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This paper

• Focus: Analyze non-standard asymptotic problems from
jackknife perspective, especially

• Small bandwidths asymptotics for semiparametric estimator

• Many-weak IV asymptotics for IV regression

• Many covariates asymptotics for high-dimensional regression

• Network asymptotics, Infill asymptotics (hopefully)

• Propose (modified) jackknife empirical likelihood (JEL)
method for those problems
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1. Background: JEL for
semiparametric models under standard

asymptotics

(but also new)
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Background: Jackknife method

• Useful to estimate bias and variance of estimator

• For statistic S , Jackknife pseudo-value is

Vi = nS − (n − 1)S (−i)

where S (−i) is leave-i-out version of S

• Jackknife bias-corrected estimator is V̄ (if S is estimator)

• Jackknife variance estimator of S is

V̂ar(S) =
1

n(n − 1)

n∑
i=1

(Vi − V̄ )2

• Idea: Treat {Vi} like sample (Tukey, 1958)
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Contribution to literature

• Quenouille (1949), Tukey (1958): Introduce jackknife

• Miller (1964), Arvesen (1969): Consistency of V̂ar(S) for
smooth objects

• Shao & Wu (1989): Inconsistency of V̂ar(S) for non-smooth
& delete-d jackknife

• Jing, Yuan & Zhou (2009): Introduce JEL method to
U-statistic (e.g. ROC curve, S = n−2

∑
i ,j I{Yj > Xi})

• This paper: Extend JEL to semiparametric problems and
provide unified framework for non-standard asymptotics, e.g.

• Small bandwidth asymptotics

• Many/weak IV asymptotics

• Many covariates asymptotics
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Semiparametric model

• As a benchmark, first consider inference on semiparametric
model under standard asymptotics (but this is also new)

• Moment condition model

E [g(Z , θ, µ(X ))] = 0

where

• θ is parameter of interest

• µ(X ) is unknown nuisance function (e.g. µ(X ) = E [Y |X ])
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Example 1: Average treatment effect

• Y (0),Y (1) are potential outcomes for treatment D = 0 or 1

• Observe Z = (Y ,X ,D) where Y = DY (1) + (1− D)Y (0)
and X are covariates

• Under some conditions, ATE is

θ = E [Y (1)− Y (0)]

= E [µ1(X )− µ0(X )]

where µd(X ) = E [Y |X ,D = d ]

• Set
g(Z , θ, µ(X )) = µ1(X )− µ0(X )− θ
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Example 2: Weighted average derivatives

• Weighted average derivative of regression function
m(X ) = E [Y |X ] is

θ = E

[
w(X )

∂m(X )

∂X

]
where w(·) is known weight function

• Used for estimation of single index model
(e.g. P(Y = 1|X ) = F (X ′θ))

• Set
g(Z , θ, µ(X )) = w(X )µ(X )− θ

with µ(X ) = ∂m(X )
∂X
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Semiparametric estimator

• Based on some preliminary estimator µ̂ for µ, θ can be
estimated by solving

1

n

n∑
i=1

g(Zi , θ̂, µ̂(Xi )) = 0

• By Newey (1994), influence function for θ̂ is

ψ(Z ,X ) = −M−1θ {g(Z , θ, µ(X )) + E [gµ(Z , θ, µ(X ))|X ]{Y − µ(X )}}

where Mθ = E
[
∂g(Z ,θ,µ(X ))

∂θ

]
• Computation of asymptotic variance Var(ψ(Z ,X )) is

complicated
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Problems with Wald-type inference (estimate±2·se)

• Need to derive influence function for each case

• Asymptotic variances of these estimators are rather
complicated and contain several unknowns to be estimated

• Also if θ or µ enters to g(·) in nonlinear way, then it may
involve numerical derivatives

• Normal approximation often does not work well even when
asymptotic variance is known: see Linton (1995), Nishiyama
& Robinson (2000, 2005), Ichimura & Linton (2005),
Cattaneo, Crump & Jansson (2013, 2014) etc
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Construct JEL

