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Abstract

This paper investigates the estimation of semiparametric copula models with
data missing at random. The two-step maximum likelihood estimation of
Genest, Ghoudi, and Rivest (1995) is infeasible due to the presence of miss-
ing data. We propose a class of calibration estimators for the nonparametric
marginal distributions and the copula parameters of interest by balancing the
empirical moments of covariates between non-missing and complete groups. Our
proposed estimators do not require the estimation of missing mechanism, and
enjoy stable performance even when sample size is small. We prove that our
estimators satisfy consistency and asymptotic normality. We also provide a
consistent estimator for the asymptotic variance. Simulation results highlight
the dominance of our proposed method relative to existing alternatives.
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1 Introduction

Copula models are a compelling tool for analyzing complex interdependence of multiple

variables. A key characteristic of copula models is that, as Sklar (1959) proved, any mul-

tivariate joint distribution can be recovered by inputting univariate marginal distributions

to a correct copula function. The copula approach is capable of capturing a wide range of

interdependence among variables with relatively small computational burden.1 There is a

vast and growing literature applying copula models to economic and financial data.2

A popular class of copula models is semiparametric models, which comprise nonpara-

metric marginal distributions and parametric copula functions. Genest, Ghoudi, and Rivest

(1995) proposes the widely used two-step maximum likelihood estimator for the copula pa-

rameter.3

Most papers in the copula literature, including Genest, Ghoudi, and Rivest (1995), as-

sume complete data. It remains unclear how to run copula models when there are missing

data. Indeed, missing data frequently appear in a broad range of empirical research. In

survey analysis, for example, respondents may refuse to report their personal information

such as age, education, gender, race, salary, and weight. In financial econometrics, missing

data are a perverse phenomenon since different countries have different holidays. There

may also be unexpected market closures due to circuit breakers, technical maintenance, or

terrorist attacks.

A primitive way of dealing with missing data is listwise deletion, which picks individuals

with complete data and treats them all equally. The listwise deletion delivers consistent

inference if data are missing completely at random (MCAR), where target variables Y i and

their missing status T i are independent of each other. In practice the MCAR condition is

1 See Trivedi and Zimmer (2007) for a general overview of copula models.
2 Recent applications using copula models include Aloui, Aı̈ssa, and Nguyen (2013),

Oh and Patton (2013), Salvatierra and Patton (2015), Marra and Wyszynski (2016), and
Oh and Patton (2016, 2017a,b). See Patton (2009, 2012, 2013) and Fan and Patton (2014) for ex-
tensive surveys.

3 Chen and Fan (2005) proposes pseudo-likelihood ratio tests for model selection. Chen and Fan
(2006) studies the estimation of a class of copula-based semiparametric stationary Markov models.
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often violated, and in such a case the listwise deletion can deliver heavily biased estimators.

It is thus desired to work under a more general assumption calledmissing at random (MAR),

originally put forward by Rubin (1976), where Y i and T i are independent of each other

given some observed covariates Xi.

Inverse probability weighting, a popular approach of handling MAR data, typically re-

quires a construction of propensity score function (cf. Horvitz and Thompson, 1952, Zhao and Lipsitz,

1992, Hirano, Imbens, and Ridder, 2003, Imbens, Newey, and Ridder, 2005, Chen, Hong, and Tarozzi,

2008). Propensity score functions are unknown in practice and need to be estimated either

parametrically or non-parametrically. A major drawback of the parametric approach is that

estimators may have severe bias if propensity score functions are misspecified. The non-

parametric approach, such as kernel regression, is free of misspecification and hence more

robust than the parametric approach. The nonparametric estimation, however, often has a

poor finite sample performance due to extreme weights across individuals.

In the literature of causal inference with binary treatments, Chan, Yam, and Zhang

(2016) recently proposed a novel estimation technique that is relevant to missing data anal-

ysis. They construct a class of nonparametric calibration weights by balancing the moments

of covariates among treated, controlled, and combined groups. Their method bypasses an

explicit specification of a propensity score function. Moreover, calibration weights satisfy

certain moment constraints in both finite sample and large sample so that extreme weights

are unlikely to occur. As a result, the calibration estimation attains significantly better

finite sample performance than other nonparametric approximation methods.

As is well known, causal inference with binary treatments can be regarded as a specific

form of missing data problems since we can observe one and only one of potential out-

comes. Being motivated by such an intimate connection, we extend the two-step maximum

likelihood approach of Genest, Ghoudi, and Rivest (1995) by adapting the calibration proce-

dure of Chan, Yam, and Zhang (2016) in order to study semiparametric copula models with

data missing at random. Under the i.i.d. condition, our estimator satisfies consistency and
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asymptotic normality.4 We also present a consistent estimator for the asymptotic variance

of our estimator.

Another contribution of this article lies in our simulation design. We perform Monte

Carlo simulations in a way that ensures the MAR condition and the tractability of the true

unconditional distribution of target variables. A key step for meeting those two conditions

at the same time is that we draw target variables Y i and covariates Xi jointly from Clayton

or Gumbel copulas. Then Y i and Xi are related with each other as the MAR condition

requires, and the unconditional distribution of Y i is again Clayton or Gumbel with the

same parameter. To our best knowledge, there is no existing literature discussing how to

simulate data with a given copula structure when data are missing at random.

The simulation results highlight the dominance of our proposed estimator relative to

existing alternatives. First, the listwise deletion leads to severe bias under the MAR con-

dition. In particular, we reveal that there is a positive bias under the Clayton copula and

a negative bias under the Gumbel copula if a missing mechanism is specified via a logistic

function. We provide a precise reason for those facts for the first time in the literature.

Second, the parametric approach of estimating the propensity score suffers from substan-

tial bias whenever the propensity score model is misspecified. Third, the nonparametric

approach of Hirano, Imbens, and Ridder (2003) exhibits serious instability due to frequent

appearances of extreme weights. Our proposed estimator achieves a remarkably sharp and

robust performance compared with the other methods.

The remainder of this paper is organized as follows. In Section 2 we explain our nota-

tions and basic set-up. In Section 3 we propose our estimator and study its large sample

properties. In Section 4 we present a nonparametric consistent estimator for the asymptotic

variance of our estimator. In Section 5 we perform Monte Carlo simulations. In Section 6

we provide some concluding remarks. Details of notations and assumptions are presented

in Technical Appendices. Proofs of propositions, theorems, and lemmas are collected in the

4 The i.i.d. assumption is admittedly a restrictive one that rules out time series applications.
Non-i.i.d. data with missing observations, however, are a notoriously challenging problem.
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supplemental material Hamori, Motegi, and Zhang (2018).

2 Notations and Basic Framework

Let d ≥ 2 be a fixed positive integer that signifies the dimension of target variables Y i.

Suppose that {Y i = (Y1i, . . . , Ydi)
⊤}Ni=1 are i.i.d. random vectors following the distribution

F 0(y1, ..., yd). The marginal distributions of F 0(y1, ..., yd), denoted by {F 0
j , j = 1, ..., d},

are assumed to be continuous and differentiable. Sklar’s (1959) characterization theorem

ensures the existence of a unique copula C0 such that F 0(y1, ..., yd) = C0(F 0
1 (y1), ..., F

0
d (yd)).

We assume copula function C0(u1, ..., ud) has continuous partial derivatives, then

f0(y1, ..., yd) = c0(F 0
1 (y1), · · · , F 0

d (yd))
d∏

j=1

f0j (yj) , (2.1)

where f0, f0j , and c
0 are the density functions of F 0, F 0

j , and C
0, respectively.

Estimation of copula models has been studied extensively. In particular, Genest, Ghoudi, and Rivest

(1995) pioneered the estimation of semiparametric copula models, where the copula function

belongs to a parametric family (i.e. C0(F 0
1 (y1), ..., F

0
d (yd)) = C(F 0

1 (y1), ..., F
0
d (yd); θ0) for

some θ0 ∈ Rp), while the marginal distributions {F 0
j }dj=1 are left unknown.5 They proposed

the widely used two-step maximum likelihood estimator for the target parameter θ0:

θ̃ = argmax
θ∈Θ

{
1

N

N∑
i=1

log c(F̃1(Y1i), ..., F̃d(Ydi); θ)

}
, (2.2)

where c(u1, ..., ud; θ) is the density of C(u1, ..., ud; θ), Θ is a compact set of Rp containing

the true value θ0, and F̃j(y) = (N + 1)−1
∑N

i=1 I(Yji ≤ y) is a rescaled empirical marginal

distribution.

The existing literature on copula models, including Genest, Ghoudi, and Rivest (1995),

5 See also Oakes (1994), Shih and Louis (1995), and Chen and Fan (2005, 2006) for more results
on semiparametric copula models.

5



assumes complete data. That is a strong assumption since missing data can arise in virtually

any field of application. A main goal of this paper is to generalize the two-step maximum

likelihood estimator in (2.2) to deal with missing data.

Let T i = (T1i, . . . , Tdi)
⊤ ∈ {0, 1}d be a binary random vector indicating the missing

status of the ith individual, namely,

Tji = 0 if Yji is missing; Tji = 1 if Yji is observed.

If T i and Y i are independent of each other, then it is called missing completely at random

(MCAR). Under the MCAR condition, an elementary approach of listwise deletion, which

merely picks individuals with complete observations and puts equal weights on them, is well

known to deliver consistent inference. The MCAR condition, however, is an unrealistically

strong assumption that is violated in many applications.

In this paper we impose a more realistic assumption called missing at random (MAR),

which was put forward by Rubin (1976). Let Xi = (X1i, . . . , Xri)
⊤ be a vector of covariates

that are observable for all individuals i ∈ {1, . . . , N}. The MAR condition assumes that T i

and Y i are independent of each other given Xi.

