}(X)\right|>k_{d}$. Now, consider any student preferences such that every student likes her contract in X^{\prime} the most.

We show that SPDA stops in the first step. For district $d^{\prime} \neq d, X_{d^{\prime}}^{\prime}$ is feasible and the number of students is weakly less than $k_{d^{\prime}}$. Since $C h_{d^{\prime}}$ is acceptant, $C h_{d^{\prime}}\left(X_{d^{\prime}}^{\prime}\right)=X_{d^{\prime}}^{\prime}$. For district d, we need to show that $C h_{d}\left(X_{d}^{\prime}\right)=X_{d}^{\prime}$, which is equivalent to $C h_{d}\left(C h_{d}(X)\right)=C h_{d}(X)$. Let $C h_{d}^{\prime}$ be a completion of $C h_{d}$ that satisfies path independence. Because X and $C h_{d}(X)$ are feasible for students, $C h_{d}^{\prime}(X)=C h_{d}(X)$ and $C h_{d}^{\prime}\left(C h_{d}^{\prime}(X)\right)=C h_{d}\left(C h_{d}(X)\right)$. Furthermore, since $C h_{d}^{\prime}$ is path independent, $C h_{d}^{\prime}\left(C h_{d}^{\prime}(X)\right)=C h_{d}^{\prime}(X)$, which implies $C h_{d}\left(C h_{d}(X)\right)=$ $C h_{d}(X)$. As a result, $C h_{d}\left(X_{d}^{\prime}\right)=X_{d}^{\prime}$. Therefore, SPDA stops at the first step since no contract is rejected.

Since SPDA stops at the first step, the outcome is matching X^{\prime}. But matching X^{\prime} fails the balanced-exchange policy because $\left|X_{d}^{\prime}\right|=\left|C h_{d}(X)\right|>k_{d}$.

Proof of Theorem 3. Recall that for any matching X, the number of type- t students in district d is denoted by $\xi_{d}^{t}(X)$. We say that a feasible matching X is legitimate if (i) every student is matched at X, (ii) X is rationed, and (iii) for each type t and district d, we have $\xi_{d}^{t}(X) \leq q_{d}^{t}$. We use this definition while proving this Theorem.

To prove this result, we provide the following lemmas.
Lemma 1. If district admissions rules accommodate unmatched students, every student is matched to a school in SPDA.

Proof of Lemma 1. Let μ be the outcome of SPDA for some preference profile. Suppose, for contradiction, that student s is unmatched. Since μ is a stable matching and student s prefers any contract $x=(s, d, c)$ to being unmatched, $x \notin C h_{d}(\mu \cup\{x\})$. But this is a contradiction to the assumption that district admissions rules accommodate unmatched students.

Lemma 2. For each $t \in \mathcal{T}, d \in \mathcal{D}$, and for all legitimate matchings X, we have $\xi_{d}^{t}(X) \geq \hat{p}_{d^{\prime}}^{t}$ and $\xi_{d}^{t}(X) \leq \hat{q}_{d}^{t}$. Moreover, for each $t \in \mathcal{T}, d \in \mathcal{D}$, there exists a legitimate matching X, where $\xi_{d}^{t}(X)=\hat{p}_{d}^{t}$ and there exists a legitimate matching X, where $\xi_{d}^{t}(X)=\hat{q}_{d}^{t}$.

Proof of Lemma 2. This simply follows from capacity scaling algorithm of Edmonds and Karp (1972).

Lemma 3. For each $t \in \mathcal{T}$ and $d, d^{\prime} \in \mathcal{D}$ with $d \neq d^{\prime}$, there exists a legitimate matching X where $\xi_{d}^{t}(X)=\hat{q}_{d}^{t}$ and $\xi_{d^{\prime}}^{t}(X)=\hat{p}_{d^{\prime}}^{t}$.
Proof of Lemma 3. Let \hat{X} be some legitimate matching such that $\xi_{d}^{t}(\hat{X})=\hat{q}_{d}^{t}$, and \mathcal{M}_{0} be the set of all legitimate matchings. Let

$$
\begin{aligned}
& \mathcal{M}_{1}=\left\{X \in \mathcal{M}_{0} \mid \xi_{d^{\prime}}^{t}(X)=\hat{p}_{d^{\prime}}^{t}\right\} \\
& \mathcal{M}_{2}=\left\{X \in \mathcal{M}_{1} \mid \xi_{d}^{t}(X) \geq \xi_{d}^{t}\left(X^{\prime}\right) \text { for every } X^{\prime} \in \mathcal{M}_{1}\right\} \\
& \mathcal{M}_{3}=\left\{X \in \mathcal{M}_{2}\left|\sum_{t, d}\right| \xi_{d}^{t}(X)-\xi_{d}^{t}(\hat{X})\left|\leq \sum_{t, d}\right| \xi_{d}^{t}\left(X^{\prime}\right)-\xi_{d}^{t}(\hat{X}) \mid \text { for every } X^{\prime} \in \mathcal{M}_{2}\right\}
\end{aligned}
$$

First, note that all these sets are well-defined and nonempty. We wish to show that for any $X \in \mathcal{M}_{3}, \xi_{d}^{t}(X)=\xi_{d}^{t}(\hat{X})=\hat{q}_{d}^{t}$.

For the sake of contradiction, assume that for some $X \in \mathcal{M}_{3}, \xi_{d}^{t}(X) \neq \xi_{d}^{t}(\hat{X})$. By Lemma 2. this means that $\xi_{d}^{t}(X)<\xi_{d}^{t}(\hat{X})$. Since X and \hat{X} are both legitimate-thus row- and column- sums for X and \hat{X} are identical to each other for each row and column-this means there exists t_{1} such that $\xi_{d}^{t_{1}}(X)>\xi_{d}^{t_{1}}(\hat{X})$. Similarly, this means there exists d_{1} such that $\xi_{d_{1}}^{t_{1}}(X)<\xi_{d_{1}}^{t_{1}}(\hat{X})$. Recursively we can define $t_{2}, d_{2}, t_{3}, d_{3}$ and so on. While defining $t_{i}{ }^{\prime}$ s and d_{i} 's, since we have finitely many t^{\prime} 's and d^{\prime} 's, we would have to have either $d_{i}=d_{j}$ or $t_{i}=t_{j}$ for some $i<j$. When $d_{i}=d_{j}$, we choose $t_{i+1}=t_{j+1}$.

Consider the first time $t_{i}=t_{j}$ for $i<j$. Then we have,

$$
\begin{aligned}
& \xi_{d_{i} t_{i}}(X)<\xi_{d_{i}}^{t_{i}}(\hat{X}), \\
& \xi_{d_{i}}^{t_{i+1}}(X)>\xi_{d_{i}}^{t_{i+1}}(\hat{X}), \\
& \ldots \\
& \xi_{d_{j-1}}^{t_{j}}(X)>\xi_{d_{j-1}}^{t_{j}}(\hat{X}) .
\end{aligned}
$$

