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Abstract

We study practically relevant aspects of popularity in two-sided matching where only

one side has preferences. A matching is called popular if there does not exist another

matching that is preferred by a simple majority. We show that for a matching to

be popular it is necessary and su�cient that no coalition of size up to 3 decides to

exchange their houses by simple majority. We then constructively show that a market

where such coalitions meet at random converges to a popular matching whenever it

exists.

Keywords. two-sided matching, popular matching, popularity, random paths, house
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1 Introduction

Various real-life economic situations can be modeled as two-sided matching markets where
agents have preferences over indivisible objects and such that each agent gets at most one
object. These situations include housing markets, assigning students to primary schools, job
placement for graduates, and so forth.

Among di�erent notions of e�ciency for these matching markets, recent literature
highlights the concept of popularity. A matching is called popular if majority of agents
weakly prefers it over any other matching.1 Popularity has mainly served as a normative
property as it is a natural non-Paretian selection from a (possibly very large) set of e�cient
matchings.

The seminal paper by [1] that introduced popularity for the house allocation problem
proposed a simple characterization of popular matchings. A matching is popular if and only
if (1) no agent gets what we call a bad house, that is each agent gets either his best house
among all houses (called his �rst house), or the best house among all houses that are not
someone's best (called his second house), and (2) all �rst houses are allocated among agents
that deem them as the best.2

To better understand the concept of popularity consider the following example.

Example 1. Let there be n = 4 agents A = {1, 2, 3, 4} that have the following preferences
(Table 1) over m = 4 houses H = {a, b, c, d}:

1One can also see popular matchings as weak Condorcet winners in a voting problem where the candidates
are all possible matchings.

2Note that no agent should get a house that is worse than his �rst house but better than his second
house as each such house is the �rst house for some other agent.



Table 1. Preference pro�le and matching µ1

1 2 3 4
a a d d
d c b b
b b c a
c d a c

In this pro�le, the set of �rst houses is FH = {a, d} and set of second houses is
SH = {b, c}. Hence, by characterization in [1] there are only two popular matchings
µ1 = (1a, 2c, 3d, 4b) and µ2 = (1a, 2c, 3b, 4d). Each other feasible matching either assigns
some agent his bad house, or does not distribute �rst houses among agents that prefer them
most (or both, as in matching µ3 = (1d, 2a, 3b, 4c) where agent 4 gets his bad house c and
the �rst house d is not assigned to agents 3 or 4 that value it the most).

The subsequent literature (see [6, 14] and the subsection below) focused mainly on issues
relevant for centralized markets. In contrast to that, in this paper we shift the attention to
popularity in decentralized markets.

Our contribution, which we describe below in detail, is three-fold: we provide a new
characterization of popular matchings based on popularity within small groups of agents,
propose a new e�cient algorithm to �nd a popular matching, and use this algorithm to show
that the sequence of �popular� exchanges in random small groups converges to a popular
matching.

Our �rst result (Theorem 1) shows that a popular matching only needs to be popular
locally: the matching is popular if and only if no group of up to three agents decides (by
simple majority) to exchange their houses, keeping the matching of other agents intact.3

The original characterization in [1] directly follows from our result (Corollary 1).
For an illustration consider again Example 1 and a popular matching µ1 = (1a, 2c, 3d, 4b).

We need to check that in each triple of agents, when we only consider the houses owned by
this triple, then each such (reduced) matching is popular within this triple. The following
Table 2 illustrates the popularity within each triple; each reduced matching is popular by
characterization in [1] as each agent either gets his �rst house or his second house, and each
�rst house is given to the agent that prefers it the most.

Table 2. Popular matching µ1 reduced to each possible triple of agents

1 2 3
a a d
d c c
c d a

1 2 4
a a b
b c a
c b c

1 3 4
a d d
d b b
b a a

2 3 4
c d d
b b b
d c c

Our second result (Theorem 2) is an algorithm to �nd a popular matching. The algorithm
begins with an arbitrary matching and then modi�es it using local exchanges among one,
two or three agents. The algorithm has two parts. In the �rst part the algorithm assigns
each agent his �rst house unless this house already belongs to an agent that prefers it the
most. In the second part the algorithm (forcibly) gives each agent who has a bad house
his second house, and the owner of that house gets his �rst house. We illustrate how the
algorithm works using the same preference pro�le from Example 1.