Assumption 2.1 (Missing at Random). {T1i, ..., Tdi} ⊥ {Y1i, ..., Ydi}|Xi for any i ∈ {1, . . . , N}.

The MAR condition has been popularly used in econometrics and statistics to iden-

tify the parameter of interest (see e.g. Robins and Rotnitzky, 1995, Little and Rubin, 2002,

Chen, Hong, and Tarozzi, 2008, Tan, 2011). The MAR condition does not require the un-

conditional independence between T i and Y i. In many applications T i and Y i are uncon-

ditionally correlated with each other through Xi, and that violates MCAR but not MAR.
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3 Weighted Two-Step Estimation

We assume throughout the paper that the true copula parameter θ0 is a unique solution to

θ0 = argmax
θ∈Θ

E
[
log c(F 0

1 (Y1i), ..., F
0
d (Ydi); θ)

]
.

Using Assumption 2.1 and the law of iterated expectations, we can express θ0 as follows:

θ0 =argmax
θ∈Θ

E
[
E
[
log c(F 0

1 (Y1i), ..., F
0
d (Ydi); θ)

∣∣∣∣Xi

]]
=argmax

θ∈Θ
E
[
E
[
log c(F 0

1 (Y1i), ..., F
0
d (Ydi); θ)

∣∣∣∣Xi

]
· E
[

1

η(Xi)
I(T1i = 1, ..., Tdi = 1)

∣∣∣∣Xi

]]
=argmax

θ∈Θ
E
[
E
[

1

η(Xi)
I(T1i = 1, ..., Tdi = 1) log c(F 0

1 (Y1i), ..., F
0
d (Ydi); θ)

∣∣∣∣Xi

]]
=argmax

θ∈Θ
E
[

1

η(Xi)
I(T1i = 1, ..., Tdi = 1) log c(F 0

1 (Y1i), ..., F
0
d (Ydi); θ)

]
, (3.1)

where η(Xi) = P(T1i = 1, ..., Tdi = 1|Xi) is called a propensity score function.

In view of (3.1), we can propose the weighted two step maximum likelihood estimator

for θ0 as follows:

Step 1 Estimate the marginal distributions {Fj}dj=1, denoted by {F̂j}dj=1.

Step 2 Estimate the inverse probability weights (Nη(X))−1, denoted by q̂(X), and

compute θ̂ via a sample version of (3.1):

θ̂ = argmax
θ∈Θ

N∑
i=1

q̂(Xi)I(T1i = 1, ..., Tdi = 1) log c(F̂1(Y1i), ..., F̂d(Ydi); θ) .

Step 1 is elaborated in Section 3.1, where we present a class of calibration estimators

for the marginal distributions {Fj}dj=1. Step 2 is elaborated in Section 3.2.
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3.1 Estimation of Marginal Distributions

3.1.1 Existing Estimation

Under Assumption 2.1, for j ∈ {1, ..., d}, marginal distribution F 0
j can be represented by

F 0
j (y) = E[I(Yji ≤ y)] = E [E[I(Yji ≤ y)|Xi]] = E

[
E[I(Yji ≤ y)|Xi] · E

[
Tji

πj(Xi)

∣∣∣∣Xi

]]
= E

[
E
[
I(Yji ≤ y) · Tji

πj(Xi)

∣∣∣∣Xi

]]
= E

[
Tji

πj(Xi)
I(Yji ≤ y)

]
, (3.2)

where πj(x) ≜ P(Tji = 1|Xi = x) is the propensity score function. If πj(x) were known,

then it would be straightforward to estimate Fj via a sample analogue of (3.2):

F̃j(y) ≜
1

N

N∑
i=1

Tji
πj(Xi)

I(Yji ≤ y) .

This estimator is known as inverse probability weighting (IPW) estimator (cf. Horvitz and Thompson,

1952). Since πj(x) is unknown in practice, it is typically estimated either parametrically (cf.

Zhao and Lipsitz, 1992, Robins, Rotnitzky, and Zhao, 1994, Bang and Robins, 2005) or non-

parametrically (cf. Hahn, 1998, Hirano, Imbens, and Ridder, 2003, Imbens, Newey, and Ridder,

2005, Chen, Hong, and Tarozzi, 2008). Parametric methods are easy to implement, but will

lead to erroneous results if the model is misspecified. Nonparametric methods such as kernel

or sieve regression offer asymptotically robust estimators since they do not require the model

assumption on the propensity score, but their small sample performance is notoriously poor.

3.1.2 Calibration Weighting Estimator

A key property of the propensity score πj(X) is that for all integrable function u(X):

E
[
Tji ×

1

πj(Xi)
× u(Xi)

]
= E [u(Xi)] , j ∈ {1, ..., d} . (3.3)
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The propensity score πj balances all moments of the covariates between the non-missing

group and the whole group, and it is characterized by the infinite moments condition (3.3).

Without an explicit estimation of the unknown propensity score functions, the calibration

weights {p̂jK(X)}dj=1 are supposed to satisfy a sample analogy of (3.3):

N∑
i=1

Tjip̂ji(Xi)uK(Xi) =
1

N

N∑
i=1

uK(Xi) , j ∈ {1, ..., d} , (3.4)

where uK(X) = (uK1(X), ..., uKK(X))⊤ is the known basis function with dimensionK ∈ N.

The functions uK(X) are called the approximation sieve and can be used to approximate

any suitable functions u(X) arbitrarily well as K → ∞ (cf. Chen, 2007). This idea was first

put forward by Chan, Yam, and Zhang (2016) in the context of causal inference.

We now define p̂ji(Xi). Let D(v, v0) be a known distance measure that is continuously

differentiable in v ∈ R, non-negative, strictly convex in v, and D(v0, v0) = 0. We define the

calibration weights by solving the following constrained optimization problem:


min

∑N
i=1 TjiD(Npji, 1) ,

subject to
∑N

i=1 TjipjiuK(Xi) =
1
N

∑N
i=1 uK(Xi) ,

(3.5)

where K → ∞ as N → ∞ yet with K/N → 0.

The choice of uniform design weights in (3.5) is based on a few observations. First,

if there are no missing data, then we can estimate F 0
j (y) by the empirical distribution

(N +1)−1
∑N

i=1 I(Yji ≤ y), which assigns equal weights for each individual. Second, there is

no need to estimate πj(x) when the uniform design weights are used. Third, by minimizing

the aggregate distance from uniform weights, the dispersion of the resulting weights is well

controlled and we can avoid extreme weights. It is well known that extreme weights cause

instability in the IPW estimator when the propensity score function is misspecified.

The primal problem (3.5) is a convex separable programming with linear constraints.
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The dual problem, by contrast, is an unconstrained convex maximization problem. The lat-

ter enhances the speed and stability of numerical optimization algorithms (cf. Tseng and Bertsekas,

1987). Hence we solve for the dual problem to compute calibration weights.

Let f(v) = D(1− v, 1), and f ′(v) = ∂f(v)/∂v. When Tji = 1, the dual solution of (3.5)

is given by

p̂jK(Xi) ≜
1

N
ρ′(λ̂⊤jKuK(Xi)) , (3.6)

where ρ′ is the first derivative of a strictly concave function

ρ(v) = f((f ′)−1(v)) + v − v(f ′)−1(v) (3.7)

and λ̂jK ∈ RK maximizes the following concave objective function

ĜjK(λ) ≜ 1

N

N∑
i=1

[Tjiρ(λ
⊤uK(Xi))− λTuK(Xi)] . (3.8)

In view of the first-order condition of the dual problem, it is straightforward to verify that

the solution to the dual problem satisfies the linear constraints in primal problem (3.5).

The relationship between ρ(v) and f(v) = D(1 − v, 1) is given in the supplemental

material Hamori, Motegi, and Zhang (2018), where we show that the strict convexity of

D(·, 1) is equivalent to the strict concavity of ρ(·). Since the primal and dual problems

lead to the same solution and the latter is simpler to solve, we shall express the calibration

estimator in terms of ρ(v) hereafter.

The calibration weights have close connections with generalized empirical likelihood.

When ρ(v) = − exp(−v), the weights are equivalent to the implied weights of exponential

tilting (Kitamura and Stutzer, 1997, Imbens, Spady, and Johnson, 1998). When ρ(v) =

log(1 + v), the weights correspond to empirical likelihood (Owen, 1988, Qin and Lawless,

1994). When ρ(v) = −(1 − v)2/2, the weights are the implied weights of the continuous
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updating estimator of generalized method of moments (Hansen, Heaton, and Yaron, 1996)

and also minimize the squared distance function. When ρ(v) = v − exp(−v), the weights

are equivalent to the inverse of a logistic function.

The following result states that our calibration weights will converge to the inverse

propensity score uniformly and in L2, and also gives the convergence rates. The proof

follows from Lemmas 4.1 and 4.2 in the supplemental material Hamori, Motegi, and Zhang

(2018).

Proposition 3.1. Under Assumptions B.1, B.2, B.3, B.5, B.6 listed in Technical Appendix

B, we have that for j ∈ {1, ..., d}

sup
x∈X

|Np̂jK(x)− πj(x)
−1| = Op

(
K− s

2r
+1 +

√
K3

N

)
,

and ∫
X
|Np̂jK(x)− πj(x)

−1|2dFX(x) = Op

(
K− s

r
+1 +

K2

N

)
.

Therefore, the calibration estimator of the marginal distribution F 0
j is defined by

F̂j(y) ≜
N∑
i=1

Tjip̂jK(Xi)I(Yji ≤ y) . (3.9)

The following result states that F̂j is a
√
N -consistent estimator of F 0

j , and gives the

asymptotic behavior of
√
N(F̂j − F 0

j ) which will be used later. The proof is presented in

the supplemental material.

