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Introduction

Copula -- Flexible modelling of multivariate distributions
Model -- Popular in business, economics, finance, etc.

We unite them for the first time in the literature.
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Analogy -- Estimate unobserved outcome

-- Central topic in econometrics
-- Common problem in all fields

-- Deep literature in statistics
-- Binary phenomenon (to observe or not to observe)
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Introduction

@ How to fit copula models when there are missing data?

@ A naive approach is listwise deletion (LD):

@ Keep individuals with all d components being observed, and
discard all other individuals.

@ Treat the individuals with complete data in an equal way.
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Introduction

@ LD leads to a consistent estimator for the copula parameter of
interest if the missing mechanism is missing completely at
random (MCAR).

@ LD leads to an inconsistent estimator if the missing mechanism
is missing at random (MAR).

@ Under MAR, target variables Y; = [V3;,...,Yy]" and their
missing status are independent of each other given observed
covariates X; = [X14,..., Xoni] |

@ LD treats individuals with complete data all equally, and it does
not use the information of X;. That can cause substantial bias
under MAR.
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Introduction

@ How to obtain a consistent estimator for the copula parameter
when the missing mechanism is MAR?

@ As is well known in the literature of missing data and average
treatment effects, a key step is the estimation of propensity
score function (i.e. conditional probability of observing data
given covariates).

@ Direct estimation of propensity score is notoriously challenging,
whether it is performed parametrically or nonparametrically.

@ Parametric approaches are haunted by misspecification
problems, while nonparametric approaches often lack stability.
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Introduction

e Chan, Yam, and Zhang (2016, JRSS-B) propose an alternative
approach called calibration estimation in the literature of
average treatment effects.

@ The calibration estimator is derived by balancing covariates
among treatment, control, and whole groups. It does not
require a direct estimation of propensity score.

@ We apply the calibration estimation to a missing data problem
for the first time in the literature.
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Introduction

@ The calibration estimator for the copula parameter satisfies
consistency and asymptotic normality under some
assumptions including 7.:.d. data and the MAR condition.

@ We also derive a consistent estimator for the asymptotic
covariance matrix.

@ We perform Monte Carlo simulations. Our simulation results
indicate that the calibration estimator dominates listwise
deletion, parametric approach, and nonparametric approach.
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Review of Copula Models

@ Suppose that there are N individuals and d components:
Y; = [Vii, Yo, ..., Y] (i=1,...,N).
@ Suppose that we want to estimate the d-dimensional joint
distribution of Y;, assuming i.7.d. What can we do?

@ There are potential problems about estimating the joint
distribution directly.

Parametric Nonparametric

d =small Misspecification (Curse of dimensionality)

Misspecification . . .
d = large . . Curse of dimensionality
Parameter proliferation
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Review of Copula Models

@ Copula models accomplish flexible specification with a small
number of parameters.

@ Copula models follow a two-step procedure.

o Step 1: Model the marginal distribution of each of the d
components separately.
e Step 2: Combine the d marginal distributions to recover a joint

distribution.
Step 1 Name of model
Parametric Parametric copula model
. Semiparametric copula model
Nonparametric

(Target of our paper)

Nonparametric Nonparametric copula model
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Review of Copula Models

@ The copula approach is justified by Sklar's (1959) theorem.

@ Sklar's theorem ensures the existence of a unique copula function
C :(0,1)¢ — (0,1) that recovers a true joint distribution.

Theorem (Sklar, 1959)

Let {Y;} be i.i.d. random vectors with a joint distribution

F :R%— (0,1). Assume that the marginal distribution of Y},
written as F; : R — (0, 1), is continuous for j € {1,...,d}. Then,
there exists a unique function C': (0,1)% — (0, 1) such that

F(yi, ..., ya) = C(Fi(y1), - Fa(ya))

or in terms of probability density functions,

f(y1> °co 7yd) = C(fl(yl)v 000 7fd(yd)) :
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Review of Copula Models

@ A well-known example of copula function: bivariate Clayton
copula with a scalar parameter o > 0.

@ Cumulative distribution function is
_ _ 1
Co(ug,ug; o) = (u;® +ug® —1)" =,

where u; = Fi(y1) € (0,1) and uy = Fy(ys) € (0,1) are
marginal distribution functions of Y;; and Y5;, respectively.