Let the initial matching be µ = (1b, 2d, 3a, 4c). We now show how the �rst part of the
algorithm turns µ into µ′ pictured below (Table 3), and the second part of the algorithm
turns µ′ into µ′′.

3This result can also be interpreted from the cooperative standpoint. If for each coalition we take the
majority rule as the solution concept, then for a matching to be in the core it is enough to check coalitions
of size up to three. The analogous result for the marriage market states that the set of pairwise stable
matchings coincides with the core [22].



Table 3. Initial matching µ, matching µ′, and matching µ′′

1 2 3 4
a a d d
d c b b
b b c a
c d a c

1 2 3 4
a a d d
d c b b
b b c a
c d a c

1 2 3 4
a a d d
d c b b
b b c a
c d a c

First part of the algorithm. Agent 1 owns house b, his �rst house is a owned by agent 3
whose �rst house is d. We implement the following exchange: agent 1 gets house a, agent 3
gets house d, and house d's previous owner agent 2 gets the leftover house b. In the resulting
matching µ′ = (1a, 2b, 3d, 4c) all �rst houses are assigned to agents that prefer them the
most and thus the �rst part of the algorithm is completed.

Second part of the algorithm. After �rst part agents 1 and 3 get their �rst houses, agents
2 and 4 get bad houses. We take an arbitrary agent with a bad house, e.g. agent 2, and give
him his second house, c, and the owner of that house c, agent 4, gets her �rst house, d. The
previous owner of house d agent 3 gets the leftover house b, which is his second house. In
the resulting matching µ′′ = (1a, 2c, 3b, 4d) no agent gets a bad house, and each �rst house
is assigned to an agent that prefers it the most. Thus we arrived to a popular matching and
the second part of the algorithm is completed.

Despite being greedy our algorithm is computationally e�cient. The speed of the
algorithm is quadratic in the number of agents, as is the speed of the algorithm in [1].4

Importantly, the algorithm employs only exchanges in small groups and each exchange
makes the matching within this group (reduced) popular. Indeed, in the �rst part of the
algorithm agents 1,2 and 3 end up in a (reduced) popular matching µ′ and they prefer this
matching over the original matching µ. In the second part of the algorithm agents 2,3 and
4 also end up in a (reduced) popular matching µ′′ and the majority of them, agent 2 and
agent 4, prefer this matching over the previous matching µ′.

Based on this result our paper also suggests a positive rationale behind popularity: we
show that arbitrary locally popular improvements as in our algorithm lead to a globally
popular matching. Thus one may expect that popularity is likely to be eventually observed
in realistic situations. Speci�cally, we consider a decentralized market where agents meet
in arbitrary groups and exchange their houses when this is supported by majority of them.
Our third result (Corollary 2) shows that this market eventually converges to a popular
matching whenever it exists.

This �nding is analogous to the result in about convergence in a marriage market. There,
one matching is modi�ed locally by a blocking pair of a man and a woman that prefer each
other over their current matches. As this man and this woman match, their previous partners
become unmatched, and these changes constitute a new matching. Then a new blocking pair
is considered, a new matching is formed, and so forth, and [23] show that the sequence of
these matchings lead to a stable matching.

Another closely related paper is [2] that considers the popularity-improvement paths
from an arbitrary matching. The main �nding is that, given a popular matching exists, it
can be attained by at most two steps using an e�cient algorithm.

1.1 Background

The house allocation problem where agents exchange indivisible objects (houses) without
money was �rst introduced in [24], the assignment problem where all houses are initially
commonly owned was �rst studied in [10]. The concept of popularity was �rst introduced by

4The paper [1] proposes an O(n+m′) algorithm, where m′ is the total length of all preferences, i.e. up
to m′ = |A| · |H|, where |A| is the number of agents and |H| is the number of houses.