Proposition 3.2. Under Assumptions 2.1, B.1-B.6 listed in Technical Appendix B, we have

that for all j ∈ {1, ..., d},

√
N{F̂j(y)− F 0

j (y)} =
1√
N

N∑
i=1

ψj(Y i,Xi, Tji; y) + op(1) , ∀y ∈ R ,
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where

ψj(Y i,Xi, Tji; y) ≜
Tji

πj(Xi)
I(Yji ≤ y)− Tji

πj(Xi)
·E[I(Yji ≤ y)|Xi]+E[I(Yji ≤ y)|Xi]−F 0

j (y) .

3.2 Estimation of Target Parameter

In this section, we construct calibration weights which lead to consistent estimators for

the inverse probability (Nη(Xi))
−1. We then obtain a consistent estimator for the target

parameter θ0 in accordance with (3.1).

Note that the MAR condition implies

E
[
I(T1i = 1, ..., Tdi = 1)× 1

η(Xi)
× u(Xi)

]
= E[u(Xi)] (3.10)

for all integrable function u(X). Similar to the construction of calibration weights {p̂jK(X)}

in (3.5), we define another calibration weights q̂K(X) by solving the following constraint

optimization problem


min

∑N
i=1 I(T1i = 1, ..., Tdi = 1)D(Nqi, 1) ,

subject to
∑N

i=1 I(T1i = 1, ..., Tdi = 1)qiuK(Xi) =
1
N

∑N
i=1 uK(Xi) .

(3.11)

Similar to obtain (3.6), the dual solution of (3.11) is given by

q̂K(Xi) =
1

N
ρ′
(
β̂⊤KuK(Xi)

)
for i such that T1i = · · · = Tdi = 1 , (3.12)

where β̂K maximizes the following concave objective function:

ĤK(β) =
1

N

N∑
i=1

I(T1i = 1, ..., Tdi = 1)ρ
(
β⊤uK(Xi)

)
− 1

N

N∑
i=1

β⊤uK(Xi) . (3.13)

Similar to Proposition 3.1, we can also derive the following result for the calibration weights
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q̂K(x):

Proposition 3.3. Under Assumptions B.1, B.2, B.3, B.5, B.6 listed in Technical Appendix

B, we have that for

sup
x∈X

|Nq̂K(x)− η(x)−1| = Op

(
K− s

2r
+1 +

√
K3

N

)
,

and ∫
X

∣∣Nq̂K(x)− η(x)−1
∣∣2 dFX(x) = Op

(
K− s

r
+1 +

K2

N

)
.

Finally, our weighted two-step maximum likelihood estimator of θ0 is defined by

θ̂ = argmax
θ∈Θ

{
N∑
i=1

I(T1i = 1, ..., Tdi = 1)q̂K(Xi) log c(F̂1(Y1i), ..., F̂d(Ydi); θ)

}
. (3.14)

The following theorem states the consistency and asymptotic normality of our proposed

estimator. The proof is presented in the supplemental material.

Theorem 3.4. Under Assumptions 2.1, B.1-B.6 listed in Technical Appendix B, we have

1. θ̂
p−→ θ0;

2. Furthermore, if additional Assumptions B.7-B.13 hold, then

√
N(θ̂ − θ0)

d−→ N(0, V0) ,

where V0 = B−1ΣB−1 with B and Σ being defined in (B.1) and (B.2), respectively.

It can easily be verified that, if there are no missing data (i.e. πj(x) = η(x) = 1), then

V0 reduces to the asymptotic variance of the two step maximum likelihood estimator derived

by Genest, Ghoudi, and Rivest (1995) and Chen and Fan (2005).
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4 Variance Estimation

As shown in Theorem 3.4, the asymptotic variance of
√
N(θ̂−θ0) is given by V0 = B−1ΣB−1.

In order to estimate V0, it suffices to consistently estimate both B and Σ.

4.1 Estimation of B

Using Assumption 2.1, B can be rewritten as

B = −E
[
I(T1i = 1, ..., Tdi = 1)

η(Xi)
lθθ(U1i, ..., Udi; θ0)

]
,

where lθθ(u1, ..., ud; θ) =
∂2

∂θθ′
log c(u1, ..., ud; θ) and Uji = F 0

j (Yji), j ∈ {1, ..., d}. By Propo-

sitions 3.2 and 3.3, we know that Nq̂K(x) is a consistent estimate for η−1(x), and F̂j is a

consistent estimate for F 0
j . Hence we define the plug-in estimator of B by

B̂ = −
N∑
i=1

I(T1i = 1, ..., Tdi = 1)q̂K(Xi)lθθ(Û1i, ..., Ûdi; θ̂) , (4.1)

where Ûji ≜ F̂j(Yji) =
∑N

s=1 Tjsp̂jK(Xs)I(Yjs ≤ Yji).

4.2 Estimation of Σ

Under Assumption 2.1, Σ can be written as

Σ = E

I(T1i = 1, ..., Tdi = 1)

η(Xi)

φ(T i,Xi,U i; θ0) +
d∑

j=1

Wj(Tji,Xi, Uji; θ0)

2
 , (4.2)

where φ(T i,Xi,U i; θ) andWj(Tji,Xi, Uji; θ) are defined in Section A of Appendix. Similar

to the estimation ofB, we can define the estimators of φ(T i,Xi,U i; θ0) andWj(Tji,Xi, Uji; θ0)

by

φ̂(T i,Xi,U i; θ0) ≜I(T1i = 1, ..., Tdi = 1)Nq̂K(Xi)lθ(Û1i, ..., Ûdi; θ̂)
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− I(T1i = 1, ..., Tdi = 1)Nq̂K(Xi) · Ê[lθ(U1i, ..., Udi; θ0)|Xi]

+ Ê[lθ(U1i, ..., Udi; θ0)|Xi]− Ê[lθ(U1i, ..., Udi; θ0)] , (4.3)

and

Ŵj(Tji,Xi, Uji; θ0) ≜
N∑
s=1

I(T1s = 1, ..., Tds = 1)q̂K(Xs)lθj(Û1s, ..., Ûds; θ̂)
{
ϕ̂j(Tji,Xi, Uji; Ûjs)− Ûjs

}
,

(4.4)

where Ê[lθ(U1i, ..., Udi; θ0)|Xi] is the least square estimator of lθ(Û1i, ..., Ûdi; θ̂) based on the

basis uK(X):

Ê[lθ(U1i, ..., Udi; θ0)|Xi] ≜
{

N∑
i=1

I(T1i = 1, ..., Tdi = 1)lθ(Û1i, ..., Ûdi; θ̂)uK(Xi)

}⊤

·

{
N∑
i=1

I(T1i = 1, ..., Tdi = 1)uK(Xi)u
⊤
K(Xi)

}−1

uK(Xi) ,

and

Ê[lθ(U1i, ..., Udi; θ0)] ≜
N∑
i=1

I(T1i = 1, ..., Tdi = 1)q̂K(Xi)lθ(Û1i, ..., Ûdi; θ̂) ,

and

ϕ̂j(Tji,Xi, Uji; v) ≜Tji{Np̂jK(Xi)}I(Ûji ≤ v)− Tji{Np̂jK(Xi)} · Ê[I(Uji ≤ v)|Xi, Tji = 1]

+ Ê[I(Uji ≤ v)|Xi, Tji = 1] ,

and

Ê[I(Uji ≤ v)|Xi, Tji = 1] =

{
N∑
i=1

I(Tji = 1)I(Uji ≤ v)uK(Xi)

}⊤{ N∑
i=1

I(Tji = 1)uK(Xi)u
⊤
K(Xi)

}−1

uK(Xi) .

(4.5)

15



Finally, the estimates of the asymptotic variance are defined by

V̂ ≜ B̂−1Σ̂B̂−1 .

The following result states that our proposed variance estimator is consistent, and the proof

is left to the supplemental material.

Theorem 4.1. Under Assumptions 2.1, B.1-B.13 listed in Appendix, ∥V̂ − V0∥
p−→ 0.

5 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations in order to evaluate the finite sample

properties of the calibration estimator and other existing estimators. See Section 5.1 for a

simulation design and Section 5.2 for results.

5.1 Simulation Design

5.1.1 Data Generating Processes

Suppose that Y i = [Y1i, Y2i]
⊤ are bivariate target variables (i.e. d = 2) and Xi is a

scalar covariate (i.e. r = 1). We specify the joint distribution of Zi = [Y ⊤
i , Xi]

⊤ via

two Archimedean copulas that are widely used in empirical applications. The first one is

the trivariate Clayton copula with a scalar parameter α0, written as C3(α0). The cumulative

distribution function of C3(α0) is given by

C(u1, u2, u3; α0) =

 k∑
j=1

u−α0
j − k + 1

−1/α0

, α0 > 0,

where k = 3 is the dimension of the copula. The inputs are u1 = F1(y1), u2 = F2(y2), and

u3 = FX(x), where Fj(·) is the marginal distribution function of Yji and FX(·) is the marginal

distribution function of Xi. We use the standard Gaussian distribution for F1, F2, and FX .

16



Since the standard Gaussian distribution has a tractable inverse distribution function, it is

straightforward to draw {Y1i, Y2i, Xi} by first generating (U1i, U2i, U3i) from the copula and

then transforming them to Y1i = F−1
1 (U1i), Y2i = F−1

2 (U2i), and Xi = F−1
X (U3i).

The second copula is the trivariate Gumbel copula with a scalar parameter γ0, written

as G3(γ0). The cumulative distribution function of G3(γ0) is given by

C(u1, u2, u3; γ0) = exp

−


k∑
j=1

(− log uj)
γ0


1/γ0

 , γ0 > 1.

As in the Clayton case, we assume that the marginal distributions of Y1i, Y2i, and Xi are

standard Gaussian.

