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Abstract
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1 Introduction

Since the seminal paper of Gale and Shapley (1962), matching problems have been exten-

sively analyzed by many researchers. This paper considers many-to-many matching with

contracts between hospitals and doctors, which was first formulated by Roth (1984a).

We investigate the existence of a stable outcome, which was formulated by Hatfield and

Kominers (2017).1 Substitutability introduced by Kelso and Crawford (1982) has also

been playing an important role to guarantee the existence of a stable outcome in many-

to-many matching with contracts. For example, Roth (1984a), Blair (1988), Chambers

and Yenmez (2017), and Hatfield and Kominers (2017) showed the existence of a stable

outcome under substitutability.2 The purpose of this paper is to relax the condition of

substitutability in many-to-many matching with contracts for an existence result.

In the context of many-to-one matching with contracts, many authors have examined

weaker notions of substitutability to obtain existence results of stable matchings.3 Hat-

field and Kojima (2010) proposed unilateral and bilateral substitutability; Hatfield and

Kominers (2016) proposed substitutes completability. Kadam (2017) showed a clear re-

lationship between these three weak conditions of substitutability in many-to-one match-

ing with contracts. Under these conditions, a cumulative offer process originated with

Hatfield and Milgrom (2005) was employed for finding a stable matching. Other relaxed

notions of substitutability are proposed by paying attention to contracts appearing along

a cumulative offer process only. Flanagan (2014) proposed cumulative offer revealed bi-

lateral substitutability, which is another sufficient condition for the existence of a stable

matching. Recently, Hatfield, et al. (2017b) proposed observable substitutability and ob-

servable substitutability across doctors. They showed that the latter condition is weakest

among previously reviewed conditions.4 Hatfield, et al. (2017a) showed that observable

substitutability, and hence observable substitutability across doctors, are satisfied by a

choice function naturally derived from preferences of a hospital that has multiple divi-

sions and flexible allotments for these divisions. The relaxed notions of substitutability

1A similar definition was also proposed by Roth (1984a).
2Substitutability is important even in many-to-many matching without contracts, see for example,

Sotomayor (1999), Echenique and Oviedo (2006), and Konishi and Ünver (2006), among others.
3They also studied properties of stable matchings under the relaxed notions of substitutability, which

we do not address here.
4For a more general model, which we do not consider in this paper, Zhang (2016) proposed further

weaker conditions called weakly observable substitutability and weakly observable substitutability across
doctors.
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are proposed not only for theoretical concerns, but also for practical applicability. See,

for example, Sönmez and Switzer (2013) and Kominers and Sönmez (2016).

We examine the existence of a stable outcome under observable substitutability across

doctors in a many-to-many matching with contracts. More precisely, we propose a vari-

ation of the cumulative offer process and show that it generates a stable outcome under

observable substitutability across doctors for hospitals’ preferences and some additional

conditions. Such additional conditions are essential because Hatfield and Kominers

(2017) showed that substitutability for all agents is a necessary and sufficient condition

for the existence of a stable outcome in the sense of a maximal domain. We assume

that every agent’s preferences satisfy unitarity, and every doctor’s preferences satisfy

substitutability and size monotonicity (Hatfield and Milgrom, 2005)5, in addition to ob-

servable substitutability across doctors for hospitals’ preferences. We show the existence

of a stable outcome under these assumptions. Unitarity requires that no agent prefers

to choose multiple contracts between a same doctor-hospital pair. Size monotonicity re-

quires that an agent prefers to choose more contracts when the set of available contracts

is expanded.

Yenmez (2018) also showed the existence of a stable outcome with a relaxed notion

of substitutability. Precisely, he showed that a stable outcome exists if preferences of

hospitals are substitutes completable, preferences of doctors are substitutable, and every

agent’s preferences satisfy unitarity.6 Our result is independent of Yenmez (2018) be-

cause we further relaxed substitutes completability to observable substitutability across

doctors, while we additionally need size monotonicity for doctors’ preferences.

We will also discuss the essentiality of unitarity of every agent’s preferences, and

substitutability and size monotonicity of every doctor’s preferences. In those examples,

we show that a stable outcome fails to exist without one of these conditions even if we

consider stronger conditions than observable substitutability across doctors for hospi-

tals’ preferences and a weaker notion of stability called weak setwise stability (Klaus and

Walzl, 2009). It is worth noting that size monotonicity is essential for guaranteeing the

existence of a stable outcome in contrast to the literature. In many-to many-matching

with contracts, Hatfield and Kominers (2017) showed that size monotonicity together

5Hatfield and Milgrom (2005) called this condition the law of aggregate demand. Later, Hatfield, et
al. (2017) called it size monotonicity.

6Yenmez (2018) considered a problem in the context of college admission. Moreover, unitarity is
implicitly assumed in his model.
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with substitutability restricts the structure of the set of stable matchings; Every agent

signs the same number of contracts in every stable matching, which is called the ru-

ral hospitals theorem.7 In many-to-one matching with contracts, Hatfield and Milgrom

(2005) showed that size monotonicity together with substitutability implies that the cu-

mulative offer process is strategy-proof for doctors. We show that a stable matching may

not exist without size monotonicity even if every hospital’s preferences satisfy bilateral

substitutability, which is stronger than observable substitutability across doctors, and

every doctor’s preferences satisfy substitutability.

Despite its essentiality, at least one of unitarity and size monotonicity is violated in

some practical situations. For example, unitarity and size monotonicity are incompatible

in matching with couples (Roth, 1984b). Unitarity is violated when a couple of doctors

prefers to be hired at a same hospital. To avoid this situation, we may bundle contracts

for a couple to one contract like Hatfield and Kominers (2017). However, this makes the

couple’s preferences violate size monotonicity. Nevertheless, there are some applications

where our result may apply. For example, Yenmez (2018) considered a college admission

problem as a many-to-many matching with contracts8. In this formulation, preferences

of colleges may violate substitutability due to their admission policies. Of course, our

result may also apply to classical problems of a labor market for consultants who are

hired from multiple firms.

The remaining of this paper is organized as follows. In section 2, we introduce the

model of many-to-many matching with contracts and the definition of a stable outcome.

Conditions of preferences, including observable substitutability across doctors, are also

introduced. In section 3, we propose an extension of the cumulative offer process. We

also state and prove that the cumulative offer process generates a stable outcome under

observable substitutability across doctors and additional conditions. Moreover, we show

some examples that show the essentiality of these additional conditions. In section 4,

we conclude with some remarks.

7In many-to-many matching without contracts, Alkan (2002) showed that size monotonicity together
with substitutability implies a strong lattice property of the set of stable matchings.

8Students may be matched with multiple colleges because a “match” between a college-student pair
means not enrollment, but an admission.
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2 Preliminaries

Let F be a finite set of agents. The set of agents F is divided into two nonempty and

disjoint sets of doctors D and hospitals H, that is, F = D ∪H and D ∩H = ∅. There
is a finite set of contracts X. Each x ∈ X involves a doctor xD ∈ D and a hospital

xH ∈ H. For each x ∈ X, denote xF = {xD, xH} a doctor-hospital pair involved in

x. There are possibly multiple contracts between a pair of a doctor and a hospital,

that is, there may exist distinct x, x′ ∈ X such that xD = x′
D and xH = x′

H . For each

Y ⊆ X, denote YD = ∪y∈Y {yD}, YH = ∪y∈Y {yH} and YF = YD ∪ YH . For each Y ⊆ X

and each i ∈ F , let Yi = {y ∈ Y |i ∈ yF} be the set of contracts in Y that involve i.

We consider a many-to-many matching problem, that is, every agent can have multiple

contracts. Therefore, each agent i ∈ F has a strict preference ordering ≻i over 2
Xi . For

each Y ⊆ X and each i ∈ F , let Ci(Y ) be the subset of Yi such that Ci(Y ) ⪰i Y
i for all

Y i ⊆ Yi. For each Y ⊆ X, denote CD(Y ) =
∪

d∈D Cd(Y ) and CH(Y ) =
∪

h∈H Ch(Y ).

A tuple (F,X, (≻i)i∈F ) is called a many-to-many matching problem with contracts or

simply a matching problem.

We introduce a solution concept called a stable outcome by Hatfield and Kominers

(2017). A set of contracts A ⊆ X is called an outcome. An outcome A is individually

rational if C i(A) = Ai for all i ∈ F .

Definition 1 • An outcome A ⊆ X is blocked via Z ⊆ X if ∅ ̸= Z ⊆ X \ A and

Zi ⊆ Ci(A ∪ Z) for all i ∈ ZF .

• An outcome is stable if it is individually rational and not blocked.

We sometimes refer Z in Definition 1 a blocking set to A.

We introduce conditions on preferences. Indeed, these conditions are imposed on

choice functions rather than preferences.

