

Jackknife, small bandwidth and high-dimensional asymptotics

Yukitoshi Matsushita & Taisuke Otsu

Hitotsubashi University & London School of Economics

May 2018

This paper

- Focus: Analyze **non-standard asymptotic problems** from jackknife perspective, especially
 - **Small bandwidths asymptotics** for semiparametric estimator
 - **Many-weak IV asymptotics** for IV regression
 - **Many covariates asymptotics** for high-dimensional regression
 - **Network asymptotics, Infill asymptotics** (hopefully)
- Propose (modified) jackknife empirical likelihood (JEL) method for those problems

1. Background: JEL for semiparametric models under standard asymptotics (but also new)

Background: Jackknife method

- Useful to estimate bias and variance of estimator
- For statistic S , **Jackknife pseudo-value** is

$$V_i = nS - (n-1)S^{(-i)}$$

where $S^{(-i)}$ is leave- i -out version of S

- Jackknife bias-corrected estimator is \bar{V} (if S is estimator)
- Jackknife variance estimator of S is

$$\widehat{\text{Var}}(S) = \frac{1}{n(n-1)} \sum_{i=1}^n (V_i - \bar{V})^2$$

- Idea: **Treat $\{V_i\}$ like sample** (Tukey, 1958)

Contribution to literature

- Quenouille (1949), Tukey (1958): Introduce jackknife
- Miller (1964), Arvesen (1969): Consistency of $\widehat{\text{Var}}(S)$ for smooth objects
- Shao & Wu (1989): Inconsistency of $\widehat{\text{Var}}(S)$ for non-smooth & delete- d jackknife
- Jing, Yuan & Zhou (2009): Introduce JEL method to U-statistic (e.g. ROC curve, $S = n^{-2} \sum_{i,j} \mathbb{I}\{Y_j > X_i\}$)
- **This paper:** Extend JEL to semiparametric problems and provide unified framework for non-standard asymptotics, e.g.
 - Small bandwidth asymptotics
 - Many/weak IV asymptotics
 - Many covariates asymptotics

Semiparametric model

- As a benchmark, first consider inference on semiparametric model under standard asymptotics (but this is also new)
- Moment condition model

$$E[g(Z, \theta, \mu(X))] = 0$$

where

- θ is parameter of interest
- $\mu(X)$ is unknown nuisance function (e.g. $\mu(X) = E[Y|X]$)

Example 1: Average treatment effect

- $Y(0), Y(1)$ are potential outcomes for treatment $D = 0$ or 1
- Observe $Z = (Y, X, D)$ where $Y = DY(1) + (1 - D)Y(0)$ and X are covariates
- Under some conditions, ATE is

$$\begin{aligned}\theta &= E[Y(1) - Y(0)] \\ &= E[\mu_1(X) - \mu_0(X)]\end{aligned}$$

where $\mu_d(X) = E[Y|X, D = d]$

- Set

$$g(Z, \theta, \mu(X)) = \mu_1(X) - \mu_0(X) - \theta$$

Example 2: Weighted average derivatives

- Weighted average derivative of regression function $m(X) = E[Y|X]$ is

$$\theta = E \left[w(X) \frac{\partial m(X)}{\partial X} \right]$$

where $w(\cdot)$ is known weight function

- Used for estimation of single index model (e.g. $P(Y = 1|X) = F(X'\theta)$)
- Set

$$g(Z, \theta, \mu(X)) = w(X)\mu(X) - \theta$$

with $\mu(X) = \frac{\partial m(X)}{\partial X}$

Semiparametric estimator

- Based on some preliminary estimator $\hat{\mu}$ for μ , θ can be estimated by solving

$$\frac{1}{n} \sum_{i=1}^n g(Z_i, \hat{\theta}, \hat{\mu}(X_i)) = 0$$

- By Newey (1994), influence function for $\hat{\theta}$ is

$$\psi(Z, X) = -M_\theta^{-1} \{g(Z, \theta, \mu(X)) + E[g_\mu(Z, \theta, \mu(X))|X]\{Y - \mu(X)\}$$

$$\text{where } M_\theta = E \left[\frac{\partial g(Z, \theta, \mu(X))}{\partial \theta} \right]$$

- Computation of asymptotic variance $\text{Var}(\psi(Z, X))$ is complicated

Problems with Wald-type inference ($\text{estimate} \pm 2 \cdot \text{se}$)