@ Probability density function is
1
co(ur, ug; @) = (1+ a)(uaug) ™ Hug® +uy® — 1) 7= 2

e Kendall’s rank correlation coefficient is 7 = /(o + 2).
@ Larger o implies stronger association between Yy; and Y5;.
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Review of Copula Models

20 20

10

o

0.5 ' 0.5

0 0 00
u2 u]_ u2 Ul

p.d.f. (¢ =1.333 or 7 = .4) p.d.f. (a=4.667 or 7 =.7)

@ Association is stronger in the lower tail than in the upper tail.

@ Such an asymmetry matches many economic and financial
phenomena (e.g. stock market contagion).

@ Larger o implies stronger association between Yj; and Y5;.
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Review of Missing Data

@ Suppose that {Yy;,..., Yy Y, are target variables.
@ Define the missing indicator:
_J1 ifYj; is observed,
0 if Y;i is missing.
@ Suppose that {Xy;,..., X, })¥, are observable covariates.

@ There are three well-known layers of missing mechanism.
@ Missing Completely at Random (MCAR).
@ Missing at Random (MAR).
@ Missing Not at Random (MNAR).

Hamori, Motegi & Zhang (Kobe & RUC) Copula Models with Data MAR July 10, 2018 14 / 50



Review of Missing Data

@ Each concept is defined as follows.

@ Missing Completely at Random (MCAR):
{Tyi, ..., T} L Y, .., Yui}
@ Missing at Random (MAR):
{Ty, .., T} LY, Yo b | { Xy, Xoni -
@ Missing Not at Random (MNAR):

{Tli; s aTdi} l {}/lza s 7Ydi} | {X1i7 s >sz}
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Review of Missing Data

@ An illustrative example on health survey (d = m = 1):

Y1; = weight of individual i;  X; = I(Individual 7 is female).

@ MCAR requires that P[Individual i reports his/her weight] should
be independent of both weight and gender of individual .

@ MAR requires that:

o P[A man reports his weight] should be independent of his weight.
o P[A woman reports her weight] should be independent of her weight.

e MNAR allows for the following situations:

e P[A man reports his weight] depends on his weight.
o P[A woman reports her weight] depends on her weight.
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Review of Missing Data

Probably too restrictive, since men and women may
have different willingness to report their weights.

More plausible than MCAR,
\ since MAR controls for gender.
‘ MAR may be still restrictive, since men
(or women) with different weights may

have different willingness to report
their weights.

MNAR is most general since it controls for
both gender and weight, but MNAR is hard
to handle technically.
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Review of Missing Data

@ It is well known that listwise deletion (LD) leads to consistent
inference under MCAR.

@ It is also well known that LD leads to inconsistent inference
under MAR.

o Correct inference under MAR has been extensively studied since
the seminal work of Rubin (1976).

@ The present paper assumes MAR and elaborates the estimation
of semiparametric copula models, which has not been done in
the literature.
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Set-up of Main Problem

@ Semiparametric copula models are estimated in two steps:

Step 1: Estimate the marginal distributions {F}, ..., Fy}
nonparametrically via

Fi(y) =P(Yj; <y) = E[I(Y;: <y)].

Step 2: Estimate the true copula parameter 6, via

0, = arg Hiax E [log ¢(F1(Y1i), ..., Fa(Yy);0)] .
S

o If data were all observed, then we could simply replace the
population means with sample means.

@ When data are Missing at Random, we need to assign some
weights based on propensity score functions.
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Set-up of Main Problem

@ Define propensity score functions:
mi(x) =P(T; =1|X;,=x), je{l,...,d}.
o Define p;(x) = 1/7(x).
@ Step 1 is rewritten as
Fi(y) = E[I(Y;i < y)] = B[E[(Y; <y)|Xi]] (. LIE)

- E {ng(i)

Xi] x E[I(Y; < y)|Xi]}

23

" Bts
B | s X I(Y; < yﬂ (- LIE)
— E[Ty, x p; (X)) x I(Y; < ).

LIV < y)‘XiH (- MAR)

o
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Set-up of Main Problem

@ We have derived:
Fi(y) =E[(Tj = 1) x pi(Xi) x I(Yi < y)].