Definition 2 For each i ∈ F , choice function Ci satisfies consistency if for any Y, Y ′ ⊆
X, Ci(Y ) ⊆ Y ′ ⊆ Y implies C i(Y ′) = Ci(Y ).

Consistency was introduced to matching theory by Blair (1988).9 Note that consistency

is always satisfied in our model because preferences are primitive in our model.10

9In Aygün and Sönmez (2013), this condition is called irrelevance of rejected contracts.
10In general, consistency may fail if we consider choice function rather than preferences as a primitive

of a model.
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Next condition was originally introduced by Kominers (2012).11

Definition 3 • For each h ∈ H, choice function Ch is unitary if x, x′ ∈ Ch(Y ) and

x ̸= x′ imply xD ̸= x′
D.

• For each d ∈ D, choice function Cd is unitary if x, x′ ∈ Cd(Y ) and x ̸= x′ imply

xH ̸= x′
H .

Note that the unitarity condition is naturally satisfied in a many-to-one matching prob-

lem. Note also that Klaus and Walzl (2009) and Yenmez (2018) imposed the unitar-

ity condition in a many-to-many matching problem with contracts, while Hatfield and

Kominers (2017) did not.

Definition 4 For each i ∈ F , choice function Ci satisfies size monotonicity if for any

Y, Y ′ ⊆ X, Y ⊆ Y ′ implies |Ci(Y )| ≤ |C i(Y ′)|.

This condition is introduced by Hatfield and Milgrom (2005) and called the law of

aggregate demand in their paper.

Definition 5 For each i ∈ F , choice function C i is substitutable if for any Y ⊆ X and

any x, z ∈ X with x, z /∈ Y , z /∈ C i(Y ∪ {z}) implies z /∈ C i(Y ∪ {z, x}).

Substitutability is originally introduced by Kelso and Crawford (1982) and reformulated

by Roth (1984a) and Hatfield and Milgrom (2005) to more general models. In this

model, Hatfield and Kominers (2017) showed that a stable outcome exists when every

agent’s preferences satisfy substitutability. We will examine the existence of a stable

outcome under a weaker notion of substitutability together with the conditions defined

above.

Remark 1 For each i ∈ F , choice function C i is said to satisfy path-independence if

for any Y, Y ′ ⊆ X, Ci(Y ∪ Y ′) = C i(Y ∪ C i(Y ′)). Aizerman and Malishevski (1981)

showed that a choice function satisfies consistency and substitutability if and only if the

choice function satisfies path-independence. We will use this property in our proof.

11This condition was originally imposed on a matching problem rather than choice functions.
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Path-independence was introduced to matching theory by Blair (1988). In the literature

on choice theory, Aizerman and Malishevski (1981) showed that a path-independece

choice is characterized by a collection of strict preference orderings over the set of single

contracts. Based on this result, Chambers and Yenmez (2017) analyzed many-to-many

matcing problelms with contracts.

We turn to the definition of observable substitutability across doctors by Hatfield,

et al. (2017b). A finite sequence of contracts (x1, ..., xM)(M ≥ 1) is said to be an offer

process for h ∈ H if xm
H = h for all m = 1, ...,M . An offer process (x1, ..., xM) for h is

observable if M = 1 or xm
D /∈ Ch({x1, ..., xm−1})D for all m = 2, ...,M . Now, we define

observable substitutability across doctors.

Definition 6 For each h ∈ H, choice function Ch is observably substitutable across

doctors if for any observable offer process (x1, ..., xM) for h and any x ∈ {x1, ..., xM−1},
x ∈ Ch({x1, ..., xM}) \ Ch({x1, ..., xM−1}) implies xD ∈ Ch({x1, ..., x

M−1})D.

In many-to-one matching with contracts, Hatfield, et al. (2017b) showed the existence

of a stable outcome under observable substitutability across doctors by a cumulative offer

process. Their cumulative offer process repeats the following procedure until it finds a

stable outcome: an unmatched doctor offers the best contract to the corresponding

hospital among contracts that have not been rejected by any hospital, and the hospital

chooses the best set of contracts from the cumulated set of contracts that have ever

been offered. An offer process is observable in the sense that such a offer process may

be appeared along the cumulative offer process because a doctor does not offer a new

contract to a hospital if the hospital is currently choosing a contract with that doctor.

Observable substitutability across doctors requires that no doctor is newly accepted by

a hospital when an observable offer process adds another contract.

3 An existence result of a stable outcome

In this section, we first propose an extension of the cumulative offer process that is an

extension of Hatfield and Milgrom (2005). Then, we show that the cumulative offer

process generates a stable outcome under certain conditions.

3.1 Main result

We begin with introducing an extension of the cumulative offer process.
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For each k = 0, 1, ..., AH(k) represents the set of available contracts for hospitals at

step k, while AD(k) represents the set of available contracts for doctors at step k. The

following cumulative offer process specifies how to revise these sets. Later, we will show

that a resulting outcome is stable.

• Set AD(0) = X and AH(0) = CD(AD(0)) and proceed to step 0.

• Step k(≥ 0): If [CH(AH(k))d]H = [Cd(AD(k))]H for all d ∈ D, then the algorithm

terminates at this step. Otherwise, define

R(k) = {x ∈ AH(k)|xD /∈ CxH (AH(k))D}

and

AD(k + 1) = AD(k) \R(k) and AH(k + 1) = AH(k) ∪ CD(AD(k + 1)).

If AD(k + 1) = ∅, the algorithm terminates at this step. Otherwise, proceed to

Step k + 1.

For each step k, R(k) is the set of contracts that are not available for doctors in later

steps. The definition of R(k) requires that a contract x offered to a hospital h be left

available for xD as long as h chooses a contract with xD, even if x itself is not chosen by

h.

Now, we are ready to state the main result.

Theorem 1 Suppose that (i) every agent’s choice function is unitary, (ii) every hospi-

tal’s choice function is observably substitutable across doctors, (iii) every doctor’s choice

function is substitutable, and (iv) every doctor’s choice function satisfies size monotonic-

ity. Then, the cumulative offer process generates a stable outcome.

Before turning to the proof of Theorem 1, we state that our cumulative offer process

terminates in finite steps under assumptions (i)-(iii) in Theorem 1.

Proposition 1 Suppose that (i) every agent’s choice function is unitary, (ii) every hos-

pital’s choice function is observably substitutable across doctors, and (iii) every doctor’s

choice function is substitutable. Then, the cumulative offer process terminates in finite

steps.
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Proof. See the Appendix. ■

We now give a proof of Theorem 1.

Proof of Theorem 1. We assume that (i) every agent’s choice function is unitary,

(ii) every hospital’s choice function is observably substitutable across doctors, (iii) every

doctor’s choice function is substitutable, and (iv) every doctor’s choice function satisfies

size monotonicity. Then, the cumulative offer process terminates at a finite step t∗ by

Proposition 1. There are two cases to consider; (a) [CH(AH(t∗))d′ ]H ̸= [Cd′(AD(t∗))]H

for some d′ ∈ D and AD(t∗ + 1) = ∅, and (b) [CH(AH(t∗)d]H = [Cd(AD(t∗)]H for all

d ∈ D.

Claim 1 If (a) holds, then ∅ is a stable outcome.

Proof of Claim 1. See the Appendix. □

Assume that (b) [CH(AH(t∗))d]H = [Cd(AD(t∗))]H for all d ∈ D. Define X∗ =

CH(AH(t∗)) and Y ∗ = CD(AD(t∗)). Note that X∗
d = CH(AH(t∗))d and Y ∗

d = Cd(AD(t∗))

hold for all d ∈ D. Therefore, [X∗
d ]H = [Y ∗

d ]H holds for all d ∈ D. Note also that for

all d ∈ D, x, x′ ∈ X∗
d and x ̸= x′ imply xH ̸= x′

H . To see this, suppose that there exist

d̂ ∈ D and x, x′ ∈ X∗
d̂
such that x ̸= x′ and xH = x′

H . By x, x′ ∈ X∗
d̂
= CH(AH(t∗))d̂, we

have that x, x′ ∈ CxH (AH(t∗)) and xD = x′
D = d̂, contradicting that CxH is unitary.

We will show that X∗ is stable.

Claim 2 For all d ∈ D, Cd(X∗
d ∪ Y ∗

d ) = X∗
d .

Proof of Claim 2. Fix any d ∈ D. We first claim that Cd(X∗
d∪Y ∗

d )H = [X∗
d ]H . Suppose

that Cd(X∗
d ∪ Y ∗

d )H ̸= [X∗
d ]H . By [X∗

d ]H = [Y ∗
d ]H , we have Cd(X∗

d ∪ Y ∗
d )H ̸= [Y ∗

d ]H .

