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Abstract

The paper examines whether people�s animal spirits were drivers of U.S.
business cycle �uctuations. In the context of an estimated macroeconomy
with �nancial market frictions, animal spirits shocks account for well over
one third of output �uctuations. Exogenous �nancial frictions and technol-
ogy shocks are considerably less important. U.S. data strongly favours the
indeterminacy model over versions of the economy in which animal spirits
cannot play a role. A substantial part of aggregate output�s contraction
during the Great Recession was caused by adverse shocks to expectations.
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1 Introduction

What are the shocks that cause macroeconomies to experience recurrent se-

quences of booms and slumps? The current paper pursues this question by present-

ing evidence on the sources of business cycles for the post-Korean War American

economy. The results support the view that people�s psychological motivations,

a.k.a. animal spirits, provoke a signi�cant portion of the �uctuations in aggregate

real economic activity, causing well over one third of U.S. output volatility. This

�nding is demonstrated within an arti�cial economy of �nancial market frictions.

Our exercise also suggests that it was chie�y adverse shocks to expectations that

led to the Great Recession.

Models with credit market frictions have become popular since the Great Re-

cession, re�ecting the notion that disruptions to �nancial markets were the key

factors behind this contraction. Building on earlier work, such as Kiyotaki and

Moore (1997) as well as Bernanke et al. (1999), this research has shown how �-

nancial market frictions can amplify shocks to macroeconomic fundamentals by

transforming small economic disturbances into large business cycles.1 Christiano

et al. (2015), for example, extend New Keynesian models by �nancial market

frictions to explain some key aspects of the Great Recession.

We depart from the aforementioned works twofold. First, the parametric space

of our model includes multiple equilibria. This multiplicity will be cleared up by

people�s animal spirits that select from the possible equilibrium outcomes. Second,

unlike most existing work on such indeterminacy, the analysis concentrates on

estimating the arti�cial economy: we focus on the empirical implications of the

multiplicity by explicitly analyzing the business cycle variance contributions of

animal spirits or belief shocks. The undertaking is implemented by building on a

variant of Benhabib and Wang (2013).2 Indeterminacy in this model is linked to

the empirically observed countercyclical movement of �nancial market tightness.

1See also Liu et al. (2013) and Nolan and Thoenissen (2009).
2Azariadis et al. (2016), Liu and Wang (2014) and Harrison and Weder (2013) are other

models of various stripes that combine multiple equilibria and �nancial frictions.

2



Figure 1 plots the cyclical pattern of �nancial market health. It measures �nancial

health by the Baa Corporate Bond spread which is displayed on an inverted scale

and is plotted opposite the �uctuations of per capita GDP. The shaded areas in

the �gure correspond to NBER recessions. They highlight that �nancial conditions

are not only cyclical, deteriorate markedly during most slumps but also that they

seem to have been most pronounced during the last recession.
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Figure 1: U.S. GDP and credit spread (on right-hand scale) at business cycle

frequencies. Shaded areas indicate NBER recessions.

In our arti�cial economy, �nancial frictions are modelled by taking on board

two empirical observations. First o¤, we follow Barth and Ramey (2001) who �nd

that a substantial portion of U.S. �rms borrow to �nance their working capital

needs. Secondly, we adopt Lian and Ma�s (2018) observation that the majority

of U.S. corporate debt is collateralized by �rms�cash �ows or operating earnings

rather than by the liquidation value of assets as is assumed in Kiyotaki and Moore

(1997). In this economy then, �nancial health is countercyclical and this is a key

mechanism to generate multiplicity.

What sets us apart from most existing work on multiple equilibria is that our

arti�cial economy is not only bu¤eted by animal spirits alone but also by an array

of fundamental shocks. The model confronts the real world by a full informa-
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tion Bayesian estimation using quarterly U.S. data covering the period from 1955

to 2014. This approach follows for example Justiniano et al. (2011) as well as

Schmitt-Grohé and Uribe (2012), who, however, only explore the role of funda-

mental shocks as the engines of business cycles. The key result that ensues from

the estimation is that, in the context of our model, animal spirits are important

drivers of the repeated �uctuations of the U.S. macroeconomy. Speci�cally, by

computing forecast error variance decompositions, we �nd that animal spirits ac-

count for about 40 percent of U.S. output variations and for about two thirds of

the �uctuations in investment. Disturbances that originate in the �nancial sector

explain less than ten percent of output �uctuations. Moreover, we show that belief

shocks have played an important role in the sharp contraction in economic activity

of the Great Recession that began at the end of 2007.

Previous work on multiple equilibria in real economies has overwhelmingly re-

mained in the theoretical realm and estimation exercises have been rare. Farmer

and Guo (1995) is an early attempt to estimate a sunspot model using classical si-

multaneous equations methods. Pintus et al. (2016) and Pavlov and Weder (2017)

perform full-information Bayesian estimations as in the present paper. Pintus et

al. (2016) build a model with �nancial market frictions and loan contracts that

are arranged with variable-rates of interest. The model�s indeterminacy a¤ects

the propagation mechanism in particular of (fundamental) �nancial shocks. These

shocks then explain about one quarter of business cycles �uctuations. That is, in

Pintus et al. indeterminacy manifests itself almost entirely in a¤ecting the propa-

gation of fundamental shocks and not in a particularly large role for animal spirits

shocks. From the theoretical side, the main di¤erence between Pintus et al. and

our model is that they assume borrowing limits determined by the liquidation value

of physical assets as in Kiyotaki and Moore (1997). However, this assumption is

not well supported by Lian and Ma (2018) who �nd that for US non-�nancial

�rms, only twenty percent of debt is collateralized by physical assets. Financial

markets are not featured in Pavlov and Weder (2017) and their study excludes
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the Great Recession. Also related is Miao et al. (2015) who estimate a model

with �nancial frictions and asset bubbles. Lastly, while the exact de�nitions of

con�dence do not completely overlap to the de�nitions used in the present paper,

our result also parallels Angeletos et al. (2018) and Milani (2017) who maintain

that sentiment swings drive a large fraction of U.S. aggregate �uctuations.3 In

Angeletos et al. (2018) con�dence shocks�contribution to business cycle volatility

is more than �fty percent. In fact, this �gure exceeds our preferred number while,

of course, both are in a similar ballpark. What di¤erentiates our paper apart from

Angeletos et al. (2018), Miao et al. (2015) and Milani (2017) is that we directly

estimate empirical series for animal spirits shocks in the strict sense of Benhabib

and Farmer (1994) and Farmer and Guo (1994).4

2 The Model

The arti�cial economy features credit frictions in the form of endogenous bor-

rowing constraints in a model of monopolistic competition in which, as usual,

perfectly competitive �rms produce the �nal output by combining a continuum

of di¤erentiated intermediate inputs. Intermediate goods producing �rms are

collateral-constrained in how much they can borrow to �nance their working cap-

ital needs as in Benhabib and Wang (2013). We modify their original model by

incorporating a set of fundamental shocks which are frequently considered as key

drivers of business cycles. Time begins in t = 0 and it proceeds in discrete steps.

2.1 Technology

A unit mass of monopolistic competitive �rms has access to a constant re-

turns technology that transforms capital services �t(i) and labor hours Nt(i) into

3See also Lansing (2018).
4For some more discussion on the link between con�dence and animal spirits shocks see

Acharya et al. (2017) and Benhabib et al. (2015).
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intermediate, di¤erentiated outputs Yt(i)

Yt(i) = �t(i)
�(XtNt(i))

1�� 0 < � < 1: (1)

Exogenous labor-augmenting technological progress Xt a¤ects all �rms equally. Its

growth rate �xt � Xt=Xt�1 evolves as a �rst-order autoregressive process

ln�xt = (1� �x) ln�
x + �x ln�

x
t�1 + "x;t 0 < �x < 1

with "x;t v N(0; �2x) and ln�
x is average growth rate. The �rms rent the two factor

services from the households at perfectly competitive prices wt and rt. Final output

Yt is a constant elasticity of substitution aggregator of a basket of intermediate

inputs

Yt =
�R 1

0
Yt(i)

��1
� di

� �
��1

� > 1:

Here � denotes the elasticity of substitution between the di¤erentiated varieties.

The monopolistic competitive �rms generate pro�ts by charging a mark-up over

marginal costs. Following Barth and Ramey (2001) who report that a substantial

portion of U.S. �rms raise working capital, we assume that �rms� two variable

inputs must be �nanced by short-run loans. Imperfect enforcement requires a

process to constrain borrowing by the value of the collateral. Speci�cally, �rm i�s

total amount of debt is an intraperiod loan Bt(i) and it is constrained by the value

of the collateral, which is the �rms�pledge of the period-earnings, i.e.

Bt(i) = wtNt(i) + rt�t(i) � �t�tPt(i)Yt(i):

Under this credit constraint, if there is a default event, the lender has the right

to recover a fraction of the �rm�s end-of-period revenues Pt(i)Yt(i).5 The arti�cial

economy features two �nancial frictions and their product �t�t represents the econ-

omy�s �nancial tightness. Concretely, �t refers to an endogenous credit constraint:

the borrowing constrictions vary with the aggregate state of economic activity

5Unlike in the original Benhabib and Wang (2013) model, our setup does not include �xed
liquidation costs. Indeterminacy still holds. When we compare the two models using the Bayesian
estimation method, we �nd that the model without �xed costs is favored by the data.
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which re�ects creditors�ability to pay back loans. In particular, �t is an increasing

function of the deviation of actual output Yt from balanced-growth output Y t, i.e.

the output gap,

�t = �

�
Yt

Y t

�

:

Here we restrict parameters to 0 < � < 1 and 
 > 0, an assumption in line with

Figure 1. The parsimonious formulation of �t entails many micro-founded makeups

without the need to con�ne itself to a particular one. For example, it can stand in

for Benhabib and Wang�s (2013) setup or �t can also describe how general market

conditions determine the probability that lenders can recover as well as resell

collateral. In addition to the endogenous component, exogenous disturbances �t

a¤ect �nancial health. These shocks originate in the �nancial sector as in Jermann

and Quadrini (2012) or Liu et al. (2013). The exogenous collateral or �nancial

shock �t evolves as

ln �t = (1� ��) ln � + �� ln �t�1 + "�;t 0 < �� < 1

with "�;t v N(0; �2�) and steady state value � = 1. The corresponding �rst-order

conditions for the pro�t maximization problem involve

rt�t(i) = ��tYt(i)

wtNt(i) = (1� �)�tYt(i)

and
�� 1
�

Pt(i)� �t + �t(i)

�
�t�t

�� 1
�

Pt(i)� �t

�
= 0 (2)

where �t stands for monopolistic �rms�marginal costs and �t(i) denotes the mul-

tiplier associated with the borrowing constraint.