As implied by Genest, Nešlehová, and Ben Ghorbal (2011, Examples 1 and 2), Kendall’s

τ is given by τ = α0/(α0+2) for C3(α0) and τ = 1−1/γ0 for G3(γ0). We consider two cases

that τ ∈ {0.4, 0.7}. Hence we set the true copula parameters to be (α0, γ0) = (1.333, 1.667)

for τ = 0.4 and (α0, γ0) = (4.667, 3.333) for τ = 0.7.

We next specify missing mechanisms. Assume for simplicity that {Y1i} is always ob-

served and only {Y2i} can be missing. Specifically, suppose that P(T1i = 1 |Xi = xi) = 1

and

P(T2i = 1 |Xi = xi) =
1

1 + exp[a+ bxi]
. (5.1)

It is common in the missing data literature to use the logistic function to specify missing

probability (see e.g. Qin, Leung, and Shao, 2002).

To choose the key parameters (a, b), note that

µ ≡ E[T2i] = E[E[T2i |Xi = xi]] = E[P(T1i = 1 |Xi = xi)] = E
[
(1 + exp[a+ bxi])

−1
]

and

σ2 ≡ V[T2i] = E[T 2
2i]− µ2 = E[T2i]− µ2 = µ− µ2.
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µ measures the marginal probability of observing Y2i, while σ
2 measures the marginal vari-

ance of T2i. Analytical solutions of µ and σ2 are rather hard to derive, but it is straight-

forward to approximate them numerically by µ̂N = (1/N)
∑N

i=1(1 + exp[a + bXi])
−1 and

σ̂2N = µ̂N − µ̂2N . Hence, given a feasible pair of target quantities (µ, σ2), we can find a

corresponding pair of parameters (a, b) via a numerical search.6 We consider four cases:

Case A (a, b) = (−1.385, 0.000) so that (µ, σ2) = (0.800, 0.160).

Case B (a, b) = (−1.430, 0.400) so that (µ, σ2) = (0.800, 0.160).

Case C (a, b) = (−0.405, 0.000) so that (µ, σ2) = (0.600, 0.240).

Case D (a, b) = (−0.420, 0.400) so that (µ, σ2) = (0.600, 0.240).

(µ, σ2) = (0.800, 0.160) for both Case A and Case B so that 20% of {Y2i} are missing

on average. The crucial difference between them is that b = 0 (i.e. MCAR) in Case A while

b ̸= 0 (i.e. MAR) in Case B. Under MCAR, the missing probability of Y2i does not depend

on Xi although Y i is (nonlinearly) related with Xi via the copula. Under MAR, the missing

probability of Y2i does depend on Xi and Y i is related with Xi via the copula.

Similar structures apply for Cases C and D with a larger missing probability. (µ, σ2) =

(0.600, 0.240) so that 40% of {Y2i} are missing on average. The missing mechanism is MCAR

in Case C and MAR in Case D. The latter case is expected to be the most challenging case

for estimation, since we have relatively many missing data with the MAR mechanism.

We draw J = 1000 Monte Carlo samples with sample size N ∈ {250, 500, 1000}. The

procedure is summarized as follows. First, draw (U1i, U2i, U3i) from the Clayton or Gumbel

copula. Second, transform them to Y1i = F−1
1 (U1i), Y2i = F−1

2 (U2i), and Xi = F−1
X (U3i).

Third, make some of {Y2i} missing according to Cases A-D.

6 Note that some pairs of (µ, σ2) are infeasible since there exists a (nonlinear) dependence between
µ and σ2. Having (µ, σ2) = (0.9, 0.2), for example, is infeasible since µ = 0.9 implies that 90% of
{T21, . . . , T2N} are 1 and 10% are 0 so that the corresponding value of σ2 must be much smaller than
0.2 (i.e. approximately 0.09).
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5.1.2 Estimation

#1. Listwise Deletion The first approach is semiparametric estimation with listwise

deletion. For each component j ∈ {1, 2}, we estimate the marginal distribution by F̂j(y) =

(N∗ + 1)−1
∑N

i=1 I(T1i = 1, T2i = 1)I(Yji < y), where N∗ =
∑N

i=1 I(T1i = 1, T2i = 1) is

the number of individuals with complete data. We then compute the maximum likelihood

estimator for the copula parameter based on the complete data. Taking the Clayton copula

as an example, the maximum likelihood estimator is defined as follows. (The Gumbel case

can be treated analogously.)

α̂ = arg max
α∈(0,∞)

{
N∑
i=1

I(T1i = 1, T2i = 1) log c2

(
F̂1(Y1i), F̂2(Y2i); α

)}
, (5.2)

where

c2(u1, u2; α) = (1 + α)(u1u2)
−α−1(u−α

1 + u−α
2 − 1)−

1
α
−2

is the probability density function of the bivariate Clayton copula C2(α). There is not a

misspecification problem in the second step since there is a well-known property that the

bivariate marginal distribution of C3(α0) is indeed C2(α0).

The listwise deletion has two major characteristics. First, prior to the first step, Y1i is

discarded whenever Y2i is missing. Second and more importantly, equal weights are assigned

for all N∗ individuals with complete data, and the information of Xi is not used at all (i.e.

p2(Xi) = q(Xi) = 1/N∗). The latter feature causes bias in the resulting estimator when

data are MAR.

#2. Parametric Estimation The second approach estimates the propensity score

function π2(x) = P(T2i = 1|Xi = x) parametrically. Define

π2(x; a, b) =
1

1 + exp(a+ bx)
, (5.3)
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then the log-likelihood function of {T2i, Xi}Ni=1 is given by

l(a, b) =
N∑
i=1

[T2i log π2(Xi; a, b) + (1− T2i) log (1− π2(Xi; a, b))] .

We compute the maximum likelihood estimator (â, b̂) that maximizes l(a, b), and then cal-

culate p̂2(Xi) = q̂(Xi) = [N × π2(Xi; â, b̂)]
−1. Marginal distributions are estimated as

F̂j(y) =

N∑
i=1

I(Tji = 1)p̂j(Xi)I(Yji < y) (5.4)

and the copula parameter is estimated as

α̂ = arg max
α∈(0,∞)

{
N∑
i=1

I(T1i = 1, T2i = 1)q̂(Xi) log c2

(
F̂1(Y1i), F̂2(Y2i); α

)}
. (5.5)

Note that (5.3) is correctly specified relative to the true propensity score function (5.1).

For comparison, we also use a misspecified model

π2(x; a, b) =
1

1 + exp(bx)
. (5.6)

Model (5.6) is misspecified since a ̸= 0 in each of Cases A-D. We are supposed to have

consistent estimators when (5.3) is used and inconsistent estimators when (5.6) is used.

#3. Nonparametric Estimation The third approach estimates the propensity score

function π2(x) = P(T2i = 1|Xi = x) non-parametrically based on Hirano, Imbens, and Ridder

(2003). Define the logistic function h(v) = [1+exp(−v)]−1 and π2K(Xi;λ) = h(λ⊤uK(Xi)),

where uK(Xi) is the approximation sieve also used in the calibration estimation. The log-

likelihood function of {T2i, Xi}Ni=1 is written as

l(λ) =

N∑
i=1

[T2i log π2K(Xi;λ) + (1− T2i) log (1− π2K(Xi;λ))] .
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Compute the maximum likelihood estimator λ̂ that maximizes l(λ), and calculate p̂2K(Xi) =

q̂K(Xi) = [N × π2K(Xi; λ̂)]
−1. Then use (5.4) and (5.5) to complete the procedure.

The difference between the parametric and nonparametric approaches is that the former

requires an explicit specification of propensity score functions while the latter does not.

The nonparametric approach, however, requires a selection of K (i.e. the dimension of

the approximation sieve). We use uK(Xi) = [1, Xi, X
2
i ]

⊤ (i.e. K = 3) and uK(Xi) =

[1, Xi, X
2
i , X

3
i ]

⊤ (i.e. K = 4) in order to see how results change across different values of K.

#4. Calibration Estimation The fourth approach is our proposed calibration esti-

mation. For each component j, we estimate the marginal distribution by (5.4), where the

computation of p̂jK(Xi) is detailed in Section 3.1.2. We then compute the maximum like-

lihood estimator for the copula parameter from (5.5), where the computation of q̂K(Xi) is

detailed in Section 3.2. As in the nonparametric approach, we use uK(Xi) = [1, Xi, X
2
i ]

⊤

(i.e. K = 3) and uK(Xi) = [1, Xi, X
2
i , X

3
i ]

⊤ (i.e. K = 4).

To conclude this section, it is worth emphasizing a clever aspect of our simulation design.

Y i and Xi, on one hand, should be associated with each other since we are interested in data

missing at random. The unconditional joint distribution of Y i, on the other hand, should

be known and tractable so that we can perform well-defined Monte Carlo experiments. To

our best knowledge, the only way of meeting those two requirements simultaneously is to

draw Zi = [Y ⊤
i , Xi]

⊤ jointly from a trivariate copula whose bivariate marginal distribution

is known and tractable. The Clayton and Gumbel copulas lie in such a useful class.7 Y i and

Xi are associated with each other by construction, and the unconditional distribution of Y i

is characterized by the same copula with the same parameter. The same procedure can be

applied whatever the dimensions of target variables and covariates are. Since the present

paper is the earliest work on copula models with data missing at random, our simulation

design itself is an innovation to the literature.

7 The Frank copula shares the same property although this paper does not cover it to save space.
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5.2 Simulation Results

5.2.1 Preliminary Results

Before discussing complete results with J = 1000 Monte Carlo samples, it is instructive

to pick a representative Monte Carlo sample in order to explain why the listwise deletion

fails and the calibration estimation succeeds.8 We first focus on the Clayton copula with

α0 = 4.667, Case D (MAR), and N = 500. See Figure 1 for a scatter plot of (Y1i, Y2i)

in a Monte Carlo sample. In this specific sample, Y2i is observed for 291 individuals and

missing for 209 individuals. When the listwise deletion is executed, we get α̂ = 5.085 so

that there is a substantial positive bias of 5.085 − 4.667 = 0.418. When the calibration

estimation with K = 4 is executed, we get α̂ = 4.625 so that there is a sufficiently small

bias of 4.625− 4.667 = −0.042.