@ Horvitz and Thompson's (1952) inverse probability weighting
(IPW) estimator for Fj is written as

Fily) = D2 1T = V(X1 < )

o If p;(x) were known, then it would be straightforward to
compute the IPW estimator.

@ pj(x) is unknown in reality.
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Set-up of Main Problem

@ Define a propensity score function:

e Define ¢(x) = 1/n(x).
@ Using MAR and LIE, Step 2 is rewritten as

00 = arglgleaé( E [I(TM = 1, -~-aTdi = 1)(](XZ) lOgC(Fl(Yu), ceey Fd(Ydi); 0)] .
@ The IPW estimator for 6, is given by
= argmax ZI Ty=1,...Ty = 1)q(X;)log c(Fy (Y1), ..., Fa(Yai); ).

@ ¢(x) is unknown in reality.
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Set-up of Main Problem

Estimation of propensity score functions has been a major issue
in the literature of missing data and treatment effects.

Many papers attempt a direct estimation of p;(x) and ¢(x),
either parametrically or nonparametrically.

Parametric approaches: Zhao and Lipsitz (1992), Robins,
Rotnitzky, and Zhao (1994), and Bang and Robins (2005).

The parametric approaches are notoriously sensitive to
misspecification (cf. Lawless, Kalbfleisch, and Wild, 1999).

Nonparametric approaches: Hahn (1998), Hirano, Imbens,
and Ridder (2003), Imbens, Newey, and Ridder (2005), and
Chen, Hong, and Tarozzi (2008).

The nonparametric approaches have a notoriously poor
performance in finite sample.
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Theory of Calibration Estimation

@ In the treatment effect literature, Chan, Yam, and Zhang (2016)
propose an alternative approach that bypasses a direct
estimation of propensity score.

@ They construct calibration weights by balancing the moments
of observed covariates among treatment, control, and whole
groups.

@ The present paper applies their method to a missing data
problem for the first time.
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Theory of Calibration Estimation

@ Under MAR, the moment matching condition holds:
E[I(T;; = 1)p;(X:))ux(X;)] = Elux(X;)], je{l,...d}

for any integrable function ug : R™ — R¥ called an
approximation sieve. A common choice is, say,

@ A sample counterpart is written as

NZ[ 1) x p;j(X;) X ug(X ZUK

@ There are multiple values of {p;(X1),...,p;(Xn)} that satisfy
the moment matching condition. Among them, we choose the
one closest to a uniform weight given some distance measure.
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Theory of Calibration Estimation

@ Why do we want the uniform weight?

@ If there are no missing data, then the uniform weight leads to a
natural estimator Fj(y) = (N +1)"' 32N 1(Vj; < ).

@ It is well known that volatile weights cause instability in the
Horvitz-Thompson IPW estimator.

@ Primal problem is a constrained optimization problem:
minimize the distance s.t. the moment matching condition.

@ Dual problem is written as an unconstrained optimization
problem.

@ To express the dual problem, let p: R — R be any strictly
concave function.
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Theory of Calibration Estimation

@ Define a concave objective function:

N
Z pATug (X0) = ATu(X:)], AeRE,

2\'*

e Compute )
Ajx = arg max Gik(N).

@ Compute calibration weights for marginal distributions:
Pk (Xi) = p' (N gur (Xi)).

@ Estimate the marginal distribution of the j-th component by
N
Z z*lp]KX)I()/jz<y)
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Theory of Calibration Estimation

@ Arbitrariness of p arises from the arbitrariness of the distance
measure. Functional forms often used in the nonparametric
literature include:

e Exponential Tilting: p(v) = —exp(—v).
o Empirical Likelihood: p(v) = log(1 + v).
o Quadratic: p(v) = —0.5(1 — v)2.

e Inverse Logistic: p(v) = v — exp(—v).
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Theory of Calibration Estimation

@ Step 2 (likelihood maximization) can be handled analogously.