2.2 Preferences

People are represented by an agent with the lifetime utility

E0
1P
t=0

�t
�
ln(Ct � �t)� '

N1+�
t

1 + �

�
0 < � < 1; � � 0 and ' > 0
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where � is the discount factor, Ct stands for consumption, and Nt for total hours

worked. The functional form of the period utility ensures that the economy is con-

sistent with balanced growth. The parameter ' denotes the disutility of working.

The term �t represents perturbations to the agent�s utility of consumption that

generate urges to consume, as in Baxter and King (1991) and Weder (2006). This

aggregate demand shock comes in two parts. One grows along with economy�s

consumption trend XY
t and the other one part is a transitory shock that follows

the autoregressive process

ln�t = �� ln�t�1 + "�;t 0 < �� < 1

with "�;t v N(0; �2�) and so that �t = �t=X
Y
t . This shock is also one of the

drivers of the economy�s labor wedge, i.e. the gap between the marginal rate of

consumption-leisure substitution and the marginal product of labor. Hence, our

estimation will allow a wider interpretation than mere shocks to preferences. A

more agnostic reading includes, for example, wage or price stickiness, changes to

monetary policy, taxes, or labor market frictions. Households own the physical

capital stock Kt and decide on its utilization rate, ut, thus �t = utKt. The agent

faces the period budget constraint

Ct + AtIt + Tt = wtNt + rtutKt +�t

and the law of motion for capital is

Kt+1 = (1� �t)Kt + It:

The term It is investment spending and At represents a non-stationary investment-

speci�c technology shock which a¤ects the transformation of consumption goods

into investment goods. In the model, the concept corresponds to the relative price

of new investment goods in terms of consumption goods. The shock�s growth rate

�at evolves as

ln�at = (1� �a) ln�
a + �a ln�

a
t�1 + "a;t 0 < �a < 1
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with "a;t v N(0; �2a), and ln�
a is the average growth rate. Lump-sum taxes are

denoted by Tt. The rate of physical capital depreciation

�t = �0
u1+�t

1 + �
0 < �0 < 1 and � > 0

is an increasing function in the utilization and � > 0 measures the elasticity of

the depreciation rate with respect to capacity used. The �rst-order conditions are

standard and delegated to the Appendix.

2.3 Government

The government purchasesGt units of the �nal output. Gt is neither productive

nor does it provide any utility. The spending is �nanced by the lump-sum taxes.

We model government�s spending with a stochastic trend

XG
t = (X

G
t�1)

 yg(XY
t�1)

1� yg 0 <  yg < 1

where  yg governs the smoothness of the government spending trend relative to

the trend in output. Then, detrended government spending is gt � Gt=X
G
t and

this follows the process

ln gt = (1� �g) ln g + �g ln gt�1 + "g;t 0 < �g < 1

with the shock�s variance �2g.

2.4 Equilibrium and steady state

In symmetric equilibrium, �t(i) = utKt, Nt(i) = Nt, Pt(i) = Pt = 1, Yt(i) = Yt

and �t(i) = �t = Yt � wtNt � rtutKt, hold and (2) becomes

�� 1
�

� �t + �t

�
�t�t

�� 1
�

� �t

�
= 0: (3)

From (3), and if �t�t
��1
�
< �t <

��1
�
, the �nancial constraint binds, thus, marginal

costs equal

�t = �t�t = ��t

�
Yt

Y t

�

:

In the steady state, � equals marginal costs �, i.e. the inverse of the markup, thus

this parameter is not free. In addition, stationarity conditions restrict � = �.
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2.5 Self-ful�lling dynamics

The detrended and linearized economy is solved numerically. We assume a

certain degree of market power such that the credit constraint is always binding,

i.e. ��1t > �
��1 . Figure 2 maps the local dynamics�zones in the 
 � ��1�space

while keeping the remaining parameters as they are listed in Table 1. The zones

entail three possibilities. Determinacy implies unique equilibria and animal spirits

cannot play a role. However, �believing in animal spirits�becomes self-ful�lling

and consistent in indeterminate equilibria. Source indicates that steady state is

unstable. Given that we concentrate on local dynamics, we disregard this case.6

If the credit limit is close to constant, i.e. the parameter 
 is small, the economy�s

dynamics are unique. However, combinations of market power and a procyclical

credit limit delivers indeterminacy. The indeterminacy mechanism operates via an

upwardly sloping wage-hours locus similar to many animal spirits models.7
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Determinacy1/ > /( ­1)

Figure 2: Parameter spaces of dynamics.

Then, how can, say, pessimistic expectations about the future create problems?

The storyline would go as follows: if people believe that the future is worse, they

will attempt to work more hours. In terms of the labor market equilibrium, this

6We note, however, that Ascari et al. (2018) provides recent progress in dealing with such
(temporarily) unstable paths.

7See for example, Farmer and Guo (1994) or Wen (1998).
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change in expectations will shift the labor supply curve outwards. But their pes-

simistic expectations will also lead households to decrease the lending to �rms. This

contraction of credit will tighten the �rms�borrowing constraints; given the cost

structure, the individual labor demand schedules move leftward and the markup

will rise. As a consequence, the economy�s wage-hours-locus is upwardly sloping.

In equilibrium, the outward shift of labor supply will result in lower employment

and in a drop in aggregate production. In sum, the low animal spirits will be

self-ful�lling.
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Figure 3: Growth rates of U.S. GDP and Commercial and Industrial Loans (on

right-hand scale). Shaded areas indicate NBER recessions.

Is this underlying mechanism that leads to indeterminacy empirically plau-

sible? Phrased alternatively, are markups countercyclical and loans procyclical?

The markup�s countercyclical pattern is widely established (Bils et al., 2018, and

Rotemberg and Woodford, 1991, for example).8 Figure 3 plots the growth rates of

both Commercial and Industrial Loans (all Commercial Banks) along with GDP

growth. The two series show high conformity that leads us to conclude that loans

are procyclical. This suggests to us that the indeterminacy mechanism is not at

odds with stylized facts of the business cycle.

8See, however, for Nakarda and Ramey (2013) who question these results.
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3 Estimation

Our next step is to discuss how animal spirits are introduced into the model,

to present the data that is employed in the analysis, as well as to outline the

full information Bayesian estimation of the arti�cial economy. We quantify the

contribution of animal spirits shocks to business cycle �uctuations. Finally, we

compare the estimated shocks to corresponding empirical measures.

3.1 Animal spirits in the rational expectations model

If there are many rational expectations equilibria in the model economy, this

continuum is a device to introduce animal spirits.9 In fact, we treat them as

quasi-fundamentals as they select from the many possible outcomes. Concretely,

we break down the forecast error of output in the linearized model

�yt � byt � Et�1byt
(hats denote percentage deviations from steady states) into �ve fundamental and

one non-fundamental components:

�yt = 
x"
x
t + 
a"

a
t + 
�"

�
t + 
g"

g
t + 
�"

�
t + "bt :

The parameters 
x, 
a, 
�, 
g and 
� determine the e¤ect of technological

progress, investment-speci�c technology, preferences, government spending and

collateral shocks on the expectations error. This break-down leaves the belief

shock "bt as a residual. The last equation then promulgates a strict de�nition of

animal spirits: they are orthogonal to the other disturbances, thus independent of

economic fundamentals.

3.2 Data and measurement equation

The estimation uses quarterly U.S. data running from 1955:I to 2014:IV and

includes seven observable time series: (i) the log di¤erence of real per capita GDP,

9Our approach is similar to Lubik and Schorfheide (2003) and in particular Pavlov and Weder
(2017).
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(ii) real per capita consumption, (iii) real per capita investment, (iv) real per capita

government spending, (v) the relative price of investment, (vi) the log di¤erence

of per capita hours worked from its sample mean, as well as (vii) the credit spread

from its sample mean. Financial market frictions in the model are �t�t.
10 We

instrument them by a credit spread similar to Christiano et al. (2014). In partic-

ular, Christiano et al. make use of the di¤erence between the interest rate on Baa

corporate bonds and the ten-year US government bond rate. The Appendix pro-

vides the full description of the data used and its construction. The corresponding

measurement equation is2666666664

lnYt � lnYt�1
lnCt � lnCt�1

lnAtIt � lnAt�1It�1
lnGt � lnGt�1
lnAt � lnAt�1
lnNt � lnN
credit spread

3777777775
=

26666666664

byt � byt�1 + b�ytbct � bct�1 + b�ytbit �bit�1 + b�ytbgt � bgt�1 + bagt � bagt�1 + b�ytb�atbNt

�x � � � (
byt + b�t)

37777777775
+

2666666664

ln�y

ln�y

ln�y

ln�y

ln�a

0
0

3777777775
+

2666666664

"mey;t
0
0
0
0
0
"mes;t

3777777775
where agt � XG

t =X
Y
t = (agt�1)

 yg(�yt )
�1. In the last measurement equation, x is

the scale parameter only appearing in the measurement equation to adjust the

di¤erence of the volatilities (that is, units) between the model frictions and the

observable variable. Both output growth and credit spread are measured with

errors "mey;t and "
me
s;t which are i.i.d. innovations with mean zero and standard de-

viation �mey and �mes , respectively. Allowing for a measurement error to output is

a way to circumvent stochastic singularity (e.g. Schmitt-Grohé and Uribe, 2012).

The measurement error to the spread reconciles any mis-measurement in the data,

especially since only a proxy is observed (e.g. Justiniano et al., 2011). Both mea-

surement errors are restricted to absorb no more than ten percent of the variance of

the corresponding observables. We estimate the model by allowing all fundamental

and the animal spirits shocks to matter.

