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This paper

e Focus: Analyze non-standard asymptotic problems from
jackknife perspective, especially

e Small bandwidths asymptotics for semiparametric estimator
e Many-weak IV asymptotics for |V regression

e Many covariates asymptotics for high-dimensional regression
o Network asymptotics, Infill asymptotics (hopefully)

¢ Propose (modified) jackknife empirical likelihood (JEL)
method for those problems



Standard asymptotics

1. Background: JEL for
semiparametric models under standard
asymptotics

(but also new)



Standard asymptotics

Background: Jackknife method

Useful to estimate bias and variance of estimator

For statistic S, Jackknife pseudo-value is
Vi =nS — (n—1)s"
where S(—7) is leave-i-out version of S

Jackknife bias-corrected estimator is V (if S is estimator)

Jackknife variance estimator of S is

Var(S) = (1_1) (Vi — V)2
i=1

Idea: Treat {V;} like sample (Tukey, 1958)



Standard asymptotics

Contribution to literature

Quenouille (1949), Tukey (1958): Introduce jackknife

—

e Miller (1964), Arvesen (1969): Consistency of Var(S) for
smooth objects

—

e Shao & Wu (1989): Inconsistency of Var(S) for non-smooth
& delete-d jackknife

e Jing, Yuan & Zhou (2009): Introduce JEL method to
U-statistic (e.g. ROC curve, S = n~2 > Y > Xi})

e This paper: Extend JEL to semiparametric problems and
provide unified framework for non-standard asymptotics, e.g.
e Small bandwidth asymptotics
e Many/weak IV asymptotics

e Many covariates asymptotics
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Semiparametric model

e As a benchmark, first consider inference on semiparametric
model under standard asymptotics (but this is also new)

e Moment condition model
Elg(Z,0, (X)) =0
where

e @ is parameter of interest

e 1(X) is unknown nuisance function (e.g. u(X) = E[Y|X])
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Example 1. Average treatment effect

Y (0),Y (1) are potential outcomes for treatment D =0 or 1

Observe Z = (Y, X, D) where Y = DY (1) + (1 — D)Y(0)
and X are covariates

Under some conditions, ATE is

0 = E[Y(1)- Y(0)]
= E[pa(X) = po(X)]

where puq(X) = E[Y|X, D = d|

e Set
g(Z,0, (X)) = p1(X) — po(X) — 0
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Example 2: Weighted average derivatives

e Weighted average derivative of regression function
m(X) = E[Y|X] is

- € w2209

where w(-) is known weight function

e Used for estimation of single index model
(e.g. P(Y =1|X) = F(X'0))

e Set
g(Z,0, (X)) = w(X)u(X) — 0

with p(X) = 27X)
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Semiparametric estimator

e Based on some preliminary estimator /i for u, 6 can be
estimated by solving

fZg Z;,0, (X)) =0

o By Newey (1994), influence function for 4 is
W(Z,X) = =My {g(Z,0, (X)) + Elgu(Z. 6, n(X))IXILY — u(X))
where My =

E [8g(2géu(x))}

e Computation of asymptotic variance Var(y(Z, X)) is
complicated



Standard asymptotics

Problems with Wald-type inference (estimate+2-se)

e Need to derive influence function for each case

e Asymptotic variances of these estimators are rather
complicated and contain several unknowns to be estimated

e Also if 6 or p1 enters to g(-) in nonlinear way, then it may
involve numerical derivatives

e Normal approximation often does not work well even when
asymptotic variance is known: see Linton (1995), Nishiyama
& Robinson (2000, 2005), Ichimura & Linton (2005),
Cattaneo, Crump & Jansson (2013, 2014) etc
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Construct JEL

e Owen'’s (1988) original EL for § = E[X]

((0) =2 sup > _log(npi)