[9] for the marriage problem [8], where popularity coincides with stability, and was applied
to house allocation problem only recently by [1]. The characterization in [1] also allows ties.5

Existence of popular matchings was studied from several sides. First, [16] shows that
a popular matching is likely to exist whenever preferences are uniformly random and the
number of houses is approximately 1.42 times larger than the number of agents. Multiplicity
For settings where a popular matching does not exist, [13] studied how to minimally augment
the preference pro�le so that the existence is guaranteed; this problem is, in general, NP-
hard.

Another way to ensure popularity is to consider mixed matchings, i.e. lotteries over
matchings, and a straightforward generalization of the popularity property; [12] show that
a popular mixed matching always exists and propose an e�cient algorithm to �nd one. The
recent literature has studied compatibility of popularity in mixed matchings with various
fairness and incentive properties ([3], [5]).

As an alternative approach, [17] proposes least-unpopularity criteria to �nd the �most�
popular matching; �nding his least-unpopular matchings is, in general, NP-hard.

The problem of counting the number of popular matchings has been addressed in [18] for
the case of strict preferences and in [20] and [?] for the case of weak preferences. Popularity
with agents having di�erent weights has been studied in [19].

2 The Model

Let A be a set of agents and H be a (larger) set of houses, |H| ≥ |A|. Each agent a ∈
A is endowed with a strict preference relation �a over the set of houses H ∪ {∅} (i.e.
�a is a linear order), and a prefers each house h ∈ H over having no house, h �a ∅.6
The collection of individual preferences of all agents �= (�a)a∈A is referred to as the
preference pro�le. The triple (A,H,�) constitutes the two-sided matching problem (aka
house allocation problem), or simply a problem. In what follows we assume that the sets
A and H are �xed and the problem is given by the preference pro�le �.

A solution to the problem is a matching µ � a mapping from A ∪H ∪ ∅ on itself: by
de�nition agent a ∈ A is said to be matched to a house h ∈ H in matching µ if µ(a) = h
and also µ(h) = a. If some agent or house remain unmatched, we say that they are matched
to ∅. LetM denote the set of all possible matchings.

For any two matchings µ, µ′ ∈ M and a subset of agents B ⊂ A de�ne pairwise
comparison PCB(µ, µ

′) as the number of agents in B that strictly prefer their house in µ
over their house in µ′.

A matching µ ∈ M is called popular (among set A) if there does not exist another
matching µ′ ∈ M such that µ′ is preferred over µ by simple majority within entire set of
agents A: PCA(µ

′, µ) > PCA(µ, µ
′).

For each agent a let us call his most preferred house in H as a's �rst house: FH(a) = h
such that for each h′ ∈ H and h′ 6= h it holds that h �a h

′. The set of all �rst houses
is denoted as FH(A) = {FH(a)}a∈A. For each house h let us call agents for whom h is the
�rst house as h's �rst agents: FA(h) = {a ∈ A|h = FH(a)}.

For each agent a let us call his most preferred house among all non-�rst houses as a's
second house: SH(a) = h such that for each h′ ∈ H \ FH(A) and h′ 6= h it holds
that h �a h

′. The set of all second houses is denoted as SH(A) = {SH(a)}a∈A. For
each house h let us call agents for whom h is the second house as h's second agents:
SA(h) = {a ∈ A|h = SH(a)}.

5This setting was further generalized to the case with ties and matroid constraints by [11] and to the
case with two-sided preferences and one-sided ties by [7] (the latter problem turns out to be NP-hard). The
many-to-one matching problem, where each house has a capacity was studied in [25], and the many-to-many
problem was studied by [21].

6All results remain true when agents have short preference lists with last resort.



Note that sets FH(A) and SH(A) are disjoint, i.e. no agent's second house can be a
�rst house for any other agent.

3 Characterization of Popular Matching

Note that a matching cannot be popular if at least one agent is unmatched. Therefore
throughout the paper we can focus only on full matchings, µ(A) ⊂ H.

Our �rst main result characterizes the popular matching as a matching that is popular
among each triple of agents.

For a pro�le �, we say that a matching µ is popular among each three agents if for each
three agents a, b, c ∈ A there does not exist a matching µ′ ∈ M same as µ for each other
agent a′ /∈ {a, b, c} µ′(a′) = µ(a′) and such that it wins µ in pairwise comparison within this
triple of agents PC{a,b,c}(µ

′, µ) > PC{a,b,c}(µ, µ
′).