10It may seem perhaps more intuitive to construct a counterpart of credit spread in the model
(which has not intertemporal debt) via the Lagrangian multiplier of the working capital con-
straint. However, this multiplier is a linear function of the �nancial frictions, thus, the estimation
results would be identical.
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3.3 Calibrations and priors

We group the model parameters into two categories: calibrated and estimated.

The �rst set of parameters is calibrated following the literature and is based on

national accounts data averages. We only address some of these calibrations (all

are listed in completion in Table 1). The elasticity of substitution parameter � is

set at ten, as in Dotsey and King (2005) and Cogley and Sbordone (2008). The

average government spending share in GDP, G=Y , is calibrated at 21 percent,

a number which matches national accounts average. The quarterly growth rates

of per capita output �y and the relative price of investment �a are set equal to

their sample averages of 1.0041 and 0.9949. Finally, the household�s �rst-order

conditions determine the elasticity of the depreciation rate from � = (�k=��1)=�,
where �k = �y=�a is the gross growth rate of capital.

Table 1: Calibration
Parameters Values Description
� 0.99 Subjective discount factor
� 1/3 Capital share
� 0 Labor supply elasticity parameter
� 10 Elasticity of substitution between goods
� 0.0333 Steady-state depreciation rate
u 1 Steady-state capacity utilization rate
G=Y 0.21 Steady-state government expenditure share of GDP
�y 1.0041 Steady-state gross per capita GDP growth rate
�a 0.9949 Steady-state gross growth rate of price of investment

All other model parameters are estimated. Our prior assumptions are summa-

rized in Table 2. The parameters estimated here include the steady state marginal

cost � (or equivalently the inverse of the mark-up), the elasticity of collateral 
, the

scale parameter x, the parameters that describe the stochastic processes and the

standard deviation of the measurement error. Standard deviations are in percent

terms. A beta distribution is adopted for the steady-state marginal cost � and

its value falls between 0.83 and 0.9, so that the steady-state markup varies from

around eleven to twenty percent. The range of marginal costs is chosen for two
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Table 2: Estimation
Prior distribution Posterior distribution

Estimated parameters Range Density[mean,std] Mean 90% Interval
Elasticity of collateral, 
 [0.160,0.607] Uniform 0.322 [0.315,0.329]
Steady-state marginal cost, � [0.83,0.90] Beta[0.88,0.01] 0.833 [0.831,0.834]
Gov. trend smoothness,  yg [0,1) Beta[0.5,0.2] 0.965 [0.953,0.977]
Scale parameter, x R+ IGam[44,Inf] 47.33 [44.28,50.46]
AR technology shock, �x [0,1) Beta[0.5,0.2] 0.025 [0.008,0.041]
AR investment shock, �a [0,1) Beta[0.5,0.2] 0.029 [0.013,0.045]
AR preference shock, �� [0,1) Beta[0.5,0.2] 0.984 [0.981,0.988]
AR government shock, �g [0,1) Beta[0.5,0.2] 0.986 [0.982,0.989]
AR collateral shock, �� [0,1) Beta[0.5,0.2] 0.992 [0.990,0.994]
Belief shock volatility, �b R+ IGam[0.1,Inf] 0.640 [0.615,0.665]
SE technology shock, �x R+ IGam[0.1,Inf] 0.690 [0.646,0.733]
SE investment shock, �a R+ IGam[0.1,Inf] 0.562 [0.525,0.598]
SE preference shock, �� R+ IGam[0.1,Inf] 0.386 [0.364,0.407]
SE government shock, �g R+ IGam[0.1,Inf] 0.944 [0.896,0.992]
SE collateral shocks, �� R+ IGam[0.1,Inf] 0.132 [0.121,0.143]
SE measurement error, �mey [0,0.29] Uniform 0.290 [0.289,0.290]
SE measurement error, �mes [0,27.42] Uniform 27.28 [27.11,27.42]
Technology shock e¤ect, 
x [-3,3] Uniform -0.514 [-0.590,-0.438]
Investment shock e¤ect, 
a [-3,3] Uniform 0.271 [0.176,0.367]
Preference shock e¤ect, 
� [-3,3] Uniform 0.872 [0.756,0.994]
Government shock e¤ect, 
g [-3,3] Uniform 0.256 [0.205,0.305]
Collateral shock e¤ect, 
� [-3,3] Uniform 0.999 [0.610,1.393]
Log-data density 4064:98

reasons. First, the empirically estimated markup falls in this range (see for exam-

ple Cogley and Sbordone, 2008, De Loecker and Eeckhout, 2017, and Eggertsson

et al., 2018). Second, the upper value of � is further restricted by the inequality

constraints � ��1
�

< � < ��1
�
for the �nancial constraint to bind.11 We set the

prior mean for x to match the standard deviation of the smoothed endogenous

�nancial frictions in the model without any �nancial information (data and shock)

and the standard deviation of the demeaned spread data. We adopt an inverse

gamma distribution for the prior. For the persistence parameters we use a beta

distribution and the standard deviations of the shocks follow an inverse gamma

distribution. The prior distributions for the expectational parameters 
x, 
a, 
�,

11The prior distribution of 
 guarantees that the complete indeterminacy region is covered.
Since we concentrate on this region, during the MCMC, all proposed draws from the determinacy
and source regions were discarded.
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g and 
� are uniform, thus agnostic about their values. Endogenous priors pre-

vent overpredicting the model variances as in Christiano et al. (2011). We use the

Metropolis-Hastings algorithm to generate one million draws from the posterior for

each of the two chains, discard the initial half of the draws as burn-in, and adjust

the scale in the jumping distribution to achieve a 25 to 30 percent acceptance rate

for each chain.

3.4 Estimation results

The last two columns of Table 2 present the posterior means of the estimated

parameters, along with their 90 percent posterior probability intervals. The para-

meters are precisely estimated as is evidenced by the percentiles. The estimated

steady state of marginal cost implies a steady state markup of twenty percent.

Disturbances to preference, government spending and collateral exhibit a high de-

gree of persistence. The autocorrelation of the non-stationary technology shock is

low, but it is not inconsistent with the moderate values commonly found in the

literature.

Table 3: Business cycle dynamics (band-pass �ltered)
Data Model

x �x=�Y �(x; Y ) ACF �x=�Y �(x; Y ) ACF
Yt 1.00 1.00 0.93 1.00 1.00 0.91
Ct 0.58 0.85 0.92 0.63 0.75 0.90
It 3.25 0.89 0.94 3.09 0.88 0.92
Gt 0.99 0.01 0.94 0.96 0.21 0.90
Nt 1.24 0.87 0.94 1.01 0.98 0.92

Table 3 reports second moments of the main macroeconomic variables calcu-

lated using U.S. data and compares these moments to those obtained from model

simulations at the posterior mean, both at business cycle frequencies. The model

matches fairly well the relative standard deviations, autocorrelations and the vari-

ables�cross-correlations with output.12 Table 4 displays the contribution of each

12The model does not capture the standard deviations and autocorrelations perfectly because i)
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structural shock, which we list in the top row, to the variances of key macroeco-

nomic variables. Through the lens of our theory, the decomposition suggests that

animal spirits shocks "bt are a major source of U.S. aggregate �uctuations. These

shocks account for over 40 percent of output growth �uctuations. The ensem-

ble of other aggregate demand shocks plays a lesser role and the contribution of

the two technology shocks is small at no more than twenty percent. For invest-

ment, the vast majority of its variations comes from animal spirits suggesting that

much of the spending is driven by entrepreneurial sentiments. The credit spread

is mainly driven by stochastic �nancial factors as well as by the three demand side

disturbances (i.e. animal spirits, preferences and government spending).13

Table 4: Unconditional variance decomposition
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 43.43 11.17 5.72 15.70 9.93 6.71 6.80 0.00
ln (Ct=Ct�1) 6.18 40.42 2.76 39.84 1.96 8.82 0.00 0.00
ln (AtIt=At�1It�1) 66.53 2.41 7.06 9.34 7.09 7.57 0.00 0.00
ln (N t=N) 21.24 2.54 9.37 26.50 22.06 18.30 0.00 0.00
ln (Gt=Gt�1) 0.00 0.98 0.16 0.00 98.85 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 12.26 2.06 4.85 17.99 15.06 43.49 0.00 3.30

In sum, the estimation suggests that psychological motivations are behind a

signi�cant portion of the �uctuations in U.S. aggregate real economic activity.

While the de�nitions of con�dence shocks do not exactly overlap, this result paral-

lels recent �ndings by Angeletos et al. (2018), Milani (2017) and Nam and Wang

(2016) who, while arguing within theoretical frameworks that involve uniqueness,

also �nd that bouts of optimism and pessimism are driving a large fraction of

U.S. aggregate �uctuations. For example, the con�dence shock in Angeletos et al.

(2018) generates in excess of 50 percent of output�s volatility. In the context of

the estimator tries to match the entire autocovariance function of the data and ii) the estimation
was done using variables in growth rates but we instead report variables��uctuations at business
cycle frequencies.
13We estimate the model using loan data and animal spirits remain signi�cant. Furthermore,

variance decompositions at business cycle frequencies deliver almost identical results.
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our model, we �nd a similar importance for this general class of disturbance to the

economy.

3.5 The observable implications of an animal spirits shock

0 10 20
0

0.5

1
Output

0 10 20
0

0.1

0.2

0.3
Consumption

0 10 20
­2

0

2

4
Investment

0 10 20
­0.5

0

0.5

1
Hours

0 10 20
0

0.1

0.2

0.3
Marginal Cost

0 10 20
­0.1

0

0.1

0.2
Productivity

Figure 4: Impulse responses to a positive output (sunspot) shock (trend taken

out).

Figure 4 plots the Bayesian impulse responses to a positive animal spirits shock.

All the model�s main macroeconomic variables, i.e. output, consumption, invest-

ment and hours worked, exhibit positive comovement. This pattern echoes an

archetypal technology shock but also the observable implications of Angeletos et

al.�s (2018) con�dence shock. This characteristic primes these shocks to be re-

sponsible for a signi�cant fraction of overall aggregate �uctuations. However,

what di¤erentiates the animal spirits from the usual supply shock are their impact

on (i) marginal costs which are rising, (ii) markups which are decreasing and (iii)

labor productivity which initially falls slightly before turning positive. In sum,

while able in producing positive comovement, animal spirits come with some of

the �avors of garden-variety demand shocks. The economics behind the impulse

response patterns are easily understood in terms of the model�s indeterminacy
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mechanism. Optimistic outlooks induce consumers to increase consumption and

to accumulate more capital. As intermediate �rms face a higher demand for their

goods, they rent more labor and capital services. However, given technology (1),

these �rms move along an upwardly sloping marginal cost curve and their labor

productivity initially falls.