Note that [X∗
d ∪ Y ∗

d ]H = [Y ∗
d ]H by [X∗

d ]H = [Y ∗
d ]H . Therefore, Cd(X∗

d ∪ Y ∗
d )H ⊆ [Y ∗

d ]H

holds. By Cd(X∗
d ∪ Y ∗

d )H ̸= [Y ∗
d ]H , C

d(X∗
d ∪ Y ∗

d )H ⊊ [Y ∗
d ]H . By consistency of Cd and

Y ∗
d = Cd(AD(t∗)), Cd(Y ∗

d ) = Y ∗
d . Therefore, Cd(X∗

d ∪ Y ∗
d )H ⊊ [Cd(Y ∗

d )]H . By unitarity

of Cd, this implies |Cd(X∗
d ∪Y ∗

d )| < |Cd(Y ∗
d )|. However, this contradicts that Cd satisfies

size monotonicity.

We next show that X∗
d ⊆ Cd(X∗

d ∪ Y ∗
d ). Take any x ∈ X∗

d . Suppose that x /∈
Cd(X∗

d ∪ Y ∗
d ). Let xH = h. By h ∈ [X∗

d ]H , we have h ∈ Cd(X∗
d ∪ Y ∗

d )H . Therefore, there

exists y ∈ Cd(X∗
d ∪Y ∗

d ) such that yH = h. By x ̸= y, x ∈ X∗
d , xH = yH = h and unitarity
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of Ch, we have y ∈ Y ∗
d . By substitutability of Cd, we have that y ∈ Cd({x} ∪ Y ∗

d ). By

x ∈ X∗
d = CH(AH(t∗))d, we have x ∈ AH(t∗). It follows that there exists some t′ ≤ t∗

such that x ∈ CD(AD(t′)) from the definition of the cumulative offer process. Thus,

x ∈ AD(t′). We also have x ∈ Cd(AD(t′)) by xD = d. Note that Y ∗
d ⊆ AD(t∗) holds by

Y ∗
d = Cd(AD(t∗)). By AD(t∗) ⊆ AD(t′), we have Y ∗

d ⊆ AD(t′). By substitutability of Cd

and {x} ∪ Y ∗
d ⊆ AD(t′) , x ∈ Cd(AD(t′)) implies x ∈ Cd({x} ∪ Y ∗

d ). Therefore, we have

x, y ∈ Cd({x} ∪ Y ∗
d ), x ̸= y, and xH = yH = h, contradicting that Cd is unitary.

By unitarity of Cd together with X∗
d ⊆ Cd(X∗

d ∪ Y ∗
d ) and [X∗

d ]H = [Cd(X∗
d ∪ Y ∗

d )]H ,

we have that X∗
d = Cd(X∗

d ∪ Y ∗
d ). □

We now show that X∗ is stable. Recall that every doctor’s choice function satis-

fies path-independence by its consistency and substitutability. (See Remark 1.) By

CH(AH(t∗)) = X∗ and consistency, we have Ch(X∗) = X∗
h for all h ∈ H and hence X∗

is individually rational for all hospitals. By Claim 2 together with consistency, we have

Cd(X∗) = X∗
d for all d ∈ D and hence X∗ is individually rational. Finally we show that

X∗ is not blocked. Suppose not. Then, there exists a blocking set Z to X∗. Note that

Z ∩ X∗ = ∅. We claim that Z ⊆ AH(t∗). To obtain this, it is sufficient to show that

Zd ⊆ AH(t∗) for all d ∈ ZD. Pick any d ∈ ZD. Then, Zd ⊆ Cd(Zd ∪X∗
d) because Z is a

blocking set to X∗. Note that

Cd(Zd ∪X∗
d) = Cd(Zd ∪ Cd(X∗

d ∪ Y ∗
d )) = Cd(Zd ∪X∗

d ∪ Y ∗
d )

holds where the first equality follows from Claim 2 and the second equality follows from

path-independence of Cd. By Zd ⊆ Cd(Zd ∪X∗
d), we have that Zd ⊆ Cd(Zd ∪X∗

d ∪ Y ∗
d ).

By substitutability of Cd, we have that Zd ⊆ Cd(Zd ∪ Y ∗
d ). Note that

Cd(Zd ∪ Y ∗
d ) = Cd(Zd ∪ Cd(AD(t∗))) = Cd(Zd ∪ AD(t∗))

holds where the first equality follows from Y ∗
d = Cd(AD(t∗)) and the second equality

follows from path-independence of Cd. By Zd ⊆ Cd(Zd ∪ Y ∗
d ), we obtain Zd ⊆ Cd(Zd ∪

AD(t∗)). We now show that Zd ⊆ AH(t∗). Pick any z ∈ Zd. If z /∈ AD(t∗), then z ∈ R(t′)

for some t′ < t∗ and hence z ∈ AH(t′) ⊆ AH(t∗). Suppose that z ∈ AD(t∗). Then, by

substitutability of Cd and z ∈ Cd(Zd ∪AD(t∗)), we have that z ∈ Cd(AD(t∗)) and hence

z ∈ AH(t∗). Therefore, we obtain Zd ⊆ AH(t∗).

Pick any h ∈ ZH . By Ch(AH(t∗)) = X∗
h and Z ⊆ AH(t∗), we have Ch(AH(t∗)) ⊆

X∗
h ∪ Z ⊆ AH(t∗). By consistency of Ch, we have Ch(AH(t∗)) = Ch(X∗

h ∪ Z). This
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implies Ch(X∗
h ∪ Z) = X∗

h contradicting that Z is a blocking set to X∗. Therefore, X∗

is stable. ■

3.2 Tightness of Theorem 1

In this subsection, we show tightness of Theorem 1 by showing counterexamples in each

of which one of the conditions in Theorem 1 is violated. Moreover, we introduce stronger

conditions than observable substitutability across doctors and a weaker solution concept

than the stable outcome and show that the counterexamples are valid even if we consider

those stronger conditions and/or a weaker solution concept.

First, we introduce two conditions on preferences by Hatfield and Kojima (2010).

Definition 7 For each h ∈ H, choice function Ch is unilaterally substitutable if for any

Y ⊆ X and any x, z ∈ X with zD /∈ YD, z /∈ Ch(Y ∪ {z}) implies z /∈ Ch(Y ∪ {z, x}).

Definition 8 For each h ∈ H, choice function Ch is bilaterally substitutable if for any

Y ⊆ X and any x, z ∈ X with xD, zD /∈ YD, z /∈ Ch(Y ∪{z}) implies z /∈ Ch(Y ∪{z, x}).

The next condition is substitutable completability by Hatfield and Kominers (2016).

Definition 9 Let h ∈ H.

• A function C̄h is a completion of choice function Ch if for any Y ⊆ X, either

C̄h(Y ) = Ch(Y ) or there exist x, x′ ∈ C̄h(Y ) such that xD = x′
D.

• A choice function Ch is substitutes completable if there exists a completion C̄h that

satisfies substitutability and consistecy.

These three conditions for a doctor’s preferences can be defined in the same way.

Therefore, we omit it. Yenmez (2018) showed that if every agent’s choice function is

unitary, every hospital’s choice function is substitutes completable and every doctor’s

choice function is substitutable, then there exists a stable outcome.

Remark 2 We briefly survey the relationship between the relaxed notions of substi-

tutability, where preferences of agents are given as primitives so that consistency is au-

tomatically satisfied12. These conditions are originally proposed in the context of many-

to-one matching with contracts. Therefore, unitarity of every agent’s choice function
12The relationship in a model where consistency is unnecessarily satisfied was clearly summarized by

Zhang (2016).
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is necessarily assumed. Hatfield and Kojima (2010) proposed unilateral substitutability

as a stronger notion of bilateral substitutability. Kadam (2017) showed that unilat-

eral substitutability implies substitutes completability. Hatfield, et al. (2017b) showed

that observable substitutability across doctors is implied from each of substitutes com-

pletability, bilateral substitutability, cumulative offer revealed bilateral substitutability

(Flanagan, 2014), and observable substitutability (not across doctors) (Hatfield, et al.,

2017), though we do not introduce the latter two conditions explicitly. Therefore, ob-

servable substitutability across doctors is weakest among these known conditions. It

should be remarked that these relationships are valid under the unitarity condition.

Finally, we introduce a weaker solution concept than a stable outcome originally

proposed by Klaus and Walzl (2009).

Definition 10 • An outcome A ⊆ X is weakly setwise blocked via Z ⊆ X if ∅ ̸=
Z ⊆ X \ A and there exists Y ∗ satisfying (i) Z ⊆ Y ∗, (ii) Y ∗ ⊆ A ∪ Z, (iii)

Y ∗
i = Ci(A ∪ Z) for all i ∈ ZF .

• An outcome is weakly setwise stable if it is individually rational and not weakly

setwise blocked.

It is straightforward to see that any stable outcome is a weakly setwise stable outcome

because a weakly setwise block requires that the blocking agents agree on a resulting

outcome, in addition to the definition of a block. On the other hand, there may be a

weakly setwise stable outcome that is not stable.