Then we argue that there exists a quota abiding matching \tilde{X} where
$\xi_{d_{i}}^{t_{i}}(\tilde{X})=\xi_{d_{i}}^{t_{i}}(X)+1$,
$\xi_{d_{i}}^{t_{i+1}}(\tilde{X})=\xi_{d_{i}}^{t_{i+1}}(X)-1$,
...
$\xi_{d_{j-1}}^{t_{j}}(\tilde{X})=\xi_{d_{j-1}}^{t_{j}}(X)-1$,
and
$\xi_{d^{\prime}}^{t^{\prime}}(\tilde{X})=\xi_{d^{\prime}}^{t^{\prime}}(X)$ for all $\left(d^{\prime}, t^{\prime}\right) \neq\left(d_{i}, t_{i}\right), \ldots,\left(d_{j-1}, t_{j-1}\right)$.
This is true because (i) between \tilde{X} and X, for each row (or column), the sum of the entries over that row is unchanged because either none of the entries of that row has been changed from X or exactly two entries have been changed from X, with one of the entries increasing by one and the other decreasing by one, and (ii) for each $t, d, 0 \leq \min \left(\xi_{d}^{t}(\tilde{X}), \xi_{d}^{t}(X)\right) \leq$
$\xi_{d}^{t}(\tilde{X})$, and $\xi_{d}^{t}(\tilde{X}) \leq \max \left(\xi_{d}^{t}(\tilde{X}), \xi_{d}^{t}(X)\right) \leq q_{d}^{t}$. Moreover, $\tilde{X} \in \mathcal{M}_{1}$ since by construction the $\left(t, d^{\prime}\right)$ entry is not increased from X when constructing \tilde{X}, and $\xi_{d}^{t}(\tilde{X}) \geq \xi_{d}^{t}(X)$ since by construction of \tilde{X}, either $\xi_{d}^{t}(\tilde{X})=\xi_{d}^{t}(X)$, or $\xi_{d}^{t}(\tilde{X})=\xi_{d}^{t}(X)+1$. This implies that $\tilde{X} \in \mathcal{M}_{2}$. Lastly, $\sum_{t, d}\left|\xi_{d}^{t}(\tilde{X})-\xi_{d}^{t}(\hat{X})\right|<\sum_{t, d}\left|\xi_{d}^{t}(X)-\xi_{d}^{t}(\hat{X})\right|$ since for every t, d, we have either $\left|\xi_{d}^{t}(\tilde{X})-\xi_{d}^{t}(\hat{X})\right|=\left|\xi_{d}^{t}(X)-\xi_{d}^{t}(\hat{X})\right|$, or $\left|\xi_{d}^{t}(\tilde{X})-\xi_{d}^{t}(\hat{X})\right|=\left|\xi_{d}^{t}(X)-\xi_{d}^{t}(\hat{X})\right|-1$ (where the latter is true for at least one t, d) by construction. This contradicts the fact that $X \in \mathcal{M}_{3}$. Thus, there exists a legitimate matching X where $\xi_{d}^{t}(X)=\hat{q}_{d}^{t}$ and $\xi_{d^{\prime}}^{t}(X)=\hat{p}_{d^{\prime}}^{t}$.

Now we are ready to prove the theorem. The first part follows from Lemmas 1 and 2 Specifically, by Lemma 1 SPDA produces a legitimate matching. Therefore, by Lemma 2 , we have $\hat{p}_{d}^{t} \leq \xi_{d}^{t}(X) \leq \hat{q}_{d}^{t}$ for all $t \in \mathcal{T}$ and $d \in \mathcal{D}$. For each school district d, hence, the maximum proportion of type- t students that can be admitted is \hat{q}_{d}^{t} / k_{d} and the minimum proportion of type t students that can be admitted is \hat{p}_{d}^{t} / k_{d}. Therefore, the ratio difference of type- t students in any two districts is at most $\max _{d \neq d^{\prime}}\left\{\left(\hat{q}_{d}^{t} / k_{d}-\hat{p}_{d^{\prime}}^{t} / k_{d^{\prime}}\right)\right\}$. We conclude that the α-diversity policy is achieved when $\hat{q}_{d}^{t} / k_{d}-\hat{p}_{d^{\prime}}^{t} / k_{d^{\prime}} \leq \alpha$ for every t, d, and d^{\prime}.

The second part of the theorem follows from Lemma3. Suppose that $\hat{q}_{d}^{t} / k_{d}-\hat{p}_{d^{\prime}}^{t} / k_{d^{\prime}}>\alpha$ for some t, d, and d^{\prime}. From Lemma 3, we know the existence of a legitimate matching X where $\xi_{d}^{t}(X)=\hat{q}_{d}^{t}$ and $\xi_{d^{\prime}}^{t}(X)=\hat{p}_{d^{\prime}}^{t}$. Consider a student preference profile where each student prefers her contract in X the most. Then, since the admissions rules are weakly acceptant, SPDA ends at the first step. Thus matching X is the outcome and, therefore, the α-diversity is not satisfied.

Proof of Theorem 5. Suzuki et al. (2017) study a setting in which each student is initially endowed with a school and there are no constraints associated with student types, that is, when there is just one type. In that setting, they show that if the distribution is Mconvex, then their mechanism, called TTC-M, satisfies constrained efficiency, individual rationality, strategy-proofness, and the policy goal. To adapt their result to our setting, consider the hypothetical matching problem that we have introduced before the definition of TTC in which each student is endowed with a school-type pair and each student has strict preferences over all school-type pairs. It is straightforward to verify that this hypothetical market satisfies all the conditions assumed by Suzuki et al. (2017). In particular, M-convexity of $\Xi \cap \Xi^{0}$ holds by assumption. Therefore, TTC-M in this market satisfies constrained efficiency, individual rationality, strategy-proofness, and the policy goal.
We note that the outcome of our TTC is isomorphic to the outcome of TTC-M in the hypothetical market in the following sense. Student s is allocated to contract (s, c) under preference profile $P=\left(P_{s}\right)_{s \in \mathcal{S}}$ at the outcome of the TTC mechanism if and only if student
s is allocated to the school-type pair (c, t) under preference profile $\tilde{P}=\left(\tilde{P}_{s}\right)_{s \in \mathcal{S}}$ at TTC-M in the hypothetical market.

To show constrained efficiency, let X be the outcome of TTC and, for each student $s \in \mathcal{S}$, let $\left(s, c_{s}\right)$ be the contract associated with student s at matching X. Suppose, for contradiction, that there exists a feasible matching X^{\prime} with $\xi\left(X^{\prime}\right) \in \Xi$ that Pareto dominates matching X. Denoting $X_{s}^{\prime}=\left(s, c_{s}^{\prime}\right)$ for each student $s \in \mathcal{S}$, this implies $\left(s, c_{s}^{\prime}\right) R_{s}\left(s, c_{s}\right)$ for every student $s \in \mathcal{S}$, with at least one relation being strict. Then, by the construction of preferences \tilde{R}_{s} in the hypothetical market, we have $\left(c_{s}^{\prime}, \tau(s)\right) \tilde{R}_{s}\left(c_{s}, \tau(s)\right)$ for every student $s \in \mathcal{S}$, with at least one relation being strict. Moreover, because matching X^{\prime} is feasible in the original problem, $Y^{\prime}=\left\{\left(c_{s}^{\prime}, \tau(s)\right) \mid\left(s, c_{s}^{\prime}\right) \in X^{\prime}\right\}$ is feasible in the hypothetical problem, and $Y=\left\{\left(c_{s}, \tau(s)\right) \mid\left(s, c_{s}\right) \in X\right\}$ is the result of TTC-M. This is a contradiction to the result in Suzuki et al. (2017) that TTC-M is constrained efficient.

To show individual rationality, let matching X be the outcome of TTC and, for each student $s \in \mathcal{S}$, let $X_{s}=\left(s, c_{s}\right)$ be the contract associated with student s at matching X. Additionally, let $Y=\left\{\left(c_{s}, \tau(s)\right) \mid\left(s, c_{s}\right) \in X\right\}$ be the result of TTC-M in the hypothetical market. Suzuki et al. (2017) establish that TTC-M is individually rational, so ($\left.c_{s}, \tau(s)\right) \tilde{R}_{s}$ $\left(c_{0}(s), \tau(s)\right)$ for every $s \in \mathcal{S}$, where $c_{0}(s)$ denotes the initial match for student s. By the construction of \tilde{R}_{s}, this relation implies $\left(s, c_{s}\right) R_{s}\left(s, c_{0}(s)\right)$ for every student $s \in \mathcal{S}$, which means X is individually rational in the original problem.