Theorem 1. A matching is popular if and only if it is popular among each three agents.

Proof. The �only if� part is straightforward: each popular matching µ is popular among
each triple of agents. For a contradiction, assume that there is a triple of agents a, b, c ∈ A
and another matching µ′ same as µ for all other agents and such that it is preferred over
µ: PC{a,b,c}(µ

′, µ) > PC{a,b,c}(µ, µ
′). Then µ cannot be popular among all agents since

all other agents are indi�erent and thus: PCA(µ
′, µ) − PCA(µ, µ

′) = PC{a,b,c}(µ
′, µ) −

PC{a,b,c}(µ, µ
′) > 0.

The �if� part we also prove by contradiction. For a contradiction, assume that there is a
matching µ that is popular among each triple of agents, but it loses in pairwise comparison
to some other matching µ′: PCA(µ

′, µ) > PCA(µ, µ
′). Consider all agents that have di�erent

houses in these two matchings, denote the set of these agents as A1 = {a ∈ A : µ(a) 6= µ′(a)}.
(In what follows we will change the notation of these agents for convenience).

We partition all agents into those who participate in a trading cycle, i.e. exchange their
matched houses among themselves, and trading chains, i.e. those that are matched in µ′ to
a previously empty house or whose house in µ becomes empty in µ′.

We �rst deal with chains. Consider an arbitrary agent b1 ∈ A1 that received a previously
empty house µ′(b1) /∈ µ(A), µ(µ′(b1)) = ∅. If b1's house is empty in µ′, µ′(µ(b1)) = ∅, then
we get a chain of size 1. Otherwise there is some agent b2 such that µ′(b2) = µ(b1). If b2's
house is empty in µ′, µ′(µ(b2)) = ∅, then we get a chain of size 2. Otherwise, we continue in
the same way until we �nd the last agent in the chain. Similarly, determine chains for each
agent that receives a previously empty house. Denote the set of agents participating in a
chain as B1.

We then deal with cycles. Consider an arbitrary agent not from any chain a1 ∈ A1 \B1,
µ(a1) 6= µ′(a1). Consider agent a2 that owns house µ′(a1), a2 = µ(µ′(a1)). Agent a2 also
does not belong to any chain, a1 ∈ A1 \ B1 and as µ(a2) = µ′(a1), then a2 6= a1. If
the two agents just exchanged their houses, µ′(a2) = µ(a1), then we get a trading cycle
(µ(a1), a1, µ

′(a1), a2) of length 2. Otherwise, if µ′(a2) 6= µ(a1), then consider agent a3 =
µ(µ′(a2)). Since µ(a3) = µ′(a2) 6= µ(a1), then a2 6= a3, a1 6= a3 è a3 ∈ A1.

And so forth until we get a cycle of length at least 2 and at most |A1 \B1|. In the same
way we �nd all trading cycles among all other agents.

Thus, the set A1 and the set of corresponding houses µ(A1) ∪ µ′(A1) is partitioned into
trading chains of size at least 1 and cycles of size at least 2.

By assumption PCA(µ
′, µ) > PCA(µ, µ

′), there is at least one trading chain or one
trading cycle such that more than half of its agents prefer µ′ over µ. Formally, if ATC

denotes the set of agents in this chain or cycle, PCATC
(µ′, µ) > PCATC

(µ, µ′).
If ATC form a cycle, then we can �nd two neighbouring agents i, j ∈ ATC , j = µ(µ′(i)),

that both prefer µ′ over µ. If this trading cycle is of length 2, then consider a new matching



µ′′ that is identical to µ for each agent except a = {i, j} and same as µ′ for these pair
µ′′(a) = µ′(a). Then by adding one other arbitrary agent we get a triple of agents that
prefer µ′′ over µ by majority � contrary to our premise. If this trading cycle is of length
more than 2, then consider the next neighbouring agent l = µ(µ′(j)). Consider now a new
matching µ′′ that is identical to µ for each agent except a = {i, j, l} and µ′′(i) = µ′(i),
µ′′(j) = µ′(j), and µ′′(l) = µ(i). The triple of agents i, j, l prefers µ′′ over µ by majority:
PC{i,j,l}(µ

′′, µ) > PC{i,j,l}(µ, µ
′′), contrary to our premise.