- Need to derive influence function for each case
- Asymptotic variances of these estimators are rather complicated and contain several unknowns to be estimated
- Also if θ or μ enters to $g(\cdot)$ in nonlinear way, then it may involve numerical derivatives
- Normal approximation often does not work well even when asymptotic variance is known: see Linton (1995), Nishiyama & Robinson (2000, 2005), Ichimura & Linton (2005), Cattaneo, Crump & Jansson (2013, 2014) etc

Construct JEL

- Owen's (1988) original EL for $\theta = E[X]$

$$\ell(\theta) = -2 \sup_{p_1, \dots, p_n} \sum_{i=1}^n \log(np_i)$$

$$\text{s.t. } p_i \geq 0, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n p_i X_i = \theta$$

i.e. put multinomial weights $\{p_i\}_{i=1}^n$ for $\{X_i\}_{i=1}^n$

- By Lagrange multiplier method, practical dual form of $\ell(\theta)$ is obtained

$$\ell(\theta) = 2 \sup_{\lambda} \sum_{i=1}^n \log (1 + \lambda'(X_i - \theta)) \xrightarrow{d} \chi^2$$

- It is not trivial to extend this idea to parameter $\theta = E[a(X_1, \dots, X_m)]$ defined by U-statistic

$$U = \binom{n}{m}^{-1} \sum_{i_1 < \dots < i_m} a(X_{i_1}, \dots, X_{i_m})$$

where restriction by multinomial weights would be

$$\binom{n}{m}^{-1} \sum_{i_1 < \dots < i_m} p_{i_1} \cdots p_{i_m} a(X_{i_1}, \dots, X_{i_m}) = \theta$$

- For this problem, Jing-Yuan-Zhou (2009, JASA) suggested to construct EL based on jackknife pseudo-values

$$V_i = nU - (n-1)U^{(-i)}$$

i.e.

$$\ell(\theta) = -2 \sup_{p_1, \dots, p_n} \sum_{i=1}^n \log(np_i)$$

$$\text{s.t. } p_i \geq 0, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n p_i V_i = \theta$$

- They showed $\ell(\theta) \xrightarrow{d} \chi^2$ for one and two sample U-statistics with fixed kernel

- Indeed many estimators can be (approximately) written as U-statistic form (or ANOVA-like decomposition)
- We extend JEL approach to
 - Semiparametric estimator (under standard asymptotics)
 - Weighted average derivative estimator (under small bandwidth asymptotics)
 - Jackknife IV estimator (under many-weak IV asymptotics)
 - OLS estimator (under many regressor asymptotics)

JEL for semiparametric model

- Jackknife pseudo-value is

$$V_i = nS - (n-1)S^{(-i)}$$

- For fixed θ , we set

$$\begin{aligned} S(\theta) &= \frac{1}{n} \sum_{j=1}^n g(Z_j, \theta, \hat{\mu}(X_j)) \\ S^{(-i)}(\theta) &= \frac{1}{n-1} \sum_{j \neq i} g(Z_j, \theta, \hat{\mu}^{(-i)}(X_j)) \end{aligned}$$

where $\hat{\mu}^{(-i)}$ is leave- i -out version of $\hat{\mu}$

- Based on pseudo-value

$$V_i(\theta) = nS(\theta) - (n-1)S^{(-i)}(\theta)$$

JEL is constructed as

$$\ell(\theta) = -2 \sup_{p_1, \dots, p_n} \sum_{i=1}^n \log(np_i)$$

$$\text{s.t. } p_i \geq 0, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n p_i V_i(\theta) = 0$$

- By Lagrange multiplier method, dual form of $\ell(\theta)$ is

$$\ell(\theta) = 2 \sup_{\lambda} \sum_{i=1}^n \log (1 + \lambda' V_i(\theta))$$

(in practice, use this expression)

Theorem: Standard asymptotics

- Under Assumption SP

$$\ell(\theta) \xrightarrow{d} \chi^2(\dim \theta)$$

- Remarks

- JEL $\ell(\theta)$ is asymptotically pivotal, so no need for variance estimation
- No need to derive influence function for case-by-case
- JEL confidence set is obtained by $\{c : \ell(c) \leq \chi^2_\alpha(\dim \theta)\}$