@ Under MAR, the moment matching condition holds:
E(Ty=1,..., Ty = 1)qg(Xi)ux (X;)] = Elug (X5)],

where

1 1
Xi = = .

o Find calibration weights that satisfy the moment matching
condition and are closest to the uniform weight given some
distance measure.
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Theory of Calibration Estimation

@ Define a concave objective function:

N N

%

Il
—

e Compute

~

Bk = arg max Hy(B).
@ Compute a calibration weight for the likelihood:
Gk (X:) = p'(Biur (X)),

@ Compute the maximum likelihood estimator 0 via

N
1 ~ . .
g1€a(z)< ~ ;I(TM =1,...Ty = l)qK(Xi) log cq (Fl(Yli)a ~~~7Fd(Ydi)§ 0) .
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Theory of Calibration Estimation

Theorem (Consistency and Asymptotic Normality)
Impose a set of assumptions including what follows:
e The missing mechanism is missing at random (MAR).
o {Y,,T;, X,} arei.i.d. across individuals i € {1,...,N}.
@ mi(+), ..., ma(+), and n(-) are s-times continuously
differentiable with sufficiently large s.
@ K(N)— o0 as N — oo, and the rate of divergence is
sufficiently slow.
Then, consistency and asymptotic normality follow.
@05 6y as N — oo.
@ VN —6y) > N(0,V) as N — oo.

Hamori, Motegi & Zhang (Kobe & RUC) Copula Models with Data MAR July 10, 2018 31 /50



Theory of Calibration Estimation

@ The asymptotic covariance matrix V' is expressed as
V =B'SB
@ We can construct consistent estimators for B and X, and hence
V=B'SB'4vV

@ See the main paper for a complete set of assumptions, proofs of
the consistency and asymptotic normality, and the construction
of V.and V.
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Monte Carlo Simulations: DGP

o Target variables are Y; = [Y7;, o] (d = 2).
@ Consider a scalar covariate Xj.
@ Define U; = [Uli,Uzi,U:%]T = [Fl(}/lz‘),FQ(YQi):FX(XiﬂT'

e Fi(-) is the marginal distribution of Y7;, and we use N (0,

0,1)
o F(-) is the marginal distribution of Y3;, and we use N(0, 1).
e Fx(-) is the marginal distribution of X;, and we use N(0,1)

)

@ The inverse distribution functions F;'(-), F; '(-), and Fi'(-
are known and tractable.
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Monte Carlo Simulations: DGP

o Step 1: Draw U; i Claytons(ag) with ag = 4.667.

e Step 2: Recover Yy; = F; 1 (Uy), Yo = Fy H(Usy;), and
e Step 3: Assume that {Yj,...,Yin} are all observed. Make
some of {Yay,...,Yox} missing according to

1
1+ expla + bay]’

where (a, b) are to be chosen below. Having b = 0 implies

MCAR, while having b # 0 implies MAR.

@ Step 4: Repeat Steps 1-3 J = 1000 times with sample size
N = 1000.
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Monte Carlo Simulations: DGP

@ We consider two cases for (a,b):
o MCAR: (a,b) = (—0.405,0.000) = E[Ty;] = 0.6.
o MAR: (a,b) = (—0.420,0.400) = E[T};] = 0.6.

@ In both cases, 40% of {Y31, ..., Yoy} are missing on average.

@ Missing mechanisms are different — MCAR vs. MAR.

Hamori, Motegi & Zhang (Kobe & RUC) Copula Models with Data MAR July 10, 2018 35/ 50



Monte Carlo Simulations: Estimation

@ Approach #1: Listwise deletion.

@ Step 1: Estimate the marginal distribution of the j-th
component by

N
ZI(TM =1,T5 = )I(Y}; <),

i=1

R 1
Fi(y) = N1

where N* = "N [(Ty; = 1,Ty; = 1) is the number of
individuals with complete data.
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Monte Carlo Simulations: Estimation

@ Step 2: Compute the maximum likelihood estimator & by

N
1 ~ ~
I(Ty =1, Ty = 1)1 (F Y1), By(Yai): )
Jx N*;(“ b = 1) logca ( F1(Y1i), Fa(Y2i); o
where

oy, ug; @) = (14 a)(ugug) ™ Huy® + uy® — 1)7§72

is the probability density function of Claytons(«).
@ Bias should not arise under MCAR but should arise under MAR.
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Monte Carlo Simulations: Estimation

@ Approach #2: Parametric estimation.