For a simple example, consider a case where H = {h}, D = {d}, and X = {x, y}.
Preferences of each agent is given by the following list.

≻h : {x} {y} ∅.

≻d : {x, y} {y} {x} ∅,

Such a list as ≻h means {x} ≻h {y} ≻h ∅, and ∅ ≻h Y for any nonempty Y ⊆ X with

Y ̸= {x}, {y}. It is easy to see that {y} is weakly setwise stable, but not stable because

it is blocked via {x}. In this example, Cd is not unitary. The following example shows

that the set of weakly setwise stable outcomes may be strictly larger than that of stable

outcomes even if every agent’s choice function is unitary. In this example, every agent
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except for a hospital h and a doctor d has substitutable choice function, while choice

functions of h and d are bilaterally substitutable.

Example 1 Let H = {h, ĥ} and D = {d, d′}. The set of contracts is given as X =

{x, y, x′, y′, x̂, x̂′}. Agents involved in each contract are described in Figure 1.

Figure 1: A description of Example 1.
h ĥ

d d′

y x
x′

x̂

x̂′

y′

The preferences of the agents are given as follows.

≻h : {x, x′} {y} {y′} {x} {x′} ∅.

≻ĥ : {x̂} {x̂′} ∅.

≻d : {x, x̂} {y} {x} {x̂} ∅.

≻d′ : {y′, x̂′} {x′, x̂′} {y′} {x̂′} {x′} ∅.

We proceed with the choice functions Ch, C ĥ, Cd, and Cd′ that are derived from

these preferences where all of them satisfy unitarity. Note that C ĥ and Cd′ are substi-

tutable. On the other hand, Ch and Cd are not substitutable, while they are bilaterally

substitutable.

Consider an outcome {y, x̂′}. We show that this outcome is blocked via {x, x′, x̂}
and hence not stable. We have that

Ch({y, x̂′, x, x′, x̂}) = {x, x′} = {x, x′, x̂}h;

C ĥ({y, x̂′, x, x′, x̂}) = {x̂} = {x, x′, x̂}ĥ;

Cd({y, x̂′, x, x′, x̂}) = {x, x̂} = {x, x′, x̂}d;

Cd′({y, x̂′, x, x′, x̂}) = {x′, x̂′} ⊇ {x′} = {x, x′, x̂}d′

because each of h, ĥ, and d chooses own best choice, and d′ chooses own second best

choice while her best choice {y′, x̂′} is not available from {y, x̂′, x, x′, x̂}(̸∋ y′). Note
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that A is not weakly setwise blocked via {x, x′, x̂} because x̂′ /∈ C ĥ({y, x̂′, x, x′, x̂}) while
x̂′ ∈ Cd′({y, x̂′, x, x′, x̂}).

On the other hand, {y, x̂′} is weakly setwise stable. Suppose that there exists a weakly
setwise blocking set Z to {y, x̂′}. We claim that d /∈ ZD. Suppose that d ∈ ZD. Then,

x, x̂ ∈ Z because Cd(Y ∪{y, x̂′}) = {y} for any Y ⊆ X\{y, x̂′} unless x, x̂ ∈ Y . It follows

that h, ĥ ∈ ZH . Then, x′ ∈ Z because Ch(Y ∪ {y, x̂′}) = {y} for any Y ⊆ X \ {y, x̂′}
unless x, x′ ∈ Y . On the other hand, y′ /∈ Z because y′ /∈ Ch(Y ∪ {y, x̂′}) for any

Y ⊆ X \ {y, x̂′}. Since Z ∩ {y, x̂′} = ∅, Z = {x, x′, x̂}. However, {y, x̂′} is not weakly

setwise blocked via {x, x′, x̂} as we mentioned earlier. Hence, d /∈ a(Z).

By d /∈ a(Z) and Z ∩ {y, x̂′} = ∅, Z ⊆ {x′, y′}. Since Ch and Cd′ are unitary,

Z = {x′} or {y′}. However, neither {x′} nor {y′} is a weakly setwise blocking set to

{y, x̂′} by {y} = Ch({y, x̂′} ∪ {x′}) = Ch({y, x̂′} ∪ {y′}). Hence, {y, x̂′} is a weakly

setwise stable outcome. □

We show that stable and weakly setwise stable outcomes coincide with each other

under weaker conditions than Theorem 1. Nevertheless, it is still meaningful to confirm

that even a weakly setwise stable outcome fails to exist when a condition in the following

proposition is violated.

Proposition 2 Suppose that (i) every agent’s choice function is unitary and (ii) every

doctor’s choice function is substitutable. Then, the set of weakly setwise stable outcomes

coincides with the set of stable outcomes.

Proof. We show that any weakly setwise stable outcome is stable because the converse

direction follows from the definition. To obtain this, it is sufficient to show that for any

outcome A, if A is blocked, then it is weakly setwise blocked under (i) and (ii).

Let A be an outcome. Suppose that A is blocked. Let Z be a blocking set to A. Fix

any hospital h ∈ ZH and define Z̃ = Zh. Note that Z̃ ̸= ∅, Z̃H = {h}, and Z̃ ⊆ X \ A.
We will show that Z̃ is a weakly setwise blocking set to A.

We first show that Z̃i ⊆ Ci(A ∪ Z̃) for all i ∈ Z̃F . This statement clearly holds for

h. Pick any d ∈ Z̃F with d ̸= h. By Z̃H = {h}, d ∈ D holds. By d ∈ Z̃F ⊆ ZF , we have

Z̃d ⊆ Cd(Ad ∪ Zd). By substitutability of Cd, we have Z̃d ⊆ Cd(Ad ∪ Z̃d).

For each i ∈ Z̃F , define Y i = Ci(A ∪ Z̃) and Y ∗ =
∪

i∈ZF
Y i. Note that Y ∗ ⊆ A ∪ Z̃

holds because Ci(A∪ Z̃) ⊆ Ai ∪ Z̃i for all i ∈ Z̃F . Note also that Z̃ ⊆ Y ∗ holds because
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Z̃i ⊆ C i(A ∪ Z̃) for all i ∈ Z̃F . Therefore, to obtain that Z̃ is a weakly setwise blocking

set to A, it is sufficient to show that Y ∗
i = Y i(= Ci(A ∪ Z̃) ) for all i ∈ Z̃F . Let i ∈ Z̃F .

Suppose that Y ∗
i ̸= Y i. Then, Y i ⊊ Y ∗

i because Y i ⊆ Y ∗
i holds from the definition of

Y ∗. Consider any y ∈ Y ∗
i with y /∈ Y i. Note that y ∈ A holds by y /∈ Y i. Then, by

y ∈ Y ∗ and y /∈ Y i, there exists j ∈ Z̃F \ {i} such that y ∈ Y j. By yF = {i, j}, either
(i) i ∈ D and j ∈ H or (ii) j ∈ D and i ∈ H. By {i, j} ⊆ Z̃F and Z̃H = {h}, in either

case, there exists a contract z ∈ Z̃ such that zF = {i, j}. By z ∈ Z̃, we have z ∈ Y j

and hence z, y ∈ Y j = Cj(A ∪ Z̃). By z ∈ Z̃ and y ∈ A, we have y ̸= z contradicting

unitarity. ■

Now, we show three counterexamples, where one of the assumptions in Theorem 1

is violated, while some other conditions are possibly strengthened. First, we show an

example without the unitarity condition. The following example shows that a weakly

setwise stable outcome may fail to exist in general if the unitarity condition is violated

even though one hospital’s choice function is not only observably substitutable across

doctors but also unilaterally substitutable and substitutes completable, and the remain-

ing agents’ choice functions are all substitutable. Moreover, every agent’s choice function

satisfies size monotonicity.

Example 2 Let H = {h, ĥ} and D = {d, d′}. The set of contracts is given as X =

{x, y, x′, x̂, x̂′}. Agents involved in each contract are described in Figure 2.

Figure 2: A description of Example 2.
h ĥ

d d′

y x
x′

x̂

x̂′

Preferences of the agents are given as follows.

≻h : {x, y, x′} {x, x′} {y, x′} {x} {y} {x′} ∅.

≻ĥ : {x̂} {x̂′} ∅.
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Table 1: Comparison of Ch and C̄h.

Y ∅ {x} {y} {x′} {x, y} {x, x′} {y, x′} {x, y, x′}
Ch(Y ) ∅ {x} {y} {x′} {x} {x, x′} {y, x′} {x, y, x′}
C̄h(Y ) ∅ {x} {y} {x′} {x, y} {x, x′} {y, x′} {x, y, x′}

↑
xD = yD

≻d : {x, y} {x, x̂} {y, x̂} {x} {y} {x̂} ∅.

≻d′ : {x̂′} {x′} ∅.