To show strategy-proofness, in the original market, let s be a student, t her type, P_{-s} the preference profile of students other than student s, P_{s} the true preference of student s, and P_{s}^{\prime} a misreported preference of student s. Furthermore, let c and c^{\prime} be schools assigned to student s under $\left(P_{s}, P_{-s}\right)$ and $\left(P_{s}^{\prime}, P_{-s}\right)$ for TTC, respectively. Note that the previous argument establishes that, in the hypothetical market, student s is allocated to (c, t) and $\left(c^{\prime}, t\right)$ under $\left(\tilde{P}_{s}, \tilde{P}_{-s}\right)$ and $\left(\tilde{P}_{s}^{\prime}, \tilde{P}_{-s}^{\prime}\right)$, respectively. Because TTC-M is strategy-proof, it follows that $(c, t) \tilde{P}_{s}\left(c^{\prime}, t\right)$ or $c=c^{\prime}$. By the construction of \tilde{P}_{s}, this relation implies $(s, c) P_{s}\left(s, c^{\prime}\right)$ or $(s, c)=\left(s, c^{\prime}\right)$, establishing strategy-proofness of TTC in the original market.

The result that TTC satisfies the policy goal follows from the result in Suzuki et al. (2017) that the distribution corresponding to the TTC-M outcome is in $\Xi \cap \Xi^{0}$.

Proof of Corollary 1 We show that when the policy goal Ξ is M-convex, so is $\Xi \cap \Xi^{0}$. Then the result follows immediatelfy from Theorem 5 ,

Suppose that $\xi, \tilde{\xi} \in \Xi \cap \Xi^{0}$ such that $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ for some school c and type t. Since Ξ is M-convex and $\xi, \tilde{\xi} \in \Xi$ there exist school c^{\prime} and type t^{\prime} such that $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi$ and $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in \Xi$. We need to show that $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi^{0}$ and $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in \Xi^{0}$ as well.

Because $\xi \in \Xi^{0}$, the number of students assigned in ξ is $\sum_{d} k_{d}$. Therefore, the number of students assigned in $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is also $\sum_{d} k_{d}$. Furthermore, $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi$
implies that the number of students in a school at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is less than or equal to the capacity of the school. These two results imply that $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi^{0}$. Similarly, $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in \Xi^{0}$.

Proof of Corollary 2 Suppose that the diversity policy Ξ sets a floor and ceiling for each type at each school. We show that $\Xi \cap \Xi^{0}$ is an M-convex set. The set $\Xi \cap \Xi^{0}$ can be represented as $\left\{\xi \mid \forall c, t q_{c}^{t} \geq \xi_{c}^{t} \geq p_{c}^{t}, \forall c q_{c} \geq \sum_{t} \xi_{c}^{t}\right.$ and $\left.\sum_{c, t} \xi_{c}^{t}=\sum_{d} k_{d}\right\}$.

Suppose that there exist $\xi, \tilde{\xi} \in \Xi \cap \Xi^{0}$ such that $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$. To show M-convexity, we need to find school c^{\prime} and type t^{\prime} with $\xi_{c^{\prime}}^{t^{\prime}}<\tilde{\xi}_{c^{\prime}}^{t^{\prime}}$ such that (1) $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$ and (2) $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$. To show both conditions, we look at two possible cases depending on whether $c^{\prime}=c$ or not.

Case 1: First consider the case when there exists type t^{\prime} such that $\xi_{c}^{t^{\prime}}<\tilde{\xi}_{c}^{t^{\prime}}$. We prove (1) that $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$. Since $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ assigns the same total number of students at school c as ξ, the capacity constraint at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$. Furthermore, the number of students assigned to any school in $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ is the same as ξ, which means that all students are assigned. Next, because $\xi_{c}^{t}-1 \geq \tilde{\xi}_{c}^{t} \geq p_{c}^{t}$ (the former inequality comes from the assumption $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$, and the latter comes from the fact that $\tilde{\xi} \in \Xi$, the floor for type t at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$. Next, $\xi \in \Xi$ and $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ imply $q_{c}^{t} \geq \xi_{c}^{t} \geq \tilde{\xi}_{c}^{t}+1$. Therefore, the ceiling for type t at school c in $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ is satisfied.

The floor for type t^{\prime} at school c is satisfied for $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ because $\xi_{c}^{t^{\prime}}+1 \geq \xi_{c}^{t^{\prime}} \geq p_{c}^{t^{\prime}}$ (the former inequality is obvious, and the latter comes from the fact $\xi \in \Xi$). Similarly, the ceiling for type t^{\prime} at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ because $q_{c}^{t} \geq \tilde{\xi}_{c}^{t^{\prime}} \geq \xi_{c}^{t^{\prime}}+1$.

No other coefficients changed between ξ and $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$, so all other constraints are satisfied at the latter distribution. Therefore, (1) is satisfied.

The proof that (1) is satisfied follows from the facts that $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ and $\xi_{c}^{t^{\prime}}<\tilde{\xi}_{c}^{t^{\prime}}$. By changing the roles of t with t^{\prime} and ξ with $\tilde{\xi}$ in the preceding argument, we get the implication of (1) that $\tilde{\xi}-\chi_{c, t^{\prime}}+\chi_{c, t} \in \Xi \cap \Xi^{0}$. But this is exactly (2).

Case 2: In this case, $c^{\prime} \neq c$ for every $\left(c^{\prime}, t^{\prime}\right)$ such that $\xi_{c^{\prime}}^{t^{\prime}}<\tilde{\xi}_{c^{\prime}}^{t^{\prime}}$. Then, $\xi_{c}^{t^{\prime}} \geq \tilde{\xi}_{c}^{t^{\prime}}$ for every $t^{\prime} \neq t$. In particular, the total number of students assigned to school c at ξ is strictly larger than at $\tilde{\xi}$. Because everyone is matched with some school by assumption, these imply that, without loss of generality, there exists school c^{\prime} such that the total number of students matched at c^{\prime} is strictly larger at $\tilde{\xi}$ than at ξ. In addition, there exists type t^{\prime} such that $\tilde{\xi}_{c^{\prime}}^{t^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}$.

Now we proceed to show condition (1) for this case. To do so, we first note that $\xi-$ $\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ assigns the same number of students as in ξ, so all students are assigned in $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. Furthermore, it assigns a smaller number of students at school c than ξ, so the capacity constraint at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. Likewise, $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$
assigns a weakly smaller number of students at c^{\prime} than $\tilde{\xi}$ does, so the capacity constraint at school c^{\prime} is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$.

Next we check that the type-specific floors at schools are satisfied. Because $\xi_{c}^{t}-1 \geq \tilde{\xi}_{c}^{t} \geq$ p_{c}^{t} (the first inequality follows from the assumption $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ and the second from the fact that $\tilde{\xi} \in \Xi$), the floor for type t at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. For type t^{\prime} at school c^{\prime}, we have $\xi_{c^{\prime}}^{t^{\prime}}+1 \geq \xi_{c^{\prime}}^{t^{\prime}} \geq p_{c^{\prime}}^{t^{\prime}}$ (the first inequality is obvious and the second follows from the fact that $\xi \in \Xi)$, so the floor for type t^{\prime} at school c^{\prime} is satisfied for $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$.

Now we check that the type-specific ceilings at schools are satisfied. Since $q_{c}^{t} \geq \xi_{c}^{t}>\xi_{c}^{t}-1$ (because $\xi \in \Xi$), the ceiling for type t at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. For type t^{\prime} at school c^{\prime}, we have $q_{c^{\prime}}^{t^{\prime}} \geq \tilde{\xi}_{c^{\prime}}^{t^{\prime}} \geq \xi_{c^{\prime}}^{t^{\prime}}+1$ (the first inequality follows from the fact that $\tilde{\xi} \in \Xi$ and the second one follows from $\left.\tilde{\xi}_{c^{\prime}}^{t^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}\right)$, so the ceiling for type t^{\prime} at school c^{\prime} is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$.

No other coefficients changed between ξ and $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$, so all other constraints are satisfied at the latter distribution.