Assumption SP

- (i) $\{Y_i, X_i, Z_i\}_{i=1}^n$ is iid. X is compactly supported and its density f is uniformly bounded from above and away from zero. μ and f are continuously differentiable to order s . $E[|Y - \mu(X)|^{2+\delta}] < \infty$ for some $\delta > 0$, $E[Y^p] < \infty$ for some $p \geq 4$, and $E[Y^p|X = x]f(x)$ is bounded. g has bounded second derivative in μ
- (ii) K is an s -th order kernel function that integrates to 1 in its compact support. As $n \rightarrow \infty$, $n^{1/2}h^{\dim X}/\log n \rightarrow \infty$ and $nh^{2s} \rightarrow 0$

2. JEL under small bandwidth asymptotics

Small bandwidth asymptotics

- Consider density-weighted average derivative

$$\theta = E \left[f(X) \frac{\partial E[Y|X]}{\partial X} \right] = -2E \left[Y \frac{\partial f(X)}{\partial X} \right]$$

“=” is by integration-by-parts

- Powell, Stock & Stoker (1989) estimator is

$$\hat{\theta} = -\frac{2}{n} \sum_{j=1}^n Y_j \frac{\partial \hat{f}(X_j)}{\partial X}$$

where \hat{f} is leave-one-out kernel density estimator

$$\hat{f}(X_j) = \frac{1}{n-1} \sum_{k \neq j} h^{-d} K \left(\frac{X_j - X_k}{h} \right)$$

for kernel K , bandwidth h and $d = \dim X$

- $\hat{\theta}$ admits U-statistic representation (\dot{K} = derivative of K)

$$\begin{aligned}\hat{\theta} &= \frac{2}{n(n-1)} \sum_{j < k} U_{jk} \\ U_{jk} &= -h^{-d-1} \dot{K} \left(\frac{X_j - X_k}{h} \right) (Y_j - Y_k)\end{aligned}$$

- This is decomposed as

$$\sqrt{n}(\hat{\theta} - \theta) = \underbrace{\frac{\sqrt{n}B}{O(\sqrt{nh}^s)}}_{\text{bias}} + \frac{1}{\sqrt{n}} \sum_{j=1}^n L_j + \underbrace{\frac{2}{\sqrt{n}(n-1)} \sum_{j < k} W_{jk}}_{O_p(1/\sqrt{nh^{d+2}})}$$

where $B = E[\hat{\theta}] - \theta$ (bias), $L_j = 2(E[U_{jk}|Z_j] - E[U_{jk}])$ and $W_{jk} = U_{jk} - (L_j + L_k)/2 - E[U_{jk}]$

Small bandwidth asymptotics for $\hat{\theta}$

- By Cattaneo, Crump & Jansson (2014), under Assumption SB
- **Standard asymptotics:** If $nh^{d+2} \rightarrow \infty$

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} N(0, \Sigma)$$

where $\Sigma = E[LL']$

- **Small h asymptotics:** If $nh^{d+2} \rightarrow \kappa \in (0, \infty)$

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} N\left(0, \Sigma + \frac{2}{\kappa} \Delta\right)$$

where $\Delta = 2E[Var(Y|X)f(X)] \int \dot{K}(u)\dot{K}(u)'du$

- **(Very) Small h asymptotics:** If $nh^{d+2} \rightarrow 0$

$$\sqrt{\binom{n}{2}h^{d+2}}(\hat{\theta} - \theta) \xrightarrow{d} N(0, \Delta)$$

Assumption SB

- (i) f is $s + 1$ times differentiable, and f and its first $s + 1$ derivatives are bounded for some $s \geq 2$. m is twice differentiable, $e = mf$ has the bounded second derivative, $v(x) = E[Y^2|X = x]$ is differentiable, vf has the bounded first derivative, and $\lim_{|x| \rightarrow \infty} \{m(x) + |e(x)|\} = 0$. $E[Y^4] < \infty$, $E[Var(Y|X)f(X)] > 0$, and $Var\left(\frac{\partial e(X)}{\partial X} - Y \frac{\partial f(X)}{\partial X}\right)$ is positive definite
- (ii) Same assumptions on K as Cattaneo, Crump and Jansson (2014). $\min\{nh^{d+2}, 1\}nh^{2s} \rightarrow 0$ and $n^2h^d \rightarrow \infty$

Remark

- Asymptotic distribution of $\hat{\theta}$ is different for each case
- CCJ suggested to apply Wald test based on estimated variance $\hat{V}_{SB} = \hat{\Sigma} + \frac{2}{\kappa} \hat{\Delta}$
- Estimation of \hat{V}_{SB} may involve separate bandwidth selection from that of $\hat{\theta}$ (CCJ argued that same bandwidth for $\hat{\theta}$ and \hat{V}_{SB} may fail to yield positive definite \hat{V}_{SB})