If ATC forms a chain of length 1, ATC = {a1}, then consider a new matching µ′′

constructed as before: µ′′ is identical to µ for each agent except for a1, µ
′′(a1) = µ′(a1). A

triple of agents a1 and two arbitrary agents a2, a3 prefers µ′′ over the original matching µ:
PC{a1,a2,a3}(µ

′′, µ) > PC{a1,a2,a3}(µ, µ
′′), contrary to our premise.

If ATC forms a chain of length 2, then both agents in ATC are better o� in µ′ compared
to µ. By adding one other arbitrary agent we get a triple of agents that prefers a similarly
constructed µ′′ over µ by majority, contrary to our premise.

If the length of the chain is above 2, then either (1) we can �nd two neighbouring agents
i, j ∈ ATC , j = µ(µ′(i)), that both prefer µ′ over µ, or (2) the chain begins and ends with
agents that are better o� in µ′ compared to µ (and agents in between interchange). In case (1)
we take the triple of these agents i, j and the previous owner of j's house l = µ(µ′(j)) (if j's
house was empty, then take an arbitrary l). This triple i, j, l prefers a similarly constructed
µ′′ over µ by majority, contrary to our premise.

In case (2) we take the triple of agents as the �rst agent in the chain a1, µ(µ
′(a1)) = ∅,

the last agent ak, µ
′(µ(ak)) = ∅, and the one before the last ak−1. The triple a1, ak−1, ak

prefers a similarly constructed µ′′ over µ by majority, contrary to our premise. �

As an immediate corollary we get the characterization of popular matchings from [1].

Corollary 1. A matching is popular if and only if (1) each agent gets either his �rst house
or his second house, and (2) each �rst house is matched with one of its �rst agents.

Proof. The �if� part is straightforward since it is enough to check only triples of agents.
In each such triple only an agent a with a second house can become better o�, but each
better house f �a SH(a) is already matched to one of its �rst agents b = µ(f) ∈ FA(f),
making a better o� requires making b worse o�, which cannot be supported by majority.

We prove the �only if� part by contradiction. Let condition (2) be violated: some �rst
house f is not allocated to one of its �rst agents. Then each f 's �rst agent a ∈ FA(f), the
owner of f b = µ(f) and the owner of b's �rst house c = µ(FH(b)) form a triple for which
µ is not popular.

Hence, in any popular matching, each agent gets his �rst house, second house, or a bad
house.

Let condition (1) be violated: some agent a1 gets a bad house t in matching µ, there is
a triple of agents a1, the owner of a1's second house a2 = µ(SH(a1)), and the owner of a2's
�rst house a3 = µ(FH(a2)) for whom µ is not popular. �

4 The Algorithm and Random Paths to Popularity

We represent the sequence of matchings as a �nite Markov chain. The set space is the set of
matchingsM. The transition probabilities between the states depend on how many agents
become better o� in one state compared to the other. Speci�cally, for each matching µ ∈M
we consider all �neighbouring� matchings µ′ ∈ M that is matchings where at most three
agents are matched to di�erent house than in µ. If k = 1, 2, 3 agents are matched di�erently
in µ and µ′, then we say that µ and µ′ are connected by a k-way exchange. If the k-way
exchange makes more than half of these k agents better o�, then the transition probability
is positive, otherwise the transition probability is zero.



Next we present our second main result and the sketch of the proof, the complete proof
can be found in the Appendix.

Theorem 2. Let µ be an arbitrary matching for (A,H,�), |A| = n. Let a popular matching
exist. Then there exists a �nite sequence of matchings µ0, µ1, . . . , µl such that µ = µ0, and
µl is popular, l ≤ (n2−n+2)/2, and for each µi, i = 0, . . . , l−1 there is a blocking coalition
of size up to 3 such that µi+1 is obtained from µi by satisfying this coalition.