The proof that (1) is satisfied follows from the facts that $\xi_{c}^{t}>\tilde{\xi}_{c^{\prime}}^{t} \tilde{\xi}_{c^{\prime}}^{t^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}$, there are more students assigned to school c at ξ than $\tilde{\xi}$, and there are more students assigned to school c^{\prime} at $\tilde{\xi}$ than ξ. If we change the roles of ξ with $\tilde{\xi}, c$ with c^{\prime}, and t with t^{\prime}, then (1) would imply $\tilde{\xi}-\chi_{c^{\prime}, t^{\prime}}+\chi_{c, t} \in \Xi \cap \Xi^{0}$. But this is exactly (2), so we are done. Therefore, $\Xi \cap \Xi^{0}$ is an M-convex set. The result then follows from Theorem 5,

Proof of Corollary 3 Let the set of matchings that satisfy the balanced-exchange policy be denoted by Ξ. Mathematically, Ξ can be written as $\left\{\xi \mid \forall d \sum_{t} \xi_{d}^{t}=k_{d}\right.$ and $\left.\forall c q_{c} \geq \sum_{t} \xi_{c}^{t}\right\}$. We show that Ξ is M-convex.

Suppose that there exist $\xi, \tilde{\xi} \in \Xi$ such that $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$. If there exists t^{\prime} such that $\tilde{\xi}_{c}^{t^{\prime}}>\xi_{c}^{t^{\prime}}$, then the number of students in each district and each school are the same in $\xi, \tilde{\xi}, \xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ and $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}}$ so both (1) $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi$ and (2) $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in \Xi$ are satisfied.

Otherwise, suppose that, for every type $t^{\prime} \neq t, \tilde{\xi}_{c}^{t^{\prime}} \leq \xi_{c}^{t^{\prime}}$. Therefore, there are more students assigned to school c at ξ than $\tilde{\xi}$. Since the number of students assigned to district $d \equiv d(c)$ in ξ and $\tilde{\xi}$ are the same, there exists another school c^{\prime} in district d such that c^{\prime} has more students in $\tilde{\xi}$ than ξ. Furthermore, there exists type t^{\prime} such that $\tilde{\xi}_{c^{\prime}}^{t^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}$.

We first show (1). Since both schools c and c^{\prime} are in district d, the number of students assigned to district d is the same at ξ and $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. Therefore, the number of students assigned to district d at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is k_{d}.

Next we check the school capacity constraints. The number of students assigned to school c at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is one less than the corresponding number at ξ, so the capacity constraint of school c at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is satisfied. Furthermore, the number of students assigned to school c^{\prime} at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is weakly smaller than the corresponding number at $\tilde{\xi}$. Therefore, the capacity constraint of school c^{\prime} at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is also satisfied.

Since the other constraints are the same at ξ and $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$, (1) holds.
Note that the above argument relies on the facts $\xi_{c}^{t}>\tilde{\xi}_{c^{\prime}}^{t} \xi_{c^{\prime}}^{t^{\prime}}<\tilde{\xi}_{c^{\prime}}^{t^{\prime}}$, and $d(c)=d\left(c^{\prime}\right)$. If we switch the roles of c with c^{\prime} and ξ with $\tilde{\xi}$, the implication of (1) is $\tilde{\xi}-\chi_{c^{\prime}, t^{\prime}}+\chi_{c, t} \in \Xi$, which is exactly (2). Therefore, Ξ is M-convex.

The result then follows from Corollary 1 because Ξ is M-convex and no school is assigned more students than its capacity in Ξ.

Proof of Corollary 4 We first show that the set of distributions $\Xi=\left\{\xi \mid \forall c, t q_{c}^{t} \geq \xi_{c}^{t} \geq\right.$ $p_{c}^{t}, \forall c q_{c} \geq \sum_{t} \xi_{c}^{t}$ and $\left.\forall d \sum_{t} \xi_{d}^{t}=k_{d}\right\}$ is an M-convex set.

Suppose that there exist $\xi, \tilde{\xi} \in \Xi$ such that $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$. To show M-convexity, we need to find school c^{\prime} and type t^{\prime} with $\xi_{c^{\prime}}^{t^{\prime}}<\tilde{\xi}_{c^{\prime}}^{t^{\prime}}$ such that (1) $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi$ and (2) $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in$ Ξ. Let $d \equiv d(c)$. To show both conditions, we look at two possible cases depending on whether $c^{\prime}=c$ or not.

Case 1: First consider the case when there exists type t^{\prime} such that $\xi_{c}^{t^{\prime}}<\tilde{\xi}_{c}^{t^{\prime}}$. We prove (1) that $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi$. Since $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ assigns the same total number of students at school c as ξ, the capacity constraint at school c at $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ is satisfied. Furthermore, the number of students assigned to any district in $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ is the same as ξ, which means that the number of students in every district is equal to the number of students who are from there. Next, because $\xi_{c}^{t}-1 \geq \tilde{\xi}_{c}^{t} \geq p_{c}^{t}$ (the former inequality comes from the assumption $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$, and the latter comes from the fact $\left.\tilde{\xi} \in \Xi\right)$, the floor for type t at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$. Next, the fact that $\xi \in \Xi$ and $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ imply $q_{c}^{t} \geq \xi_{c}^{t} \geq \tilde{\xi}_{c}^{t}+1$. Therefore, the ceiling for type t at school c in $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ is satisfied.

The floor for type t^{\prime} at school c is satisfied for $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ because $\xi_{c}^{t^{\prime}}+1 \geq \xi_{c}^{t^{\prime}} \geq p_{c}^{t^{\prime}}$ (the former inequality is obvious, and the latter comes from the fact $\xi \in \Xi$). Similarly, the ceiling for type t^{\prime} at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$ because $q_{c}^{t} \geq \tilde{\xi}_{c}^{t^{\prime}} \geq \xi_{c}^{t^{\prime}}+1$.

No other coefficients changed between ξ and $\xi-\chi_{c, t}+\chi_{c, t^{\prime}}$, so all other constraints are satisfied at the latter distribution. Therefore, (1) is satisfied.

The proof that (1) is satisfied follows from the facts that $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ and $\xi_{c}^{t^{\prime}}<\tilde{\xi}_{c}^{t^{\prime}}$. By changing the roles of t with t^{\prime} and ξ with $\tilde{\xi}$ in the preceding argument, we get the implication of (1) that $\tilde{\xi}-\chi_{c, t^{\prime}}+\chi_{c, t} \in \Xi$. But this is exactly (2).

Case 2: In this case, $c^{\prime} \neq c$ for every $\left(c^{\prime}, t^{\prime}\right)$ such that $\xi_{c^{\prime}}^{t^{\prime}}<\tilde{\xi}_{c^{\prime}}^{t^{\prime}}$. Then, $\xi_{c}^{t^{\prime}} \geq \tilde{\xi}_{c}^{t^{\prime}}$ for every $t^{\prime} \neq t$. In particular, the total number of students assigned to school c at ξ is strictly larger than at $\tilde{\xi}$. Because the number of students in district d are the same in ξ and $\tilde{\xi}$, there exist school c^{\prime} in district d and type t^{\prime} such that the total number of students matched with c^{\prime} is strictly larger at $\tilde{\xi}$ than at ξ. In addition, there exists type t^{\prime} such that $\tilde{\xi}_{c^{\prime}}^{t^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}$.

Now we proceed to show condition (1) for this case. To do so, we first note that $\xi-$ $\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ assigns the same number of students to each district as in ξ, so the number of students assigned to each district d is k_{d} in $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. Furthermore, it assigns a smaller
number of students at school c than ξ, so the capacity constraint at school c at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is satisfied. Likewise, $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ assigns a weakly smaller number of students at c^{\prime} than $\tilde{\xi}$ does, so the capacity constraint at school c^{\prime} at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$ is satisfied.

Next we check that the type-specific floors at schools are satisfied. Because $\xi_{c}^{t}-1 \geq \tilde{\xi}_{c}^{t} \geq$ p_{c}^{t} (the first inequality follows from the assumption $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$ and the second from the fact that $\tilde{\xi} \in \Xi)$, the floor for type t at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. For type t^{\prime} at school c^{\prime}, we have $\xi_{c^{\prime}}^{t^{\prime}}+1 \geq \xi_{c^{\prime}}^{t^{\prime}} \geq p_{c^{\prime}}^{t^{\prime}}$ (the first inequality is obvious and the second follows from the fact that $\xi \in \Xi)$, so the floor for type t^{\prime} at school c^{\prime} is satisfied for $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$.