We proceed with the choice functions Ch, C ĥ, Cd, and Cd′ that are derived from these

preferences. Note that Ch and Cd are not unitary because Ch({x, y, x′}) = {x, y, x′}
and Cd(Y ) = {x, y} for all Y ⊆ X with {x, y} ⊆ Y , where xF = yF . Therefore,

condition (i) of Theorem 1 is violated. On the other hand, any other condition in

Theorem 1 is satisfied. Moreover, C ĥ, Cd, and Cd′ are substitutable, and Ch satisfies all

of unilateral substitutability, substitutes completability, and observable substitutability

across doctors, though it is not substitutable. (Table 1 shows a completion C̄h of Ch

and compares these functions so that we can confirm substitutes completability of Ch.)

Note that this example violates condition (i) of Proposition 2. Therefore, the set of

weakly setwise stable outcomes may be larger than that of stable outcomes. However, we

show that even a weakly setwise stable outcome fails to exist in this example. Suppose

that there exists a weakly setwise stable outcome A. We distinguish two cases.

First, assume that x′ ∈ A. Then, x̂′ /∈ A by the individual rationality of d′. We claim

that {x, y} ⊆ A. Suppose not. Let Z = {x, y} \ A. Then, A is weakly setwise blocked

via Z because Ch(Z ∪A) = {x, y, x′} = {x, y, x′}h and Cd(Z ∪A) = {x, y} = {x, y, x′}d.
Therefore, assume that {x, y} ⊆ A. Note that {x, y, x′} ⊆ A. Then, x̂ /∈ A by the

individual rationality of d. Hence, {x, y, x′} = A. However, A is weakly setwise blocked

via {x̂′} because C ĥ({x, y, x′, x̂′}) = {x̂′} = {x̂′}ĥ and Cd′({x, y, x′, x̂′}) = {x̂′} = {x̂′}d′ .
This contradicts weak setwise stability of A. Hence, there is no weakly setwise stable

outcome that includes x′.

Next, assume that x′ /∈ A. By the individual rationality of h, at most one of x and

y is in A. We claim that x̂ ∈ A. Suppose not. Then, Cd(A ∪ {x̂}) = Ad ∪ {x̂} because

|Ad| ≤ 1. We also have C ĥ(A∪{x̂}) = {x̂} = (Aĥ∪{x̂})ĥ. Therefore, A is weakly setwise
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blocked via {x̂}, contradicting weak setwise stability of A. Hence, assume x̂ ∈ A.

Then, x̂′ /∈ A by the individual rationality of ĥ. Note that Ad′ = ∅ since x′ /∈ A is

assumed. We claim that A is weakly setwise blocked via Z̄ := ({x, y} \ A) ∪ {x′}. Note
that {x, y, x′} ⊆ A∪ Z̄. Then, Ch(A∪ Z̄) = {x, y, x′} = {x, y, x′}h; Cd′(A∪ Z̄) = {x′} =

{x, y, x′}d′ by x′ ∈ A∪ Z̄ and x̂′ /∈ A∪ Z̄; Cd(A∪ Z̄) = {x, y} = {x, y, x′}d. Therefore, A
is weakly setwise blocked via Z̄, contradicting weak setwise stability of A. Hence, there

is no weakly setwise stable outcome in this example.

Next, we show an example where there is a doctor without substitutable choice

function. The following example shows that a weakly setwise stable outcome may fail to

exist in general if there is a doctor d with unilateral substitutable but not substitutable

choice function, though a choice function of every agent except for d and one hospital h

is substitutable. Moreover, the choice function of h is bilateral substitutable, and every

agent’s choice function satisfies unitarity and size monotonicity.

Example 3 Let H = {h, ĥ} and D = {d, d′}. The set of contracts is given as X =

{x, y, x′, y′, x̂, x̂′}. Agents involved in each contract are described in the same way as

Example 1. (See Figure 1 in Example 1.)

The preferences of the agents are given as follows.

≻h : {x, x′} {y′} {y} {x′} {x} ∅.

≻ĥ : {x̂′} {x̂} ∅.

≻d : {x̂, y} {x̂} {x} {y} ∅.

≻d′ : {x′} {x̂′} {y′} ∅.

We proceed with the choice functions Ch, C ĥ, Cd, and Cd′ that are derived from

these preferences where all of them satisfy unitarity. . It is obvious that C ĥ and Cd′ are

substitutable, while Ch and Cd are not because [x /∈ Ch({x, y}) and x ∈ Ch({x, y, x′})]
and [y /∈ Cd({x, y}) and y ∈ Ch({x, y, x̂})]. Therefore, condition (iii) of Theorem 1 is

violated. On the other hand, any other condition in Theorem 1 is satisfied. Moreover,

Ch is bilaterally substitutable, and Cd is unilaterally substitutable that are stronger

than observably substitutable across doctors.

Note that this example violates condition (ii) of Proposition 2. Therefore, the set of

weakly setwise stable outcomes may be larger than that of stable outcomes. However, we
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show that even a weakly setwise stable outcome fails to exist in this example. Suppose

that there exists a weakly setwise stable outcome A.

First, assume that x̂′ ∈ A. Then, x̂ /∈ A by the individual rationality for ĥ, and

x′, y′ /∈ A by the individual rationality for d′. Moreover, by unitarity of Ch as well as

Cd, at most one of x and y is in A. To summarize, A is either {x̂′}, {x, x̂′}, or {y, x̂′}. If
A = {x̂′}, then {x̂′} is weakly setwise blocked via {x′} because Ch({x̂′}∪{x′}) = {x′} =

{x′}h and Cd′({x̂′}∪{x′}) = {x′} = {x′}d′ . If A = {x, x̂′}, then {x, x̂′} is weakly setwise

blocked via {x′} because Ch({x, x̂′}∪{x′}) = {x, x′} = {x, x′}h and Cd′({x, x̂′}∪{x′}) =
{x′} = {x, x′}d′ . If A = {y, x̂′}, then {y, x̂′} is weakly setwise blocked via {x, x′} because

Ch({y, x̂′} ∪ {x, x′}) = {x, x′} = {x, x′}h, Cd({y, x̂′} ∪ {x, x′}) = {x} = {x, x′}d, and
Cd′({y, x̂′}∪ {x, x′}) = {x′} = {x, x′}d′ . Every case contradicts weak setwise stability of

A.

Assume therefore that x̂′ /∈ A. Suppose that x′ /∈ A. Then, A is weakly setwise

blocked via {x̂′} because C ĥ(A∪{x̂′}) = {x̂′} = {x̂′}ĥ and Cd′(A∪{x̂′}) = {x̂′} = {x̂′}d′ .
This contradicts weakly setwise stability of A. Thus, x′ ∈ A. Then, y, y′ /∈ A by the

individual rationality of h. By the individual rationality of d, at most one of x and x̂ is

in A. To summarize, A is either {x′}, {x, x′}, or {x̂, x′}. If A = {x′}, then {x′} is weakly

setwise blocked via {x} because Ch({x′}∪{x}) = {x, x′} = {x, x′}h and Cd({x′}∪{x}) =
{x} = {x, x′}d. If A = {x, x′}, then {x, x′} is weakly setwise blocked via {x̂} because

C ĥ({x, x′} ∪ {x̂}) = {x̂} = {x̂}ĥ and Cd({x, x′} ∪ {x̂}) = {x̂} = {x̂}d. If A = {x̂, x′},
then {x̂, x′} is weakly setwise blocked via {y} because Ch({x̂, x′}∪{y}) = {y} = {y, x̂}h
and Cd({x̂, x′} ∪ {y}) = {y, x̂} = {y, x̂}d. Every case contradicts weak setwise stability

of A. Hence, there is no weakly setwise stable outcome in this example.

Finally, we show an example, where there is a doctor without size monotonicity. The

following example shows that a stable outcome may fail to exist in general if size mono-

tonicity is violated even though every agent except for one hospital h is substitutable,

while choice function of h is bilateral substitutable. Moreover, there is only one doctor

violating size monotonicity, and every agent’s choice funtion satisfies unitarity.

Example 4 Let H = {h, ĥ} and D = {d, d′}. The set of contracts is given as X =

{x, y, x′, y′, x̂, x̂′}. Agents involved in each contract is described in the same way as

Example 1. (See Figure 1 in Example 1.)

≻h: {x, x′} {y′} {y} {x′} {x} ∅.
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≻ĥ: {x̂′} {x̂} ∅.

≻d: {y, x̂} {y}, {x̂} {x} ∅.

≻d′ : {x′} {y′, x̂′} {y′} {x̂′} ∅.