JEL under small bandwidth

- Let's first apply directly JEL to $\hat{\theta}$. Again jackknife pseudo-value is

$$V_i(\theta) = nS(\theta) - (n-1)S^{(-i)}(\theta)$$

- For fixed θ , we set

$$\begin{aligned} S(\theta) &= \hat{\theta} - \theta \\ S^{(-i)}(\theta) &= \hat{\theta}^{(-i)} - \theta \end{aligned}$$

where $\hat{\theta}^{(-i)}$ is leave- i -out version of $\hat{\theta}$

- JEL is defined in the same manner

$$\ell(\theta) = 2 \sup_{\lambda} \sum_{i=1}^n \log (1 + \lambda' V_i(\theta))$$

JEL under small bandwidth asymptotics

- **Standard asymptotics:** If $nh^{d+2} \rightarrow \infty$

$$\ell(\theta) \xrightarrow{d} \chi^2(d)$$

- **Small h asymptotics:** If $nh^{d+2} \rightarrow \kappa \in (0, \infty)$

$$\ell(\theta) \xrightarrow{d} Z' V_J^{-1} Z$$

where $Z \sim N(0, \Sigma + 2\kappa^{-1}\Delta)$ and $V_J = \Sigma + 4\kappa^{-1}\Delta$

- **(Very) Small h asymptotics:** If $nh^{d+2} \rightarrow 0$

$$\ell(\theta) \xrightarrow{d} \frac{1}{2} \chi^2(d)$$

Remark

- Under small h asymptotics, JEL is not asymptotically pivotal
- Under very small h asymptotics, JEL recovers asymptotic pivotalness (“ $\frac{1}{2}$ ” appears by setting $\Sigma = 0$ for small h case)
- We modify JEL to have same $\chi^2(d)$ limiting distribution **for all cases**
- Idea: Reconcile discrepancy in $Z \sim N(0, \Sigma + 2\kappa^{-1}\Delta)$ and $V_J = \Sigma + 4\kappa^{-1}\Delta$

Key: Efron-Stein inequality

- Efron & Stein (1981) showed jackknife variance estimate tends to be **upward biased**. Suppose

$$S_n = \theta + \frac{1}{n} \sum_{i=1}^n L(X_i) + \frac{1}{n^2} \sum_{i < j} W(X_i, X_j)$$

Efron-Stein inequality showed

$$\begin{aligned} \text{Var}(S_n) &= \frac{\sigma_L^2}{n} + \frac{1}{2} \frac{(n-1)\sigma_W^2}{n^3} \\ &< \frac{\sigma_L^2}{n} + \frac{(n-2)\sigma_W^2}{n(n-1)^2} = E[\widehat{\text{Var}}(S_n)] \end{aligned}$$

where $\sigma_L^2 = \text{Var}(L(X_i))$, $\sigma_W^2 = \text{Var}(W(X_i, X_j))$ and $\widehat{\text{Var}}(S_n)$ is jackknife variance estimate

- Derivation

$$\begin{aligned}
 E[\widehat{\text{Var}}(S_n)] &= \frac{n-1}{n} E \left[\sum_{i=1}^n (S^{(-i)} - S^{(\cdot)})^2 \right] \\
 &= \frac{n-1}{n} E \left[\frac{1}{n} \sum_{i < i'} (S^{(-i)} - S^{(-i')})^2 \right] \\
 &= \frac{n-1}{n} E \left[\frac{1}{n} \sum_{i < i'} \left\{ \begin{array}{l} \frac{1}{n-1} (L_{i'} - L_i) \\ + \frac{1}{(n-1)^2} \sum_{j \neq i, i'} (W_{i'j} - W_{ij}) \end{array} \right\}^2 \right] \\
 &= \frac{\sigma_L^2}{n} + \frac{(n-2)\sigma_W^2}{n(n-1)^2}
 \end{aligned}$$

- Jackknife variance estimate **doubles** second term (due to mismatch of characterizing quadratic term in Hoeffding decomposition)
- This bias is lower order than first term $\sigma_L^2/(n-1)$, so is asymptotically negligible
- Efron-Stein suggested bias correction by estimating σ_W^2

$$\hat{\sigma}_W^2 = \frac{(n-1)^2}{n(n-1)/2 - 1} \sum_{j < k} Q_{jk}^2$$

where

$$Q_{jk} = n\hat{\theta} - (n-1)(\hat{\theta}^{(-j)} + \hat{\theta}^{(-k)}) + (n-2)\hat{\theta}^{(j,k)}$$

and $\hat{\theta}^{(j,k)}$ is leave- (j, k) -out version of $\hat{\theta}$

Our view

- Under non-standard asymptotics, **Efron-Stein bias emerges in first order**. It applies at least
 - Small bandwidth asymptotics
 - Many/weak IV asymptotics
 - Many covariates asymptotics
- We propose **unified inference approach that works for all cases above** (at least)