• Owen’s (1988) original EL for θ = E [X ]

`(θ) = −2 sup
p1,...,pn

n∑
i=1

log(npi )

s.t. pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = θ

i.e. put multinomial weights {pi}ni=1 for {Xi}ni=1

• By Lagrange multiplier method, practical dual form of `(θ) is
obtained

`(θ) = 2 sup
λ

n∑
i=1

log
(
1 + λ′(Xi − θ)

) d→ χ2
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• It is not trivial to extend this idea to parameter
θ = E [a(X1, . . . ,Xm)] defined by U-statistic

U =

(
n

m

)−1 ∑
i1<···<im

a(Xi1 , . . . ,Xim)

where restriction by multinomial weights would be(
n

m

)−1 ∑
i1<···<im

pi1 · · · pima(Xi1 , . . . ,Xim) = θ
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• For this problem, Jing-Yuan-Zhou (2009, JASA) suggested to
construct EL based on jackknife pseudo-values

Vi = nU − (n − 1)U(−i)

i.e.

`(θ) = −2 sup
p1,...,pn

n∑
i=1

log(npi )

s.t. pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piVi = θ

• They showed `(θ)
d→ χ2 for one and two sample U-statistics

with fixed kernel
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• Indeed many estimators can be (approximately) written as
U-statistic form (or ANOVA-like decomposition)

• We extend JEL approach to

• Semiparametric estimator (under standard asymptotics)

• Weighted average derivative estimator (under small bandwidth
asymptotics)

• Jackknife IV estimator (under many-weak IV asymptotics)

• OLS estimator (under many regressor asymptotics)



15

Standard asymptotics Small bandwidth Many-weak IV Many regressor Simulation

JEL for semiparametric model

• Jackknife pseudo-value is

Vi = nS − (n − 1)S (−i)

• For fixed θ, we set

S(θ) =
1

n

n∑
j=1

g(Zj , θ, µ̂(Xj))

S (−i)(θ) =
1

n − 1

∑
j 6=i

g(Zj , θ, µ̂
(−i)(Xj))

where µ̂(−i) is leave-i-out version of µ̂
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• Based on pseudo-value

Vi (θ) = nS(θ)− (n − 1)S (−i)(θ)

JEL is constructed as

`(θ) = −2 sup
p1,...,pn

n∑
i=1

log(npi )

s.t. pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piVi (θ) = 0

• By Lagrange multiplier method, dual form of `(θ) is

`(θ) = 2 sup
λ

n∑
i=1

log
(
1 + λ′Vi (θ)

)
(in practice, use this expression)
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Theorem: Standard asymptotics

• Under Assumption SP

`(θ)
d→ χ2(dim θ)

• Remarks

• JEL `(θ) is asymptotically pivotal, so no need for variance
estimation

• No need to derive influence function for case-by-case

• JEL confidence set is obtained by {c : `(c) ≤ χ2
α(dim θ)}



18

Standard asymptotics Small bandwidth Many-weak IV Many regressor Simulation

Assumption SP

• (i) {Yi ,Xi ,Zi}ni=1 is iid. X is compactly supported and its
density f is uniformly bounded from above and away from
zero. µ and f are continuously differentiable to order s.
E [|Y − µ(X )|2+δ] <∞ for some δ > 0, E [Y p] <∞ for some
p ≥ 4, and E [Y p|X = x ]f (x) is bounded. g has bounded
second derivative in µ

• (ii) K is an s-th order kernel function that integrates to 1 in
its compact support. As n→∞, n1/2hdimX/ log n→∞ and
nh2s → 0
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2. JEL under small bandwidth
asymptotics
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Small bandwidth asymptotics

• Consider density-weighted average derivative

θ = E

[
f (X )

∂E [Y |X ]

∂X

]
=− 2E

[
Y
∂f (X )

∂X

]
“=” is by integration-by-parts

• Powell, Stock & Stoker (1989) estimator is

θ̂ = −2

n

n∑
j=1

Yj
∂ f̂ (Xj)