P1,--+5Pn i=1

st. pi >0, ipi =1, Zn:PiXi =0
i=1 i=1

i.e. put multinomial weights {p;}7_; for {X;}7_;

e By Lagrange multiplier method, practical dual form of ¢(0) is
obtained

00) = 2supz log (1 + X(X; — 6)) 4 \2
A=



Standard asymptotics

e It is not trivial to extend this idea to parameter
0 = Ela(Xi,...,Xm)] defined by U-statistic

-1
n
U= <m> | Z' a(Xi, .., Xi,)
n<--<im
where restriction by multinomial weights would be

-1
n
<m> Z pi1"'pima(Xi17"‘7Xim):0

i <-<im
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e For this problem, Jing-Yuan-Zhou (2009, JASA) suggested to
construct EL based on jackknife pseudo-values

Vi = nU — (n— 1)U

n

00) = —2 sup Zlog(np,-)
P1,--+sPn i=1

n n
s.t. pi >0, Zp;zl, Z:Pi\/i:(9
i=1 i=1

e They showed ¢(0) LA x2 for one and two sample U-statistics
with fixed kernel
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e Indeed many estimators can be (approximately) written as
U-statistic form (or ANOVA-like decomposition)

e We extend JEL approach to

e Semiparametric estimator (under standard asymptotics)

Weighted average derivative estimator (under small bandwidth
asymptotics)

Jackknife IV estimator (under many-weak IV asymptotics)

OLS estimator (under many regressor asymptotics)
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JEL for semiparametric model

e Jackknife pseudo-value is
Vi =nS —(n—1)s"

e For fixed 6, we set

s(0) = %Zg(zj,o,ﬁ(xj))
j:l

179'

where 2~ is leave-i-out version of [

Simulation



Standard asymptotics

e Based on pseudo-value

JEL is constructed as

((6) =—2 sup > _log(npi)

P1;--+3Pn i=1

st. pi >0, zn:Pi =1, ZH:P/’V/'(Q) =0
i—1 i—1

e By Lagrange multiplier method, dual form of £(6) is

00) =2 SL)l\p ; log (1 -+ X'V;(6))

(in practice, use this expression)
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Theorem: Standard asymptotics

e Under Assumption SP

0(6) % v*(dim0)
e Remarks

e JEL ¢(9) is asymptotically pivotal, so no need for variance
estimation

e No need to derive influence function for case-by-case

e JEL confidence set is obtained by {c : ¢(c) < x2(dim#)}
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Assumption SP

e (i) {Yi, Xi, Zi}1_, isiid. X is compactly supported and its
density f is uniformly bounded from above and away from
zero. u and f are continuously differentiable to order s.

E[|Y — u(X)|**°] < oo for some 6§ > 0, E[YP] < oo for some
p >4, and E[YP|X = x|f(x) is bounded. g has bounded
second derivative in p

e (ii) K is an s-th order kernel function that integrates to 1 in
its compact support. As n — oo, nl/zhd'mx/ log n — oo and
nh* — 0



Small bandwidth

2. JEL under small bandwidth
asymptotics
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Small bandwidth asymptotics

e Consider density-weighted average derivative

o= £[r002EL0] e [y 2109

u_n

="is by integration-by-parts

e Powell, Stock & Stoker (1989) estimator is

3

h— 8

BH\J

Jj=1

where f is leave-one-out kernel density estimator
~ . 1 —d )<J - Xk
00 = 2 ok (B
k#j

for kernel K, bandwidth h and d = dim X




Small bandwidth

o 0 admits U-statistic representation (K =derivative of K)

A 2
0 = —— U;
n(n—1) JZ I
X —X
Uk = —h 91K <hk> (Y; — Yi)
e This is decomposed as

n

1 2
Vn(f - 0) = ;ffi)Jr\/ﬁzLﬂr\M;V‘Gk

0,(1/vnhd+2)

where B = E[f] — 0 (bias), L; = 2(E[Uj|Zj] — E[Ux]) and
Wik = Uik = (Lj + Lk)/2 — E[Ui]
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Small bandwidth asymptotics for 0
By Cattaneo, Crump & Jansson (2014), under Assumption SB
Standard asymptotics: If nh?t2 — oo
Vn(f - 0) % N(O,X)
where & = E[LL']