We provide an intuitive reason why the listwise deletion results in the positive bias

under the Clayton copula. Recall that (Y1i, Y2i, Xi) are jointly drawn from the Clayton

copula, which has a lower-tail dependence and upper-tail independence. A small value of

Xi, therefore, tends to be accompanied by jointly small values of (Y1i, Y2i) whereas a large

value of Xi is not necessarily accompanied by jointly large values of (Y1i, Y2i). In view of

(5.1), the smaller (larger) Xi implies the higher (lower) probability of observing Y2i under

Case D. In fact, we can see in Figure 1 that (Y1i, Y2i) having large negative values are often

observed whereas (Y1i, Y2i) having large positive values are often missing. As a result, the

observed pairs exhibit a deceivingly strong association.

The listwise deletion literally accepts the strong association observed, since it just puts

uniform weights q̂(Xi) = 1/291 = 0.003 for all individuals with complete data (see Panel

(a) of Figure 2). This is a precise reason why the listwise deletion over-estimates the

association between Y1i and Y2i. The calibration estimation, by contrast, puts non-uniform

weights q̂(Xi) across the individuals. Panel (b) of Figure 2 indeed indicates that the weights

8 To save space, we do not discuss the parametric and nonparametric approaches until Section
5.2.2.
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are generally increasing in Xi so that the weak association between Y1i and Y2i at the upper

tail is more emphasized and the strong association at the lower tail is less emphasized. That

adjustment leads to an unbiased estimator as desired.

We now replace the Clayton copula with the Gumbel copula with γ0 = 3.333, keeping

the other settings the same. See Figure 3 for a scatter plot of (Y1i, Y2i) given a Monte

Carlo sample. In this specific sample, Y2i is observed for 317 individuals and missing for

183 individuals. When the listwise deletion is executed, we get γ̂ = 3.068 so that there is

a substantial negative bias of -0.265. When the calibration estimation is executed, we get

γ̂ = 3.272 so that there is a sufficiently small bias of -0.061.

Repeating a similar logic as in the Clayton case, it is straightforward to see why the

listwise deletion results in the negative bias under the Gumbel copula. The Gumbel copula

has a lower-tail independence and upper-tail dependence. A large value of Xi, therefore,

tends to be accompanied by jointly large values of (Y1i, Y2i) whereas a small value ofXi is not

necessarily accompanied by jointly small values of (Y1i, Y2i). Given the missing mechanism

(5.1), (Y1i, Y2i) having large negative values are often observed whereas (Y1i, Y2i) having

large positive values are often missing (Figure 3). As a result, the observed pairs exhibit

a deceivingly weak association. The listwise deletion literally accepts the weak association

observed so that it under-estimates the association between Y1i and Y2i. The calibration

estimation, by contrast, leads to an unbiased estimator by putting non-uniform weights that

are generally increasing in Xi.
9

In summary, it is a new finding that the listwise deletion results in positive bias under

Clayton copulas and negative bias under Gumbel copulas given the logistic missing prob-

ability. We have provided the exact reason for those facts and shown that the calibration

estimation successfully balances the covariates among observed, missing, and whole groups.

9 A figure that displays the weights of the listwise deletion and the calibration estimation is
omitted to save space, but available upon request.
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5.2.2 Complete Results

We now report the bias, standard deviation, and root mean squared error (RMSE) of each

estimator given the full Monte Carlo samples. See Table 1 for the Clayton copula with

α0 = 1.333; Table 2 for Clayton with α0 = 4.667; Table 3 for Gumbel with γ0 = 1.667;

Table 4 for Gumbel with γ0 = 3.333.

First, the listwise deletion leads to diminishing bias in Cases A and C (MCAR) and

substantial bias in Cases B and D (MAR). In the latter cases, we observe positive bias under

the Clayton copula and negative bias under the Gumbel copula. The magnitude of bias is

larger in Case D than in Case B since there exist more missing data in Case D. All those

results are reasonable and consistent with Section 5.2.1.

Second, the parametric estimator with the correctly specified model performs well as

expected. When there is the weaker association between the target variables, the parametric

estimator produces negligibly small bias even for the smallest sample size of N = 250, and

the bias gets even smaller as sample size grows up (see Tables 1 and 3). Bias under the

stronger association is larger than the bias under the weaker association, but it is still

diminishing as sample size grows up (see Tables 2 and 4). See, for example, Case D in Table

4. The bias is -0.188 for N = 250, -0.093 for N = 500, and -0.051 for N = 1000.

Third, the parametric estimator with the misspecified model always suffers from large

bias. See, for example, Table 2 with N = 1000. The bias is -2.445 in Case A, -2.220 in Case

B, -0.866 in Case C, and -0.709 in Case D. The magnitude of bias is larger in Cases A-B

than in Cases C-D, since there is more serious misspecification in the former cases. To see

that, recall from (5.6) that the misspecified model imposes a = 0 while the true values of a

are -1.385 in Case A, -1.430 in Case B, -0.405 in Case C, and -0.420 in Case D.

Fourth, the nonparametric estimator of Hirano, Imbens, and Ridder (2003) often has

substantial bias for each missing mechanism and sample size. See, for instance, Table 2 with

N = 1000. When K = 3, the bias is -1.082 in Case A, -0.518 in Case B, -2.803 in Case C,

and -2.181 in Case D. We observe similar results for K = 4. Those are not surprising results
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since the nonparametric estimator of Hirano, Imbens, and Ridder (2003) is well known to

be unstable due to the frequent occurrence of extreme weights.

Fifth and most importantly, the calibration estimator performs as well as or even better

than the parametric estimator with the correctly specified model. See Case D in Table 4,

for example. The bias of the calibration estimator with K = 3 is -0.079 for N = 250, -0.055

for N = 500, and -0.035 for N = 1000. For each sample size, the calibration estimator has

smaller bias than the parametric estimator in absolute values. Moreover, the two estimators

have similar standard deviations so that the calibration estimator dominates the parametric

estimator in terms of RMSE. The same result follows if we use K = 4 instead of K = 3.

An intuitive reason why the calibration estimator is much more stable than the non-

parametric estimator of Hirano, Imbens, and Ridder (2003) is that calibration weights are

designed to be as close as possible to the uniform weights subject to the moment matching

conditions. Overall, the calibration estimator dominates the other estimators across various

copulas, sample sizes, and missing mechanisms.

6 Discussions and Conclusions

Copula models are a useful tool for capturing complex interdependence of multiple variables.

A popular class of copula models is semiparametric models, which consist of nonparamet-

ric marginal distributions and parametric copula functions. Genest, Ghoudi, and Rivest

(1995) proposed the two-step maximum likelihood estimator for semiparametric copula

models. While there exists a vast literature on copula models, most papers including

Genest, Ghoudi, and Rivest (1995) and Chen and Fan (2005) assume complete data.

In this article, we study the estimation of semiparametric copula models with data miss-

ing at random. We extend the two-step maximum likelihood approach of Genest, Ghoudi, and Rivest

(1995) by adapting the calibration procedure developed in Chan, Yam, and Zhang (2016).

Under the MAR condition, our estimator satisfies consistency and asymptotic normality.
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We also present a consistent estimator for the asymptotic variance of our estimator.

The large sample properties of the proposed estimator established in the previous sec-

tions allow for a wide range of values for K. In practice, we need to choose an appropriate K

in finite sample computation. We suggest choosing uK(X) to be the first and possibly higher

moments of candidate covariates. When the covariate distributions of the missing group and

the whole group differ only by a mean shift, matching the first moment of X would be suf-

ficient for removing imbalance. When the variances differ, we can also match the second

moment. Matching moments of covariate distributions are intuitive to non-statisticians.

For thorough discussions of the choice of K using graphical method and cross-validation,

we refer to Section 6 of Chan, Yam, and Zhang (2016).

Another contribution of this article lies in the simulation design. We provide a tech-

nique that generates data with a given copula structure while satisfying the missing at

random condition. Simulation results highlight the dominance of our proposed estimator

relative to the listwise deletion, parametric estimators, and nonparametric estimators based

on Hirano, Imbens, and Ridder (2003). An interesting finding is that, given the logistic-

type missing mechanism and the MAR condition, the listwise deletion results in positive

bias under the Clayton copula and negative bias under the Gumbel copula. We have pro-

vided logical explanations for those results, and shown that our estimator removes bias by

properly balancing the moments of covariates.
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Genest, C., J. Nešlehová, and N. Ben Ghorbal (2011): “Estimators Based on
Kendall’s Tau in Multivariate Copula Models,” Australian & New Zealand Journal of
Statistics, 53, 157–177.

Hahn, J. (1998): “On the Role of the Propensity Score in Efficient Semiparametric Esti-
mation of Average Treatment Effects,” Econometrica, 66, 315–331.

Hamori, S., K. Motegi, and Z. Zhang (2018): “Supplemental Material for ”Calibration
Estimation of Semiparametric Copula Models with Data Missing at Random”,” Kobe
University and Renmin University of China.

Hansen, L. P., J. Heaton, and A. Yaron (1996): “Finite-Sample Properties of Some
Alternative GMM Estimators,” Journal of Business & Economic Statistics, 14, 262–280.

Hirano, K., G. W. Imbens, and G. Ridder (2003): “Efficient Estimation of Average
Treatment Effects Using the Estimated Propensity Score,” Econometrica, 71, 1161–1189.

27



Horvitz, D. G., and D. J. Thompson (1952): “A Generalization of Sampling Without
Replacement from a Finite Universe,” Journal of the American Statistical Association,
47, 663–685.