Sketch of the proof. We propose a simple �nite algorithm that does it only by using
one-,two- and three-way exchanges.

The algorithm has two stages. In the �rst stage it matches each �rst house to some of
its �rst agents. This is done in a greedy serial dictatorship fashion. According to a �xed
order each agent a takes his �rst house f unless this house is already matched to one of its
other �rst agents (in this case no exchange takes place and we proceed to the next agent in
the order). In the same time, the agent owning house f takes his own �rst house g and the
owner of this house µ(g) takes the house of agent a. This three-way exchange is supported
by at least two agents a and µ(f), and, possibly, also by agent µ(g).

In the second stage of the algorithm we use another simple greedy procedure where
owners of bad houses are forcibly given their second houses. Each agent a owning some bad
house t takes his second house s, while the owner of s takes his �rst house f ,7 and house t
goes to the owner of f . This three-way exchange is supported by at least two agents a and
µ(s), but the exchange also might be �bad� if t is a bad house for both agents µ(s) and µ(f).
A bad exchange like that leads to the same situation as before: out of three agents one �
agent µ(s) � owns his �rst house f , one � agent a � owns his second house s and one � agent
µ(f) owns a bad house t. Next we agent µ(f) is given his second house and we continue
until the procedure stops. It remains to show that this sequence of bad exchanges is �nite.

The �niteness follows from that the sequence of bad exchanges eventually arrives to a
house that was in the sequence earlier (due to �niteness of A). At this step k of the sequence
we have k − 2 agents that have the same bk−22 c as their �rst and second houses. By the
Hall's theorem (applied to the characterization in Corollary 1) these houses can only be
matched to these agents. Thus agent k that gets house t after a series of bad exchanges can
only start a new sequence of bad exchanges but the other k − 1 agents remain untouched
with their matched houses until the end of the algorithm. Thus the procedure converges to
some matching and, by Theorem 1, this matching is popular. �

Since our algorithm is �nite we immediately get the convergence result that the set of
absorbing states coincides with the set of popular matchings.

Corollary 2. For any initial matching, the random sequence of 1,2 and 3-way exchanges
converges with probability one to a popular matching whenever such matching exists.

The restriction to the groups of up to three agents is not compulsory as the same
algorithm works when groups of larger size are also allowed. The convergence result also
holds for exchanges of arbitrary sizes.

Corollary 3. For any initial matching, the random sequence of arbitrary exchanges
converges with probability one to a popular matching whenever such matching exists.

The original result in [23] was partially motivated by the example in [15] where he shows
that a sequence of blocking pairs might have an in�nite cycle and might never converge
to stability. The same is true in our setting: even when a popular matching exists, the
sequence of popular exchanges might have cycles. To see that let us consider the same
preference pro�le as in Example 1:

7Note that s cannot be owned by his �rst agent, otherwise s does not qualify as a second house for
agent a.



Table 4. Cycle with 4 matchings: µ1, µ2, µ3, µ4

1 2 3 4
a a d d
d c b b
b b c a
c d a c

1 2 3 4
a a d d
d c b b
b b c a
c d a c

1 2 3 4
a a d d
d c b b
b b c a
c d a c

1 2 3 4
a a d d
d c b b
b b c a
c d a c

We begin with matching µ1 = (1a, 2b, 3c, 4d). If agents 1,2,3 meet and decide to exchange
their houses by majority we get matching µ2 = (1c, 2a, 3b, 4d). Next, if agents 1,3,4 meet and
do the same, we get matching µ3 = (1b, 2a, 3d, 4c), which can be again changed by majority
to matching µ4 = (1d, 2a, 3c, 4b).8 Finally, if agents 1,2,4 meet, we again get matching µ1.

Note that in this example there is a path that leads to a popular matching as was
previously shown in the Introduction. In fact, as Theorem 2 demonstrates such a path
exists in any instance.

5 Conclusions

In the current paper we propose a novel characterization of �global� popularity via �local�
popularity, and also show that locally popular exchanges lead to a globally popular matching.