Now we check that the type-specific ceilings at schools are satisfied. Since $q_{c}^{t} \geq \xi_{c}^{t}>\xi_{c}^{t}-1$ (the first inequality follows from the fact that $\xi \in \Xi$ and the second inequality is obvious), the ceiling for type t at school c is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$. For type t^{\prime} at school c^{\prime}, we have $q_{c^{\prime}}^{t^{\prime}} \geq \tilde{\xi}_{c^{\prime}}^{t^{\prime}} \geq \xi_{c^{\prime}}^{t^{\prime}}+1$ (the first inequality follows from the fact that $\tilde{\xi} \in \Xi$ and the second one follows from $\tilde{\xi}_{c^{\prime}}^{t^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}$, so the ceiling for type t^{\prime} at school c^{\prime} is satisfied at $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$.

No other coefficients changed between ξ and $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}}$, so all other constraints are satisfied at the latter distribution.

The proof that (1) is satisfied follows from the facts that $d(c)=d\left(c^{\prime}\right), \xi_{c}^{t}>\tilde{\xi}_{c^{\prime}}^{t} \tilde{\xi}_{c^{\prime}}^{t^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}$ there are more students assigned to school c at ξ than $\tilde{\xi}$, and there are more students assigned to school c^{\prime} at $\tilde{\xi}$ than ξ. If we change the roles of ξ with $\tilde{\xi}, c$ with c^{\prime}, and t with t^{\prime}, then (1) would imply $\tilde{\xi}-\chi_{c^{\prime}, t^{\prime}}+\chi_{c, t} \in \Xi$. But this is exactly (2), so we are done.

The result then follows from Corollary 1 because Ξ is M-convex and no school is assigned more students than its capacity in Ξ.

Corollary 5. When there are no distributional constraints, TTC satisfies constrained efficiency, individual rationality, strategy-proofness, and it is feasible.

Proof of Corollary 5 Let Ξ denote the set of distributions of feasible matchings. We prove that $\Xi \cap \Xi^{0}$ is an M-convex set. $\Xi \cap \Xi^{0}$ can be represented as $\left\{\xi \mid q_{c} \geq \sum_{t} \xi_{c}^{t}\right.$ and $\sum_{c, t} \xi_{c}^{t}=$ $\left.\sum_{d} k_{d}\right\}$.

Suppose that there exist $\xi, \tilde{\xi} \in \Xi \cap \Xi^{0}$ such that $\xi_{c}^{t}>\tilde{\xi}_{c}^{t}$. To show M-convexity, we need to find school c^{\prime} and type t^{\prime} with $\xi_{c^{\prime}}^{t^{\prime}}<\tilde{\xi}_{c^{\prime}}^{t^{\prime}}$ such that (1) $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$ and (2) $\tilde{\xi}+\chi_{c, t}-\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$.

Case 1: If there exists a type $t^{\prime} \neq t$ such that $\xi_{c}^{t^{\prime}}<\tilde{\xi}_{c}^{t^{\prime}}$ then we can take $c^{\prime}=c$ because the number of students assigned to every school in $\xi-\chi_{c, t}+\chi_{c, t^{\prime}} \in \Xi \cap \Xi^{0}$ and ξ are the same, so the school capacity constraints are sats=isfied. Furthermore, the number of students assigned in $\xi-\chi_{c, t}+\chi_{c, t^{\prime}} \in \Xi \cap \Xi^{0}$ and ξ are also the same, so (1) is satisfied. We can repeat the same argument for $\tilde{\xi}+\chi_{c, t}-\chi_{c, t^{\prime}} \in \Xi \cap \Xi^{0}$ and $\tilde{\xi}$, so (2) also holds.

Case 2: Suppose that $\xi_{c}^{t^{\prime}} \geq \tilde{\xi}_{c}^{t^{\prime}}$ for every $t^{\prime} \neq t$. Then the number of students assigned to school c in ξ is more than in $\tilde{\xi}$. Since the total number of assigned students is the same in
ξ and $\tilde{\xi}$, there exists a school c^{\prime} such that the number of students assigned to school c^{\prime} in $\tilde{\xi}$ is more than in ξ. Therefore, there exists type t^{\prime} such that $\tilde{\varepsilon_{c^{\prime}}^{\prime}}>\xi_{c^{\prime}}^{t^{\prime}}$.

To show (1), note that the number of students assigned to a school in $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in$ $\Xi \cap \Xi^{0}$ is the same as in ξ. Furthermore, school c has one less student in $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in$ $\Xi \cap \Xi^{0}$ than in ξ, so the capacity constraint at school c is satisfied. Finally, the number of students assigned to school c^{\prime} in $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$ is not greater than in $\tilde{\xi}$, so the capacity constraint at school c^{\prime} is also satisfied. The number of students assigned to schools other than c and c^{\prime} in $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$ and in ξ remain the same. Therefore, $\xi-\chi_{c, t}+\chi_{c^{\prime}, t^{\prime}} \in \Xi \cap \Xi^{0}$.

To show (2), change the roles of ξ with $\tilde{\xi}, t$ with t^{\prime}, and c with c^{\prime} and repeat the same arguments as in the previous paragraph. Therefore, $\Xi \cap \Xi^{0}$ is an M-convex set. The result then follows from Theorem 5 ,

Proof of Theorem 6. Suppose that district admissions rules favor own students. Fix a student preference profile. Recall that when school districts are integrated, students are assigned to schools by SPDA where each student ranks all contracts associated with her and each district d has the admissions rule $C h_{d}$. When districts are not integrated, students are assigned to schools by SPDA where students only rank the contracts associated with their home districts and each district d has the admissions rule $C h_{d}$. We first show that the no-integration SPDA outcome can be produced by SPDA when all districts participate simultaneously and students rank all contracts including the ones associated with the other districts by modifying admissions rules for the districts. Let $C h_{d}^{\prime}(X) \equiv C h_{d}(\{x \in X \mid d(s(x))=d\})$ be the modified admissions rule.

In SPDA, if district admissions rules have completions that satisfy path independence, then SPDA outcomes are the same under the completions and the original admissions rules because in SPDA a district always considers a set of proposals which is feasible for students. Furthermore, SPDA does not depend on the order of proposals when district admissions rules are path independent. As a result, SPDA does not depend on the order of proposals when district admissions rules have completions that satisfy path independence. Therefore, the no-integration SPDA outcome can be produced by SPDA when all districts participate simultaneously and students rank all contracts including the ones associated with the other districts and each district d has the admissions rule $C h_{d}^{\prime}$. The reason is that when each district d has admissions rule $C h_{d}^{\prime}$, a student is not admitted to a school district other than her home district. Furthermore, because $C h_{d}$ favors own students, the set of chosen students under $C h_{d}^{\prime}$ is the same with that under $C h_{d}$ for any set of contracts of the form $\{x \in X \mid d(s(x))=d\}$ for any set X.