We proceed with the choice functions Ch, C ĥ, Cd, and Cd′ that are derived from

these preferences where all of them satisfy unitarity. It is straightforward to see that

C ĥ, Cd, and Cd′ are substitutable. However, Cd′ do not satisfy size monotonicity because

Cd′({x′, y′, x̂′}) = {x′} and Cd′({y′, x̂′}) = {y′, x̂′}. Therefore, condition (iv) of Theorem

1 is violated. On the other hand, any other condition in Theorem 1 is satisfied. Moreover,

we can see that Ch is bilateral substitutable though it is not substitutable. Therefore,

a stronger condition than (ii) of Theorem 1 is satisfied.

This example satisfies all the conditions of Proposition 2. Therefore, it suffices to

show that there exists no stable outcome. Let A be an individually rational outcome.

We first show that there exists no stable outcome such that |Ai| = 2 for some i ∈ F .

Suppose that |Ah| = 2. By the individual rationality, A = {x, x′}. Then, A is blocked

via {x̂} because C ĥ({x, x′} ∪ {x̂}) = {x̂} and Cd({x, x′} ∪ {x̂}) = {x̂}. Suppose that

|Ad| = 2. By the individual rationality, A = {y, x̂}. Then, A is blocked via {y′}
because Ch({y, x̂} ∪ {y′}) = {y′} and Cd′({y, x̂} ∪ {y′}) = {y′}. Suppose that |Ad′| = 2.

By the individual rationality, A = {y′, x̂′}. Then, A is blocked via {x, x′} because

Ch({y′, x̂′}∪{x, x′}) = {x, x′}, Cd({y′, x̂′}∪{x, x′}) = {x}, and Cd′({y′, x̂′}∪{x, x′}) =
{x′}. Clearly, there is no individually rational outcome A such that |Aĥ| = 2.

We next show that A is not stable when Ad = ∅ or Ad′ = ∅. Suppose Ad = ∅. Then,
x /∈ A. Thus, A is blocked via {x, x′} \ A ̸= ∅ because Ch(Ah ∪ {x, x′}) = {x, x′},
Cd(Ad ∪ {x, x′}) = Cd({x, x′}) = {x}, and Cd′(Ad′ ∪ {x, x′}) = {x′}. Suppose Ad′ = ∅.
Then, x′ /∈ A, and thus, Ah ̸= {x, x′}. Moreover, y′ /∈ A. Then, A is blocked via {y′}
because Ch(Ah ∪ {y′}) = {y′} by x′ /∈ A, and Cd′(Ad′ ∪ {y′}) = {y′}.

From the above argument, it remains to consider the case with |Ai| = 1 for all i ∈ F .

Then, there are the following four possibilities: A = {x, x̂′}, {y, x̂′}, {x′, x̂}, or {y′, x̂}.
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However,

{x, x̂′} is blocked via {x′} by Ch({x, x̂′} ∪ {x′}) = {x, x′} and Cd′({x, x̂′} ∪ {x′}) = {x′};

{y, x̂′} is blocked via {y′} by Ch({y, x̂′} ∪ {y′}) = {y′} and Cd′({y, x̂′} ∪ {y′}) = {y′, x̂′};

{x′, x̂} is blocked via {y} by Ch({x′, x̂} ∪ {y}) = {y} and Cd({x′, x̂} ∪ {y}) = {y, x̂};

{y′, x̂} is blocked via {x̂′} by C ĥ({y′, x̂} ∪ {x̂′}) = {x̂′} and Cd′({y′, x̂} ∪ {x̂′}) = {y′, x̂′}.

Therefore, there is no stable outcome in this example.

4 Concluding remarks

This paper showed the existence of a stable outcome in many-to-many matching with

contracts under unitarity of all agents’ choice functions, observable substitutability

across doctors for hospitals’ choice functions, and substitutability and size monotonicity

for doctors’ choice functions by employing the cumulative offer process. We also show

the essentiality of the conditions via examples.

We finally discuss incentive problems under stable mechanisms. In the context of

many-to-one matching with contracts, Hatfield, et al. (2017b) showed that the cumu-

lative offer process is strategy-proof for doctors under observable substitutability (not

across doctors) and some additional conditions. However, this property does not hold

in many-to-many matching. In fact, Roth (1985)’s result implies that there exists no

stable mechanism that is strategy-proof for doctors in many-to-many matching with

contracts.13

On the other hand, non-revelation mechanisms for many-to-many matching mar-

kets have been studied by Sotomayor (2004), Echenique and Oviedo (2006), Klaus and

Klijn (2017) and Romero-Medina and Triossi (2018).14 These studies clarify relation-

ship between subgame perfect Nash equilibrium outcomes and stable outcomes in cer-

tain extensive-form games induced by many-to-many matching markets. In particular,

Romero-Medina and Triossi (2018) analyzed a take-it or leave-it offer game in many-

to-many matching with contracts. They showed that the set of subgame perfect Nash

13Precisely, Roth (1985) considered a many-to-one matching problem between students and colleges
where colleges have responsive preferences over subsets of students with some capacities. It was shown
that there exists no stable mechanism that is strategy-proof for colleges.

14For many-to-one matching markets, see, for example, Alcalde and Romero-Medina (2000) and
Romero-Medina and Triossi (2014).
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equilibrium outcomes is a (possibly proper) subset of the set of pairwise stable outcomes

and provided sufficient conditions for the existence of a subgame perfect equilibrium.

We may analyze non-revelation mechanisms under observable substitutability across

doctors. We leave this problem for future research.

Appendix

This appendix is devoted to the proof of Proposition 1 and Claim 1 in the proof of

Theorem 1.

We begin with introducing some basic properties of the cumulative offer process that

are used in both proofs of Proposition 1 and Claim 1. Suppose that the cumulative

offer process proceeds until step t̂ and [CH(AH(t̂))d′ ]H ̸= [Cd′(AD(t̂))]H for some d′ ∈ D.

Then, AD(t) and AH(t) are defined for all t = 0, ..., t̂+ 1. Note that AD(t+ 1) ⊆ AD(t)

and AH(t + 1) ⊇ AH(t) for all t = 0, ..., t̂ from the definition of the cumulative offer

process. For each t = 0, ..., t̂ + 1, we define the following two conditions named P1(t)

and P1′(t);

• P1(t): For each d ∈ D and h ∈ H, d ∈ Ch(AH(t))D implies h ∈ Cd(AD(t))H .

• P1′(t): For each h ∈ H with AH(t)h ̸= ∅, there exists an observable offer process

(a1, ..., aM) for h such that AH(t)h = {a1, ..., aM}.

For each t = 0, ..., t̂, we define the following condition named P2(t);

• P2(t): For each x ∈ X, x ∈ AH(t) and xD /∈ CxH (AH(t))D imply x /∈ CxH (AH(t+

1)).

Lemma 1 Suppose that (i) every agent’s choice function is unitary, (ii) every hospital’s

choice function is observably substitutable across doctors, and (iii) every doctor’s choice

function is substitutable. Suppose that the cumulative offer process proceeds until step

t̂ and [CH(AH(t̂))d′ ]H ̸= [Cd′(AD(t̂))]H for some d′ ∈ D. Then, P1(t) and P1′(t) are

satisfied for all t = 0, ..., t̂+ 1 and P2(t) is satisfied for all t = 0, ..., t̂

Proof. We first show that P1(0) and P2(0) are satisfied as an induction base. Let

d ∈ D and h ∈ H. Suppose that d ∈ Ch(AH(0))D. Let x ∈ Ch(AH(0)) with xD = d.

By x ∈ AH(0) = CD(AD(0)), we have x ∈ Cd(AH(0)) and hence h ∈ Cd(AH(0))H .
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Thus, P1(0) is satisfied. To show P1′(0), let h′ ∈ H with AH(t)h′ ̸= ∅. We denote

AH(0)h′ = {ã1, ..., ãk}. Since every doctor’s choice function is unitary, we have that

aD ̸= a′D for any distinct a, a′ ∈ {ã1, ..., ãk}. This implies that (ã1, ..., ãk) is an observable

offer process for h.

We next state and prove the following three claims.

Claim 3 Let t = 0, · · · , t̂. Suppose that P1(t) is satisfied. Then, for all x ∈ AH(t+1) \
AH(t), xD /∈ CxH (AH(t))D.

Proof of Claim 3. Take any t = 0, · · · , t̂ and any x ∈ AH(t + 1) \ AH(t). We denote

xD = d and xH = h. We will show that d /∈ Ch(AH(t))D. Suppose that d ∈ Ch(AH(t))D.

By P1(t), h ∈ Cd(AD(t))H . Therefore, there exists z ∈ Cd(AD(t)) with zH = h. By

z ∈ Cd(AD(t)), z ∈ AH(t) holds. Then, d ∈ Ch(AH(t))D implies z /∈ R(t) from the

definition of the cumulative offer process. By z ∈ Cd(AD(t)), z ∈ AD(t) holds. Then,

z /∈ R(t) implies z ∈ AD(t+1). By substitutability of Cd and AD(t+1) ⊆ AD(t), we have

that z ∈ Cd(AD(t+1)). By x ∈ AH(t+1)\AH(t), we also have x ∈ Cd(AD(t+1)). Since

Cd is unitary, we have x = z. Note that z(= x) ∈ Cd(AD(t)) implies z(= x) ∈ AH(t).