One important open question is about the convergence speed of popular markets. To
answer this question one may need to design a more e�cient algorithm: our greedy algorithm
does many unnecessary steps, for instance when it repeatedly runs the same chains. We
cannot simply avoid these steps as then we cannot build a triple that blocks the current
matching. However, it might be possible if we use alternative algorithms.

Another open question is about popular markets in instances when popular matchings
do not exist. Perhaps, these markets converge to some stationary probabilistic distribution
over the set of matchings, and it is reasonable to deem the more probable matchings as more
popular. Both questions are interesting but hard.
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APPENDIX

Proof of Theorem 2.

The �rst part of the algorithm.
Let µ be the arbitrary initial matching where each agent is endowed with some house:

for each a ∈ A µ(a) 6= ∅. Let us �x some ordering of agents A = {a1, . . . , an}.
For steps k = 1, . . . , n we make the following exchanges.
If in step k house µ(ak) is the best house for agent ak, then proceed to step k + 1

without changing the current matching µ. Otherwise, consider house h 6= µ(ak) that is the
best house of agent ak. If this house h is empty, µ(h) = ∅, then we give it to agent ak in the
new matching µ′(ak) = h. Otherwise, consider the owner of h, µ(h).

If h is the best for its owner µ(h), then proceed to the next step k+1 without changing the
current matching µ. Otherwise, consider the best house for agent µ(h): h′ 6= h. If h′ = µ(ak)
or µ(h′) = ∅ then make the mutually bene�cial two-way exchange: µ′(ak) = h, µ′(µ(h)) = h′.
Otherwise, if µ(h′) /∈ {ak, µ(h), ∅} we make the three-way exchange: µ′(ak) = h, µ′(µ(h)) =
h′, µ′(µ(h′)) = µ(ak). This exchange is bene�cial for at least two of the three agents.

After each of the above exchanges the number of agents that own their best houses goes
up, and each agent gets his best house unless it is taken by some other agent. Thus after
x ≤ n exchanges we get a new matching µ where each agent gets either his �rst house, his
second house, or a bad house.

Denote the number of agents who get a bad house by β(µ). At least x ≥ 1 agents get
their �rst house, therefore β(µ) ≤ n−x ≤ n− 1. Note that n−β(µ) agents get either a �rst
house or a second house.

The second part of the algorithm.
We will make exchanges that weakly decrease the number of agents with a bad

house β(µ).
Consider some agent µ(t) that gets a bad house t. If his second house s is free, we give

him s: µ′(µ(t)) = s and decrease β(µ) by one. Otherwise there is some agent µ(s) that
owns s, and s might be his bad house or his second house (but not his �rst house from the
de�nition of second house). We now study these two cases.

1. Let s be a bad house for µ(s). Denote the second house of µ(s) as h. If h = t or empty,
then make the two-way exchange decreasing β(µ) by 2. Otherwise, make the three-way
exchange µ′(µ(t)) = s, µ′(µ(s)) = h, µ′(µ(h)) = t, decreasing β(µ) by 1, 2 or 3 depending
on how the owner of h ranks t.

2. Let s be the second house for µ(s). Let f be the �rst house for agent µ(s). From the
�rst part of the algorithm we know that f is also the �rst house of his owner µ(f). Make
the following three-way exchange: µ′(µ(t)) = s, µ′(µ(s)) = f, µ′(µ(f)) = t. If t is the second
house for agent µ(f), then β(µ) decreases by one.

Thus β(µ) is only constant if house s is the second house for both µ(t) and µ(s), house f
is the �rst house for both µ(s) and µ(f), and house t is a bad house for both agents µ(t) and
µ(f). Denote such exchange as bad. We show now that a sequence of these bad exchanges
in which β(µ) remains constant is �nite.