∂X

where f̂ is leave-one-out kernel density estimator

f̂ (Xj) =
1

n − 1

∑
k 6=j

h−dK

(
Xj − Xk

h

)
for kernel K , bandwidth h and d = dimX
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• θ̂ admits U-statistic representation (K̇ =derivative of K )

θ̂ =
2

n(n − 1)

∑
j<k

Ujk

Ujk = −h−d−1K̇
(
Xj − Xk

h

)
(Yj − Yk)

• This is decomposed as

√
n(θ̂ − θ) =

√
nB︸ ︷︷ ︸

O(
√
nhs)

+
1√
n

n∑
j=1

Lj +
2√

n(n − 1)

∑
j<k

Wjk︸ ︷︷ ︸
Op(1/

√
nhd+2)

where B = E [θ̂]− θ (bias), Lj = 2(E [Ujk |Zj ]− E [Ujk ]) and
Wjk = Ujk − (Lj + Lk)/2− E [Ujk ]
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Small bandwidth asymptotics for θ̂

• By Cattaneo, Crump & Jansson (2014), under Assumption SB

• Standard asymptotics: If nhd+2 →∞
√
n(θ̂ − θ)

d→ N(0,Σ)

where Σ = E [LL′]

• Small h asymptotics: If nhd+2 → κ ∈ (0,∞)

√
n(θ̂ − θ)

d→ N

(
0,Σ +

2

κ
∆

)
where ∆ = 2E [Var(Y |X )f (X )]

∫
K̇ (u)K̇ (u)′du

• (Very) Small h asymptotics: If nhd+2 → 0√(
n

2

)
hd+2(θ̂ − θ)

d→ N(0,∆)
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Assumption SB

• (i) f is s + 1 times differentiable, and f and its first s + 1
derivatives are bounded for some s ≥ 2. m is twice
differentiable, e = mf has the bounded second derivative,
v(x) = E [Y 2|X = x ] is differentiable, vf has the bounded
first derivative, and lim|x |→∞{m(x) + |e(x)|} = 0.
E [Y 4] <∞, E [Var(Y |X )f (X )] > 0, and

Var
(
∂e(X )
∂X − Y ∂f (X )

∂X

)
is positive definite

• (ii) Same assumptions on K as Cattaneo, Crump and Jansson
(2014). min{nhd+2, 1}nh2s → 0 and n2hd →∞
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Remark

• Asymptotic distribution of θ̂ is different for each case

• CCJ suggested to apply Wald test based on estimated
variance V̂SB = Σ̂ + 2

κ∆̂

• Estimation of V̂SB may involve separate bandwidth selection
from that of θ̂ (CCJ argued that same bandwidth for θ̂ and
V̂SB may fail to yield positive definite V̂SB )
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JEL under small bandwidth

• Let’s first apply directly JEL to θ̂. Again jackknife
pseudo-value is

Vi (θ) = nS(θ)− (n − 1)S (−i)(θ)

• For fixed θ, we set

S(θ) = θ̂ − θ
S (−i)(θ) = θ̂(−i) − θ

where θ̂(−i) is leave-i-out version of θ̂

• JEL is defined in the same manner

`(θ) = 2 sup
λ

n∑
i=1

log
(
1 + λ′Vi (θ)

)
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JEL under small bandwidth asymptotics

• Standard asymptotics: If nhd+2 →∞

`(θ)
d→ χ2(d)

• Small h asymptotics: If nhd+2 → κ ∈ (0,∞)

`(θ)
d→ Z ′V−1J Z

where Z ∼ N(0,Σ + 2κ−1∆) and VJ = Σ + 4κ−1∆

• (Very) Small h asymptotics: If nhd+2 → 0

`(θ)
d→ 1

2
χ2(d)



27

Standard asymptotics Small bandwidth Many-weak IV Many regressor Simulation

Remark

• Under small h asymptotics, JEL is not asymptotically pivotal

• Under very small h asymptotics, JEL recovers asymptotic
pivotalness (“1

2” appears by setting Σ = 0 for small h case)