Modified JEL

- Modified JEL is defined by

$$\ell^m(\theta) = 2 \sup_{\lambda} \sum_{i=1}^n \log (1 + \lambda V_i^m(\theta))$$

where

$$V_i^m(\theta) = V_i(\hat{\theta}) - \hat{\Gamma} \tilde{\Gamma}^{-1} \{ V_i(\hat{\theta}) - V_i(\theta) \}$$

and $\hat{\Gamma}$ and $\tilde{\Gamma}$ are given by

$$\hat{\Gamma} \hat{\Gamma}' = \frac{1}{n} \sum_{i=1}^n V_i(\hat{\theta}) V_i(\hat{\theta})'$$

$$\tilde{\Gamma} \tilde{\Gamma}' = \frac{1}{n} \sum_{i=1}^n V_i(\hat{\theta}) V_i(\hat{\theta})' - \frac{1}{n} \sum_{i=1}^n \sum_{j=i+1}^n Q_{ij} Q_{ij}'$$

- This modification internalizes Efron-Stein bias correction into JEL construction
- cf. Chandler-Bate (2007, Biometrika) parametric likelihood correction for clustered data
- Intuitively we change curvature of likelihood function but leaving other aspects of its shape unchanged, so that “Bartlett identity” is asymptotically recovered

Theorem: Modified JEL under small bandwidth asymptotics

- Under Assumption SB

$$\ell^m(\theta) \xrightarrow{d} \chi^2(d)$$

without any condition on nh^{d+2}

- Remarks
 - Modified JEL $\ell^m(\theta)$ is asymptotically pivotal for all standard, small h , and very small h asymptotics
 - Correction term $\frac{1}{n+1} \sum_{j < k} Q_{jk}^2$ is used to eliminate Efron-Stein bias

3. JEL under many-weak IV asymptotics

Many-weak IV

- IV regression (θ is scalar)

$$\begin{aligned} y &= X\theta + U \\ X &= Z'\gamma_n + \epsilon \end{aligned}$$

where $\gamma_n = \frac{1}{\sqrt{n}}\mu_n\pi$ and μ_n is scalar sequence (concentration parameter) and π is K -dimensional constant vector

- Many-weak IV asymptotics:**
 - (i) K is fixed and $\mu_n = O(n^{1/2})$ (standard case)
 - (ii) $K \rightarrow \infty$ and $K/\mu_n^2 \rightarrow \alpha < \infty$ (many weak case)
 - (iii) $K \rightarrow \infty$ and $K/\mu_n^2 \rightarrow \infty$ (many very weak case)
- IV estimator $\hat{\theta}$ has different limiting distributions for above cases

JIVE

- Jackknife IV estimator by Angrist-Imbens-Krueger (1999)

$$\hat{\theta} = \left(\sum_{k=1}^n \sum_{l \neq k} X_k P_{kl} X_l \right)^{-1} \sum_{k=1}^n \sum_{l \neq k} X_k P_{kl} Y_l$$

where $P_{kl} = Z'_k (\sum_{h=1}^n Z_h Z'_h)^{-1} Z_l$

- JIVE is robust to many instruments in contrast to LIML and 2SLS estimators

JIVE under many-weak IV asymptotics

- Chao et al. (2012) showed that under Assumption MW
- **(i) Standard asymptotics**

$$\mu_n(\hat{\theta} - \theta) \xrightarrow{d} N(0, H^{-1}\Sigma H^{-1})$$

- **(ii) Many weak case**

$$\mu_n(\hat{\theta} - \theta) \xrightarrow{d} N(0, H^{-1}\Sigma H^{-1} + \alpha H^{-1}\Psi H^{-1})$$

- **(iii) Many very weak case**

$$\frac{\mu_n^2}{\sqrt{K}}(\hat{\theta} - \theta) \xrightarrow{d} N(0, H^{-1}\Psi H^{-1})$$

- Chao et al. (2012) suggested robust inference by estimating unknown components H , Σ and Ψ