We next show that $C h_{d}^{\prime}$ has a path-independent completion. By assumption, for every district d, there exists a path-independent completion $\widetilde{C h}_{d}$ of $C h_{d}$. Let $\widetilde{C h}_{d}^{\prime}(X) \equiv \widetilde{C h}_{d}(\{x \in$ $X \mid d(s(x))=d\})$. We show that $\widetilde{C h_{d}^{\prime}}$ is a path-independent completion of $C h_{d}^{\prime}$. To show that $\widetilde{C h}_{d}^{\prime}(X)$ is a completion, consider a set X such that $\widetilde{C h}_{d}^{\prime}(X)$ is feasible for students. Let $X^{*} \equiv\{x \in X \mid d(s(x))=d\}$. Then we have the following:

$$
\widetilde{C h}_{d}^{\prime}\left(X^{*}\right)=\widetilde{C h}_{d}\left(X^{*}\right)=C h_{d}\left(X^{*}\right)=C h_{d}^{\prime}\left(X^{*}\right)
$$

where the first equality follows from the definition of $\widetilde{C h}_{d}^{\prime}$, the second equality follows from the fact that $\widetilde{C h}{ }_{d}$ is a completion of $C h_{d}$, and the third equality follows from the definition of $C h_{d}^{\prime}$. Furthermore, because $\widetilde{C h}_{d}^{\prime}(X)=\widetilde{C h}_{d}^{\prime}\left(X^{*}\right)$ and $C h_{d}^{\prime}\left(X^{*}\right)=C h_{d}^{\prime}(X)$, we get $\widetilde{C h}_{d}^{\prime}(X)=C h_{d}^{\prime}(X)$. Therefore, $\widetilde{C h}_{d}^{\prime}$ is a completion of $C h_{d}^{\prime}$.

To show that $\widetilde{C h_{d}^{\prime}}$ is path independent, consider two sets of contracts X and Y. Let $X^{*} \equiv\{x \in X \mid d(s(x))=d\}$ and $Y^{*} \equiv\{x \in Y \mid d(s(x))=d\}$. Then we have the following:

$$
\begin{aligned}
\widetilde{C h}_{d}^{\prime}\left(X \cup \widetilde{C h}_{d}^{\prime}(Y)\right) & =\widetilde{C h}_{d}^{\prime}\left(X \cup \widetilde{C h}_{d}\left(Y^{*}\right)\right) \\
& =\widetilde{C h}_{d}\left(X^{*} \cup \widetilde{C h}_{d}\left(Y^{*}\right)\right) \\
& =\widetilde{C h}_{d}\left(X^{*} \cup Y^{*}\right) \\
& =\widetilde{C h}_{d}^{\prime}(X \cup Y),
\end{aligned}
$$

where the first and second equalities follow from the definition of $\widetilde{\mathrm{Ch}_{d}}{ }^{\prime}$, the third equality follows from path independence of $\widetilde{C h}{ }_{d}$, and the last equality follows from the definition of $\widetilde{C h}_{d}^{\prime}$. Therefore, $\widetilde{C h}_{d}^{\prime}$ is path independent.

Because $C h_{d}$ favors own students, we have $C h_{d}(X) \supseteq C h_{d}^{\prime}(X)$ for every X which is feasible for students. Furthermore, for any such $X, \widetilde{C h}_{d}(X)=C h_{d}(X)$ and $\widetilde{C h}_{d}^{\prime}(X)=$ $C h_{d}^{\prime}(X)$ because $\widetilde{C h}{ }_{d}$ is a completion of $C h_{d}$ and $\widetilde{C h}_{d}^{\prime}$ is a completion of $C h_{d}^{\prime}$, respectively. Therefore, for any X that is feasible for students, $\widetilde{C h}_{d}(X) \supseteq \widetilde{C h}_{d}^{\prime}(X)$. We use this result to show the following lemma. ${ }^{27}$

Lemma 4. Every student weakly prefers the SPDA outcome under $\left(\widetilde{C h_{d}}\right)_{d \in \mathcal{D}}$ to the SPDA outcome under $\left(\widetilde{C h_{d}}\right)_{d \in \mathcal{D}}$.

Proof. Let μ be the SPDA outcome under $(\widetilde{C h})_{d \in \mathcal{D}}$ and μ^{\prime} be the SPDA outcome under $\left(\widetilde{C h}_{d}^{\prime}\right)_{d \in \mathcal{D}}$. If μ^{\prime} is stable under $\left(\widetilde{C h}_{d}\right)_{d \in \mathcal{D}}$, then the conclusion follows from the result that μ is the student-optimal stable matching under $\left(\widetilde{C h}_{d}\right)_{d \in \mathcal{D}}$ because each $\widetilde{C h}_{d}$ is path independent (Chambers and Yenmez, 2017).
${ }^{27}$ This proof follows the steps of the proof of Theorem E.1. in Echenique and Yenmez (2015).

Suppose that μ^{\prime} is not stable under $(\widetilde{C h})_{d \in \mathcal{D}}$. Since μ^{\prime} is stable under $\left(\widetilde{C h_{d}}\right)_{d \in \mathcal{D}}$, $\widetilde{C h}_{d}^{\prime}\left(\mu_{d}^{\prime}\right)=\mu_{d}^{\prime}$ for every district d. Furthermore, μ_{d}^{\prime} is feasible for students, so $\widetilde{C h}_{d}\left(\mu_{d}^{\prime}\right) \supseteq$ $\widetilde{C h}_{d}^{\prime}\left(\mu_{d}^{\prime}\right)=\mu_{d}^{\prime}$. By definition of admissions rules, $\mu_{d}^{\prime} \supseteq \widetilde{C h}_{d}\left(\mu_{d}^{\prime}\right)$, so $\widetilde{C h_{d}}\left(\mu_{d}^{\prime}\right)=\mu_{d}^{\prime}$. As a result, there must exist a blocking contract for matching μ^{\prime} so that it is not stable under $\left(\widetilde{C h}_{d}\right)_{d \in \mathcal{D}}$. Whenever there exists a blocking pair, we consider the following algorithm to improve the student welfare. Let d_{1} be the district associated with a blocking contract. Set $\mu^{0} \equiv \mu^{\prime}$.

Step $\mathbf{n}(\mathbf{n} \geq \mathbf{1})$: Consider the following set of contracts associated with district d_{n} for which there exists an associated blocking contract: $X_{d_{n}}^{n} \equiv\left\{x=\left(s, d_{n}, c\right) \mid x P_{s} \mu_{s}^{n-1}\right\}$. District d_{n} accepts $\widetilde{C h}_{d_{n}}\left(\mu_{d}^{n-1} \cup X_{d_{n}}^{n}\right)$ and rejects the rest of the contracts. Let $\mu_{d_{n}}^{n} \equiv$ $\widetilde{C h}_{d_{n}}\left(\mu_{d_{n}}^{n-1} \cup X_{d_{n}}^{n}\right)$ and $\mu_{d}^{n} \equiv \mu_{d}^{n-1} \backslash Y^{n}$ where $Y^{n} \equiv\left\{x \in \mu^{n-1} \mid \exists y \in \mu_{d_{n}}^{n}\right.$ s.t. $s(x)=$ $s(y)\}$ for $d \neq d_{n}$. If there are no blocking contracts for matching μ^{n} under $(\widetilde{C h})_{d \in \mathcal{D}}$, then stop and return μ^{n}, otherwise go to Step $n+1$.