• We modify JEL to have same χ2(d) limiting distribution for
all cases

• Idea: Reconcile discrepancy in Z ∼ N(0,Σ + 2κ−1∆) and
VJ = Σ + 4κ−1∆
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Key: Efron-Stein inequality

• Efron & Stein (1981) showed jackknife variance estimate
tends to be upward biased. Suppose

Sn = θ +
1

n

n∑
i=1

L(Xi ) +
1

n2

∑
i<j

W (Xi ,Xj)

Efron-Stein inequality showed

Var(Sn) =
σ2L
n

+
1

2

(n − 1)σ2W
n3

<
σ2L
n

+
(n − 2)σ2W
n(n − 1)2

= E [V̂ar(Sn)]

where σ2L = Var(L(Xi )), σ2W = Var(W (Xi ,Xj)) and V̂ar(Sn)
is jackknife variance estimate



29

Standard asymptotics Small bandwidth Many-weak IV Many regressor Simulation

• Derivation

E [V̂ar(Sn)] =
n − 1

n
E

[
n∑

i=1

(S (−i) − S (·))2

]

=
n − 1

n
E

[
1

n

∑
i<i ′

(S (−i) − S (−i ′))2

]

=
n − 1

n
E

1

n

∑
i<i ′

{
1

n−1(Li ′ − Li )

+ 1
(n−1)2

∑
j 6=i ,i ′(Wi ′j −Wij)

}2


=
σ2L
n

+
(n − 2)σ2W
n(n − 1)2
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• Jackknife variance estimate doubles second term (due to
mismatch of characterizing quadratic term in Hoeffding
decomposition)

• This bias is lower order than first term σ2L/(n − 1), so is
asymptotically negligible

• Efron-Stein suggested bias correction by estimating σ2W

σ̂2W =
(n − 1)2

n(n − 1)/2− 1

∑
j<k

Q2
jk

where

Qjk = nθ̂ − (n − 1)(θ̂(−j) + θ̂(−k)) + (n − 2)θ̂(j ,k)

and θ̂(j ,k) is leave-(j , k)-out version of θ̂



31

Standard asymptotics Small bandwidth Many-weak IV Many regressor Simulation

Our view

• Under non-standard asymptotics, Efron-Stein bias emerges
in first order. It applies at least

• Small bandwidth asymptotics
• Many/weak IV asymptotics
• Many covariates asymptotics

• We propose unified inference approach that works for all
cases above (at least)
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Modified JEL

• Modified JEL is defined by

`m(θ) = 2 sup
λ

n∑
i=1

log (1 + λVm
i (θ))

where
Vm
i (θ) = Vi (θ̂)− Γ̂Γ̃−1{Vi (θ̂)− Vi (θ)}

and Γ̂ and Γ̃ are given by

Γ̂Γ̂′ =
1

n

n∑
i=1

Vi (θ̂)Vi (θ̂)′

Γ̃Γ̃′ =
1

n

n∑
i=1

Vi (θ̂)Vi (θ̂)′ − 1

n

n∑
i=1

n∑
j=i+1

QijQ
′
ij
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• This modification internalizes Efron-Stein bias correction into
JEL construction

• cf. Chandler-Bate (2007, Biometrika) parametric likelihood
correction for clustered data

• Intuitively we change curvature of likelihood function but
leaving other aspects of its shape unchanged, so that “Bartlett
identity” is asymptotically recovered
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Theorem: Modified JEL under small bandwidth
asymptotics

• Under Assumption SB

`m(θ)
d→ χ2(d)

without any condition on nhd+2

• Remarks

• Modified JEL `m(θ) is asymptotically pivotal for all standard,
small h, and very small h asymptotics

• Correction term 1
n+1

∑
j<k Q

2
jk is used to eliminate Efron-Stein

bias
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3. JEL under many-weak IV
asymptotics
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Many-weak IV

• IV regression (θ is scalar)

y = Xθ + U

X = Z ′γn + ε

where γn = 1√
n
µnπ and µn is scalar sequence (concentration

parameter) and π is K -dimensional constant vector

• Many-weak IV asymptotics:

• (i) K is fixed and µn = O(n1/2) (standard case)

• (ii) K →∞ and K/µ2
n → α <∞ (many weak case)

• (iii) K →∞ and K/µ2
n →∞ (many very weak case)

• IV estimator θ̂ has different limiting distributions for above
cases
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JIVE

• Jackknife IV estimator by Angrist-Imbens-Krueger (1999)

θ̂ =

 n∑
k=1

∑
l 6=k

XkPklXl

−1 n∑
k=1

∑
l 6=k

XkPklYl

where Pkl = Z ′k (
∑n

h=1 ZhZ
′
h)−1 Zl

• JIVE is robust to many instruments in contrast to LIML and
2SLS estimators
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JIVE under many-weak IV asymptotics

• Chao et al. (2012) showed that under Assumption MW

• (i) Standard asymptotics

µn(θ̂ − θ)
d→ N(0,H−1ΣH−1)

• (ii) Many weak case

µn(θ̂ − θ)
d→ N(0,H−1ΣH−1 + αH−1ΨH−1)

• (iii) Many very weak case

µ2n√
K

(θ̂ − θ)
d→ N(0,H−1ΨH−1)

• Chao et al. (2012) suggested robust inference by estimating
unknown components H, Σ and Ψ
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• where

H = lim
n→∞

1

n

n∑
k=1

(1− Pkk)π′ZkZ
′
kπ

Σ = lim
n→∞

1

n

n∑
k=1

σ2k(1− Pkk)2π′ZkZ
′
kπ

Ψ = lim
n→∞

1

K

n∑
k=1

∑
l 6=k

P2
kl{σ2kE [ε2l ] + E [εkUk ]E [εlUl ]}
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Assumption MW

• (i) There are positive constants C and C1 such that
max1≤i≤n Pii ≤ C < 1 and C−11 ≤ π′

(
1
n

∑n
i=1 ZiZ

′
i

)
π ≤ C1

for all n large enough. Also, n−2
∑n

i=1 |π′Zi |4 → 0 as n→∞

• (ii) {Ui , εi}ni=1 are independent with E [Ui ] = 0 and E [εi ] = 0.
Also for some positive constant C2, minimum eigenvalue of
Var(Ui , εi ) is larger than C−12 and
max1≤i≤n{E [U2

i ],E [U4
i ],E [ε2i ],E [ε4i ]} < C2

• (iii) Σ, Ψ and Ξ exist. Also
√
K/µ2n → 0 as n→∞
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JEL

• Again jackknife pseudo-value is

Vi (θ) = nS(θ)− (n − 1)S (−i)(θ)

• Based on estimating equation for JIVE, we set

S(θ) =
1

n(n − 1)

n∑
k=1

∑
l 6=k

XkPkl(Yl − Xlθ)

S (−i)(θ) =
1

(n − 1)(n − 2)

∑
k 6=i

∑
l 6=i ,k

XkPkl(Yl − Xlθ)

• JEL is defined in the same manner

`(θ) = 2 sup
λ

n∑
i=1

log(1 + λ′Vi (θ))
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JEL under many-weak IV asymptotics

• (i) Standard asymptotics

`(θ)
d→ χ2(1)

• (ii) Many weak case

`(θ)
d→ ξ2

Σ + Ξ + 2αΨ

where ξ ∼ N(0,Σ + αΨ) and
Ξ = limn→∞

1
n

∑n
k=1

∑
l 6=k σ

2
l P

2
lkπ
′ZkZ

′
kπ

• (iii) Many very weak case

`(θ)
d→ 1

2
χ2(1)
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Remark

• Under many-weak IV asymptotics, JEL is not asymptotically
pivotal

• For case (ii), discrepancy of ξ ∼ N(0,Σ + αΨ) and 2αΨ in
denominator is due to Efron-Stein bias

• Additional term Ξ emerges due to the fact that matrix [Pkl ] is
not exactly projection matrix for S (−i)(θ)