Imbens, G. W., W. Newey, and G. Ridder (2005): “Mean-square-error Calculations
for Average Treatment Effects,” IEPR Working Paper 05.34.

Imbens, G. W., R. H. Spady, and P. Johnson (1998): “Information Theoretic Ap-
proaches to Inference in Moment Condition Models,” Econometrica, 66, 333–357.

Kitamura, Y., and M. Stutzer (1997): “An Information-Theoretic Alternative to Gen-
eralized Method of Moments Estimation,” Econometrica, 65, 861–874.

Little, R. J. A., and D. B. Rubin (2002): Statistical Analysis with Missing Data. Wiley-
Interscience, second edn.

Marra, G., and K. Wyszynski (2016): “Semi-Parametric Copula Sample Selection Mod-
els for Count Responses,” Computational Statistics and Data Analysis, 104, 110–129.

Newey, W. K. (1997): “Convergence rates and asymptotic normality for series estimators,”
Journal of econometrics, 79(1), 147–168.

Oakes, D. (1994): “Multivariate Survival Distributions,” Journal of Nonparametric Statis-
tics, 3, 343–354.

Oh, D. H., and A. J. Patton (2013): “Simulated Method of Moments Estimation for
Copula-Based Multivariate Models,” Journal of the American Statistical Association, 108,
689–700.

(2016): “High-Dimensional Copula-Based Distributions with Mixed Frequency
Data,” Journal of Econometrics, 193, 349–366.

(2017a): “Modeling Dependence in High Dimensions With Factor Copulas,” Jour-
nal of Business and Economic Statistics, 35, 139–154.

(2017b): “Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model
of CDS Spreads,” Journal of Business and Economic Statistics, forthcoming.

Owen, A. B. (1988): “Empirical Likelihood Ratio Confidence Intervals for a Single Func-
tional,” Biometrika, 75, 237–249.

Patton, A. J. (2009): “Copula-Based Models for Financial Time Series,” in Handbook of
Financial Time Series, ed. by T. G. Andersen, R. A. Davis, J. P. Kreiss, and T. Mikosch,
pp. 767–785. Springer-Verlag.

(2012): “A Review of Copula Models for Economic Time Series,” Journal of
Multivariate Analysis, 110, 4–18.

28



(2013): “Copula Methods for Forecasting Multivariate Time Series,” in Handbook
of Economic Forecasting, ed. by E. Graham, and A. Timmermann, vol. 2B, chap. 16, pp.
899–960. Elsevier B. V.

Qin, J., and J. Lawless (1994): “Empirical Likelihood and General Estimating Equa-
tions,” Annals of Statistics, 22, 300–325.

Qin, J., D. Leung, and J. Shao (2002): “Estimation with Survey Data under Non-
ignorable Nonresponse or Informative Sampling,” Journal of the American Statistical
Association, 97, 193–200.

Robins, J. M., and A. Rotnitzky (1995): “Semiparametric Efficiency in Multivariate
Regression Models with Missing Data,” Journal of the American Statistical Association,
90, 122–129.

Robins, J. M., A. Rotnitzky, and L. P. Zhao (1994): “Estimation of Regression
Coefficients When Some Regressors are not Always Observed,” Journal of the American
Statistical Association, 89, 846–866.

Robinson, P. M. (1988): “Root-N-consistent semiparametric regression,” Econometrica:
Journal of the Econometric Society, pp. 931–954.

Rubin, D. B. (1976): “Inference and Missing Data,” Biometrika, 63, 581–592.

Salvatierra, I. D. L., and A. J. Patton (2015): “Dynamic Copula Models and High
Frequency Data,” Journal of Empirical Finance, 30, 120–135.

Shih, J. H., and T. A. Louis (1995): “Inferences on the Association Parameter in Copula
Models for Bivariate Survival Data,” Biometrics, 51, 1384–1399.
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Technical Appendices

A Notations

For each j ∈ {1, ..., d}, we define the following notations:

Uji ≜ F 0
j (Yji) , U i ≜ (U1i, ..., Udi)

⊤ , l(v1, ..., vd; θ) ≜ log c(v1, ..., vd; θ) ,

lθ(v1, ..., vd; θ) ≜
∂

∂θ
l(v1, ..., vd; θ) , lθθ(v1, ..., vd; θ) ≜

∂2

∂θ∂θ′
l(v1, ..., vd; θ) ,

lj(v1, ..., vd; θ) ≜
∂

∂vj
l(v1, ..., vd; θ) , lθj(v1, ..., vd; θ) ≜

∂2

∂θ∂vj
l(v1, ..., vd; θ) .

The following notations are used for describing the asymptotic variance:

φ(T i,Xi,U i; θ0) ≜
I(T1i = 1, ..., Tdi = 1)

η(Xi)
lθ(U1i, ..., Udi; θ0)−

I(T1i = 1, ..., Tdi = 1)

η(Xi)
E[lθ(U1i, ...Udi; θ0)|Xi]

+ E[lθ(U1i, ...Udi; θ0)|Xi]− E[lθ(U1i, ...Udi; θ0)] , (A.1)

ϕj(Tji,Xi, Uji; v) ≜
Tji

πj(Xi)
I(Uji ≤ v)− Tji

πj(Xi)
E[I(Uji ≤ v)|Xi] + E[I(Uji ≤ v)|Xi] , v ∈ [0, 1] ,

(A.2)

W j(Tji,Xi, Uji; θ0) ≜ E [lθj(U1s, ..., Uds; θ0){ϕj(Tji,Xi, Uji;Ujs)− Ujs}|Uji,Xi, Tji] (s ̸= i) .
(A.3)

B Assumptions

We first introduce the smoothness classes of functions used in the nonparametric estimation;
see e.g. Stone (1982, 1994), Robinson (1988), Newey (1997) and Chen (2007). Suppose that
X is the Cartesian product of r-compact intervals. Let 0 < δ ≤ 1. A fucntion f on X is
said to satisfy a Hölder condition with exponent δ if there is a positive constant L such
that ∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥δ for all x1,x2 ∈ X . Given a r-tuple α = (α1, ..., αr) of
nonnegative integer, denote [α] = α1 + · · ·+ αr and let Dα denote the differential operator

defined by Dα = ∂[α]

∂x
α1
1 ···∂xαr

r
, where x = (x1, ..., xr).

Definition Let s be a nonnegative integer and s := s0 + δ. The function f on X is said
to be s-smooth if it is s times continuously differentiable on X and Dαf satisfies a Hölder
condition with exponent δ for all α with [α] = s0.

Assumptions B.1-B.6 are needed for showing
√
N -consistent estimate of the marginal

distributions {F 0
j }dj=1 and the asymptotic normality of

√
N(F̂j −F 0

j ). Assumptions B.1-B.6
are similar to Conditions 3-8 of Chan, Yam, and Zhang (2016).

Assumption B.1. The support of the covariate X, which is denoted by X , is a Cartesian
product of r compact intervals.
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Assumption B.2. For any j ∈ {1, ..., d}, the function πj(x) is bounded below, i.e. there
exists some constant η0 such that

0 < η0 ≤ πj(x) ≤ 1 ∀x ∈ X , j ∈ {1, ..., d} .

Assumption B.3. For any j ∈ {1, ..., d}, the function πj(x) are s-times continuously
differentiable, where s > 9r.

Assumption B.4. For any j ∈ {1, ..., d}, the conditional distribution functions P(Yji ≤
y|Xi = x) is s̄-smooth in x with s̄ > 0.

Assumption B.5. ρ ∈ C3(R) is a strictly concave function defined on R, i.e., ρ′′ < 0, and
the range of ρ′ contains [1, 1/η0] which is a subset of the positive real line.

Assumption B.6. K(N) = O(Nν), where 1
s/r−2 < ν < 1

7 .

Assumptions B.1 restricts the covariates to be bounded. This condition is restrictive
but commonly imposed in the nonparametric regression literature. Assumption B.2 ensures
that there are always sufficient portion of observed marginal data. This condition is typically
required in the missing data literature. The smoothness conditions of Assumptions B.3 and
B.4 are used to control the approximation error, and again are common in the nonparametric
literature. Assumption B.5 is a mild assumption on ρ which is chosen by the statisticians
and includes all the important special cases considered in the literature, such as exponential
tilting, empirical likelihood, quadratic weighting, inverse logistic. Assumption B.6 restricts
the smoothing parameter to balance the bias against the variance. This condition is typical
in the nonparametric regression literature.

Additional Assumptions B.7-B.12 are needed for showing the
√
N -consistency and

asymptotic normality of
√
N(θ̂ − θ0). Assumptions B.9, B.11, B.12, and B.13 are also

maintained in Chen and Fan (2005).

Assumption B.7. The function η(x) is bounded below, i.e. there exists some constant η0
such that

0 < η0 ≤ η(x) ≤ 1 ∀x ∈ X , j ∈ {1, ..., d} .

Assumption B.8. The function η(x) is s-times continuously differentiable, where s > 9r.

Assumption B.9.

1. For any u ∈ (0, 1)d, l(u; θ) is a continuous function of θ.

2. E[supθ∈Θ |l(U1i, ..., Udi; θ)|] <∞.

Assumption B.10. The function E[lθ(U1i, ..., Udi; θ)|X = x] is s̄-smooth in x with s̄ > 0.

Assumption B.11. The following matrices are finite and positive definite:

B ≜ −E [lθθ(U1i, ..., Udi; θ0)] , (B.1)

Σ ≜ V ar

φ(T i,Xi,U i; θ0) +

d∑
j=1

Wj(Tji,Xi, Uji; θ0)

 . (B.2)
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Assumption B.12.