3.6 Are shocks meaningfully labeled?
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Figure 5: Fernald�s vs model�s total factor productivity (annual data).

We identify the shocks by estimating in a system and it is thus fair to ask if

the estimated shocks are meaningfully labelled. Speci�cally, do the shocks share

resemblance with empirical series that are computed with orthogonal information

sets? To begin with, the estimated model�s total factor productivity (TFP) series

is compared with Fernald�s (2014) TFP series for the United States.14 Fernald�s

TFP series are widely considered as the gold standard for this variable for which he

adjusts for variations in factor utilization (labor e¤ort and the workweek of capital)

as well as labor skills. The results of this exogenous validation are reassuring as

shown in Figure 5. Both productivity series not only have similar amplitudes,

but their contemporaneous correlation comes in at 0:68. Hence, the model is

14Growth of total factor productivity in our model is given by (1� �)(b�xt + ln�x):
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successful in extracting productivity shocks.15 Next, Figure 6 compares the index

of estimated con�dence and the U.S. Business Con�dence index (band-pass �ltered

to concentrate on the relevant frequencies). Clearly, the empirical con�dence index

is in�uenced by a raft of fundamentals and non-fundamentals, thus, it is not exactly

clear how the empirical data would map our theoretical notion of animal spirits.

Yet, one would expect that the animal spirits and con�dence data display a certain

similarity. In fact, the two sentiment series are strongly correlated and we interpret

the relationship in Figure 6 as endorsing our estimation and as supporting the case

that estimated belief shocks re�ect variations in people�s expectations about the

future path of the economy.16
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Figure 6: Business con�dence index vs animal spirits shocks (normalized data).

4 Robustness checks

In this Section, we report several robustness checks. First, we apply an alterna-

tive formulation of the belief shock as in Farmer et al.�s (2015) formulation. Next,

we go through alternative observables to measure �nancial markets�health. This

is followed by adding Fernald�s (2014) TFP data and business con�dence index

15We also plot the respective quarterly series in the Appendix�Figure 10.
16The correlation of the estimated sunspot shocks and Fernald�s TFP series is insigni�cant at

0:2.
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data to the observables one by one. We also replace permanent technology shocks

by transitory shocks and consider the presence of shocks to the marginal e¢ ciency

of investment as in Justiniano et al. (2011). Lastly, we will introduce a pure labor

supply shock. In sum, all these variations leave the main result of the current

paper unchanged.

Table 5: Posterior distribution comparison
Model with �yt = "bt

Prior distribution Posterior distribution
Parameters Range Density[mean,std] Mean 90% Interval


 [0.160,0.607] Uniform 0.322 [0.315,0.329]
� [0.83,0.90] Beta[0.88,0.01] 0.833 [0.831,0.834]
 yg [0,1) Beta[0.5,0.2] 0.965 [0.954,0.977]
x R+ IGam[44,Inf] 47.30 [44.18,50.35]
�x [0,1) Beta[0.5,0.2] 0.025 [0.008,0.042]
�a [0,1) Beta[0.5,0.2] 0.029 [0.014,0.045]
�� [0,1) Beta[0.5,0.2] 0.984 [0.981,0.988]
�g [0,1) Beta[0.5,0.2] 0.986 [0.982,0.989]
�� [0,1) Beta[0.5,0.2] 0.992 [0.990,0.994]
�� R+ IGam[0.1,Inf] 0.862 [0.821,0.902]
�x R+ IGam[0.1,Inf] 0.690 [0.647,0.733]
�a R+ IGam[0.1,Inf] 0.562 [0.525,0.598]
�� R+ IGam[0.1,Inf] 0.385 [0.364,0.407]
�g R+ IGam[0.1,Inf] 0.945 [0.897,0.993]
�� R+ IGam[0.1,Inf] 0.132 [0.121,0.143]
�mey [0,0.29] Uniform 0.290 [0.289,0.290]
�mes [0,27.42] Uniform 27.28 [27.11,27.42]

�("x; �y) [-1,1] Uniform -0.406 [-0.465,-0.349]
�("a; �y) [-1,1] Uniform 0.172 [0.110,0.233]
�("�; �y) [-1,1] Uniform 0.388 [0.338,0.438]
�("g; �y) [-1,1] Uniform 0.275 [0.226,0.327]
�("�; �y) [-1,1] Uniform 0.151 [0.091,0.213]

Log-data density 4066.02
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4.1 Forecast errors and animal spirits

We begin the chain of robustness checks by following the approach of Farmer

et al. (2015) in which the animals spirits shock is simply the forecast error, i.e.

�yt = "bt , with a variance �
2
�. Intuitively, since output is forward looking, this

expectation error should be correlated with fundamental shocks. Yet, it is also a

sunspot shock, as it can cause movements in economic activity without any shifts to

fundamentals. Assuming a uniform distribution, we thus estimate the correlations

between �yt and the fundamental shocks. The priors for the other parameters are

kept the same as in the baseline model. As can be seen by comparing Tables 2

and 5, our estimation results are robust to the formation of the expectation error.

The posterior distributions are almost identical and the closeness of the log-data

densities con�rms that the goodness of �t between the models is equivalent.17

4.2 Alternative interest rate spreads

The next robustness check concerns the choice of the observed spread when

instrumenting �nancial markets�conditions as we consider the sensitivity to using

various alternative spreads. In particular, we ask if using the Baa-Aaa spread

or the Baa-Federal funds rate spread leads to signi�cantly di¤erent results in the

estimation. We report the variance decompositions only. The results for the

alternative spreads are documented in Tables 6 and 7. Animal spirits continue to

stand out as the main driver of the business cycle.18

17Second moments and variance decompositions are virtually identical and are not presented
to conserve space. The Appendix shows robustness to constructing belief shocks using forecast
errors of other variables.
18We considered other interest spreads and the results repeat.

22



Table 6: Unconditional variance decomposition (Baa-Aaa spread)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 45.46 11.34 5.34 15.63 9.12 6.31 6.80 0.00
ln (Ct=Ct�1) 6.67 41.08 2.65 38.98 1.84 8.78 0.00 0.00
ln (AtIt=At�1It�1) 68.22 2.32 6.45 9.04 6.24 7.73 0.00 0.00
ln (N t=N) 23.25 2.31 9.08 25.25 20.31 19.79 0.00 0.00
ln (Gt=Gt�1) 0.00 1.07 0.17 0.00 98.76 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 13.12 1.87 4.59 16.51 13.48 47.13 0.00 3.30

Table 7: Unconditional variance decomposition (Baa-FF spread)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 42.35 12.38 6.10 17.45 9.40 4.97 7.34 0.00
ln (Ct=Ct�1) 5.93 43.61 3.01 39.50 1.86 6.09 0.00 0.00
ln (AtIt=At�1It�1) 65.43 2.62 7.51 10.04 7.00 7.40 0.00 0.00
ln (N t=N) 22.11 2.33 10.53 26.72 22.55 15.76 0.00 0.00
ln (Gt=Gt�1) 0.00 1.02 0.17 0.00 98.81 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 14.32 2.19 6.08 20.38 17.16 34.61 0.00 5.26

4.3 TFP as an observable

Next, we add total factor productivity to the catalog of observables. Fernald�s

(2014) data is the natural series to choose from. Fernald adjusts for variations

in factor utilization (labor and capital) and includes adjustment for quality or

composition of inputs. Most of these in�uences are not part of the present arti�cial

economy and we thus add one more measurement error on total factor productivity

(at not more than ten percent). Table 8 shows that while the role of animal spirits

is slightly weaker the previous results remain robust. Animal spirits continue to

cause the bulk of U.S. output �uctuations. The technology shocks�contributions

are lower, with a best point estimate near ten percent.
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Table 8: Unconditional variance decomposition (Fernald TFP)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t "metfp;t
ln (Y t=Y t�1) 39.02 10.35 5.10 12.63 9.13 17.01 6.77 0.00 0.00
ln (Ct=Ct�1) 4.63 38.01 2.18 34.21 1.49 19.48 0.00 0.00 0.00
ln (AtIt=At�1It�1) 59.56 2.09 6.31 8.56 6.12 17.36 0.00 0.00 0.00
ln (N t=N) 16.00 2.35 7.14 21.74 16.70 36.07 0.00 0.00 0.00
ln (Gt=Gt�1) 0.00 1.08 0.15 0.00 98.76 0.00 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Credit spread 6.54 1.34 2.61 10.38 8.13 67.28 0.00 3.71 0.00
ln (TFP t=TFP t�1) 0.00 92.29 0.00 0.00 0.00 0.00 0.00 0.00 7.71

4.4 Con�dence as an observable

So far, the animal spirits shock has been an unobserved latent variable in the

estimation. In section 3.6, we �nd that U.S. Business Con�dence index (BCI) is

highly correlated to our smoothed animal spirits shocks. We now incorporate such

con�dence data in the estimation to add additional discipline to the estimation

while simultaneously acknowledging that some the variations are driven by fun-

damentals. We follow Miao et al. (2015) and the relevant measurement equation

is

lnBCIt � lnBCI = b1�
y
t + b2�byt + b3�byt�1 + b4�byt�2 + b5�byt�3 + "mebci;t

where �yt is the forecast error of output which incorporates both the fundamental

and animal spirits shocks. Here, �byt � byt � byt�1 + b�yt and "mebci;t is the measure-
ment error. This equation allows for the correlation between Business Con�dence

index�s percentage deviation from an average BCI and business cycles (i.e., out-

put growth in the past four quarters). Thus, it captures the fact that con�dence

may be in�uenced by current and past GDP growth. The priors of the coe¢ cient

parameters fbjg5j=1 are set to be gamma-distributed and centered at two with a
standard deviation of two as well. The priors for the other parameters are the

same as in the baseline model. Table 9 shows that the animal spirits shocks are

still the dominant force driving the U.S. business cycle �uctuations, explaining

over forty percent of output variations.
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Table 9: Unconditional variance decomposition (Business Con�dence index)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t "mebci;t
ln (Y t=Y t�1) 43.05 11.24 5.35 16.20 10.37 7.83 5.96 0.00 0.00
ln (Ct=Ct�1) 5.98 40.21 2.53 39.53 1.98 9.77 0.00 0.00 0.00
ln (AtIt=At�1It�1) 65.83 2.18 6.60 9.65 7.17 8.57 0.00 0.00 0.00
ln (N t=N) 20.58 2.40 8.87 26.37 21.78 19.99 0.00 0.00 0.00
ln (Gt=Gt�1) 0.00 1.04 0.16 0.00 98.80 0.00 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Credit spread 11.80 1.92 4.57 17.72 14.77 45.77 0.00 3.44 0.00
ln (BCIt=BCI) 35.75 7.33 6.85 17.55 12.24 11.21 0.00 0.00 9.07

4.5 Transitory versus permanent TFP

So far, we have assumed that technology follows a stochastic trend. We now

replace permanent technology shocks by transitory shocks. Hence, the production

technology is given by

Yt = ZtK
�
t (�

tNt)
1��

and the growth rate of labor augmenting technological progress is deterministic

at the constant rate �, as in King et al. (1988). We permit temporary changes

in total factor productivity through Zt, which follows a �rst-order autoregressive

process

lnZt = (1� �z) lnZ + �z lnZt�1 + "z;t 0 < �z < 1:

The presence of (one more) transitory shock will also make it (even) harder for

animal spirits shocks to explain data�s transitory �uctuations. Nevertheless, the

model estimation delivers similar posterior means of the parameters as the baseline

estimation and they are reported in the Appendix. Noteworthy is the estimate for

�z at 0:997 which is arguably very close to a unit root. While high, this number is

consistent with Ireland (2001), for example. The variance decompositions of the

stationary technology shocks model are reported in Table 10. Technology shocks

account for about 17 percent of GDP volatility. Animal spirits remain the most

critical driver of aggregate �uctuations and they continue to explain roughly 40
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percent of output growth variations.19

Table 10: Unconditional variance decomposition (transitory TFP)
Series/shocks "bt "zt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 39.18 16.79 5.28 15.64 8.21 8.69 6.22 0.00
ln (Ct=Ct�1) 3.78 43.19 2.19 40.98 1.13 8.73 0.00 0.00
ln (AtIt=At�1It�1) 57.92 11.81 6.28 10.25 5.64 8.10 0.00 0.00
ln (N t=N) 16.08 17.47 8.35 26.25 15.10 16.75 0.00 0.00
ln (Gt=Gt�1) 0.00 0.00 0.22 0.00 99.78 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 5.63 41.34 2.59 10.61 6.17 30.37 0.00 3.30

The natural question arises which speci�cation of technology is favored by

data? This question is answered in Table 11 which compares the model �ts of the

two alternatively speci�ed models. Data strongly prefers a version of the model in

which total factor productivity has a stochastic trend.20

Table 11: Model comparison
Baseline: permanent TFP Alternative: transitory TFP

Log-data density 4064.98 3811.89

4.6 Shocks to the marginal e¢ ciency to investment

Justiniano et al. (2011) push for shocks that a¤ect the production of installed

capital from investment goods or the transformation of savings into the future

capital input. This is an alternative way to model exogenous �nancial frictions.

The concept of shocks to the marginal e¢ ciency to investment (MEI) goes back

to Greenwood et al. (1988) who formulate the ideas as

Kt+1 = (1� �t)Kt + �tIt

19The posterior means of the parameters in the model with transitory technology productivity
are shown in the Appendix as Table 16. There, we also report an external validation as in Figures
5 and 6 and, again, estimated shocks are very similar to Fernald�s series as well as U.S. con�dence
data (see Appendix Figures 11 and 12).
20We conduct a similar exercise with respect to the form of the preference shock. Data does

strongly prefer the current setup over a version with a stochastic discount factor.
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where we abstract from adjustment costs to not mess with the indeterminacy

properties of the arti�cial economy. The shock �t a¤ects the marginal e¢ ciency

of capital and it follows an autoregressive process with persistence parameter �� .

The MEI shocks are likely a

�might proxy for more fundamental disturbances to the intermedi-

ation ability of the �nancial system.�[Justiniano et al., 2011, 103]

We estimate the amended model and associate the observed spread with the

value of the MEI to impose discipline on the inference of the shock as in Justiniano

et al. (2011).21 Again, we add a measurement error to the spread equation. Table

12 shows, in line with our previous �ndings, that the animal spirits shocks remain

a most prominent driver of U.S. output �uctuations.22 An external validation

exercise akin to Figures 5 and 6 again �nds that estimated shocks are very similar

to their empirical counterparts (see Appendix Figures 13 and 14).

Table 12: Unconditional variance decomposition (MEI shock)
Series/shocks "bt "xt "at "�t "gt "MEI

t "mey;t "mes;t
ln (Y t=Y t�1) 46.82 10.15 5.51 15.76 11.18 2.08 8.49 0.00
ln (Ct=Ct�1) 8.77 40.93 2.92 43.77 2.96 0.66 0.00 0.00
ln (AtIt=At�1It�1) 69.61 2.35 6.77 9.82 8.68 2.77 0.00 0.00
ln (N t=N) 25.57 3.62 10.02 31.30 27.17 2.31 0.00 0.00
ln (Gt=Gt�1) 0.00 0.75 0.13 0.00 99.12 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 0.00 0.00 0.00 0.00 0.00 99.95 0.00 0.05

21Given the occurrence of �nancial frictions in two places, we are only able to connect one
model friction to the spread�s measurement equation. The series of animal spirits remains highly
correlated to earlier estimations, thus, our result is not the consequence of putting less restrictions
on the psychological shocks.
22We considered the hypothesis that sunspot shocks are in fact news shocks. In the spirit of

Beaudry and Portier (2006), we looked into �nding a relation of the belief shocks with future
movements of technology. In particular, we compute the correlations of the estimated animal
spirits with Fernald�s TFP data at four to sixteen quarters out. The correlations are negligible
at never more than 0:04.
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4.7 Labor disutility shocks

Lastly, we will check if the identi�ed belief shocks are not mistakenly attributed

to a mislabeled concept, in particular, if they are not standing in for omitted shocks

to labor supply. To do this, we modify the period utility function to

lnCt � '�t
N1+�
t

1 + �

where now labor supply shocks �t follow

ln �t = (1� ��) ln� + �� ln �t�1 + "�;t 0 < �� < 1:

Table 13 demonstrates that this change to preferences does not a¤ect our punchline

result: animal spirits shocks remain the main drivers of the U.S. business cycle.

Table 13: Unconditional variance decomposition (labor supply shock)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 43.24 12.34 5.47 15.59 9.35 6.66 7.36 0.00
ln (Ct=Ct�1) 6.54 45.36 2.80 34.08 2.00 9.22 0.00 0.00
ln (AtIt=At�1It�1) 66.03 2.55 6.78 10.32 6.97 7.34 0.00 0.00
ln (N t=N) 19.42 2.07 8.40 34.16 19.55 16.41 0.00 0.00
ln (Gt=Gt�1) 0.00 1.01 0.16 0.00 98.84 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 11.15 1.76 4.34 26.36 13.20 38.81 0.00 4.38

5 A closer look at the Great Recession

From 2007 to 2009, the U.S. economy was in a severe slump. The Great

Recession was the single-worst economic contraction since the 1930s, with economic

activity diving after various �nancial institutions collapsed. One of the aims of

the recent �nancial friction models is to identify the sources of the crisis. To what

extent can animal spirits explain the downturn in GDP observed in this recession?
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Figure 7: Counterfactual path of output, conditional on estimated belief shocks.

Parameters are set at the posterior mean.

We begin with a counterfactual exercise in which we shut down all but the

animal spirits shocks (using Section 3�s model). Figure 7 plots the counterfactual

path of output driven solely by these belief shocks along with the actual series

over the Great Recession period. The U.S. data has been detrended by removing

long-run productivity trend and also population growth, as we abstract from it in

the model. We re-scale both model and U.S. data so that outputs are equal to 100

in 2008:I. The model economy virtually coincides in both timing and depth with

the actual economy during the crisis period and the measured drop in con�dence

can account for most of the decline in output. The counterfactual exercise favors

the interpretation that the fall of aggregate output during the Great Recession

was closely associated with self-ful�lling beliefs. Our reading of events goes like

this: adverse expectations led to a drop in aggregate demand which curbed lending

and tightened credit (similar to Kahle and Stulz, 2013). This tightening occurred

because people were expecting worsening business conditions and higher defaults.

In other words, people became pessimistic and, as a consequence of the e¤ect on

�nancial markets, the reduced investment spending lowered productivity which

then made pessimistic expectations self-ful�lled. Our results do not necessarily

contradict Christiano et al.�s (2015) account of the Great Recession. Their study
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�nds that the steep decline of aggregate economic activity was overwhelmingly

caused by exogenous �nancial frictions. What our analysis suggests is, however,

that it was a drop in people�s animal spirits a¤ected aggregate demand and then

found its catalyst in �nancial markets and their frictions. The endogenous reaction

of the �nancial sector helped in propagating gloomy animal spirits into the full-

blown crisis and macroeconomic collapse. What the counterfactual analysis also

suggests is that animal spirits shocks were �more important than usual�during the

last recession. In some sense, this is not too surprising in light of Figure 1: �nancial

frictions were most pronounced during the Great Recession and to a signi�cant

part this re�ected people�s declining animal spirits.
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Figure 8: The arti�cial labor wedge during the Great Recession.

A useful way of thinking about the Great Recession is in terms of Chari et al.�s

(2007) business cycle accounting framework which decomposes distortions in the

economy into sets of residuals or wedges. When applying this framework, Brinca

et al. (2016) assert that

�[...] considering the period from 2008 until the end of 2011, [our]

results imply that the Great Recession in the United States should be

thought of as primarily a labor wedge recession, with an important

secondary role for the investment wedge.�[Brinca et al., 2016, 1042]
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This diagnostic �nding leads to the question of what the these wedges would

look like in the arti�cial economy? In a benchmark prototype economy, the labor

wedge 1� �nt shows up in the budget constraint as

::: = (1� �nt )wtNt + rtutKt

thus it is like a tax on labor services.23 The labor wedge is plotted along with its

data equivalent in Figure 8. Clearly, the two series show high conformity. The ar-

ti�cial wedge explains about three-fourths of the data wedge�s plunge during 2008

and 2009 and it charts a tepid recovery over the 2010 to 2014 period. Our model es-

timation also suggests an important role for �nancial market imperfections. Thus,

given Brinca et al.�s (2016) assertion, we report a wedge that measures these sort

of distortions: it is like a tax on capital income as in Kobayashi and Inaba (2006)

or Cavalcanti et al. (2008) and in a benchmark prototype economy it would show

up on the right hand side of the budget constraint as 1� � kt :

::: = wtNt + (1� � kt )rtutKt:

Figure 9 maps out both the empirical and the model implied capital wedges next

to the investment wedge as in Brinca et al. (2016). Note that we report the �� ts�

rather than the full wedges. These distortions are shown alongside Romer and

Romer�s (2017) semi-annual index of �nancial stress which focusses

�on disruptions to credit supply, rather than on broader conceptions

of �nancial problems�[Romer and Romer, 2017, 3073].

We take three insights from this accounting. Firstly, capital and investment

wedges display very similar patterns and they indeed point to a worsening of �nan-

cial market health after 2007. This mirrors Romer and Romer�s (2017) �ndings.

Second, our model lines up well with Brinca et al.�s (2016) interpretation of the

23In the Appendix, we describe the construction of wedges in terms of the arti�cial economy.
Kobayashi and Inaba (2006) prove an equivalence of the capital wedge as well as the investment
wedge.
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Great Recession in terms of both the labor as well as �nancial wedges. Thirdly,

Romer and Romer�s (2017) index suggests that �nancial distress in the U.S. ended

by 2011 and this is at some odds with the pattern of both �nancial wedges which

are signi�cantly more persistent. Our take on this picture is that investment spend-

ing remained subdued for factors other than �nancial ones. From our analysis, it

appears that the tepid spending re�ects a lack of animal spirits, i.e. businesses

were not con�dent about future demand to justify more investment.
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Figure 9: Financial wedges during the Great Recession: the initial observations

have been normalized to 100 (capital wedges measured on left-hand axis).

Right-hand panel shows Romer and Romer (2017) index.

6 Does data prefer indeterminacy?

So far we have restricted the estimation to the parameter space with multiple

equilibria, yet a natural question arises: does data in fact favor a model with

indeterminacy? To answer this question, we now estimate the economy over the

entire parameter space using the methodology proposed in Bianchi and Nicolò

(2017).24 Their procedure can be implemented without knowing the analytical

expressions for the boundaries between the three dynamic regions (recall Figure

2).

24The Appendix explains their methodology in more detail.
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The estimation process begins by setting the priors so that determinacy, in-

determinacy and source probabilities are at 52:47:1 (in percent). To do this, we

adjust the prior of the elasticity of the collateral 
, which is now beta-distributed,

to being centered at 0.17 with a standard deviation of 0.1 and truncated to be no

more than 0.61.25 All parameters that pertain to the solution under indetermi-

nacy are restricted to be zero when the estimation for draws is taking place in the

determinacy region of the model. Draws from the source region were discarded. In

line with Bianchi and Nicolò (2017), we follow the approach proposed in Farmer

et al. (2015) and construct the forecast errors of output �yt as a belief shock with

variance �2� and allow the expectation errors to be correlated with the fundamental

shocks. As would be reasonable, for these correlations we assume �at priors that

are uniform between -1 and 1. Table 14 presents the results for model versions dis-

cussed earlier involving i) permanent technology shocks, ii) transitory technology

shocks, iii) shocks to the marginal e¢ ciency to investment and iv) labor supply

shocks. The observable variables are the same as in Sections 3 and 4. The log data

densities in Table 14 suggest that U.S. data strongly favours the indeterminacy

model over all four versions of the economy in which animal spirits cannot play a

role.26

25All other priors are as above. Details of the estimation procedure are delegated to the
Appendix 8.4.
26The way we linked model and measurement equations is di¤erent for the model with MEI

shocks as there are now two �nancial frictions. One should therefore not compare log likelihoods
of that model with the other three.
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Table 14: Determinacy versus Indeterminacy
Determinacy Indeterminacy

Model prior probabilities 0.52 0.47

Permanent TFP
Log-data density 3470.07 4065.42
Model posterior probability 0.00 1.00

Transitory TFP
Log-data density 3441.67 3812.86
Model posterior probability 0.00 1.00

MEI
Log-data density 3601.05 4305.71
Model posterior probability 0.00 1.00

Labor supply shocks
Log-data density 3122.67 4001.61
Model posterior probability 0.00 1.00

Three further observations are worthwhile mentioning. First, the estimated

parameters under indeterminacy that arise when we implement the methodology

developed in Bianchi and Nicolò (2017) are essentially equivalent to our previous

results. Thus, estimating via their procedure leaves results una¤ected and the im-

plications regarding the important role of animal spirits carry over (see for example

Table 17 in the Appendix). Second, in addition to being favored by data, the inde-

terminacy model is superior in identifying shocks for which empirical counterparts

exist. For example, the model-based technology shocks track the empirical TFP

series better under indeterminacy: when comparing the estimated sequence as done

in the external validation of Figure 5, then the contemporaneous correlation with

Fernald�s series drops slightly from 0.68 to 0.65 under determinacy. Third, the

key di¤erence in the parameter estimates across the two regions applies to the

parameter 
 that controls the endogenous component of credit market tightness:


 approaches zero for the determinacy versions of the model. The endogenous
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aspect of the collateral constraint disappears.

How can we make sense of the �nding that the indeterminacy model is pre-

ferred by U.S. data? The absence of the endogenous feedback of �nancial market

conditions to the state of the economy implies that other fundamental shocks�

ampli�cation mechanisms are curtailed and movements of the collateral constraint

(and of marginal costs) are determined by the exogenous �nancial friction shocks.

For example, as is shown in the Appendix�Table 18, under determinacy the MEI

shock explains about thirty percent of output �uctuations and the spread�s vari-

ations in almost their entirety. These numbers are quite similar to Justiniano et

al. (2011, Table 4) while at somewhat di¤erent frequencies. However, the rigid

collateral constraints imply that the other fundamental shocks are no longer able

to contribute towards the procyclical variations of �nancial health. In other words,

the pattern that was reported in Figure 1 �namely that �nancial conditions are

cyclical and deteriorate during slumps �is more e¤ortlessly accommodated by an

arti�cial economy with an endogenously varying collateral constraint. However,

this then implies that the economy becomes indeterminate and, consequently, an-

imal spirits are assigned an important role.

We employed several setups based on Lubik and Schorfheide (2004), Farmer

et al. (2015) and Bianchi and Nicolò (2017) and for these Tables 2, 5 and now

14 report virtually identical log-data densities (for the baseline model to keep

matters comparable). Thus, our last take-away is a more technical one: the results

are robust across di¤erent ways of modelling con�dence shocks that are discussed

in the literature.

7 Conclusions

This paper has presented evidence on the sources of U.S. aggregate �uctu-

ations over the period 1955 to 2014. We perform a Bayesian estimation of a

�nancial accelerator model which features an indeterminacy of rational expecta-

tions equilibria. Indeterminacy in the model is linked to the empirically observed
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countercyclical movement of �nancial market tightness. This tightness appears in

the model as time-varying limits to borrowing. In line with Lian and Ma (2018),

collateralizing does not build on physical assets but �ows from �rms�operations.

The arti�cial economy is driven both by fundamental shocks as well as by animal

spirits. U.S. data favours the indeterminacy model over versions of the economy in

which sunspots do not play a role. The estimation supports the view that people�s

animal spirits play a signi�cant role for the U.S. business cycle. Variance decom-

positions suggest that animal spirits are behind a substantial fraction of output

growth variations and they explain an even larger portion of �uctuations in invest-

ment spending. Technology shocks and �nancial frictions shocks are signi�cantly

less important in explaining the oscillations in aggregate real economic activity.

Our results stand in line with recent work on con�dence shocks (spiritually related

but not exactly of the same nature as our animal spirits) such as Angeletos et al.

(2018) who suggest that these shocks generate in excess of 50 percent of U.S. out-

put volatility. We support these claims in a battery of robustness checks. We feel

that these test are important as clearly we could have picked up another not yet

identi�ed macroeconomic shock or that the model is mispeci�ed in some direction.

While the latter in essence applies to every model, the admittedly controversial

nature of animal spirits warrants such test. However, we do not �nd variations

that change our results by much. This being said, admittedly, we have left out

various aspects of the economy that could be considered relevant. For example,

the economy is real and nominal variables are absent. Thus, we exclude the po-

tential e¤ects of price stickiness and any in�uence of a monetary authority. Also,

the absence of monetary policy as well as the exogenous character of the �scal

side precludes from addressing how policy could potentially in�uence the dynam-

ics of this economy. The small-scale character of our model, however, provides

the advantage of tractability speci�cally when conducting the various robustness

exercises. This being said, mentioned extensions are beyond the scope and the

goals of the current paper, but we plan to work out a medium-scale version of the
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indeterminacy model in the future.
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8 Appendix - for online publication

The Appendix sets out the complete model, a discussion of the wedges, and

it lists the data sources and de�nitions. We begin with collecting the model�s

equations.