Table 5. Current matching µ before and after a bad three-way exchange which keeps β(µ)
a constant

µ(t) µ(s) µ(f)
f f

s s
t t

µ(t) µ(s) µ(f)
f f

s s
t t

2.1 Let f be the �rst house also for agent µ(t). For convenience denote f = f1, s =
s1, µ(t) = 1, µ(s) = 2, µ(f) = 3. By Hall's theorem the second house for agent 3 cannot be



the same as s1, s3 6= s1 (otherwise three agents have the same �rst house and the same
second house, and thus a popular matching does not exist). After the bad exchange among
agents 1,2,3 the bad house t is matched to agent 3. Consider another chain of three agents
that starts with the bad house t. Denote µ(s3) = 4. Note that f4 6= f1 (otherwise four agents
have the same �rst house, two of them have the same second house, and the other two of
them also have the same second house, and thus a popular matching does not exist). Denote
µ(f4) = 5. By Hall's theorem s5 /∈ {s1, s3} (otherwise, similar to the previous arguments
the popular matching does not exist). After the bad exchange between agents 3,4,5 the bad
house is matched with agent 5, and so forth.

Table 6. Current matching µ before and after two bad three-way exchanges

1 2 3 4 5
f1 f1 f1 f4 f4
s1 s1 s3 s3 s5
t t t

1 2 3 4 5
f1 f1 f1 f4 f4
s1 s1 s3 s3 s5
t t t

Note that in this case β(µ) ≤ n − 2. In each such bad exchange two new agents enter
the chain, these agents own their �rst and second houses. Then, we need not more than
(n − β(µ))/2 bad exchanges and one additional exchange to reduce β(µ). Hence, the total
number of exchanges reducing β(µ) is not more than

n− β(µ)
2

+ 1 ≤ n− β(µ).

2.2 Let the �rst house f1 for agent µ(t) be di�erent from house f . Denote f = f2, s =
s1, µ(t) = 1, µ(s) = 2, µ(f) = 3. After one bad exchange agent 3 would be matched to
house t.

Assume that the second house for agent 3 s3 6= s1 � we did not meet s3 earlier in the
chain. Consider agent 4 that owns his second house s3. Assume that agent 4's �rst house f4
was note previously in the chain: f4 6= f1, f2.

Consider the next agent 5 and so on: we get a chain of agents such that each two
neighbours have either the same �rst house or the same second house. Eventually we arrive
to some agent k that has the same �rst or second house as earlier in the chain.

Let agent k be the �rst agent in the chain such that his �rst house has already appeared
in the chain. In this case k is even. Then after (k − 2)/2 bad exchanges in one direction
agent k − 1 gets the bad house t. Then agent k − 1 reverses the direction of bad exchanges
such that agent k + 1 gets the bad house t, which happens after not more than than k/2
bad exchanges. And we see that not less than k agents get their �rst or second houses,
k ≤ n− β(µ).

Now agent k + 1 continues the bad exchanges. By Hall's theorem, in each such bad
exchange two new agents enter the chain, these agents own their �rst and second houses.
Then, we need not more than (n− β(µ)− k)/2 bad exchanges and one additional exchange
to reduce β(µ). Hence, for even k the total number of exchanges reducing β(µ) is not more
than

k − 2

2
+
k

2
+
n− β(µ)− k

2
+ 1 =

n− β(µ)
2

+
k

2
≤ n− β(µ).

Similarly, let agent k be the �rst agent in the chain such that his second house has
already appeared in the chain. In this case k is odd. Then after (k − 1)/2 bad exchanges
in one direction agent k gets the bad house t. Then agent k reverses the direction of bad
exchanges such that agent 1 gets house f1 and agent k + 1 gets the bad house t, which
happens after not more than than (k − 1)/2 bad exchanges. And we see that not less than
k agents get their �rst or second houses, k ≤ n− β(µ).



Now agent k + 1 continues the bad exchanges. By Hall's theorem, in each such bad
exchange two new agents enter the chain, these agents own their �rst and second houses.
Then, we need not more than (n− β(µ)− k)/2 bad exchanges and one additional exchange
to reduce β(µ). Hence, for odd k the total number of exchanges reducing β(µ) is not more
than

k − 1

2
+
k − 1

2
+
n− β(µ)− k

2
+ 1 =

n− β(µ)
2

+
k

2
≤ n− β(µ).

Eventually, in the second part of the algorithm after at most n − β(µ) exchanges we
decrease β(µ). In the worst case β(µ) = n− 1 agents have a bad house, therefore, including
the �rst part of the algorithm the upper bound is 1+ 1+ 2+ ...+ (n− 1) = (n2 − n+2)/2.
�


