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Review article on financial networks
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“Economic networks: The new challenges”
16“ . Frank Schweitzer et al. Science, 2009.
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FIG. 1. Banking multi-layer network of Mexico on Sept 30
2013. (a) network of exposures from derivatives, (b) securities
cross-holdings, (c) foreign exchange exposures, (d) deposits
and loans and (e) combined banking network L{7™"(t). Nodes
(banks) are colored according to their systemic impact R}
in the respective layer (see section @: from systemically
important banks (red) to systemically safe (green). Node-size
represents banks’ total assets. Link-width is the exposure size
between banks, link-color is taken from the counterparty.

Poledna et al.
(2015, J.Finan.Stability)
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e Recursion equation for the cascade size p:

k

= m
H27=ROYAZ: p = py+ (1= pp) Z&Z (k) q"(1 - q)"F (—)

m
k=1 m=0 k
RN

I k—1 B m
g=po+(1=py) ) il D (km 1) q"(1 —q)~'"F <?>
k=1 m=0

Y—ROEE

Gleeson and Cahalane, PRE (2007)
Caccioli et al., JCSS (2018)



e Recursion equation for the cascade size p:
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®
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e First-order cascade condition:
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Caccioli et al., JCSS (2018)
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Cascades in multiplex financial networks with debts of

different seniority

PHYSICAL REVIEW E
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EFDEIFLLERELE: a multiplex financial network
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c.f. Gai and Kapadia (2010, Proc.Roy.Soc.A)
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Cascades in multiplex financial networks with debts of
different seniority

> : =L N = — » arles D. Brummitt and Teruyoshi Kobayash
Jg;ﬁ"LE{lLO)ﬁE h\ﬁﬁ%lt)(jj—x A% }S:c Re y 5’;1 062 o 21511—;].1;;;:1 Tii,_n"e 2015

> - — A model of a banking network predicts the balance of high- and
ESEZ DM ? ot anking reer rdcts e dnce of

low-priority debts that ensures financial stability.




Balance sheet (2-layer model: senior and

external
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(a) external external
assets liabilities
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i i loss
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(b)

senior loans
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Tree-like approximation for the cascade size
(Gleeson et al. 2007, 2008, PRE)
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Tree-like approximation for the cascade size
(Gleeson et al. 2007, 2008, PRE)
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my=0mg=0
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Cascade condition: trJM > 1
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Simulation
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expected number of senior loans per bank = (/5)

(m]

o

expected number of senior loans per bank = (s}

Simulation

- [ multiplex cascade: A,,.x(7) > 1
junior-only cascade: f ;; > 1

[ senior-only cascade: Jgg > 1

¢J

0.8
0.6
0.4

02

expected number of junior loans per bank = (I;)

0 multiplex cascade: A7) > 1
junior-only cascade: J ;; > 1

[ senior-only cascade: J g > 1

simulated ¢’

expected number of junior loans per bank = (I;)

expected number of senior loans per bank = (/y)

numerical simulations

expected number of senior loans per bank = (/s)

fixed points (¢/,, #% ) of the recursion equations

(b)

[0 multiplex cascade: A, (F) > 1
Jjunior-only cascade: J ;; > 1

[ senior-only cascade: Jg¢ > 1

expected number of junior loans per bank = (/)

(d)

T T T T T T T T T

0 multiplex cascade: A, () > 1
junior-only cascade: [J ;; > 1
[[ senior-only cascade: T g5 > 1

simulated ¢°

expected number of junior loans per bank = (/)



Cascade region and the optimal seniority ratio

(a) LI | LI T | LI | T 1T T T | LI T LI | LI | T I_ b
= 7 multiplex cascade region: A, () > 1 _ ( )
M junior-only cascade region: J ;; > 1 ]
é 6L senior-only cascade region: J ¢ > 1 ] >
. ]
i | S
; 5 i E
1

S ! Gs) o~ 179 >
— i (a )Optlmal = L./ L
S 4F ! ] =
: . S L (Is)
% i (Is) = (L) Z minimized at — =~ 1.79
A , (L)
© 3 : ’ . Q J
2 " 7
2 - 2

2 0 s .
g J" /// N :
L{j ¥ // iy, O ‘ | 1 1 .
2 1 \ ] 0 2 4 6 8
L r 7 b

L/, » 4 . . .
0 -|/ L1 IR R S N N Y Y [ S P Y Y O Y |- Senlorlty ratlo <lS> / <l']>
0 1 2 3 4 5 6 7

expected number of junior loans per bank = {(/;)



=y al\)

- [BIEDBIESEBEN HDIHFEDIRITERIR Y kD —2DZmultiplex model TRIFTET:

AEBDO L1 VY —EICH T DEEMTEY R cascade condition & 83 U7

- Y RATIZYY - URODFRINCIED seniority ratio DEFEEZR UL
= senior debts/ junior debts > 0.5



Idenufication of relationship
lending in the interbank market
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(Juestion

* Measuring the substitutability of trading partners
/- Number of trades?
/ Frequency of trades?

7/ Volume of trades?



(Juestion

Measuring the substitutability of trading partners
Number of trades?
Frequency of trades?

Volume of trades?

Null model: 7 V7 A ICHE I HFEZES




(Juestion

Measuring the substitutability of trading partners
Number of trades?
Frequency of trades?

Volume of trades?

Null model: 7 V¥ A ICHGHHFZES
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Null model

- Daily matching probability (undirected)
glaa g ) —g.0.

“Fitness model”
“activity” X # contacts

o=
Q@

a; OJj



Significant ties in temporal networks

If random (= null hypothesis):
| |

? +". +

If there 1s a strong partnershi

‘&+‘ +




Under random matching, # bilateral transactions should
follow a binomial distribution:

p(ms}a) = TT (0 ) ulasas™ (1 = u(ai,ap) ™,

s\ Mgy
N REY

Maximume-likelihood estimator:




Performance of ML

a . # trades D ,.. #unique partners
o Real data
- Moaodel
M ; K
103 = 101 -
L | ! L vy | P ST T N TN RN SRR TN N S AT A
50 -1 00 150 200 50 ?100 150 200
N N

# trades: real = model
# unique partners: real < model

— preferential relationship?



Ildentification of significant ties

* Edge-based test

Under the null, m;; should follow a binomial distribution:

T —m.. S
gyl @, ) = () @, @¥Y"(1 = u@, @)y =", Vi j=1,..,N.

= 1 > m,g indicates the presence of a significant tie.



 Node-based test

Under the null, aggregate degree K; should follow
a Poisson binomial distribution:

A Rig =4
J(K; ] a*) ~ l

K;!

=P K; < K° indicates node i depends on significant ties
(1.e., relationship-dependent).



Experiments on synthetic networks

- Introduce “relationship lending”

1. Create random temporal networks
2. Assign a fraction of pairs as relationship pairs
3. Decreasing hazard prob for terminating a relationship:

bo
1 +boDyi(t—1)

Pl (t) = 3




Results: synthetic network

relationship parameters
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Results: empirical network

Edge-based test b Node-based test

— Bonferroni, a = 0.01
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All ties

Significant .

ties S

April 2001

June 2007 June 2014

Red: Italian bank
Black: foreign bank




Difference in interest rates b Difference in trade amount
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Duration of a significant tie
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Conclusion

1. Fitness model works well as a null model (i.e.,

random matching).

2. Significant ties and relationship-dependent
nodes are statistically identified by testing the
null hypothesis.

3. Banks connected by significant ties trade in a

different manner from the others.



Paper:

“Identifying relationship lending in the interbank market:
A network approach”
Journal of Banking & Finance, in press.

T. Kobayashi and Taro Takaguchi (LINE Corp),




Extracting the multi-timescale activity

patterns of online financial markets

Teruyoshi Kobayashi
Anna Sapienza, USC

Emilio Ferrara, USC

Scientific Reports, 2018
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Non-negative tensor factorization

e Extracting patterns from a high-dimensional data
e Representing a tensor by the sum of outer products

R
X %Zar ob,oc,, < R{EDANBEDID
r=1
R
Lijk ~ Z az’rbjrck'ra
r=1
C1 Co CRr
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Non-negative tensor factorization

Previous applications:

e Interaction patterns in online games (Sapienza et al, Informaiton,
2018 ), Twitter (Panisson, et al, WWW 2014 )

e Detection of temporal community structure (Gauvin et al, 2014,
PLOS ONE)



Aim of the work
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Synthetic network



Patterns embedded in synthetic temporal networks
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Patterns embedded in synthet

c temporal networks
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Determination of #components, A

If #component R is large,

e Overidentification problem

[f #component R is small,

e Tensor decomposition will be less accurate



Determination of #components

PARAFAC or CP model:
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Determination of #components

PARAFAC or CP model:
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Determination of #components

Core-consistency:
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Interbank network



* Interbank network: core-consistency
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* Interbank network: activity pattern

(a) Component 1 Component 2 Component 3
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* Interbank network: banks” belongingness to components
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( b ) Jaccard index

Component

Comp 1 Comp 2 Comp 3 1 2 3
Component
(C) Banks belonging to Component 1 Banks belonging to Component 2 Banks belonging to Component 3
001 001 001
0.008 - — Component 1 0.008 - 0.008 |-
-------- Component 2
0.006 - — Component 3 0.006 - 0.006

0.004 ;. 0.004

membership level

0.002 -

Row average of Q

C

o
r



e Interbank network: characterization of components
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