However, this contradicts x /∈ AH(t). Hence, d /∈ Ch(AH(t))D. □

Claim 4 Let t = 0, · · · , t̂. Suppose that P1(t) and P1′(t) are satisfied. Then, P1′(t+ 1)

and P2(t) are satisfied.

Proof of Claim 4. Fix any t = 0, · · · , t̂. We assume that P1(t) and P1′(t) are satisfied

throughout this proof. We first show that P1′(t + 1) is satisfied. Note that P1′(t + 1)

follows from the following condition named P1
′′ (t+ 1) together with P1′(t):

P1′′ (t+ 1): Let h ∈ H with AH(t)h ̸= ∅ and AH(t + 1)h \ AH(t)h ̸= ∅. Suppose that

(a1, ..., aM) is an observable offer process for h such that AH(t)h = {a1, ..., aM}.
Then, for any sequence (ã1, ..., ãM

′
) such that {ã1, ..., ãM ′} ⊆ Ah(t + 1) \ Ah(t),

(a1, ..., aM , ã1, ..., ãM
′
) is observable for h.

We will show that P1′′ (t + 1) is satisfied under P1(t) and P1′(t). Let h ∈ H with

AH(t)h ̸= ∅ and AH(t + 1)h \ AH(t)h ̸= ∅. By P1′(t), there exists an observable offer

process (a1, ..., aM) for h such that AH(t)h = {a1, ..., aM}. Fix an arbitrary sequence

(ã1, ..., ãM
′
) such that {ã1, ..., ãM ′} ⊆ Ah(t + 1) \ Ah(t). Note that aD ̸= a′D for any
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distinct a, a′ ∈ {ã1, ..., ãM ′} by unitarity of every doctor’s choice function. Clearly,

(a1, ..., aM , ã1, ..., ãM
′
) is an offer process for h.

We show that (a1, ..., aM , ã1, ..., ãM
′
) is observable for h. To this end, we show that

for all k = 1, ...,M ′, we have that (i) ãkD /∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk−1})D and (ii)

ãD /∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk−1, ãk})D for all ã ∈ {ã1, ..., ãM ′} \ {ã1, ..., ãk−1, ãk},
where {ã1, ..., ã0} ≡ ∅. We show this statement by a mathematical induction.

We first show that (i) and (ii) hold for k = 1. By ã1 ∈ AH(t+1)h \AH(t)h and Claim

3, we have ã1D /∈ Ch(AH(t)h)D = Ch({a1, ..., aM})D and hence (i) holds. Note that this

implies {a1, ..., aM , ã1} is observable for h. To show (ii), take any ã ∈ {ã1, ..., ãM ′}\{ã1}.
Suppose that ãD ∈ Ch({a1, ..., aM , ã1})D. Then, there exists x ∈ Ch({a1, ..., aM , ã1})
such that xD = ãD. By ã ̸= ã1, we have ãD ̸= ã1D and hence xD ̸= ã1D. This implies

that x ∈ {a1, ..., aM}. When x /∈ Ch({a1, ..., aM}), by observable substitutability across

doctors of Ch, we must have that xD = ãD ∈ Ch({a1, ..., aM})D = Ch(AH(t)h)D. When

x ∈ Ch({a1, ..., aM}), we have xD = ãD ∈ Ch({a1, ..., aM})D = Ch(AH(t)h)D. Therefore,

we have xD = ãD ∈ Ch(AH(t)h)D in every case. Note that ã ∈ AH(t + 1)h \ AH(t)h.

However, this contradicts Claim 3. Hence, (i) and (ii) hold for k = 1.

Fix any k with 1 ≤ k ≤ M − 1. We assume that for all k′ ≤ k, (i) ãk
′

D /∈
Ch({a1, ..., aM} ∪ {ã1, ..., ãk

′−1})D and (ii) ãD /∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk
′−1, ãk

′})D
for all ã ∈ {ã1, ..., ãM ′} \ {ã1, ..., ãk′−1, ãk

′} where {ã1, ..., ã0} ≡ ∅ (Induction hypothe-

sis). We show that (i) and (ii) hold for k + 1. By the induction hypothesis for (ii), we

have that ãk+1
D /∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk}) and hence (i) holds for k + 1. Note that

this together with the induction hypothesis for (i) implies (a1, ..., aM , ã1, ..., ãk, ãk+1) is

an observable offer process for h. To show (ii) for k + 1, take any ã′ ∈ {ã1, ..., ãM ′} \
{ã1, ..., ãk, ãk+1}. Suppose that ã′D ∈ Ch({ã1, ..., ãM} ∪ {ã1, ..., ãk, ãk+1})D. Then, there

exists x′ ∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk, ãk+1}) such that x′
D = ã′D. By ã′ ̸= ãk+1, we

have ã′D ̸= ãk+1
D and hence x′

D ̸= ãk+1
D . This implies x′ ∈ {a1, ..., aM} ∪ {ã1, ..., ãk}.

When x′ /∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk}), by observable substitutability across doc-

tors of Ch, we must have x′
D = ã′D ∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk})D. When x′ ∈

Ch({a1, ..., aM} ∪ {ã1, ..., ãk}), we have x′
D = ã′D ∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk})D.

Therefore, we have ã′D ∈ Ch({a1, ..., aM} ∪ {ã1, ..., ãk})D in every case. Note that

ã′ ∈ {ã1, ..., ãM ′} \ {ã1, ..., ãk} holds. However, this contradicts induction hypothesis

for (ii). Therefore, (i) and (ii) hold for any k = 1, ...,M . In particular, (i) implies that
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(a1, ..., aM , ã1, ..., ãM
′
) is an observable offer process for h. Hence P1′′(t+ 1) is satisfied.

We next show that P2(t) is satisfied under P1(t) and P1′(t). Fix any y ∈ X such that

y ∈ AH(t) and yD /∈ CyH (AH(t))D. Let yH = ĥ. We will show that y /∈ C ĥ(AH(t + 1)).

To this end, it is sufficient to show that y /∈ C ĥ(AH(t + 1)ĥ) by C ĥ(AH(t + 1)) =

C ĥ(AH(t + 1)ĥ). Let Ã = AH(t + 1)ĥ \ AH(t)ĥ. Note that aD ̸= a′D for any distinct

a, a′ ∈ Ã by unitarity of every doctor’s choice function.

Let Ã−yD = {a ∈ Ã|aD ̸= yD}. We show that for any B ⊆ Ã−yD , yD /∈ C ĥ(AH(t)ĥ ∪
B)D by a mathematical induction on |B|. When |B| = 0, this statement holds by yD /∈
C ĥ(AH(t))D. Suppose that for any B ⊆ Ã−yD with |B| ≤ k(≥ 0), yD /∈ C ĥ(AH(t)ĥ∪B)D.

We show this statement for any B ⊆ Ã−yD with |B| = k + 1. Consider any B̄ ⊆
Ã−yD with |B̄| = k + 1. Note that AH(t)ĥ ̸= ∅ by y ∈ AH(t)ĥ. By P1′(t), there

exists an observable offer process (b1, ..., bM) for ĥ such that AH(t)ĥ = {b1, ..., bM}. We

denote B̄ by {b̂1, ..., b̂k+1}. Note also that P1′′(t+ 1) is satisfied by the assumption that

P1(t) and P1′(t) are satisfied. Therefore, {b1, ..., bM , b̂1, ..., b̂k+1} is an observable offer

process for ĥ. We now show that yD /∈ C ĥ({b1, ..., bM , b̂1, ..., b̂k+1})D = C ĥ(AH(t)ĥ ∪
B̄)D. Suppose that yD ∈ C ĥ({b1, ..., bM , b̂1, ..., b̂k+1})D = C ĥ(AH(t)ĥ ∪ B̄)D. Then,

there exists b′ ∈ C ĥ({b1, ..., bM , b̂1, ..., b̂k+1})D such that b′D = yD. By b̂k+1 ∈ B̄ ⊆
Ã−yD , we have that b′D = yD ̸= b̂k+1

D . This implies b′ ∈ {b1, ..., bM , b̂1, ..., b̂k}. When

b′ /∈ C ĥ({b1, ..., bM , b̂1, ..., b̂k}), by observable substitutability across doctors of Ch, we

must have that b′D = yD ∈ C ĥ({b1, ..., bM , b̂1, ..., b̂k})D = C ĥ(AH(t)ĥ ∪ (B̄ \ {b̂k+1}))D.
When b′ ∈ C ĥ({b1, ..., bM , b̂1, ..., b̂k}), we have b′D = yD ∈ C ĥ({b1, ..., bM , b̂1, ..., b̂k})D =

C ĥ(AH(t)ĥ ∪ (B̄ \ {b̂k+1}))D. Therefore, we have b′D = yD ∈ C ĥ(AH(t)ĥ ∪ (B̄ \ {b̂k+1}))D
in every case. However, this contradicts the induction hypothesis. Therefore, we have

that for any B ⊆ Ã−yD with |B| = k+1, yD /∈ C ĥ(AH(t)ĥ ∪B)D. Hence, this statement

holds for any cardinality of B ⊆ Ã−yD .