8.1 Model equations and equilibrium dynamics

The �rst-order conditions for the household�s optimization problems are

'N�
t =

1

Ct � �t
wt

rt = At�0u
�
t

and
At

Ct � �t
= �Et

�
1

Ct+1 � �t+1
(rt+1ut+1 + At+1(1� �t+1))

�
:

In the model, output, consumption, and real wage �uctuate around the same

stochastic growth trend XY
t = XtA

�=(��1)
t , the growth rate of which is �yt �

XY
t =X

Y
t�1 = �xt (�

a
t )

�
��1 . The trend in capital stock, which is also the trend in

investment equals XK
t = XY

t =At, the growth rate of which is �
k
t � XK

t =X
K
t�1 =

�xt (�
a
t )

1
��1 . Besides, the government expenditure �uctuates around its own trend

XG
t . There is no growth trend in hours, utilization and marginal cost. We �rst

derive the detrended dynamic equilibrium equations and then log-linearly approx-

imate them around the deterministic steady state. Let yt = Yt=X
Y
t , ct = Ct=X

Y
t ,

it = It=X
K
t , kt = Kt=X

K
t�1, gt = Gt=X

G
t , and yt=y approximately equal to Yt=Y t,

where y represents the steady state of detrended output. The log-linearized system

is summarized by byt = �bkt + �but � �b�kt + (1� �) bNt

byt = [1� ��(�k � 1 + �)
�(1 + �)

� G

Y
]bct + ��(�k � 1 + �)

�(1 + �)
bit + G

Y
(bagt + bgt)

byt = (1 + �) bNt + bct � b�t � b�t
byt = (1 + �)but + bkt � b�t � b�kt
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bkt+1 = (1� �)

�k
(bkt � b�kt ) + (�k � 1 + �)�k

bit � �(1 + �)

�k
but

bct+1 = bct� b�t� [1�
��(1 + �)

�k
]b�kt+1+ b�t+1+

��(1 + �)

�k
(byt+1� bkt+1+ b�t+1� but+1)

and b�t = 
byt + b�t:
In these equations, variables without time subscripts refer to steady state val-

ues while the hatted variables denote percent deviations from their corresponding

steady-state, e.g., byt � log(yt=y). The last equation shows that if 
 ! 0, then

marginal cost and the credit constraint are determined by the exogenous �nancial

shocks only.

8.2 Further robustness checks

Figure 10 compares the smoothed quarterly series of total factor productivity

from the estimation vis-a-vis Fernald�s (2014) series. The two sequences are again

very similar.
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Figure 10: Fernald�s vs Model�s total factor productivity (quarterly data).

Our baseline estimation attaches the forecast error to the variable output. To

test for the robustness of our results, we re-estimate the model but attach the
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expectations error to consumption, and call it �ct . As can be seen by comparing

Tables 2 and 15, our estimation results are una¤ected: the posterior distributions

essentially the same. This parallels the �ndings in Pavlov and Weder (2017).27

Table 15: Posterior distribution comparison
Alternative model: �ct

Prior distribution Posterior distribution
Parameters Range Density[mean,std] Mean 90% Interval


 [0.160,0.607] Uniform 0.322 [0.315,0.329]
� [0.83,0.90] Beta[0.88,0.01] 0.833 [0.831,0.834]
 yg [0,1) Beta[0.5,0.2] 0.965 [0.953,0.977]
x R+ IGam[44,Inf] 47.28 [44.09,50.33]
�x [0,1) Beta[0.5,0.2] 0.025 [0.008,0.042]
�a [0,1) Beta[0.5,0.2] 0.029 [0.013,0.044]
�� [0,1) Beta[0.5,0.2] 0.984 [0.981,0.988]
�g [0,1) Beta[0.5,0.2] 0.986 [0.982,0.989]
�� [0,1) Beta[0.5,0.2] 0.992 [0.990,0.994]
�b R+ IGam[0.1,Inf] 0.153 [0.146,0.160]
�x R+ IGam[0.1,Inf] 0.690 [0.646,0.734]
�a R+ IGam[0.1,Inf] 0.562 [0.524,0.598]
�� R+ IGam[0.1,Inf] 0.385 [0.364,0.406]
�g R+ IGam[0.1,Inf] 0.944 [0.895,0.992]
�� R+ IGam[0.1,Inf] 0.132 [0.120,0.142]
�mey [0,0.29] Uniform 0.290 [0.289,0.290]
�mes [0,27.42] Uniform 27.29 [27.11,27.42]

x [-3,3] Uniform -0.307 [-0.326,-0.288]

a [-3,3] Uniform 0.341 [0.318,0.363]

� [-3,3] Uniform 1.209 [1.179,1.239]

g [-3,3] Uniform 0.061 [0.049,0.073]

� [-3,3] Uniform 1.556 [1.463,1.649]

Log-data density 4060.58

The following table shows the estimation results for transitory technology

shocks.
27Our results are also robust to the formation of forecast error on other jump variables, e.g.

marginal cost and variable utilization. To save space, we do not report these �ndings.
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Table 16: Estimation (transitory TFP)
Prior distribution Posterior distribution

Parameters Range Density[mean,std] Mean 90% Interval

 [0.160,0.607] Uniform 0.296 [0.291,0.301]
� [0.83,0.90] Beta[0.88,0.01] 0.832 [0.831,0.833]
 yg [0,1) Beta[0.5,0.2] 0.953 [0.932,0.975]
x R+ IGam[44,Inf] 44.38 [42.62,46.24]
�z [0,1) Beta[0.5,0.2] 0.997 [0.996,0.998]
�a [0,1) Beta[0.5,0.2] 0.020 [0.008,0.032]
�� [0,1) Beta[0.5,0.2] 0.979 [0.974,0.983]
�g [0,1) Beta[0.5,0.2] 0.981 [0.976,0.987]
�� [0,1) Beta[0.5,0.2] 0.992 [0.991,0.994]
�b R+ IGam[0.1,Inf] 0.662 [0.640,0.685]
�z R+ IGam[0.1,Inf] 0.321 [0.306,0.334]
�a R+ IGam[0.1,Inf] 0.564 [0.527,0.600]
�� R+ IGam[0.1,Inf] 0.467 [0.445,0.488]
�g R+ IGam[0.1,Inf] 0.943 [0.894,0.992]
�� R+ IGam[0.1,Inf] 0.145 [0.133,0.156]
�mey [0,0.29] Uniform 0.290 [0.289,0.290]
�mes [0,27.42] Uniform 27.29 [27.12,27.42]

z [-3,3] Uniform 1.054 [0.924,1.187]

a [-3,3] Uniform 0.277 [0.188,0.371]

� [-3,3] Uniform 0.729 [0.644,0.818]

g [-3,3] Uniform 0.255 [0.203,0.305]

� [-3,3] Uniform 1.546 [1.186,1.931]

Figure 11 and 12 show the estimated model�s total factor productivity series

compared with Fernald�s (2014) total productivity series, as well as the index of

estimated con�dence compared with the U.S. Business Con�dence index for the

estimation with transitory technology shock.
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Figure 11: Fernald�s vs model�s total factor productivity (annual data).
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Figure 12: Business con�dence index vs animal spirits shocks (normalized data).

Figure 13 and 14 show the estimated model�s total factor productivity series

compared with Fernald�s (2014) total productivity series, as well as the index of

estimated con�dence compared with the U.S. Business Con�dence index for the

estimation with MEI shock.
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Figure 13: Fernald�s vs model�s total factor productivity (annual data).
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Figure 14: Business con�dence index vs animal spirits shocks (normalized data).

8.3 Wedges

Business cycle accounting has been introduced by Chari et al. (2007). Brinca et

al.�s (2016) interpretation of the Great Recession in terms of both the labor as well

as �nancial wedges (denoted by �xt ). In terms of a benchmark prototype economy,

the labor wedge is introduced via the household�s period budget constraint

::: = (1� �nt )wtNt + rtutKt:
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hence it is like a tax on labor services. The labor wedge 1� �nt is constructed from
the intratemporal �rst-order condition that is a wedge between the marginal rate

of substitution and the marginal product of labor. In log-linear form, it would

write as

(� bNt + bct)| {z }�
MRSC;l

(byt � bNt)| {z }
MPL

=
�n

�n � 1b�nt .
The model�s labor wedge is driven by �uctuations of both the markup as well

as stochastic preferences. Chari et al. (2007) introduce in their business cycle

accounting framework an investment wedge to measure distortions that would

occur capital and �nancial markets. It is like a tax on investment. As the relative

price (that we use as observable) maps exactly into this wedge in our arti�cial

economy, we decided to turn to a slightly di¤erent measure of capital market

distortions as do Kobayashi and Inaba (2006) as well as Cavalcanti et al. (2008).28

The capital wedge � kt is introduced via the household�s period budget constraint

::: = wtNt + (1� � kt )rtutKt:

Hence it is like a tax on capital services. This then implies from capital utilization�s

�rst order condition that

1� � kt =
�0
�
Atu

1+�
t Kt=Yt

which allows to compute the empirical wedge from available data of the right hand

side variables (rather than using the intertemporal Euler equation). In terms of

our original model, the capital wedge equals the inverse of the markup. In a log-

linearized world, we have a relation of the arti�cial wedge b�m;kt and marginal costsb�t as b�m;kt = �1� �m;k

�m;k
b�t:

In the steady state, 1��m;k equals � which, of course, is the inverse of the markup.
Given data on the relative price, utilization rates, output and capital constructed

28In fact, Kobayashi and Inaba (2006) prove an equivalence of the capital wedge as well as the
investment wedge.
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using

Kt+1 =

�
1� �0

u1+�t

1 + �

�
Kt + It

as well as a parameter calibration, one can compute an empirical series for the

capital wedge. We then use the estimated model and the implied series for b�m;kt

to construct a series of the model-wedge �m;kt . The model wedge replicates the

overall empirical pattern as well as the depth of the distortions associated with

the market of capital. The investment wedge in Figure 9 is computed from the

original Chari et al. (2007) formulation, that is the wedge shows up as

1

1 + e�xt :
From this we construct a series for 1� �xt � (1 + e�xt )�1 and report the realizations
for �xt in Figure 9. While, by construction, not identical, the two series �

�
� kt
	

and f�xt g �are very similar.