@ Consider a correctly specified model for the propensity score:

1
1+ exp(a+ bx)

7T2(x; a, b) =

@ We estimate (a,b) via

N
max Y [Ty log ma(Xi; a,b) + (1 — Ty) log (1 — mo(Xia,b))] .

i=1
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Monte Carlo Simulations: Estimation

e Compute
1

D Xz :AXZ' = .
P2(Xi) = q(X3) (X D)

e Estimate marginal distributions by

1 R
Fi(y) = ¥ > Ty = Dp(X) (Vi < ).
@ Estimate the copula parameter « via

N
1 ) . A
max S I(T = 1,To = 1)d(Xy) log es (Fl(Yli),Fg(Yz,-); a) .
=1
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Monte Carlo Simulations: Estimation

@ For comparison, consider a misspecified model:

1

=
m2(w;h) 1 + exp(bx)

@ This model is misspecified since a # 0 for both of the MCAR
and MAR cases.

@ The remaining procedure is the same.
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Monte Carlo Simulations: Estimation

@ Approach #3: Nonparametric estimation of Hirano, Imbens,
and Ridder (2003).
@ The approximation sieve ux (X;) is chosen to be

@ Define
1

T T+ exp[-ATug(X;)]

7T2K(Xz'; A)

@ Estimate A via
N

max Z [To; log mor (X35 A) + (1 — Ty;) log (1 — mor (Xi; A))] -
i=1
o Compute
1
Pk (Xi) = 4 (X)) = —————.
Tor (X3 A)
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Monte Carlo Simulations: Estimation

@ The nonparametric approach with K = 2 is essentially identical
to the parametric approach with the correctly specified model.

@ This is just a coincidence given that the true missing mechanism
obeys a logistic function.

@ In theory, K — 00 as N — oo and the nonparametric approach
leads to a consistent estimator for any missing mechanism.

@ Finite sample performance is another question.
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Monte Carlo Simulations: Estimation

e Approach #4: Calibration estimation.

o Calibration weights are computed with Exponential Tilting:
p(v) = —exp(—v).
@ The approximation sieve ux(X;) is chosen to be
ur(X;) = [1, X, X2, X2]T (K =4).

@ The procedure is as explained.
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Monte Carlo Simulations: Results

MCAR

MAR

Truth: ag = 4.667

Bias, Stdev, RMSE

Bias, Stdev, RMSE

Listwise Deletion

Param (Correct)

Param (Misspec)
Nonparam (K = 4)
Calib. Est. (K =4)

-0.019, 0.302, 0.303
-0.100, 0.280, 0.297
-0.865, 0.265, 0.904
-0.749, 1.793, 1.943
-0.067, 0.271, 0.279

0.366, 0.320, 0.486
-0.046, 0.262, 0.266
-0.731, 0.234, 0.768
-0.615, 2.186, 2.271
-0.041, 0.261, 0.264

Listwise deletion does not cause bias under MCAR, but does
cause bias under MAR.

@ Parametric approach results in bias if the model is misspecified.
e Nonparametric approach has a poor finite sample performance.
Calibration estimation performs well whether data are

MCAR or MAR.
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Monte Carlo Simulations: Results

3 Missing

o o x *a ‘n‘ °
Observed — & %, 8s %

= g =4.667
Y . E a,, = 5.085 (Bias = 0.418)
m;, agg =4.625 (Bias = -0.042)
23 2 1 ) 1 2 3 4 - .
Y, Y2 Yy
A MC Sample (N = 500) Calibration Weights

o Clayton has lower-tail dependence and upper-tail independence.

@ Missing data arise more often at the upper tail and hence the
association appears to be stronger than what it is.

@ Hence listwise deletion results in positive bias.
e CE avoids bias by putting larger weights at the upper tail.
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Conclusions

@ We investigate the estimation of semiparametric copula
models under missing data for the first time in the literature.

@ There is analogy between missing data and average treatment
effects since observing or not observing data is a binary
phenomenon.

e Chan, Yam, and Zhang (2016) propose the calibration
estimation for average treatment effects.

@ We apply the calibration estimation to missing data for the first
time in the literature.
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Conclusions

@ The calibration estimator satisfies consistency and asymptotic
normality under some assumptions including i.i.d. data and the
missing at random (MAR) mechanism.

@ We also derive a consistent estimator for the asymptotic
covariance matrix.

@ In view of the simulation results, the calibration estimator
dominates listwise deletion, parametric approach, and
nonparametric approach.
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