1. For every (u1, ..., ud) ∈ (0, 1)d, the function lθθ(u1, ..., ud; θ) is continuous with respect
to θ in a neighborhood of θ0;

2. E
[
supθ∈Θ:∥θ−θ0∥=o(1) ∥lθθ(U1i, ..., Udi; θ)∥

]
<∞.

Assumption B.13. For j ∈ {1, ..., d}, lθj(u1, ..., ud; θ0) is well defined and continuous in
(u1, ..., ud) ∈ (0, 1)d. Furthermore, we assume

1. ∥lθ(u1, ..., ud; θ0)∥ ≤ constant×
∏d

j=1{vj(1− vj)}−aj for some aj ≥ 0 such that

E

 d∏
j=1

{Uji(1− Uji)}−2aj

 <∞ ;

2. ∥lθk(u1, ..., ud; θ0)∥ ≤ constant × {vk(1 − vk)}−bk
∏d

j=1,j ̸=k{vj(1 − vj)}−aj for some
bk > ak such that

E

{Uki(1− Uki)}ξk−bk

d∏
j=1,j ̸=k

{Uji(1− Uji)}−aj

 <∞

for some ξk ∈ (0, 1/2).

Assumptions B.7-B.9 are required for showing the consistent estimation of the target
parameter. Assumption B.7 ensures that there are sufficient portion of complete data.
The smoothness condition of Assumption B.8 is used to control the approximation error.
Assumption B.9 is used for ensuring the uniform convergence of criteria functions, which
is a standard condition for M -estimator. Assumptions B.10-B.13 are needed for ensuring
our estimator has asymptotic normal behavior. Assumption B.10 is used to control the
approximation error. Assumption B.11 is used to guarantee the finiteness of the asymptotic
variance. Assumption B.12 is used to guarantee the uniform convergence. Assumption B.13
allows the score function and its partial derivatives with respect to the first d arguments
to blow up at the boundaries, which occurs for many popular copula functions such as
Gaussian, Clayton, and t-copulas.
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Table 1: Simulation Results on Clayton Copula with α0 = 1.333

N = 250

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.041, 0.212, 0.216 0.090, 0.230, 0.247 0.062, 0.247, 0.254 0.135, 0.265, 0.297

Param (Correct) 0.026, 0.209, 0.211 0.026, 0.195, 0.197 0.036, 0.232, 0.235 0.034, 0.220, 0.222

Param (Misspec) -0.294, 0.154, 0.332 -0.265, 0.152, 0.305 -0.063, 0.209, 0.218 -0.047, 0.209, 0.214

Nonparam (K = 3) -0.063, 0.431, 0.435 0.079, 1.147, 1.149 -0.469, 0.555, 0.727 -0.327, 0.747, 0.815

Nonparam (K = 4) -0.008, 1.079, 1.079 0.287, 1.926, 1.947 -0.418, 1.714, 1.764 -0.208, 1.337, 1.354

Calib. Est. (K = 3) 0.039, 0.203, 0.207 0.026, 0.201, 0.203 0.035, 0.221, 0.224 0.035, 0.215, 0.218

Calib. Est. (K = 4) 0.036, 0.208, 0.211 0.034, 0.207, 0.210 0.037, 0.227, 0.230 0.036, 0.222, 0.224

N = 500

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.021, 0.151, 0.152 0.061, 0.163, 0.174 0.032, 0.188, 0.190 0.118, 0.182, 0.216

Param (Correct) 0.012, 0.146, 0.146 0.025, 0.144, 0.146 0.006, 0.167, 0.168 0.018, 0.155, 0.156

Param (Misspec) -0.297, 0.106, 0.315 -0.271, 0.106, 0.291 -0.066, 0.141, 0.156 -0.055, 0.149, 0.159

Nonparam (K = 3) -0.046, 0.524, 0.526 0.027, 0.851, 0.851 -0.438, 0.687, 0.814 -0.321, 0.364, 0.485

Nonparam (K = 4) 0.069, 1.951, 1.952 0.170, 1.666, 1.675 -0.285, 2.141, 2.160 -0.294, 0.646, 0.710

Calib. Est. (K = 3) 0.021, 0.141, 0.143 0.020, 0.145, 0.146 0.021, 0.161, 0.163 0.016, 0.153, 0.154

Calib. Est. (K = 4) 0.013, 0.144, 0.145 0.016, 0.141, 0.142 0.020, 0.157, 0.158 0.021, 0.153, 0.155

N = 1000

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.005, 0.103, 0.103 0.047, 0.108, 0.118 0.020, 0.122, 0.123 0.102, 0.130, 0.165

Param (Correct) 0.006, 0.104, 0.104 0.009, 0.101, 0.101 0.007, 0.112, 0.112 0.011, 0.111, 0.112

Param (Misspec) -0.298, 0.074, 0.307 -0.273, 0.076, 0.283 -0.075, 0.103, 0.127 -0.071, 0.103, 0.124

Nonparam (K = 3) -0.058, 0.606, 0.609 0.017, 0.389, 0.389 -0.393, 0.469, 0.612 -0.324, 0.280, 0.429

Nonparam (K = 4) -0.013, 1.199, 1.199 0.286, 1.761, 1.784 -0.389, 1.332, 1.387 -0.331, 0.336, 0.472

Calib. Est. (K = 3) 0.003, 0.102, 0.102 0.006, 0.099, 0.099 0.006, 0.115, 0.115 0.014, 0.113, 0.114

Calib. Est. (K = 4) 0.008, 0.099, 0.100 0.010, 0.100, 0.101 0.012, 0.115, 0.115 0.007, 0.110, 0.110

Bias, standard deviation, and root mean squared error of each estimator after J = 1000 Monte Carlo trials. Cases A

and B imply MCAR and MAR, respectively, with relatively low missing probability (i.e. E[T2i] = 0.8). Cases C and

D imply MCAR and MAR, respectively, with relatively high missing probability (i.e. E[T2i] = 0.6).
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Table 2: Simulation Results on Clayton Copula with α0 = 4.667

N = 250

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion -0.042, 0.504, 0.506 0.183, 0.557, 0.586 -0.061, 0.608, 0.611 0.362, 0.671, 0.763

Param (Correct) -0.111, 0.504, 0.516 -0.099, 0.485, 0.495 -0.230, 0.530, 0.578 -0.120, 0.527, 0.541

Param (Misspec) -2.481, 0.284, 2.497 -2.258, 0.296, 2.278 -1.062, 0.476, 1.163 -0.800, 0.479, 0.932

Nonparam (K = 3) -1.097, 1.940, 2.229 -0.428, 3.109, 3.138 -2.844, 1.768, 3.349 -2.283, 1.498, 2.731

Nonparam (K = 4) -0.895, 4.356, 4.447 0.214, 5.442, 5.446 -2.504, 3.541, 4.337 -2.048, 2.452, 3.195

Calib. Est. (K = 3) -0.096, 0.501, 0.510 -0.064, 0.485, 0.489 -0.161, 0.528, 0.552 -0.109, 0.525, 0.536

Calib. Est. (K = 4) -0.086, 0.509, 0.516 -0.047, 0.477, 0.479 -0.142, 0.523, 0.542 -0.123, 0.545, 0.559

N = 500

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion -0.039, 0.381, 0.383 0.147, 0.382, 0.410 -0.016, 0.430, 0.430 0.372, 0.463, 0.594

Param (Correct) -0.076, 0.343, 0.351 -0.035, 0.344, 0.346 -0.153, 0.375, 0.405 -0.076, 0.386, 0.394

Param (Misspec) -2.467, 0.211, 2.476 -2.227, 0.210, 2.237 -0.928, 0.349, 0.991 -0.769, 0.329, 0.837

Nonparam (K = 3) -1.004, 2.615, 2.801 -0.581, 1.310, 1.433 -2.744, 1.749, 3.254 -2.253, 1.050, 2.486

Nonparam (K = 4) -1.062, 3.148, 3.322 0.133, 4.598, 4.600 -2.442, 3.306, 4.110 -1.980, 1.503, 2.486

Calib. Est. (K = 3) -0.079, 0.355, 0.363 -0.032, 0.336, 0.337 -0.118, 0.365, 0.383 -0.063, 0.368, 0.374

Calib. Est. (K = 4) -0.052, 0.350, 0.354 -0.050, 0.346, 0.350 -0.090, 0.368, 0.378 -0.082, 0.367, 0.376

N = 1000

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion -0.021, 0.260, 0.260 0.167, 0.288, 0.333 -0.011, 0.310, 0.311 0.406, 0.325, 0.521

Param (Correct) -0.044, 0.252, 0.256 -0.024, 0.241, 0.242 -0.090, 0.256, 0.271 -0.044, 0.257, 0.260

Param (Misspec) -2.445, 0.151, 2.449 -2.220, 0.149, 2.225 -0.866, 0.264, 0.905 -0.709, 0.243, 0.749

Nonparam (K = 3) -1.082, 1.083, 1.531 -0.518, 1.600, 1.682 -2.803, 1.302, 3.091 -2.181, 0.940, 2.375

Nonparam (K = 4) -1.060, 2.627, 2.832 0.079, 3.723, 3.724 -2.374, 3.229, 4.008 -2.013, 1.235, 2.361

Calib. Est. (K = 3) -0.040, 0.248, 0.251 -0.023, 0.243, 0.244 -0.062, 0.257, 0.264 -0.056, 0.259, 0.265

Calib. Est. (K = 4) -0.021, 0.241, 0.242 -0.042, 0.246, 0.250 -0.049, 0.260, 0.265 -0.032, 0.265, 0.267

Bias, standard deviation, and root mean squared error of each estimator after J = 1000 Monte Carlo trials. Cases A

and B imply MCAR and MAR, respectively, with relatively low missing probability (i.e. E[T2i] = 0.8). Cases C and