- where

$$H = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n (1 - P_{kk}) \pi' Z_k Z_k' \pi$$

$$\Sigma = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \sigma_k^2 (1 - P_{kk})^2 \pi' Z_k Z_k' \pi$$

$$\Psi = \lim_{n \rightarrow \infty} \frac{1}{K} \sum_{k=1}^n \sum_{l \neq k} P_{kl}^2 \{ \sigma_k^2 E[\epsilon_l^2] + E[\epsilon_k U_k] E[\epsilon_l U_l] \}$$

Assumption MW

- (i) There are positive constants C and C_1 such that $\max_{1 \leq i \leq n} P_{ii} \leq C < 1$ and $C_1^{-1} \leq \pi' \left(\frac{1}{n} \sum_{i=1}^n Z_i Z_i' \right) \pi \leq C_1$ for all n large enough. Also, $n^{-2} \sum_{i=1}^n |\pi' Z_i|^4 \rightarrow 0$ as $n \rightarrow \infty$
- (ii) $\{U_i, \epsilon_i\}_{i=1}^n$ are independent with $E[U_i] = 0$ and $E[\epsilon_i] = 0$. Also for some positive constant C_2 , minimum eigenvalue of $\text{Var}(U_i, \epsilon_i)$ is larger than C_2^{-1} and $\max_{1 \leq i \leq n} \{E[U_i^2], E[U_i^4], E[\epsilon_i^2], E[\epsilon_i^4]\} < C_2$
- (iii) Σ , Ψ and Ξ exist. Also $\sqrt{K}/\mu_n^2 \rightarrow 0$ as $n \rightarrow \infty$

JEL

- Again jackknife pseudo-value is

$$V_i(\theta) = nS(\theta) - (n-1)S^{(-i)}(\theta)$$

- Based on estimating equation for JIVE, we set

$$S(\theta) = \frac{1}{n(n-1)} \sum_{k=1}^n \sum_{l \neq k} X_k P_{kl} (Y_l - X_l \theta)$$

$$S^{(-i)}(\theta) = \frac{1}{(n-1)(n-2)} \sum_{k \neq i} \sum_{l \neq i, k} X_k P_{kl} (Y_l - X_l \theta)$$

- JEL is defined in the same manner

$$\ell(\theta) = 2 \sup_{\lambda} \sum_{i=1}^n \log(1 + \lambda' V_i(\theta))$$

JEL under many-weak IV asymptotics

- **(i) Standard asymptotics**

$$\ell(\theta) \xrightarrow{d} \chi^2(1)$$

- **(ii) Many weak case**

$$\ell(\theta) \xrightarrow{d} \frac{\xi^2}{\Sigma + \Xi + 2\alpha\Psi}$$

where $\xi \sim N(0, \Sigma + \alpha\Psi)$ and

$$\Xi = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \sum_{l \neq k} \sigma_l^2 P_{lk}^2 \pi' Z_k Z_k' \pi$$

- **(iii) Many very weak case**

$$\ell(\theta) \xrightarrow{d} \frac{1}{2} \chi^2(1)$$

Remark

- Under many-weak IV asymptotics, JEL is not asymptotically pivotal
- For case (ii), discrepancy of $\xi \sim N(0, \Sigma + \alpha\Psi)$ and $2\alpha\Psi$ in denominator is due to Efron-Stein bias
- Additional term Ξ emerges due to the fact that matrix $[P_{kl}]$ is not exactly projection matrix for $S^{(-i)}(\theta)$
- For case (iii), “ $\frac{1}{2}$ ” appears by setting $\Sigma = \Xi = 0$

Modified JEL under many-weak IV asymptotics

- Under Assumption MW, Modified JEL satisfies

$$\ell^m(\theta) \xrightarrow{d} \chi^2(1)$$

for all cases

- Modified JEL $\ell^m(\theta)$ follows χ^2 limiting distribution for all cases without estimating variance components Σ , Ψ and Ξ

4. JEL under many regressor asymptotics

Many regressor asymptotics

- Regression

$$Y = X\theta + Z'\gamma_n + U$$

where X is scalar and Z is K -dimensional

- Two scenarios
- (i) Standard asymptotics: $\frac{K}{n} \rightarrow 0$
- (ii) Many regressor asymptotics: $\frac{K}{n} \rightarrow \tau \in (0, 1)$
- Cattaneo-Jansson-Newey (2017) imposed $\tau \in (0, \frac{1}{2})$ and derived robust standard error for OLS estimator under Case (ii)

