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Introduction

Copula

Model

Treatment

Effect

Data

Missing

-- Flexible modelling of multivariate distributions

-- Popular in business, economics, finance, etc.

-- Common problem in all fields

-- Deep literature in statistics

-- Central topic in econometrics

-- Estimate unobserved outcome

We unite them for the first time in the literature.

-- Binary phenomenon (to observe or not to observe)
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Introduction

How to fit copula models when there are missing data?

A näıve approach is listwise deletion (LD):

1 Keep individuals with all d components being observed, and
discard all other individuals.

2 Treat the individuals with complete data in an equal way.
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Introduction

LD leads to a consistent estimator for the copula parameter of
interest if the missing mechanism is missing completely at
random (MCAR).

LD leads to an inconsistent estimator if the missing mechanism
is missing at random (MAR).

Under MAR, target variables Yi = [Y1i, . . . , Ydi]
⊤ and their

missing status are independent of each other given observed
covariates Xi = [X1i, . . . , Xmi]

⊤.

LD treats individuals with complete data all equally, and it does
not use the information of Xi. That can cause substantial bias
under MAR.
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Introduction

How to obtain a consistent estimator for the copula parameter
when the missing mechanism is MAR?

As is well known in the literature of missing data and average
treatment effects, a key step is the estimation of propensity
score function (i.e. conditional probability of observing data
given covariates).

Direct estimation of propensity score is notoriously challenging,
whether it is performed parametrically or nonparametrically.

Parametric approaches are haunted by misspecification
problems, while nonparametric approaches often lack stability.
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Introduction

Chan, Yam, and Zhang (2016, JRSS-B) propose an alternative
approach called calibration estimation in the literature of
average treatment effects.

The calibration estimator is derived by balancing covariates
among treatment, control, and whole groups. It does not
require a direct estimation of propensity score.

We apply the calibration estimation to a missing data problem
for the first time in the literature.
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Introduction

The calibration estimator for the copula parameter satisfies
consistency and asymptotic normality under some
assumptions including i.i.d. data and the MAR condition.

We also derive a consistent estimator for the asymptotic
covariance matrix.

We perform Monte Carlo simulations. Our simulation results
indicate that the calibration estimator dominates listwise
deletion, parametric approach, and nonparametric approach.
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Review of Copula Models

Suppose that there are N individuals and d components:

Yi = [Y1i, Y2i, . . . , Ydi]
⊤ (i = 1, . . . , N).

Suppose that we want to estimate the d-dimensional joint
distribution of Yi, assuming i.i.d. What can we do?

There are potential problems about estimating the joint
distribution directly.

Parametric Nonparametric

d = large

d = small Misspecification

Misspecification
Curse of dimensionality

(Curse of dimensionality)

Parameter proliferation
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Review of Copula Models

Copula models accomplish flexible specification with a small
number of parameters.

Copula models follow a two-step procedure.

Step 1: Model the marginal distribution of each of the d
components separately.

Step 2: Combine the d marginal distributions to recover a joint
distribution.

Step 2

Nonparametric

Parametric

Parametric

Name of model

Parametric copula model

Semiparametric copula model

Nonparametric copula model

(Target of our paper)

Step 1

Parametric

Nonparametric

Nonparametric
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Review of Copula Models

The copula approach is justified by Sklar’s (1959) theorem.

Sklar’s theorem ensures the existence of a unique copula function
C : (0, 1)d → (0, 1) that recovers a true joint distribution.

Theorem (Sklar, 1959)

Let {Yi} be i.i.d. random vectors with a joint distribution
F : Rd → (0, 1). Assume that the marginal distribution of Yji,
written as Fj : R → (0, 1), is continuous for j ∈ {1, . . . , d}. Then,
there exists a unique function C : (0, 1)d → (0, 1) such that

F (y1, . . . , yd) = C (F1(y1), . . . , Fd(yd)) ,

or in terms of probability density functions,

f(y1, . . . , yd) = c (f1(y1), . . . , fd(yd)) .

Hamori, Motegi & Zhang (Kobe & RUC) Copula Models with Data MAR July 10, 2018 11 / 50



Review of Copula Models

A well-known example of copula function: bivariate Clayton
copula with a scalar parameter α > 0.

Cumulative distribution function is

C2(u1, u2; α) = (u−α
1 + u−α

2 − 1)−
1
α ,

where u1 = F1(y1) ∈ (0, 1) and u2 = F2(y2) ∈ (0, 1) are
marginal distribution functions of Y1i and Y2i, respectively.