Small h asymptotics: If nh?? — k € (0, 0)
. 2

N <0,Z+ A>
K

where A = 2E[Var(Y|X)f(X)] [ K(u ) du

(Very) Small h asymptotics: If nhc“r2 -0

(;’) hd+2(4 — 0) % N(0, A)



Small bandwidth

Assumption SB

e (i) f is s + 1 times differentiable, and f and its first s + 1
derivatives are bounded for some s > 2. m is twice
differentiable, e = mf has the bounded second derivative,
v(x) = E[Y?|X = x] is differentiable, vf has the bounded
first derivative, and lim|_,..{m(x) + [e(x)|} = 0.

E[Y*] < oo, E[Var(Y|X)f(X)] > 0, and
Var <6e(X) Yaf( )) is positive definite

e (ii) Same assumptions on K as Cattaneo, Crump and Jansson
(2014). min{nh9+2 1}nh?* — 0 and n?h9 — o



Small bandwidth

Remark

e Asymptotic distribution of @ is different for each case

e CCJ suggested to apply Wald test based on estimated
variance VSB =3+ 2A

e Estimation of \753 may involve separate bandwidth selection
from that of # (CCJ argued that same bandwidth for 6 and
Vsg may fail to yield positive definite Vsg )
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JEL under small bandwidth

Standard asymptotics

o Let's first apply directly JEL to 0. Again jackknife
pseudo-value is

Vi() = nS(6) — (n— 1)SC(0)

e For fixed 6, we set

S@) = 0
sENE) = 66D -9

where 0(—1) is leave-i-out version of 0

e JEL is defined in the same manner

OE 2sgp > log (1+ A'Vi(6))

i=1

Many regressor

Simulation
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JEL under small bandwidth asymptotics

e Standard asymptotics: If nh9t2 —
(OESEC)
e Small h asymptotics: If nh9+? — x € (0, 00)
(o) S z'vylz
where Z ~ N(0,Z +2x7tA) and V, = £ +4x71A

e (Very) Small h asymptotics: If nh+2 — 0

06) % 2x%(d)
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Remark

Under small h asymptotics, JEL is not asymptotically pivotal

Under very small h asymptotics, JEL recovers asymptotic

pivotalness (% appears by setting ¥ = 0 for small h case)

We modify JEL to have same x2(d) limiting distribution for
all cases

Idea: Reconcile discrepancy in Z ~ N(0, X + 2x~1A) and
VJ =3 + 4I€_1A



Small bandwidth
Key: Efron-Stein inequality

e Efron & Stein (1981) showed jackknife variance estimate
tends to be upward biased. Suppose

n

1 1
S,,:9+EZL(X,-)+ﬁZW(X,-,Xj)

i=1 i<j
Efron-Stein inequality showed

o?  1(n—1)o,

Var(Sn) = 45
2 2
oL (n—2)oy, —
< o ~ EVer(Sa)

where 02 = Var(L(X;)), o3, = Var(W(X;, X;)) and Var(S,)
is jackknife variance estimate



Small bandwidth

e Derivation

E[\/a/r(?,,)] _n- 1E [i(g(i) _ 5(-))2]

i=1

n—1 1 . ;
= — (7’)_ (*I) 2
E[L3(sC) s )]

1 |1 3 L(Ly —L;) ?
n— —=\L;y — L;
= E — n—1 ! !
n n { +(n_11)2 j;ﬁi,i’(VV’./J' — VV,) } :|




Small bandwidth

e Jackknife variance estimate doubles second term (due to
mismatch of characterizing quadratic term in Hoeffding
decomposition)

e This bias is lower order than first term 0% /(n — 1), so is
asymptotically negligible

e Efron-Stein suggested bias correction by estimating aﬁv

~2 n — 1
ow = n( Z
where
Qjk = n — (n—1)(0) + 0K) 4 (n — 2)gU:k)

and 00X is leave-(j, k)-out version of 0



Small bandwidth

Our view

e Under non-standard asymptotics, Efron-Stein bias emerges
in first order. It applies at least

e Small bandwidth asymptotics
e Many/weak IV asymptotics
e Many covariates asymptotics

e We propose unified inference approach that works for all
cases above (at least)



Small bandwidth

Modified JEL

e Modified JEL is defined by

m) = 251;\pzn: log (1+ AV/™(0))
i=1

where

Vin(6) = Vi) — FTH{Vi(6) — vi(0)}
and [ and T are given by

P = 23 vid)vidy

FE = izv,(é)v;(é)’—iz Z Q;Qj



Small bandwidth

e This modification internalizes Efron-Stein bias correction into
JEL construction

e cf. Chandler-Bate (2007, Biometrika) parametric likelihood
correction for clustered data

e Intuitively we change curvature of likelihood function but
leaving other aspects of its shape unchanged, so that “Bartlett
identity” is asymptotically recovered
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Theorem: Modified JEL under small bandwidth
asymptotics

e Under Assumption SB
m d 2
£m(6) = x*(d)
without any condition on nh?+?

e Remarks

e Modified JEL ¢™(6) is asymptotically pivotal for all standard,
small h, and very small h asymptotics

e Correction term 37 3., Q% is used to eliminate Efron-Stein
bias



Many-weak IV

3. JEL under many-weak IV
asymptotics



Many-weak IV

Many-weak |V

e |V regression (6 is scalar)

y = X0+U
X 7'y, 4 €

where v, = ﬁ,u,ﬂr and p, is scalar sequence (concentration
parameter) and 7 is K-dimensional constant vector

e Many-weak IV asymptotics:
e (i) K is fixed and i, = O(n'/?) (standard case)
e (ii) K = o0 and K/u2 — a < oo (many weak case)

e (iii) K — oo and K/u?2 — oo (many very weak case)

o |V estimator 6 has different limiting distributions for above
cases



Many-weak IV

JIVE

e Jackknife IV estimator by Angrist-Imbens-Krueger (1999)

—1
0= ZZXkPkIXI ZZXkPkIYI

k=1 I#£k k=1 I#k

where Py = le< (22:1 ZhZf/p)_l Z

e JIVE is robust to many instruments in contrast to LIML and
2SLS estimators
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JIVE under many-weak |V asymptotics
e Chao et al. (2012) showed that under Assumption MW
e (i) Standard asymptotics
pn(6 - 0) S N, H1EH™Y)
e (ii) Many weak case
1n(@—0) S NO,H'SH + aH 'WH™Y)

e (iii) Many very weak case

Mz A d 1 1
(9 —0)— NOH "WH™
(8 —0) % N( )

e Chao et al. (2012) suggested robust inference by estimating
unknown components H, ¥ and V¥



Many-weak IV

e where

R P
H = nILmoon;(l—Pkk)WZkaw
n—oo N

1 n
Y o= lim =Y 0i(1 - Pu)’n'ZZim
k=1

1§
Vo= nmmmK;;P@{aiﬂeﬂ+E[ekuk]E[e,U,]}



Many-weak IV

Assumption MW

e (i) There are positive constants C and C; such that
maxi<i<p P < C<land ' <a (130 ,ZZ)r< G
for all n large enough. Also, =237 |7'Z;|* — 0 as n — o

e (ii) {Ui, €}, are independent with E[U;] = 0 and E[e;] = 0.
Also for some positive constant C>, minimum eigenvalue of
Var(Ui, €;) is larger than C2_1 and
maxi<i<n{ E[U7], E[U}], E[¢}], E[€]]} < G2

o (iii) ¥, W and = exist. Also VK/u2 — 0as n— oo
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JEL
e Again jackknife pseudo-value is
Vi() = nS(6) — (n— 1)s(6)

e Based on estimating equation for JIVE, we set

5(0) = n—1 ZZXkPkI(Y/ Xi0)
sty
1

s = CEEEED) Z Z XkPr(Yr — Xi0)
K I,k

e JEL is defined in the same manner

00) = 2supz log(1 + N V;i(6))
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JEL under many-weak IV asymptotics

e (i) Standard asymptotics

e (ii) Many weak case
d £
O s7=12a0

where £ ~ N(0,X 4+ aV¥) and
= = limp oo 5 > key 2ok 07 PR ZkZim

e (iii) Many very weak case

00) % Sx3(1)



Many-weak IV

Remark

Under many-weak IV asymptotics, JEL is not asymptotically
pivotal

For case (ii), discrepancy of £ ~ N(0,X + aW¥) and 2aV in
denominator is due to Efron-Stein bias

Additional term = emerges due to the fact that matrix [Py] is
not exactly projection matrix for S(=7)(4)

wlr

For case (iii), “5" appears by setting X == =0
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Modified JEL under many-weak IV asymptotics

e Under Assumption MW, Modified JEL satisfies
m d 2
£m(0) = x“(1)
for all cases

e Modified JEL ¢™(6) follows x? limiting distribution for all
cases without estimating variance components ¥, W and =



Many regressor

4. JEL under many regressor
asymptotics



Many regressor

Many regressor asymptotics

Regression
Y=X0+2Zv,+ U

where X is scalar and Z is K-dimensional
Two scenarios

(i) Standard asymptotics: % —0

(i) Many regressor asymptotics: & — 7 € (0,1)

Cattaneo-Jansson-Newey (2017) imposed 7 € (0, 3) and
derived robust standard error for OLS estimator under Case

(i)



Many regressor

JEL

e Again jackknife pseudo-value is
Vi(9) = nS(6) — (n — 1)S(0)

e Based on FOC of OLS, we set

1 n n N
s@) = - 3D XeMi(Yi = Xi0)
k=1 I=1
. 1 -
sENB) = po ;kak(yk — Xi)

1 -
+— Z Z XM (Yi = Xi6)
ki 11k

vl/here Pk/ = ZL(ZZ:I ZhZA)_IZ/, Mk/ = H{k = /} — Pk/,
Xie = 22121 MiaXi
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JEL under many regressor asymptotics

e Suppose Assumption MR holds. Then

¢ (i) Standard asymptotics

e (ii) Many regressor asymptotics

d €2

)= s =72

where & ~ N(0, X + V)

Simulation



Many regressor

e where
— H 1 §n 2 272
Y = pnll—';noo; £ MkkE[ekUk|Zk]

1
v = pnler;OEZZM,%,E[EiU?’Z/ﬂZ/]
k=1 I#k

- _ 1] 2 12 »y
= = Pnhfgonkzjlgl\/’/k/—:[elzl](zw)



Many regressor

Assumption MR

e (i) {Yi, Xi, Z;}_, is independent and identically distributed

e (ii) rank(P) = K a.s. There are positive constants C, C;, and
G, such that M;; > Cforalli=1,...,n, E[Eﬂz,] > (7,
E[U:"X,,Z,] > Cl, E[6,2|Z,] < Cz, and E[U,2|X,,Z,] < C2

e (iii) For some ag,ap > 0, there is a positive constant C3 such
that

C3K—2ag

IN

min E|g(Z;) — Z{ﬁg\z
g

min E|h(Z)) — Zimp|> < GeK 2%
Th

where h(Z;) = E[Xi|Z]