JEL

- Again jackknife pseudo-value is

$$V_i(\theta) = nS(\theta) - (n-1)S^{(-i)}(\theta)$$

- Based on FOC of OLS, we set

$$\begin{aligned} S(\theta) &= \frac{1}{n} \sum_{k=1}^n \sum_{l=1}^n \tilde{X}_k M_{kl} (Y_l - X_l \theta) \\ S^{(-i)}(\theta) &= \frac{1}{n-1} \sum_{k \neq i} \tilde{X}_k M_{kk} (Y_k - X_k \theta) \\ &\quad + \frac{1}{n-2} \sum_{k \neq i} \sum_{l \neq i, k} \tilde{X}_k M_{kl} (Y_l - X_l \theta) \end{aligned}$$

where $P_{kl} = Z'_k (\sum_{h=1}^n Z_h Z'_h)^{-1} Z_l$, $M_{kl} = \mathbb{I}\{k = l\} - P_{kl}$,
 $\tilde{X}_k = \sum_{l=1}^n M_{kl} X_l$

JEL under many regressor asymptotics

- Suppose Assumption MR holds. Then
- (i) **Standard asymptotics**

$$\ell(\theta) \xrightarrow{d} \chi^2(1)$$

- (ii) **Many regressor asymptotics**

$$\ell(\theta) \xrightarrow{d} \frac{\xi^2}{\Sigma + \Xi + 2\Psi}$$

where $\xi \sim N(0, \Sigma + \Psi)$

- where

$$\Sigma = p \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n M_{kk}^2 E[\epsilon_k^2 U_k^2 | Z_k]$$

$$\Psi = p \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \sum_{l \neq k} M_{kl}^2 E[\epsilon_k^2 U_l^2 | Z_k, Z_l]$$

$$\Xi = p \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \sum_{l \neq k} M_{lk}^2 E[\epsilon_l^2 | Z_l] (Z_k' \gamma)^2$$

Assumption MR

- (i) $\{Y_i, X_i, Z_i\}_{i=1}^n$ is independent and identically distributed
- (ii) $\text{rank}(P) = K$ a.s. There are positive constants C , C_1 , and C_2 such that $M_{ii} \geq C$ for all $i = 1, \dots, n$, $E[\epsilon_i^4 | Z_i] \geq C_1$, $E[U_i^4 | X_i, Z_i] \geq C_1$, $E[\epsilon_i^2 | Z_i] \leq C_2$, and $E[U_i^2 | X_i, Z_i] \leq C_2$
- (iii) For some $\alpha_g, \alpha_h > 0$, there is a positive constant C_3 such that

$$\min_{\pi_g} E|g(Z_i) - Z_i' \pi_g|^2 \leq C_3 K^{-2\alpha_g}$$

$$\min_{\pi_h} E|h(Z_i) - Z_i' \pi_h|^2 \leq C_3 K^{-2\alpha_h}$$

where $h(Z_i) = E[X_i | Z_i]$

Remark

- Under many regressor asymptotics, JEL is not asymptotically pivotal
- For case (ii), discrepancy of $\xi \sim N(0, \Sigma + \Psi)$ and 2Ψ in denominator is due to Efron-Stein bias
- Additional term Ξ emerges due to the fact that matrix $[P_{kl}]$ is not exactly projection matrix for $S^{(-i)}(\theta)$

Modified JEL under many-weak IV asymptotics

- Under Assumption MR, Modified JEL satisfies

$$\ell^m(\theta) \xrightarrow{d} \chi^2(1)$$

for all cases

- Modified JEL $\ell^m(\theta)$ follows χ^2 limiting distribution for all cases without estimating variance components Σ , Ψ and Ξ
- In contrast to Cattaneo-Jansson-Newey (2017), which imposes $\frac{K}{n} \rightarrow \tau \in (0, \frac{1}{2})$, we only require $\tau \in (0, 1)$. The requirement $\tau < \frac{1}{2}$ is imposed to guarantee consistency of robust standard error (which we circumvent)

5. Simulation

Simulation

- Same design as Cattaneo-Jansson-Newey (2017). Partial linear model

$$\begin{aligned} Y &= \beta X + g(W) + U \\ X &= h(W) + V \end{aligned}$$

$$\begin{aligned} U|X, W &\sim_{\text{iid}} N(0, c_U \{1 + (t(X) + \iota' W)^2\}^\vartheta) \\ V|W &\sim_{\text{iid}} N(0, c_V \{1 + (\iota' W)^2\}^\vartheta) \\ W &\sim_{\text{iid}} \text{6-dimensional independent } U[-1, 1] \end{aligned}$$