Probability density function is

c2(u1, u2; α) = (1 + α)(u1u2)
−α−1(u−α

1 + u−α
2 − 1)−

1
α
−2.

Kendall’s rank correlation coefficient is τ = α/(α + 2).

Larger α implies stronger association between Y1i and Y2i.
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Review of Copula Models
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Association is stronger in the lower tail than in the upper tail.

Such an asymmetry matches many economic and financial
phenomena (e.g. stock market contagion).

Larger α implies stronger association between Y1i and Y2i.
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Review of Missing Data

Suppose that {Y1i, . . . , Ydi}Ni=1 are target variables.

Define the missing indicator:

Tji =

{
1 if Yji is observed,

0 if Yji is missing.

Suppose that {X1i, . . . , Xmi}Ni=1 are observable covariates.

There are three well-known layers of missing mechanism.

1 Missing Completely at Random (MCAR).

2 Missing at Random (MAR).

3 Missing Not at Random (MNAR).
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Review of Missing Data

Each concept is defined as follows.

1 Missing Completely at Random (MCAR):

{T1i, . . . , Tdi} ⊥ {Y1i, . . . , Ydi}.

2 Missing at Random (MAR):

{T1i, . . . , Tdi} ⊥ {Y1i, . . . , Ydi} | {X1i, . . . , Xmi}.

3 Missing Not at Random (MNAR):

{T1i, . . . , Tdi} ̸⊥ {Y1i, . . . , Ydi} | {X1i, . . . , Xmi}.
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Review of Missing Data

An illustrative example on health survey (d = m = 1):

Y1i = weight of individual i; X1i = I(Individual i is female).

MCAR requires that P[Individual i reports his/her weight] should
be independent of both weight and gender of individual i.

MAR requires that:

P[A man reports his weight] should be independent of his weight.

P[A woman reports her weight] should be independent of her weight.

MNAR allows for the following situations:

P[A man reports his weight] depends on his weight.

P[A woman reports her weight] depends on her weight.
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Review of Missing Data

MCAR MAR

MNAR

Probably too restrictive, since men and women may 

have different willingness to report their weights.

More plausible than MCAR, 

since MAR controls for gender.

MNAR is most general since it controls for 

both gender and weight, but MNAR is hard 

to handle technically.

MAR may be still restrictive, since men 

(or women) with different weights may 

have different willingness to report 

their weights.
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Review of Missing Data

It is well known that listwise deletion (LD) leads to consistent
inference under MCAR.

It is also well known that LD leads to inconsistent inference
under MAR.

Correct inference under MAR has been extensively studied since
the seminal work of Rubin (1976).

The present paper assumes MAR and elaborates the estimation
of semiparametric copula models, which has not been done in
the literature.
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Set-up of Main Problem

Semiparametric copula models are estimated in two steps:

Step 1: Estimate the marginal distributions {F1, . . . , Fd}
nonparametrically via

Fj(y) = P(Yji ≤ y) = E[I(Yji ≤ y)].

Step 2: Estimate the true copula parameter θ0 via

θ0 = argmax
θ∈Θ

E [log c(F1(Y1i), . . . , Fd(Ydi);θ)] .

If data were all observed, then we could simply replace the
population means with sample means.

When data are Missing at Random, we need to assign some
weights based on propensity score functions.
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Set-up of Main Problem

Define propensity score functions:

πj(x) = P(Tji = 1 |Xi = x), j ∈ {1, . . . , d}.

Define pj(x) = 1/πj(x).

Step 1 is rewritten as

Fj(y) = E[I(Yji ≤ y)] = E[E[I(Yji ≤ y)|Xi]] (∵ LIE)

= E
[
E
[

Tji

πj(Xi)

∣∣∣∣Xi

]
× E [I(Yji ≤ y)|Xi]

]
= E

[
E
[

Tji

πj(Xi)
× I(Yji ≤ y)

∣∣∣∣Xi

]]
(∵ MAR)

= E
[

Tji

πj(Xi)
× I(Yji ≤ y)

]
(∵ LIE)

= E[Tji × pj(Xi)× I(Yji ≤ y)].
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Set-up of Main Problem

We have derived:

Fj(y) = E[I(Tji = 1)× pj(Xi)× I(Yji ≤ y)].

Horvitz and Thompson’s (1952) inverse probability weighting
(IPW) estimator for Fj is written as

F̃j(y) =
1

N

N∑
i=1

I(Tji = 1)pj(Xi)I(Yji ≤ y).