Many regressor

Remark

e Under many regressor asymptotics, JEL is not asymptotically
pivotal

e For case (ii), discrepancy of £ ~ N(0,X 4+ W) and 2V in
denominator is due to Efron-Stein bias

e Additional term = emerges due to the fact that matrix [P/ is
not exactly projection matrix for S(=)(9)
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Modified JEL under many-weak IV asymptotics

e Under Assumption MR, Modified JEL satisfies

(m(0) % \2(1)

for all cases

 Modified JEL £™(6) follows x? limiting distribution for all
cases without estimating variance components ¥, ¥ and =

e In contrast to Cattaneo-Jansson-Newey (2017), which
imposes & — 7 € (0,1), we only require 7 € (0,1). The
requirement 7 < % is imposed to guarantee consistency of
robust standard error (which we circumvent)
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5. Simulation



Simulation

Simulation

e Same design as Cattaneo-Jansson-Newey (2017). Partial
linear model

Y = BX+g(W)+U
X = h(W)+V

UIX, W ~ig N(O, cu{1 + (t(X) + /' W)?}?)
VIW  ~ig N, cv {1+ (/W)*}")
W  ~iig 6-dimensional independen U[—1,1]

e Set n =100 and

g =1 (parameter of interest)

9 — (homoskedastic)
N (heteroskedastic)



Simulation

e Also

g(W) = exp(—|W[V?),  h(W)=exp(|W|'/?)
t(X) = XI{—2< X <2}+2sgn(X){1 —I{-2< X <2}}

cy,cvy = constants to normalize Var(U) = Var(V) =1

e Basis functions
K pr (w;)

7 L, wij, wai, wsj, Waj, Wsi, We;
N T T T S A
13 pr(wi), wij, wy;, wyg, wa, Wiy, We;
28  pi3(w;) + first-order interactions
3 3 3 3 3 3
34 pag(wi), wip, wy;, wip, Wy, We;, We;
84  psa(w;) + second-order interactions

N oA 4 A4 4 4 4
90 pga(wi), wy}, woy, wai, Wy, Wy We;




Simulation

e Compare four confidence intervals

e (i) Wald-HCO: Wald by conventional Eicker-White se
e (ii) Wald-CJN: Wald by Cattaneo-Jansson-Newey
e (iii) JEL

e (iv) mJEL: Modified JEL

e Note: Wald-CJN does not cover the case of % > %



Homoskedastic case

e n =100, nominal coverage= 0.95

K Wald-HCO Wald-CJN JEL mJEL
7 0.897 0.909 0.920 0.913
13 0.916 0.934 0.950 0.937
28 0.888 0.922 0.962 0.940
34 0.869 0.930 0.962 0.945
84 0.591 0.816 0.967 0.947
90 0.513 0.578 0.970 0.959

Simulation



Heteroskedastic case

e n =100, nominal coverage= 0.95

K Wald-HCO Wald-CJN JEL mJEL
7 0.887 0.897 0.911 0.899
13 0.924 0.947 0.954 0.943
28 0.881 0.928 0.961 0.938
34 0.838 0.924 0.956 0.936
84 0.539 0.796 0.963 0.949
90 0.508 0.620 0.961 0.946

Simulation



Simulation

Conclusion

Likelihood inference for semiparametric problems and
non-standard asymptotics

JEL inference for semiparametric models

JEL is not pivotal under non-standard asymptotics
(Efron-Stein Bias emerges in first order)

Modified JEL internalizes Efron-Stein correction into JEL and
becomes pivotal for all cases. Examples are

e Small bandwidth asymptotics

e Many-weak |V asymptotics

e Many regressor asymptotics
Future work: Extend this idea to

e Network asymptotics

o Infill asymptotics for high frequency data
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Network (ongoing, with Karun Adusumilli)

e Method of moments estimator (Bickel, Chen and Levina,

2011)
Rl 2 > S~ R}

for subgraph R of G, where n and p are numbers of vertices
of G and R, respectively, Iso(R) is set of subgraphs
isomorphic to R

P(R) =

\Is



Simulation

We find that P(R) admits ANOVA-like decomposition

A 1 1

11< <ip

BCL considered dense network where first term £ 3~ ;
dominates

Indeed under certain sparse network case ruled out by BCL,
both terms are of same order

Develop sparsity robust jackknife variance estimator and JEL
inference
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