- Set $n = 100$ and

$$\begin{aligned} \beta &= 1 \quad (\text{parameter of interest}) \\ \vartheta &= \begin{cases} 0 & (\text{homoskedastic}) \\ 1 & (\text{heteroskedastic}) \end{cases} \end{aligned}$$

- Also

$$\begin{aligned}
 g(W) &= \exp(-|W|^{1/2}), & h(W) &= \exp(|W|^{1/2}) \\
 t(X) &= X\mathbb{I}\{-2 \leq X \leq 2\} + 2\text{sgn}(X)\{1 - \mathbb{I}\{-2 \leq X \leq 2\}\} \\
 c_U, c_V &= \text{constants to normalize } \text{Var}(U) = \text{Var}(V) = 1
 \end{aligned}$$

- Basis functions

K	$p_K(w_i)$
7	$1, w_{1i}, w_{2i}, w_{3i}, w_{4i}, w_{5i}, w_{6i}$
13	$p_7(w_i)', w_{1i}^2, w_{2i}^2, w_{3i}^2, w_{4i}^2, w_{5i}^2, w_{6i}^2$
28	$p_{13}(w_i) + \text{first-order interactions}$
34	$p_{28}(w_i), w_{1i}^3, w_{2i}^3, w_{3i}^3, w_{4i}^3, w_{5i}^3, w_{6i}^3$
84	$p_{34}(w_i) + \text{second-order interactions}$
90	$p_{84}(w_i), w_{1i}^4, w_{2i}^4, w_{3i}^4, w_{4i}^4, w_{5i}^4, w_{6i}^4$

- Compare four confidence intervals
- (i) **Wald-HC0**: Wald by conventional Eicker-White se
- (ii) **Wald-CJN**: Wald by Cattaneo-Jansson-Newey
- (iii) **JEL**
- (iv) **mJEL**: Modified JEL
- Note: Wald-CJN does not cover the case of $\frac{K}{n} > \frac{1}{2}$

Homoskedastic case

- $n = 100$, nominal coverage = 0.95

K	Wald-HC0	Wald-CJN	JEL	mJEL
7	0.897	0.909	0.920	0.913
13	0.916	0.934	0.950	0.937
28	0.888	0.922	0.962	0.940
34	0.869	0.930	0.962	0.945
84	0.591	0.816	0.967	0.947
90	0.513	0.578	0.970	0.959

Heteroskedastic case

- $n = 100$, nominal coverage = 0.95

K	Wald-HC0	Wald-CJN	JEL	mJEL
7	0.887	0.897	0.911	0.899
13	0.924	0.947	0.954	0.943
28	0.881	0.928	0.961	0.938
34	0.838	0.924	0.956	0.936
84	0.539	0.796	0.963	0.949
90	0.508	0.620	0.961	0.946

Conclusion

- Likelihood inference for semiparametric problems and non-standard asymptotics
- JEL inference for semiparametric models
- JEL is not pivotal under non-standard asymptotics (Efron-Stein Bias emerges in first order)
- Modified JEL internalizes Efron-Stein correction into JEL and becomes pivotal for all cases. Examples are
 - Small bandwidth asymptotics
 - Many-weak IV asymptotics
 - Many regressor asymptotics
- Future work: Extend this idea to
 - Network asymptotics
 - Infill asymptotics for high frequency data

Network (ongoing, with Karun Adusumilli)

- Method of moments estimator (Bickel, Chen and Levina, 2011)

$$\hat{P}(R) = \frac{1}{\binom{n}{p} |\text{Iso}(R)|} \sum_S \mathbb{I}\{S \sim R\}$$

for subgraph R of G , where n and p are numbers of vertices of G and R , respectively, $\text{Iso}(R)$ is set of subgraphs isomorphic to R

- We find that $\hat{P}(R)$ admits ANOVA-like decomposition

$$\hat{P}(R) - P(R) \approx \frac{1}{n} \sum_i \alpha_i + \frac{1}{n(n-1)\dots(n-p+1)} \sum_{i_1 < \dots < i_p} \beta_{i_1 \dots i_p}$$

- BCL considered dense network where first term $\frac{1}{n} \sum_i \alpha_i$ dominates
- Indeed under certain sparse network case ruled out by BCL, both terms are of same order
- Develop sparsity robust jackknife variance estimator and JEL inference