We show that district d_{n} does not reject any contract in $\mu_{d_{n}}^{n-1}$ by mathematical induction on n, i.e., $\mu_{d_{n}}^{n} \supseteq \mu_{d_{n}}^{n-1}$ for every $n \geq 1$. Consider the base case for $n=1$. Recall that $\mu_{d_{1}}^{1}=\widetilde{C h}_{d_{1}}\left(\mu_{d_{1}}^{0} \cup X_{d_{1}}^{1}\right)=\widetilde{C h}_{d_{1}}\left(\mu_{d_{1}}^{\prime} \cup X_{d_{1}}^{1}\right)$. By construction, $\mu_{d_{1}}^{1}$ is a feasible matching. We claim that $\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}$ is feasible for students. Suppose, for contradiction, that it is not feasible for students. Then there exists a student s who has one contract in $\mu_{d_{1}}^{\prime}$ and one in $\mu_{d_{1}}^{1} \backslash \mu_{d_{1}}^{\prime}$. Call the latter contract z. By construction $z P_{s} \mu_{s}^{\prime}$ and by path independence $z \in \widetilde{C h}_{d_{1}}\left(\mu_{d_{1}}^{\prime} \cup\right.$ $\{z\})$. Furthermore, since student s is matched with district d_{1} in $\mu^{\prime}, d(s)=d_{1}$. Therefore, $\widetilde{C h}_{d_{1}}\left(\mu_{d_{1}}^{\prime} \cup\{z\}\right)=\widetilde{C h}_{d_{1}}^{\prime}\left(\mu_{d_{1}}^{\prime} \cup\{z\}\right)$ by definition of $\widetilde{C h}_{d_{1}}^{\prime}$ and construction of μ^{\prime}. Hence, $z \in \widetilde{C h}_{d_{1}}^{\prime}\left(\mu_{d_{1}}^{\prime} \cup\{z\}\right)$, which contradicts the fact that μ^{\prime} is stable under $\left(\widetilde{C h_{d}}\right)_{d \in \mathcal{D}}$. Hence, $\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}$ is feasible for students. Feasibility for students implies that $\widetilde{C h_{d_{1}}}\left(\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}\right) \supseteq$ $\widetilde{C h}_{d_{1}}^{\prime}\left(\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}\right)$. Path independence and construction of $\mu_{d_{1}}^{1}$ yield $\mu_{d_{1}}^{1}=\widetilde{C h_{d_{1}}}\left(\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}\right)$. Furthermore, there exists no student s such that $d(s)=d_{1}$ who has a contract in $\mu_{d_{1}}^{1} \backslash \mu^{\prime}$ as this would contradict stability of μ^{\prime} under $\left(\widetilde{C h_{d}}\right)_{d \in \mathcal{D}}$. This implies, by definition of $\widetilde{C h_{d_{1}}}$, that $\widetilde{C h}_{d_{1}}^{\prime}\left(\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}\right)=\widetilde{C h_{d_{1}}}\left(\mu_{d_{1}}^{\prime}\right)$, and, by stability of μ^{\prime} under $\left(\widetilde{C h_{d}}\right)_{d \in \mathcal{D}}, \widetilde{C h}_{d_{1}}^{\prime}\left(\mu_{d_{1}}^{\prime}\right)=\mu_{d_{1}}^{\prime}$. Therefore, $\mu_{d_{1}}^{1}=\widetilde{C h_{d_{1}}}\left(\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}\right) \supseteq \widetilde{C h}_{d_{1}}^{\prime}\left(\mu_{d_{1}}^{\prime} \cup \mu_{d_{1}}^{1}\right)=\mu_{d_{1}}^{\prime}=\mu_{d_{1}}^{0}$, which means that district d_{1} does not reject any contracts.

Now consider district d_{n} where $n>1$. There are two cases to consider. First consider the case when $d_{n} \neq d_{i}$ for every $i<n$. In this case, $\mu_{d_{n}}^{n-1} \subseteq \mu_{d_{n}}^{0}=\mu_{d_{n}}^{\prime}$. We repeat the same arguments in the previous paragraph. Stability of μ^{\prime} under $\left(\widetilde{C h}_{d}^{\prime}\right)_{d \in \mathcal{D}}$ and path independence of $\widetilde{C h_{d_{n}}}$ implies that $\mu_{d_{n}}^{n} \cup \mu_{d_{n}}^{n-1}$ is feasible for students. Therefore, $\widetilde{C h}{ }_{d_{n}}\left(\mu_{d_{n}}^{n-1} \cup \mu_{d_{n}}^{n}\right) \supseteq \widetilde{C h}_{d_{n}}^{\prime}\left(\mu_{d_{n}}^{n-1} \cup \mu_{d_{n}}^{n}\right)$. Furthermore, there exists no student s such that $d(s)=d_{n}$ who has a contract in $\mu_{d_{n}}^{n} \backslash \mu_{d_{n}}^{n-1}$. As a result, by definition of $\widetilde{C h}_{d_{n}}^{\prime}$ and by path
independence, $\widetilde{C h}_{d_{n}}^{\prime}\left(\mu_{d_{n}}^{n-1} \cup \mu_{d_{n}}^{n}\right)=\widetilde{C h}_{d_{n}}^{\prime}\left(\mu_{d_{n}}^{n-1}\right)=\mu_{d_{n}}^{n-1}$. As in the previous paragraph, we conclude that $\mu_{d_{n}}^{n}=\widetilde{C h}{d_{n}}\left(\mu_{d_{n}}^{n-1} \cup \mu_{d_{n}}^{n}\right) \supseteq \widetilde{C h} h_{d_{n}}\left(\mu_{d_{n}}^{n-1} \cup \mu_{d_{n}}^{n}\right)=\mu_{d_{n}}^{n-1}$.

The second case is when there exists $i<n$ such that $d_{i}=d_{n}$. Let i^{*} be the last such step before n. Since the student welfare improves at every step before n by the mathematical induction hypothesis, $\mu_{d_{n}}^{i^{*}-1} \cup X_{d_{n}}^{i^{*}} \supseteq \mu_{d_{n}}^{n-1} \cup X_{d_{n}}^{n}$. By definition, $\mu_{d_{n}}^{i^{*}}=\widetilde{C h_{d_{n}}}\left(\mu_{d_{n}}^{i^{*}-1} \cup X_{d_{n}}^{i^{*}}\right)$, which implies by path independence that $\mu_{d_{n}}^{n-1} \subseteq \widetilde{C h_{d_{n}}}\left(\mu_{d_{n}}^{n-1} \cup X_{d_{n}}^{n}\right)=\mu_{d_{n}}^{n}$ since $\mu_{d_{n}}^{n-1} \subseteq \mu_{d_{n}}^{i^{*}}$.

Finally, we need to show that the improvement algorithm terminates. We claim that $\mu_{d_{n}}^{n} \neq \mu_{d_{n}}^{n-1}$. Suppose, for contradiction, that these two matchings are the same. Then, by path independence of $\widetilde{C h}_{d_{n}}$, for every $x \in X_{d_{n}}^{n}, \widetilde{C h}_{d_{n}}\left(\mu_{d_{n}}^{n-1} \cup\{x\}\right)=\mu_{d_{n}}^{n-1}$. This is a contradiction because there exists at least one blocking contract associated with district d_{n}. Therefore, district d_{n} gets at least one new contract at Step n. Hence, at least one student gets a strictly more preferred contract at every step of the algorithm while every student gets a weakly more preferred contract. Since the number of contracts is finite, the algorithm has to end in a finite number of steps.

Because the SPDA outcome under $\left(C h_{d}\right)_{d \in \mathcal{D}}$ is the same as the SPDA outcome under $\left(\widetilde{C h}_{d}\right)_{d \in \mathcal{D}}$ and the SPDA outcome under $\left(C h_{d}^{\prime}\right)_{d \in \mathcal{D}}$ is the same as the SPDA outcome under $(\widetilde{C h})_{d \in \mathcal{D}}$, the lemma implies that every student weakly prefers the outcome of SPDA under $\left(C h_{d}\right)_{d \in \mathcal{D}}$ to the outcome of SPDA under $\left(C h_{d}^{\prime}\right)_{d \in \mathcal{D}}$. This completes the proof of the first part.

To prove the second part of the theorem, we show that if at least one district's admissions rule fails to favor own students, then there exists a preference profile such that not every student is weakly better off when school districts integrate under SPDA. Suppose that for some district d, there exists a matching X, which is feasible for students, such that $C h_{d}(X)$ is not a superset of $C h_{d}\left(X^{*}\right)$, where $X^{*} \equiv\{x \in X \mid d(s(x))=d\}$. Now, consider a matching Y where (i) all students from district d are matched with schools in district d, (ii) Y is feasible, and (iii) $Y \supseteq C h_{d}\left(X^{*}\right)$. The existence of such Y follows from the fact that $C h_{d}\left(X^{*}\right)$ is feasible and $k_{d^{\prime}} \leq \sum_{c: d(c)=d^{\prime}} q_{c}$, for every district d^{\prime} (that is, there are enough seats in district d^{\prime} to match all students from district d^{\prime}.) Because Y is feasible and $C h_{d}$ is acceptant, $C h_{d}\left(Y_{d}\right)=Y_{d}$.