• For case (iii), “1
2” appears by setting Σ = Ξ = 0
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Modified JEL under many-weak IV asymptotics

• Under Assumption MW, Modified JEL satisfies

`m(θ)
d→ χ2(1)

for all cases

• Modified JEL `m(θ) follows χ2 limiting distribution for all
cases without estimating variance components Σ, Ψ and Ξ
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4. JEL under many regressor
asymptotics
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Many regressor asymptotics

• Regression
Y = Xθ + Z ′γn + U

where X is scalar and Z is K -dimensional

• Two scenarios

• (i) Standard asymptotics: K
n → 0

• (ii) Many regressor asymptotics: K
n → τ ∈ (0, 1)

• Cattaneo-Jansson-Newey (2017) imposed τ ∈
(
0, 12
)

and
derived robust standard error for OLS estimator under Case
(ii)
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JEL

• Again jackknife pseudo-value is

Vi (θ) = nS(θ)− (n − 1)S (−i)(θ)

• Based on FOC of OLS, we set

S(θ) =
1

n

n∑
k=1

n∑
l=1

X̃kMkl(Yl − Xlθ)

S (−i)(θ) =
1

n − 1

∑
k 6=i

X̃kMkk(Yk − Xkθ)

+
1

n − 2

∑
k 6=i

∑
l 6=i ,k

X̃kMkl(Yl − Xlθ)

where Pkl = Z ′k(
∑n

h=1 ZhZ
′
h)−1Zl , Mkl = I{k = l} − Pkl ,

X̃k =
∑n

l=1MklXl
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JEL under many regressor asymptotics

• Suppose Assumption MR holds. Then

• (i) Standard asymptotics

`(θ)
d→ χ2(1)

• (ii) Many regressor asymptotics

`(θ)
d→ ξ2

Σ + Ξ + 2Ψ

where ξ ∼ N(0,Σ + Ψ)
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• where

Σ = p lim
n→∞

1

n

n∑
k=1

M2
kkE [ε2kU

2
k |Zk ]

Ψ = p lim
n→∞

1

n

n∑
k=1

∑
l 6=k

M2
klE [ε2kU

2
l |Zk ,Zl ]

Ξ = p lim
n→∞

1

n

n∑
k=1

∑
l 6=k

M2
lkE [ε2l |Zl ](Z

′
kγ)2
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Assumption MR

• (i) {Yi ,Xi ,Zi}ni=1 is independent and identically distributed

• (ii) rank(P) = K a.s. There are positive constants C , C1, and
C2 such that Mii ≥ C for all i = 1, . . . , n, E [ε4i |Zi ] ≥ C1,
E [U4

i |Xi ,Zi ] ≥ C1, E [ε2i |Zi ] ≤ C2, and E [U2
i |Xi ,Zi ] ≤ C2

• (iii) For some αg , αh > 0, there is a positive constant C3 such
that

min
πg

E |g(Zi )− Z ′i πg |2 ≤ C3K
−2αg

min
πh

E |h(Zi )− Z ′i πh|2 ≤ C3K
−2αh

where h(Zi ) = E [Xi |Zi ]
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Remark

• Under many regressor asymptotics, JEL is not asymptotically
pivotal

• For case (ii), discrepancy of ξ ∼ N(0,Σ + Ψ) and 2Ψ in
denominator is due to Efron-Stein bias

• Additional term Ξ emerges due to the fact that matrix [Pkl ] is
not exactly projection matrix for S (−i)(θ)
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Modified JEL under many-weak IV asymptotics

• Under Assumption MR, Modified JEL satisfies

`m(θ)
d→ χ2(1)

for all cases

• Modified JEL `m(θ) follows χ2 limiting distribution for all
cases without estimating variance components Σ, Ψ and Ξ

• In contrast to Cattaneo-Jansson-Newey (2017), which
imposes K

n → τ ∈
(
0, 12
)
, we only require τ ∈ (0, 1). The

requirement τ < 1
2 is imposed to guarantee consistency of

robust standard error (which we circumvent)
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5. Simulation
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Simulation