If pj(x) were known, then it would be straightforward to
compute the IPW estimator.

pj(x) is unknown in reality.
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Set-up of Main Problem

Define a propensity score function:

η(x) = P(T1i = 1, . . . , Tdi = 1 |Xi = x).

Define q(x) = 1/η(x).

Using MAR and LIE, Step 2 is rewritten as

θ0 = argmax
θ∈Θ

E [I(T1i = 1, ..., Tdi = 1)q(Xi) log c(F1(Y1i), ..., Fd(Ydi);θ)] .

The IPW estimator for θ0 is given by

θ̃ = argmax
θ∈Θ

1

N

N∑
i=1

I(T1i = 1, ..., Tdi = 1)q(Xi) log c(F̃1(Y1i), ..., F̃d(Ydi);θ).

q(x) is unknown in reality.
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Set-up of Main Problem

Estimation of propensity score functions has been a major issue
in the literature of missing data and treatment effects.

Many papers attempt a direct estimation of pj(x) and q(x),
either parametrically or nonparametrically.

Parametric approaches: Zhao and Lipsitz (1992), Robins,
Rotnitzky, and Zhao (1994), and Bang and Robins (2005).

The parametric approaches are notoriously sensitive to
misspecification (cf. Lawless, Kalbfleisch, and Wild, 1999).

Nonparametric approaches: Hahn (1998), Hirano, Imbens,
and Ridder (2003), Imbens, Newey, and Ridder (2005), and
Chen, Hong, and Tarozzi (2008).

The nonparametric approaches have a notoriously poor
performance in finite sample.
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Theory of Calibration Estimation

In the treatment effect literature, Chan, Yam, and Zhang (2016)
propose an alternative approach that bypasses a direct
estimation of propensity score.

They construct calibration weights by balancing the moments
of observed covariates among treatment, control, and whole
groups.

The present paper applies their method to a missing data
problem for the first time.
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Theory of Calibration Estimation

Under MAR, the moment matching condition holds:

E [I(Tji = 1)pj(Xi)uK(Xi)] = E[uK(Xi)], j ∈ {1, . . . d}

for any integrable function uK : Rm → RK called an
approximation sieve. A common choice is, say,

uK(Xi) = [1, Xi, X
2
i , X

3
i ]

⊤ (m = 1, K = 4).

A sample counterpart is written as

1

N

N∑
i=1

I(Tji = 1)× pj(Xi)× uK(Xi) =
1

N

N∑
i=1

uK(Xi).

There are multiple values of {pj(X1), . . . , pj(XN)} that satisfy
the moment matching condition. Among them, we choose the
one closest to a uniform weight given some distance measure.
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Theory of Calibration Estimation

Why do we want the uniform weight?

1 If there are no missing data, then the uniform weight leads to a
natural estimator F̂j(y) = (N + 1)−1

∑N
i=1 I(Yji ≤ y).

2 It is well known that volatile weights cause instability in the
Horvitz-Thompson IPW estimator.

Primal problem is a constrained optimization problem:
minimize the distance s.t. the moment matching condition.

Dual problem is written as an unconstrained optimization
problem.

To express the dual problem, let ρ : R → R be any strictly
concave function.
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Theory of Calibration Estimation

Define a concave objective function:

GjK(λ) =
1

N

N∑
i=1

[
I(Tji = 1)ρ(λ⊤uK(Xi))− λ⊤uK(Xi)

]
, λ ∈ RK .

Compute
λ̂jK = argmax

λ
GjK(λ).

Compute calibration weights for marginal distributions:

p̂jK(Xi) = ρ′(λ̂⊤
jKuK(Xi)).

Estimate the marginal distribution of the j-th component by

F̂j(y) =
1

N

N∑
i=1

I(Tji = 1)p̂jK(Xi)I(Yji ≤ y).
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Theory of Calibration Estimation

Arbitrariness of ρ arises from the arbitrariness of the distance
measure. Functional forms often used in the nonparametric
literature include:

Exponential Tilting: ρ(v) = − exp(−v).

Empirical Likelihood: ρ(v) = log(1 + v).

Quadratic: ρ(v) = −0.5(1− v)2.

Inverse Logistic: ρ(v) = v − exp(−v).
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Theory of Calibration Estimation

Step 2 (likelihood maximization) can be handled analogously.

Under MAR, the moment matching condition holds:

E [I(T1i = 1, . . . , Tdi = 1)q(Xi)uK(Xi)] = E[uK(Xi)],

where

q(Xi) ≡
1

η(Xi)
=

1

P(T1i = 1, . . . , Tdi = 1 |Xi = x)
.

Find calibration weights that satisfy the moment matching
condition and are closest to the uniform weight given some
distance measure.

Hamori, Motegi & Zhang (Kobe & RUC) Copula Models with Data MAR July 10, 2018 29 / 50



Theory of Calibration Estimation

Define a concave objective function:

HK(β) =
1

N

N∑
i=1

I(T1i = 1, . . . , Tdi = 1)ρ
(
β⊤uK(Xi)

)
− 1

N

N∑
i=1

β⊤uK(Xi).

Compute
β̂K = argmax

β
HK(β).

Compute a calibration weight for the likelihood:

q̂K(Xi) = ρ′(β̂⊤
KuK(Xi)).

Compute the maximum likelihood estimator θ̂ via

max
θ∈Θ

1

N

N∑
i=1

I(T1i = 1, ..., Tdi = 1)q̂K(Xi) log cd

(
F̂1(Y1i), ..., F̂d(Ydi); θ

)
.
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Theory of Calibration Estimation

Theorem (Consistency and Asymptotic Normality)

Impose a set of assumptions including what follows:

The missing mechanism is missing at random (MAR).

{Yi,Ti,Xi} are i.i.d. across individuals i ∈ {1, . . . , N}.
π1(·), . . . , πd(·), and η(·) are s-times continuously
differentiable with sufficiently large s.

K(N) → ∞ as N → ∞, and the rate of divergence is
sufficiently slow.

Then, consistency and asymptotic normality follow.

1 θ̂
p→ θ0 as N → ∞.

2

√
N(θ̂ − θ0)

d→ N(0,V ) as N → ∞.
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Theory of Calibration Estimation

The asymptotic covariance matrix V is expressed as

V = B−1ΣB−1.

We can construct consistent estimators for B and Σ, and hence

V̂ = B̂−1Σ̂B̂−1 p→ V .

See the main paper for a complete set of assumptions, proofs of
the consistency and asymptotic normality, and the construction
of V and V̂ .
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Monte Carlo Simulations: DGP

Target variables are Yi = [Y1i, Y2i]
⊤ (d = 2).

Consider a scalar covariate Xi.

Define Ui = [U1i, U2i, U3i]
⊤ = [F1(Y1i), F2(Y2i), FX(Xi)]

⊤.

F1(·) is the marginal distribution of Y1i, and we use N(0, 1).

F2(·) is the marginal distribution of Y2i, and we use N(0, 1).

FX(·) is the marginal distribution of Xi, and we use N(0, 1).

The inverse distribution functions F−1
1 (·), F−1

2 (·), and F−1
X (·)

are known and tractable.
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Monte Carlo Simulations: DGP

Step 1: Draw Ui
i.i.d.∼ Clayton3(α0) with α0 = 4.667.

Step 2: Recover Y1i = F−1
1 (U1i), Y2i = F−1

2 (U2i), and
Xi = F−1

X (U3i).

Step 3: Assume that {Y11, . . . , Y1N} are all observed. Make
some of {Y21, . . . , Y2N} missing according to

P(T2i = 1 |Xi = xi) =
1

1 + exp[a+ bxi]
,

where (a, b) are to be chosen below. Having b = 0 implies
MCAR, while having b ̸= 0 implies MAR.

Step 4: Repeat Steps 1-3 J = 1000 times with sample size
N = 1000.
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Monte Carlo Simulations: DGP

We consider two cases for (a, b):

MCAR: (a, b) = (−0.405, 0.000) =⇒ E[T2i] = 0.6.

MAR: (a, b) = (−0.420, 0.400) =⇒ E[T2i] = 0.6.

In both cases, 40% of {Y21, ..., Y2N} are missing on average.

Missing mechanisms are different – MCAR vs. MAR.
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Monte Carlo Simulations: Estimation

Approach #1: Listwise deletion.

Step 1: Estimate the marginal distribution of the j-th
component by

F̂j(y) =
1

N∗ + 1

N∑
i=1

I(T1i = 1, T2i = 1)I(Yji < y),

where N∗ =
∑N

i=1 I(T1i = 1, T2i = 1) is the number of
individuals with complete data.
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Monte Carlo Simulations: Estimation

Step 2: Compute the maximum likelihood estimator α̂ by

max
α∈(0,∞)

1

N∗

N∑
i=1

I(T1i = 1, T2i = 1) log c2

(
F̂1(Y1i), F̂2(Y2i); α

)
,

where

c2(u1, u2; α) = (1 + α)(u1u2)
−α−1(u−α

1 + u−α
2 − 1)−

1
α
−2

is the probability density function of Clayton2(α).

Bias should not arise under MCAR but should arise under MAR.
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Monte Carlo Simulations: Estimation

Approach #2: Parametric estimation.

Consider a correctly specified model for the propensity score:

π2(x; a, b) =
1

1 + exp(a+ bx)
.

We estimate (a, b) via

max
N∑
i=1

[T2i log π2(Xi; a, b) + (1− T2i) log (1− π2(Xi; a, b))] .
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Monte Carlo Simulations: Estimation

Compute

p̂2(Xi) = q̂(Xi) =
1

π2(Xi; â, b̂)
.

Estimate marginal distributions by

F̂j(y) =
1

N

N∑
i=1

I(Tji = 1)p̂j(Xi)I(Yji < y).

Estimate the copula parameter α via

max
α∈(0,∞)

1

N

N∑
i=1

I(T1i = 1, T2i = 1)q̂(Xi) log c2

(
F̂1(Y1i), F̂2(Y2i); α

)
.
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Monte Carlo Simulations: Estimation

For comparison, consider a misspecified model:

π2(x; b) =
1

1 + exp(bx)
.

This model is misspecified since a ̸= 0 for both of the MCAR
and MAR cases.

The remaining procedure is the same.
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Monte Carlo Simulations: Estimation

Approach #3: Nonparametric estimation of Hirano, Imbens,
and Ridder (2003).

The approximation sieve uK(Xi) is chosen to be

uK(Xi) = [1, Xi, X
2
i , X

3
i ]

⊤ (K = 4).

Define

π2K(Xi;λ) =
1

1 + exp[−λ⊤uK(Xi)]
.

Estimate λ via

max
N∑
i=1

[T2i log π2K(Xi;λ) + (1− T2i) log (1− π2K(Xi;λ))] .

Compute

p̂2K(Xi) = q̂K(Xi) =
1

π2K(Xi; λ̂)
.
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Monte Carlo Simulations: Estimation

The nonparametric approach with K = 2 is essentially identical
to the parametric approach with the correctly specified model.

This is just a coincidence given that the true missing mechanism
obeys a logistic function.

In theory, K → ∞ as N → ∞ and the nonparametric approach
leads to a consistent estimator for any missing mechanism.

Finite sample performance is another question.
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Monte Carlo Simulations: Estimation

Approach #4: Calibration estimation.

Calibration weights are computed with Exponential Tilting:

ρ(v) = − exp(−v).

The approximation sieve uK(Xi) is chosen to be

uK(Xi) = [1, Xi, X
2
i , X

3
i ]

⊤ (K = 4).

The procedure is as explained.
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Monte Carlo Simulations: Results

MCAR MAR

Truth: α0 = 4.667 Bias, Stdev, RMSE Bias, Stdev, RMSE

Listwise Deletion -0.019, 0.302, 0.303 0.366, 0.320, 0.486

Param (Correct) -0.100, 0.280, 0.297 -0.046, 0.262, 0.266

Param (Misspec) -0.865, 0.265, 0.904 -0.731, 0.234, 0.768

Nonparam (K = 4) -0.749, 1.793, 1.943 -0.615, 2.186, 2.271

Calib. Est. (K = 4) -0.067, 0.271, 0.279 -0.041, 0.261, 0.264

Listwise deletion does not cause bias under MCAR, but does
cause bias under MAR.

Parametric approach results in bias if the model is misspecified.

Nonparametric approach has a poor finite sample performance.

Calibration estimation performs well whether data are
MCAR or MAR.
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Monte Carlo Simulations: Results
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Clayton has lower-tail dependence and upper-tail independence.

Missing data arise more often at the upper tail and hence the
association appears to be stronger than what it is.

Hence listwise deletion results in positive bias.

CE avoids bias by putting larger weights at the upper tail.
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Conclusions

We investigate the estimation of semiparametric copula
models under missing data for the first time in the literature.

There is analogy between missing data and average treatment
effects since observing or not observing data is a binary
phenomenon.

Chan, Yam, and Zhang (2016) propose the calibration
estimation for average treatment effects.

We apply the calibration estimation to missing data for the first
time in the literature.
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Conclusions

The calibration estimator satisfies consistency and asymptotic
normality under some assumptions including i.i.d. data and the
missing at random (MAR) mechanism.

We also derive a consistent estimator for the asymptotic
covariance matrix.

In view of the simulation results, the calibration estimator
dominates listwise deletion, parametric approach, and
nonparametric approach.
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