D imply MCAR and MAR, respectively, with relatively high missing probability (i.e. E[T2i] = 0.6).
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Table 3: Simulation Results on Gumbel Copula with γ0 = 1.667

N = 250

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.027, 0.117, 0.120 -0.023, 0.111, 0.113 0.037, 0.136, 0.141 -0.058, 0.127, 0.139

Param (Correct) -0.009, 0.104, 0.104 -0.012, 0.111, 0.112 -0.016, 0.125, 0.126 -0.024, 0.121, 0.124

Param (Misspec) -0.633, 0.009, 0.634 -0.631, 0.012, 0.631 -0.520, 0.070, 0.525 -0.524, 0.066, 0.528

Nonparam (K = 3) -0.138, 0.115, 0.180 -0.112, 0.136, 0.176 -0.449, 0.150, 0.473 -0.473, 0.196, 0.512

Nonparam (K = 4) -0.184, 0.191, 0.265 -0.180, 0.196, 0.266 -0.492, 0.163, 0.519 -0.552, 0.152, 0.573

Calib. Est. (K = 3) 0.015, 0.108, 0.109 0.013, 0.108, 0.109 0.015, 0.122, 0.123 0.009, 0.124, 0.124

Calib. Est. (K = 4) 0.010, 0.105, 0.106 0.014, 0.115, 0.116 0.012, 0.123, 0.124 0.008, 0.123, 0.123

N = 500

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.012, 0.080, 0.081 -0.033, 0.077, 0.084 0.014, 0.094, 0.095 -0.070, 0.088, 0.113

Param (Correct) -0.001, 0.077, 0.077 -0.002, 0.076, 0.076 -0.005, 0.089, 0.089 -0.013, 0.084, 0.085

Param (Misspec) -0.633, 0.006, 0.633 -0.629, 0.008, 0.629 -0.527, 0.045, 0.529 -0.523, 0.049, 0.525

Nonparam (K = 3) -0.149, 0.101, 0.180 -0.115, 0.122, 0.168 -0.415, 0.145, 0.440 -0.459, 0.178, 0.492

Nonparam (K = 4) -0.183, 0.196, 0.268 -0.164, 0.216, 0.272 -0.442, 0.194, 0.482 -0.556, 0.149, 0.575

Calib. Est. (K = 3) 0.010, 0.079, 0.080 0.012, 0.077, 0.078 0.008, 0.088, 0.088 0.004, 0.088, 0.088

Calib. Est. (K = 4) 0.007, 0.079, 0.079 0.007, 0.077, 0.077 0.008, 0.087, 0.087 0.003, 0.089, 0.089

N = 1000

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.008, 0.058, 0.058 -0.039, 0.054, 0.067 0.012, 0.066, 0.067 -0.080, 0.060, 0.100

Param (Correct) -0.000, 0.055, 0.055 -0.000, 0.054, 0.054 0.001, 0.062, 0.062 -0.002, 0.063, 0.063

Param (Misspec) -0.632, 0.005, 0.632 -0.628, 0.006, 0.628 -0.527, 0.028, 0.528 -0.526, 0.028, 0.527

Nonparam (K = 3) -0.119, 0.664, 0.674 -0.072, 0.828, 0.831 -0.401, 0.119, 0.419 -0.444, 0.592, 0.740

Nonparam (K = 4) -0.056, 1.279, 1.280 -0.068, 1.113, 1.115 -0.298, 1.548, 1.576 -0.568, 0.127, 0.582

Calib. Est. (K = 3) 0.004, 0.057, 0.057 0.003, 0.056, 0.056 0.006, 0.061, 0.061 -0.002, 0.061, 0.061

Calib. Est. (K = 4) 0.004, 0.054, 0.055 0.004, 0.056, 0.056 0.005, 0.062, 0.062 0.001, 0.063, 0.063

Bias, standard deviation, and root mean squared error of each estimator after J = 1000 Monte Carlo trials. Cases A

and B imply MCAR and MAR, respectively, with relatively low missing probability (i.e. E[T2i] = 0.8). Cases C and

D imply MCAR and MAR, respectively, with relatively high missing probability (i.e. E[T2i] = 0.6).
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Table 4: Simulation Results on Gumbel Copula with γ0 = 3.333

N = 250

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.020, 0.269, 0.270 -0.108, 0.252, 0.274 0.016, 0.305, 0.306 -0.173, 0.286, 0.334

Param (Correct) -0.095, 0.228, 0.247 -0.124, 0.233, 0.264 -0.150, 0.272, 0.310 -0.188, 0.250, 0.313

Param (Misspec) -2.264, 0.014, 2.264 -2.259, 0.015, 2.259 -1.964, 0.206, 1.974 -1.964, 0.216, 1.976

Nonparam (K = 3) -1.163, 0.270, 1.194 -0.997, 0.326, 1.049 -1.908, 0.302, 1.931 -1.932, 0.403, 1.974

Nonparam (K = 4) -1.264, 0.397, 1.325 -1.230, 0.501, 1.328 -2.014, 0.299, 2.036 -2.115, 0.317, 2.138

Calib. Est. (K = 3) 0.006, 0.250, 0.250 -0.008, 0.237, 0.237 -0.020, 0.266, 0.267 -0.079, 0.273, 0.284

Calib. Est. (K = 4) -0.015, 0.254, 0.254 -0.022, 0.240, 0.241 -0.028, 0.266, 0.267 -0.080, 0.278, 0.290

N = 500

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.011, 0.190, 0.190 -0.116, 0.173, 0.209 0.010, 0.217, 0.217 -0.221, 0.201, 0.298

Param (Correct) -0.042, 0.174, 0.179 -0.049, 0.175, 0.182 -0.050, 0.196, 0.202 -0.093, 0.193, 0.214

Param (Misspec) -2.263, 0.010, 2.263 -2.256, 0.011, 2.256 -1.992, 0.110, 1.995 -1.982, 0.122, 1.986

Nonparam (K = 3) -1.178, 0.213, 1.198 -1.003, 0.252, 1.034 -1.848, 0.229, 1.862 -1.907, 0.392, 1.947

Nonparam (K = 4) -1.278, 0.378, 1.333 -1.210, 0.451, 1.292 -1.961, 0.293, 1.983 -2.113, 0.294, 2.133

Calib. Est. (K = 3) -0.001, 0.182, 0.182 -0.023, 0.175, 0.176 -0.023, 0.190, 0.192 -0.055, 0.189, 0.197

Calib. Est. (K = 4) 0.010, 0.184, 0.184 -0.012, 0.169, 0.169 -0.019, 0.199, 0.200 -0.069, 0.190, 0.202

N = 1000

(a, b) A. (−1.385, 0.000) B. (−1.430, 0.400) C. (−0.405, 0.000) D. (−0.420, 0.400)

Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion 0.003, 0.129, 0.129 -0.116, 0.124, 0.170 0.010, 0.154, 0.154 -0.219, 0.145, 0.263

Param (Correct) -0.019, 0.126, 0.127 -0.023, 0.131, 0.133 -0.027, 0.136, 0.138 -0.051, 0.132, 0.142

Param (Misspec) -2.262, 0.007, 2.262 -2.255, 0.008, 2.255 -1.996, 0.071, 1.997 -1.994, 0.070, 1.995

Nonparam (K = 3) -1.153, 0.684, 1.341 -0.972, 0.983, 1.382 -1.776, 1.004, 2.040 -1.910, 0.380, 1.948

Nonparam (K = 4) -1.193, 0.892, 1.490 -0.933, 2.165, 2.357 -1.870, 0.481, 1.931 -2.125, 0.294, 2.145

Calib. Est. (K = 3) -0.002, 0.123, 0.123 -0.017, 0.125, 0.126 -0.014, 0.136, 0.137 -0.035, 0.133, 0.137

Calib. Est. (K = 4) -0.007, 0.120, 0.120 -0.009, 0.123, 0.123 -0.008, 0.136, 0.136 -0.029, 0.133, 0.136

Bias, standard deviation, and root mean squared error of each estimator after J = 1000 Monte Carlo trials. Cases A

and B imply MCAR and MAR, respectively, with relatively low missing probability (i.e. E[T2i] = 0.8). Cases C and

D imply MCAR and MAR, respectively, with relatively high missing probability (i.e. E[T2i] = 0.6).
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Figure 1: Observed and Missing Groups of (Y1i, Y2i) under Clayton Copula
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This figure visualizes a representative Monte Carlo sample on the Clayton copula with α0 = 4.667,

Case D (MAR), and N = 500. “o” signifies 291 individuals with Y2i observed, while “x” signifies 209

individuals with Y2i missing. When the listwise deletion is executed, there is a substantial positive

bias of 0.418. When the calibration estimation with K = 4 is executed, there is a sufficiently small

bias of -0.042.
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Figure 2: Weights q̂(Xi) for Individuals with Complete Data (Clayton Copula)
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(a) Listwise Deletion
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(b) Calibration Estimation

In this figure we plot the key weights q̂(Xi) assigned for the 291 individuals with complete data,

continuing the representative Monte Carlo sample in Figure 1. When the listwise deletion is executed,

q̂(Xi) = 1/291 = 0.003 for any individual. When the calibration estimation with K = 4 is executed,

q̂(Xi) is generally increasing in Xi so that the weak association between Y1i and Y2i at the upper

tail is more emphasized and the strong association at the lower tail is less emphasized.

38



Figure 3: Observed and Missing Groups of (Y1i, Y2i) under Gumbel Copula
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This figure visualizes a representative Monte Carlo sample on the Gumbel copula with γ0 = 3.333,

Case D (MAR), and N = 500. “o” signifies 317 individuals with Y2i observed, while “x” signifies 183

individuals with Y2i missing. When the listwise deletion is executed, there is a substantial negative

bias of -0.265. When the calibration estimation with K = 4 is executed, there is a sufficiently small

bias of -0.061.
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