Now consider the following student preferences. First we consider students from district d. Each student s who has a contract in X^{*} ranks X_{s}^{*} as her top choice. Note that doing so is well defined because X^{*} is feasible for students. Each student s who has a contract in $X^{*} \backslash C h_{d}\left(X^{*}\right)$ ranks contract Y_{s} as her second top choice. Note that, in this case, Y_{s} cannot be the same as X_{s}^{*} because $C h_{d}\left(Y_{d}\right)=Y_{d}$ and $C h_{d}$ is path independent. Each student s who has a contract in $Y \backslash X^{*}$ ranks that contract as her top choice. Next we consider students from the other districts. Each student s who has a contract in $X \backslash X^{*}$ ranks that contract
as her top choice. Any other student ranks a contract not associated with district d as her top choice. Complete the rest of the student preferences arbitrarily.

Consider SPDA for district d when districts are not integrated. At the first step, students who have a contract in X^{*} propose that contract. The remaining students have contracts in $Y \backslash X^{*}$ propose the associated contracts. Because Y is feasible, Y contains $C h_{d}\left(X^{*}\right)$, and $C h_{d}$ is acceptant, only contracts in $X^{*} \backslash C h_{d}\left(X^{*}\right)$ are rejected. At the second step, these students propose their contracts in Y_{d}, the set of proposals that the district considers is Y_{d}. Because $C h_{d}\left(Y_{d}\right)=Y_{d}$, no contract is rejected, and SPDA stops and returns Y_{d}. In particular, every student who has a contract in $C h_{d}\left(X^{*}\right)$ has the corresponding contract at the outcome.

When districts are integrated, at the first step, each student who has a contract in X proposes that contract and every other student proposes a contract associated with a district different from d. District d considers X (or X_{d}), and tentatively accepts $C h_{d}(X)$. Because $C h_{d}(X) \nsupseteq C h_{d}\left(X^{*}\right)$ by assumption, at least one student who has a contract in $C h_{d}\left(X^{*}\right)$ is rejected. Therefore, this student is strictly worse off when districts are integrated.

[^0]: that financially supports school districts transferring students from other districts (https://dpi.wi.gov/sfs/aid/general/integration-220/overview, accessed on July 14, 2017). We refer to Wells et al. (2009) for a review and discussion of inter-district school integration programs.

[^1]: ${ }^{3}$ Examples include Boston before 1999, Cambridge, Columbus, and Minneapolis. See Abdulkadiroğlu and Sönmez (2003) for details of these programs as well as analysis of controlled school choice.
 ${ }^{4}$ In Minnesota's AI program, if the difference in the proportion of protected students at a school is 20 percent or higher than a school in the same district, the school with the higher percentage is considered a racially identifiable school (RIS) and districts with RIS schools also need to participate in the AI program. In this paper, we focus on diversity issues across districts rather than within districts. Diversity problems within districts are studied in the controlled school choice literature that we discuss below.

[^2]: ${ }^{5}$ In addition to works discussed above, recent studies on the controlled school choice and other twosided matching problems with diversity concerns include Westkamp (2013), Echenique and Yenmez (2015), Bó (2016), Doğan (2016), Sönmez (2013), Kominers and Sönmez (2016), Erdil and Kumano (2012), Dur et al. (2014), Aygün and Bó (2016), Aygün and Turhan(2016), Dur et al. (2016), and Nguyen and Vohra (2017).
 ${ }^{\circ}$ Substitutability is a condition on choice functions. It states that whenever a contract is chosen from a set, then it must be chosen from any subset containing that contract.

[^3]: ${ }^{7}$ See Kurata et al. (2016) for an earlier work on TTC in a more specialized setting involving floor constraints at individual schools.

[^4]: ${ }^{8}$ For ease of exposition, a contract will sometimes be denoted by a pair (s, c) with the understanding that the district associated with the contract is the home district of school c.
 ${ }^{9}$ In Appendix A. we also consider the case when the initial matching for each district is constructed using the student preferences and district admissions rules.

[^5]: ${ }^{10}$ In Section 3.3. we assume a weaker notion of acceptance when the admissions rules limit the number of students of each type.
 ${ }^{11}$ Alkan (2002) and Alkan and Gale 2003) introduce related monotonicity conditions.
 ${ }^{12}$ Hatfield and Kojima (2010) study other notions of weak substitutability.

[^6]: ${ }^{13}$ See Appendix B. 1 for a general class of admissions rules including this one that satisfy our assumptions. In Appendix B.1. we also prove that those admission rules are feasible and acceptant, and they have completions that satisfy substitutability and LAD.

[^7]: ${ }^{14}$ In Appendix B.2. we construct a class of district admissions rules that includes this admissions rule as a special case. These admissions rules are feasible and acceptant, and have completions that satisfy substitutability and LAD. Furthermore, they also respect the initial matching.

[^8]: ${ }^{15}$ In Appendix B.3. we construct a class of rationed district admissions rules that includes this admissions rule as a special case. These admissions rules are feasible and acceptant, and they have completions that satisfy substitutability and LAD.

[^9]: ${ }^{16}$ For instance, ignoring integer problems, $q_{d}^{t} \geq k_{d} \frac{k_{t}}{\sum_{t^{\prime} \in \mathcal{T}} k_{t^{\prime}}}$ for all t, d, would make ceilings compatible with this property as it would be possible to assign the same percentage of students of each type to all districts.
 ${ }^{17}$ See Hafalir et al. (2013) and Ehlers et al. (2014) for the concept of reserves and Echenique and Yenmez (2015) for an axiomatic characterization of choice rules of schools with reserves.

[^10]: ${ }^{18}$ SPDA produces a rationed matching if district choice rules are rationed, and matchings where every student is matched when choice rules accommodate unmatched students. We formalize matchings that (i) are rationed, (ii) match each student, and (iii) satisfies type-specific ceilings as legitimate matchings in the Appendix.
 ${ }^{19}$ To see that our problem is a minimum-cost flow problem, note that we can take vector $\left(k_{d}\right)_{d}$ as the "supply," vector $\left(k^{t}\right)_{t}$ as the "demand," and matrix $\left(q_{d}^{t}\right)_{d, t}$ as the "arc capacity bounds," and the objective functions for \hat{p}_{d}^{t} and \hat{q}_{d}^{t} to be $\min y_{d}^{t}$ and $\min -y_{d}^{t}$, respectively. These problems have an "integrality property" that if the supply, demand and bounds are integers, then all the solutions are integers as well. As already mentioned, many algorithms have been proposed to solve different objective functions for these problems. For instance, the capacity scaling algorithm of Edmonds and Karp (1972) gives the solutions in polynomial time. For more information, see Chapter 10 of Ahuja (2017). We are grateful to Fatma Kilinc-Karzan for helpful discussions.

[^11]: ${ }^{20}$ The letter M in the term M-convex set comes from the word matroid, a closely related and well-studied concept in discrete mathematics.

[^12]: ${ }^{21}$ This result and its proof are formally presented as Corollary 5 in Appendix C.

[^13]: ${ }^{22}$ We cannot use the comparative statics result of Yenmez (2018) because in our setting $C h_{d}(X) \supseteq C h_{d}^{\prime}(X)$ only when X is feasible for students whereas Yenmez (2018) requires this property for all X.
 ${ }^{23}$ See Aygün and Sönmez (2013) for a study of the consistency condition and Chambers and Yenmez (2017) for a study path independence in a matching context.

[^14]: ${ }^{24}$ More precisely, this follows from the consistency condition that removing rejected contracts does not change the chosen set.
 ${ }^{25}$ See Chambers and Yenmez (2018) for a characterization of responsive admissions rules using this property.

[^15]: ${ }^{26}$ District admissions rules with type-specific ceilings and reserves are similar to existing concepts in the school choice setting. See Abdulkadiroğlu and Sönmez (2003) for ceilings, Hafalir et al. (2013) and Ehlers et al. (2014) for reserves, and Echenique and Yenmez (2015) for an axiomatic characterization of admission rules with ceilings and reserves.