• Same design as Cattaneo-Jansson-Newey (2017). Partial
linear model

Y = βX + g(W ) + U

X = h(W ) + V

U|X ,W ∼iid N(0, cU{1 + (t(X ) + ι′W )2}ϑ)

V |W ∼iid N(0, cV {1 + (ι′W )2}ϑ)

W ∼iid 6-dimensional independen U[−1, 1]

• Set n = 100 and

β = 1 (parameter of interest)

ϑ =

{
0 (homoskedastic)
1 (heteroskedastic)
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• Also

g(W ) = exp(−|W |1/2), h(W ) = exp(|W |1/2)

t(X ) = X I{−2 ≤ X ≤ 2}+ 2sgn(X ){1− I{−2 ≤ X ≤ 2}}
cU , cV = constants to normalize Var(U) = Var(V ) = 1

• Basis functions

K pK (wi )

7 1,w1i ,w2i ,w3i ,w4i ,w5i ,w6i

13 p7(wi )
′,w2

1i ,w
2
2i ,w

2
3i ,w

2
4i ,w

2
5i ,w

2
6i

28 p13(wi ) + first-order interactions
34 p28(wi ),w

3
1i ,w

3
2i ,w

3
3i ,w

3
4i ,w

3
5i ,w

3
6i

84 p34(wi ) + second-order interactions
90 p84(wi ),w

4
1i ,w

4
2i ,w

4
3i ,w

4
4i ,w

4
5i ,w

4
6i
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• Compare four confidence intervals

• (i) Wald-HC0: Wald by conventional Eicker-White se

• (ii) Wald-CJN: Wald by Cattaneo-Jansson-Newey

• (iii) JEL

• (iv) mJEL: Modified JEL

• Note: Wald-CJN does not cover the case of K
n > 1

2
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Homoskedastic case

• n = 100, nominal coverage= 0.95

K Wald-HC0 Wald-CJN JEL mJEL

7 0.897 0.909 0.920 0.913
13 0.916 0.934 0.950 0.937
28 0.888 0.922 0.962 0.940
34 0.869 0.930 0.962 0.945
84 0.591 0.816 0.967 0.947
90 0.513 0.578 0.970 0.959



58

Standard asymptotics Small bandwidth Many-weak IV Many regressor Simulation

Heteroskedastic case

• n = 100, nominal coverage= 0.95

K Wald-HC0 Wald-CJN JEL mJEL

7 0.887 0.897 0.911 0.899
13 0.924 0.947 0.954 0.943
28 0.881 0.928 0.961 0.938
34 0.838 0.924 0.956 0.936
84 0.539 0.796 0.963 0.949
90 0.508 0.620 0.961 0.946
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Conclusion

• Likelihood inference for semiparametric problems and
non-standard asymptotics

• JEL inference for semiparametric models

• JEL is not pivotal under non-standard asymptotics
(Efron-Stein Bias emerges in first order)

• Modified JEL internalizes Efron-Stein correction into JEL and
becomes pivotal for all cases. Examples are

• Small bandwidth asymptotics

• Many-weak IV asymptotics

• Many regressor asymptotics

• Future work: Extend this idea to

• Network asymptotics

• Infill asymptotics for high frequency data
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Network (ongoing, with Karun Adusumilli)

• Method of moments estimator (Bickel, Chen and Levina,
2011)

P̂(R) =
1(n

p

)
|Iso(R)|

∑
S

I{S ∼ R}

for subgraph R of G , where n and p are numbers of vertices
of G and R, respectively, Iso(R) is set of subgraphs
isomorphic to R
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• We find that P̂(R) admits ANOVA-like decomposition

P̂(R)−P(R) ≈ 1

n

∑
i

αi+
1

n(n − 1) . . . (n − p + 1)

∑
i1<···<ip

βi1...ip

• BCL considered dense network where first term 1
n

∑
i αi

dominates

• Indeed under certain sparse network case ruled out by BCL,
both terms are of same order

• Develop sparsity robust jackknife variance estimator and JEL
inference
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