8.4 Bianchi and Nicolò (2017)

We brie�y set out the methodology that we apply in Section 6. It closely

follows Bianchi and Nicolò (2017) and it does not require to know the (analytical

solution) of the boundaries of the determinacy region.29 The parameters of the

log-linearized benchmark model are contained in the vector

�� [�; �; �y; �a; �k; �; �; �; �; 
;G=Y; �x; �a; ��; �g; ��; �x; �a; ��; �g; ��]:

The linear rational expectations (LRE) model can be rewritten in the canonical

form

�0(�)st = �1(�)st�1 +	(�)"t +�(�)�t; (4)

where

st = [byt;bct;bit; bNt;bkt+1; but; b�t; Et(byt+1); Et(bct+1); Et(b�t+1); Et(but+1);bagt ; b�yt ; b�kt ; b�xt ; b�at ; b�t; bgt;b�t]0
29Bianchi and Nicolò (2017) show that their characterization of indeterminate equilibria is

equivalent to Lubik and Schorfheide (2003).
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is a vector of endogenous variables, "t = ["xt ; "
a
t ; "

�
t ; "

g
t ; "

�
t ]
0
is a vector of exogenous

shocks, and �t = [�
y
t ; �

c
t ; �

�
t ; �

u
t ]
0
collects the one-step ahead forecast errors for the

expectational variables of the system. Since our model can generate at most one

degree of indeterminacy, Bianchi and Nicolò suggest to append the original linear

rational expectations model (3) with the autoregressive process

!t = '�!t�1 + �t � �f;t (5)

where �t is the sunspot shock and �f;t can be any element of the forecast errors

vector �t. We choose �f;t = �yt . The variable '
� belongs to the interval (-1,1)

when the model is determinate or it is outside the unit circle under indeterminacy.

Under determinacy the Blanchard-Kahn condition is satis�ed and the absolute

value of '� is inside the unit circle since the number of explosive roots of the

original LRE model in (3) already equals the number of expectational variables in

the model. Then the autoregressive process !t does not a¤ect the solution for the

endogenous variables st. On the other hand, under indeterminacy the Blanchard-

Kahn condition is not satis�ed. The system is characterized by one degree of

indeterminacy and it is necessary to introduce another explosive root to ful�ll

the Blanchard-Kahn condition � the absolute value of '� falls outside the unit

circle. Denoting the newly-de�ned vector of endogenous variables bst � (st; !t)
0

and the vector of exogenous shocks b"t � ("t; �t)0, then the system (3) and (4) can

be condensed into b�0bst = b�1bst�1 + b	b"t + b��t;
where b�0 � � �0(�) 0

0 I

�
; b�1 � � �1(�) 0

0 '�

�
and b	 � � 	(�) 0

0 I

�
; b� � � �n(�) �f (�)

0 �I

�
:

The matrix �(�) in (3) is partitioned as �(�) = [�n(�) �f (�)] without loss of

generality. Figure 2 shows the model�s (in-)determinacy regions. To start with,

the prior probability of determinacy or indeterminacy is set. The prior probability
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for determinacy, indeterminacy and source is 52:47:1 in percent. All priors are as

in benchmark cases with the exception of the prior for the elasticity of the col-

lateral constraint 
 which is now beta-distributed, centered at 0.17 with standard

deviation 0.1 and we truncate it to be no more than 0.61. Following Bianchi and

Nicolò (2017), the determinacy model is estimated by �xing the parameter '� to

a value smaller than one (e.g. 0.5) in a way that the model is solved only under

determinacy while the indeterminacy model is estimated by �xing '� greater than

one (e.g. 1.5) in a way that the model is solved only under indeterminacy. All

parameters that pertain to the solution under indeterminacy are restricted to zero

when we estimate the determinacy model. Lastly, we report the estimation results

for the two versions of the model. The �Indeterminacy�column shows that using

the alternative estimation method has only a very small e¤ect on the paper�s main

results in regards to parameter estimates.

8.5 Determinacy versus indeterminacy

Table 17 shows, the estimated parameters that arise from applying Bianchi and

Nicolò (2017) are essentially equivalent to our previous results (e.g. Table 2) and

thus the implications regarding the important role of animal spirits persist.
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Table 17: Estimation (Determinacy vs Indeterminacy)
Determinacy Indeterminacy

Parameters Density[mean,std] Mean 90% Interval Mean 90% Interval

 Beta[0.17,0.10] 0.001 [0.000,0.002] 0.322 [0.315,0.329]
� Beta[0.88,0.01] 0.891 [0.884,0.899] 0.833 [0.831,0.834]
 yg Beta[0.5,0.2] 0.997 [0.996,0.998] 0.965 [0.953,0.977]
x IGam[44,Inf] 10.48 [9.57,11.34] 47.37 [44.24,50.43]
�x Beta[0.5,0.2] 0.042 [0.031,0.053] 0.025 [0.008,0.042]
�a Beta[0.5,0.2] 0.083 [0.073,0.092] 0.029 [0.013,0.045]
�� Beta[0.5,0.2] 0.961 [0.955,0.966] 0.984 [0.981,0.988]
�g Beta[0.5,0.2] 0.935 [0.923,0.946] 0.986 [0.982,0.989]
�� Beta[0.5,0.2] 0.982 [0.978,0.985] 0.992 [0.990,0.994]
�� IGam[0.1,Inf] � � 0.862 [0.823,0.904]
�x IGam[0.1,Inf] 0.546 [0.520,0.572] 0.690 [0.645,0.733]
�a IGam[0.1,Inf] 0.544 [0.510,0.578] 0.562 [0.525,0.598]
�� IGam[0.1,Inf] 0.608 [0.582,0.633] 0.386 [0.364,0.407]
�g IGam[0.1,Inf] 1.106 [1.049,1.166] 0.945 [0.896,0.993]
�� IGam[0.1,Inf] 0.258 [0.245,0.270] 0.132 [0.121,0.143]
�mey Uniform 0.290 [0.289,0.290] 0.290 [0.289,0.290]
�mes Uniform 27.40 [27.37,27.42] 27.28 [27.10,27.42]

�("x; �y) Uniform � � -0.406 [-0.466,-0.347]
�("a; �y) Uniform � � 0.173 [0.112,0.234]
�("�; �y) Uniform � � 0.387 [0.336,0.437]
�("g; �y) Uniform � � 0.275 [0.225,0.326]
�("�; �y) Uniform � � 0.151 [0.090,0.212]

Table 18 shows the variance decomposition for the determinacy model with

MEI shocks.

Table 18: Unconditional variance decomposition (Determinacy, MEI shock)
Series/shocks "xt "at "�t "gt "MEI

t "mey;t "mes;t
ln (Y t=Y t�1) 25.93 11.24 16.37 10.60 30.49 5.36 0.00
ln (Ct=Ct�1) 44.73 2.73 49.00 0.99 2.56 0.00 0.00
ln (AtIt=At�1It�1) 18.65 17.13 5.87 6.08 52.28 0.00 0.00
ln (N t=N) 2.57 3.79 7.51 13.40 72.73 0.00 0.00
ln (Gt=Gt�1) 19.39 3.53 0.00 77.08 0.00 0.00 0.00
ln (At=At�1) 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 0.00 0.00 0.00 0.00 93.87 0.00 6.13
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8.6 Data description

This appendix is to describe the details of the source and construction of the

data used in estimation. The sample period covers the �rst quarter of 1955 through

the fourth quarter of 2014:

1. Real Gross Domestic Product. Billions of Chained 2009 Dollars, Seasonally

Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA Table 1.1.6.

2. Gross Domestic Product. Billions of Dollars, Seasonally Adjusted Annual

Rate. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

3. Personal Consumption Expenditures, Nondurable Goods. Billions of Dol-

lars, Seasonally Adjusted Annual Rate. Source: Bureau of Economic Analysis,

NIPA Table 1.1.5.

4. Personal Consumption Expenditures, Services. Billions of Dollars, Season-

ally Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA Table

1.1.5.

5. Gross Private Domestic Investment, Fixed Investment, Residential. Bil-

lions of Dollars, Seasonally Adjusted Annual Rate. Source: Bureau of Economic

Analysis, NIPA Table 1.1.5.

6. Gross Private Domestic Investment, Fixed Investment, Nonresidential. Bil-

lions of Dollars, Seasonally Adjusted Annual Rate. Source: Bureau of Economic

Analysis, NIPA Table 1.1.5.

7. Government Consumption Expenditure. Billions of Dollars, Seasonally Ad-

justed Annual Rate. Source: Bureau of Economic Analysis, NIPA Table 3.9.5.

8. Government Gross Investment. Billions of Dollars, Seasonally Adjusted

Annual Rate. Source: Bureau of Economic Analysis, NIPA Table 3.9.5.

9. Nonfarm Business Hours. Index 2009=100, Seasonally Adjusted. Source:

Bureau of Labor Statistics, Series Id: PRS85006033.

10. Relative Price of Investment Goods. Index 2009=1, Seasonally Adjusted.

Source: Federal Reserve Economic Data, Series Id: PIRIC.

11. Civilian Noninstitutional Population. 16 years and over, thousands. Source:
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Bureau of Labor Statistics, Series Id: LNU00000000Q.

12. Con�dence: Business Tendency Survey for Manufacturing, Composite In-

dicators, OECD Indicator for the United States, Series Id: BSCICP03USM665S.

13. Total Factor Productivity. �A Quarterly, Utilization-Adjusted Series on

Total Factor Productivity�, retrieved from

http://www.frbsf.org/economicresearch/economists/john-fernald/.

14. Moody�s Seasoned Baa Corporate Bond Yield, Not Seasonally Adjusted,

Average of Daily Data, Percent. Source: Board of Governors of the Federal Reserve

System.

15. Moody�s Seasoned Aaa Corporate Bond Yield, Not Seasonally Adjusted,

Average of Daily Data, Percent. Source: Board of Governors of the Federal Reserve

System.

16. 10 Year Treasury Constant Maturity Rate, Not Seasonally Adjusted, Av-

erage of Daily Data, Percent. Source: Board of Governors of the Federal Reserve

System.

17. E¤ective Federal Funds Rate, Not Seasonally Adjusted, Average of Daily

Data, Percent. Source: Board of Governors of the Federal Reserve System.

18. Capacity Utilization: Total Industry (TCU), Percent of Capacity, Season-

ally Adjusted, Source: Board of Governors of the Federal Reserve System.

19. Commercial and Industrial Loans (all Commercial Banks), Percent change

at Annual Rate, Seasonally Adjusted, Source: Board of Governors of the Federal

Reserve System.

20. GDP de�ator= (2)=(1).

21. Real Per Capita Output, Yt = (1)=(11).

22. Real Per Capita Consumption, Ct = [(3) + (4)]=(19)=(11).

23. Real Per Capita Investment, It = [(5) + (6)]=(19)=(11).

24. Real Per Capita Government Expenditure, Gt = [(7) + (8)]=(19)=(11).

25. Per Capita Hours Worked, Nt = (9)=(11).

26. Credit spread = (14)� (16).
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