Note that yD /∈ C ĥ(AH(t)ĥ ∪ Ã−yD)D holds by setting B = Ã−yD in the above

property. Note also that AH(t + 1)ĥ = AH(t)ĥ ∪ Ã = AH(t)ĥ ∪ Ã−yD ∪ ÃyD . When

ÃyD = ∅, C ĥ(AH(t + 1)ĥ) = C ĥ(AH(t)ĥ ∪ Ã−yD) and hence y /∈ C ĥ(AH(t + 1)ĥ), the

desired property. Therefore, suppose that ÃyD ̸= ∅. This implies |ÃyD | = 1 by unitarity

of CyD . Let ÃyD = {y′}. Then, AH(t + 1)ĥ = AH(t)ĥ ∪ Ã−yD ∪ {y′} holds. Note

that y′ ̸= y by y′ ∈ AH(t + 1) \ AH(t) and y ∈ AH(t). When y′ ∈ C ĥ(A(t + 1)ĥ),

we have y /∈ C ĥ(A(t + 1)ĥ) by unitarity of C ĥ. When y′ /∈ C ĥ(A(t + 1)ĥ), we have
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C ĥ(A(t+1)ĥ) = C ĥ(A(t+1)ĥ \{y′}) = C ĥ(AH(t)ĥ∪ Ã−yD) by consistency of C ĥ. Hence,

y /∈ C ĥ(A(t + 1)ĥ) by yD /∈ C ĥ(AH(t)ĥ ∪ Ã−yD)D. Therefore, for every case, we have

y /∈ C ĥ(A(t+ 1)ĥ). Hence, P2(t) is satisfied. This completes the proof. □

Claim 5 For each t = 0, · · · , t̂, if P1(t) and P2(t) are satisfied, then P1(t+1) is satisfied.

Proof of Claim 5. Fix any t = 0, · · · , t̂. Suppose that P1(t) and P2(t) are satisfied.

To obtain P1(t+ 1), fix any d ∈ D and h ∈ H such that d ∈ Ch(AH(t+ 1))D. We show

that h ∈ Cd(AD(t+ 1))H . By d ∈ Ch(AH(t+ 1))D, there exists x ∈ Ch(AH(t+ 1)) with

xD = d. By x ∈ AH(t+1), there exists t′ ≤ t+1 with x ∈ Cd(AD(t′)) from the definition

of the cumulative offer process.

We first suppose that x ∈ AD(t+1). By the definition of the cumulative offer process,

t′ ≤ t+1 implies AD(t+1) ⊆ AD(t′). By substitutability of Cd, x ∈ Cd(AD(t′)) implies

x ∈ Cd(AD(t+ 1)). Therefore, we have that h ∈ Cd(AD(t+ 1))H .

We next suppose that x /∈ AD(t + 1). This implies that x ∈ R(s) for some s ≤ t.

Therefore, x ∈ AH(s) holds. This implies x ∈ AH(t) by AH(s) ⊆ AH(t). Note that

x ∈ Ch(AH(t + 1)) holds by the choice of x. Because P2(t) is satisfied, we have xD =

d ∈ Ch(AH(t))D. By P1(t), h ∈ Cd(AD(t))H and hence there exists z ∈ Cd(AD(t))

with zH = h. By z ∈ Cd(AD(t)), we have z ∈ AH(t). By zD = d ∈ Ch(AH(t))D, we

have z /∈ R(t) from the definition of the cumulative offer process. By z ∈ Cd(AD(t)),

z ∈ AD(t) holds. Then, z /∈ R(t) implies z ∈ AD(t + 1). By substitutability of Cd and

AD(t + 1) ⊆ AD(t), we have z ∈ Cd(AD(t + 1)). This implies h ∈ Cd(AD(t + 1))H .

Therefore, P1(t+ 1) is satisfied. □

Consider any t = 0, · · · , t̂. Suppose that P1(t) and P1′(t) are satisfied. Then P1′(t+1)

and P2(t) are satisfied by Claim 4. Because P1(t) and P2(t) are satisfied, P1(t + 1) is

satisfied by Claim 5. Therefore, this lemma holds if P1(0) and P1′(0) are satisfied. We

have already shown that P1(0) and P1′(0) are satisfied. This completes the proof. ■

The following lemma together with the finiteness of X proves Proposition 1.

Lemma 2 Suppose that (i) every agent’s choice function is unitary, (ii) every hos-

pital’s choice function is observably substitutable across doctors, (iii) every doctor’s
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choice function is substitutable. Suppose that the cumulative offer process proceeds un-

til step t̂ and [CH(AH(t̂))d′ ]H ̸= [Cd′(AD(t̂))]H for some d′ ∈ D. Then, we have that

AD(t̂+ 1) ⊊ AD(t̂).

Proof. We first show that [CH(AH(t̂))d]H ⊆ [Cd(AD(t̂))]H for all d ∈ D. Fix any d ∈ D.

Take any h ∈ [CH(AH(t̂))d]H . Then, there exists x ∈ CH(AH(t̂))d such that xH = h.

Therefore, x ∈ Ch(AH(t̂)) and xD = d hold. This implies d ∈ Ch(AH(t̂))D. Since we are

assuming that [CH(AH(t̂))d′ ]H ̸= [Cd′(AD(t̂))]H for some d′ ∈ D, P1(t̂) is satisfied from

Lemma 1. Therefore, we have h ∈ Cd(AD(t̂))H . Hence, [C
H(AH(t̂))d]H ⊆ [Cd(AD(t̂))]H .

Let d′ ∈ D be a doctor such that [CH(AH(t̂))d′ ]H ̸= [Cd′(AD(t̂))]H . Then, [C
H(AH(t̂))d′ ]H ⊊

[Cd′(AD(t̂))]H . Take any h′ ∈ [Cd′(AD(t̂))]H with h′ /∈ [CH(AH(t̂))d′ ]H . By h′ ∈
[Cd′(AD(t̂))]H , there exists x′ ∈ Cd′(AD(t̂)) with x′

H = h′. Note that x′
D = d′. By

x′ ∈ Cd′(AD(t̂)), x′ ∈ AH(t̂) holds. By h′ /∈ [CH(AH(t̂))d′ ]H , we have d′ /∈ Ch′
(AH(t̂))D.

This implies x′ ∈ R(t̂) from the definition of the cumulative offer process. Thus,

x′ /∈ AD(t̂ + 1). On the other hand, x′ ∈ Cd′(AD(t̂)) implies x′ ∈ AD(t̂). Hence

AD(t̂+ 1) ⊊ AD(t̂). ■

Proof of Claim 1. Assume that (a) [CH(AH(t∗))d′ ]H ̸= [Cd′(AD(t∗))]H for some d′ ∈ D

and AD(t∗ + 1) = ∅. We begin with showing CH(AH(t∗ + 1)) = ∅. Suppose that

CH(AH(t∗ + 1)) ̸= ∅. Let x ∈ CH(AH(t∗ + 1)). Then, we have xD ∈ CxH (AH(t∗ +

1))D. Note that P1(t
∗ + 1) is satisfied from Lemma 1 by (a). Therefore, we have

xH ∈ CxD(AD(t∗ + 1))H , contracting AD(t∗ + 1) = ∅. Hence CH(AH(t∗ + 1)) = ∅.
We now show that ∅ is stable. Suppose that ∅ is not stable. Then, there exists a

blocking set Z to ∅. We claim that Z ⊆ AH(t∗+1). Pick any z ∈ Z. By AD(t∗+1) = ∅,
there exists t′ ≤ t∗ such that z ∈ R(t′). By R(t′) ⊆ AH(t′) and AH(t′) ⊆ AH(t∗ + 1), we

have z ∈ AH(t∗ +1). Hence, Z ⊆ AH(t∗ +1). Fix any ĥ ∈ ZH . By CH(AH(t∗ +1)) = ∅,
C ĥ(AH(t∗ + 1)) = ∅. Note that C ĥ(AH(t∗ + 1)) = ∅ ⊆ Z ⊆ AH(t∗ + 1) holds. By

consistency of C ĥ, we have C ĥ(Z) = C ĥ(AH(t∗ + 1)) = ∅. This contradicts that Z is a

blocking set to ∅. Therefore, ∅ is stable. □
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