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Abstract

Lung transplantation is the only treatment for patients in the last stage of chronic lung
diseases. Before April 2015, there were only two types of transplantation available: cadaveric-
donor transplants and live-donor transplants. Ergin, Sönmez, and Ünver (2017) have proposed
the idea of exchanging donors only for live-donor lung transplantation. The new technology,
called hybrid transplantation, is now available as Dr. Oto and his team at Okayama University
Hospital succeeded transplanting a cadaveric lung and a lobe of live lung to one patient at the
same time. We point out that the new technology plays a key role in operating the cadaveric-
and live-donor markets at the same time. In particular, the hybrid transplantation opens up a
new type of exchanging donors. We investigate a mechanism of organizing transplants in terms
of efficiency, fairness and incentive-compatibility. Journal of Economic Literature Classification
Numbers : C78, D47, D71.
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1 Introduction

Lung transplantation is the only treatment for patients with end-stage lung diseases. As of July 31,
2017, 339 patients are registered on the waiting list for deceased donor lung transplants in Japan,
while 45 patients received transplants in 2015.1 Deceased donor transplantation uses one or two lungs
of a deceased donor to replace the diseased lungs of a patient.2 Because the number of deceased donors
is historically low for various reasons, the Japanese medical community has developed live donor lung
transplantation which needs two living donors each of whom donates one lobe out of five to their
intended patient. This transplants have been conducted to about 10 to 20 patients a year in recent
years.3 Although they are a substantial source for transplantation, living donors are conventionally
constrained to be relatives of patients.4 Moreover, they are medically constrained to be compatible
with patients for blood types, tissue type, sizes, etc. These constraints are difficult to be met as a
patient needs two compatible relatives. To overcome such difficulty, Ergin, Sönmez, and Ünver (2017)
have recently proposed a novel transplantation modality of lung exchange – exchanges of donors
between incompatible donors of patients – by applying the same idea for kidney exchange (Rapaport,
1986; Roth, Sönmez, and Ünver, 2004, 2005). Due to the multi-unit demand, the application is
theoretically non-trivial, and is practically important as Ergin, Sönmez, and Ünver (2017) show the
potential increase of transplants by about 80 % to 260 %, depending on sizes of exchanges, using the
Japanese data.5

Another innovative transplant, called hybrid transplantation, has been successfully conducted by
Prof. Oto and his team at Okayama University Hospital, Japan, on April 4, 2015.6 The hybrid
transplantation uses one lobe of living donor and one lung of a deceased donor to be transplanted to
a patient.

We incorporate the possibility of hybrid transplantation for donor exchange in lung transplants,
extending the Ergin, Sönmez, and Ünver (2017)’s model which exclusively takes up live donor trans-
plantation for donor exchange. This extension does not only practically increase the number of saved
patients but also opens up a new type of theoretical challenge. Let us discuss its practical importance
and then the theoretical challenge.

An obvious benefit from hybrid transplantation is for a patient with only one compatible donor.
There might also be a situation in which two patients each having two incompatible donors cannot

1The data is available on Japan Organ Transplant Network homepage, http://www.jotnw.or.jp/datafile. The
cited numbers were retrieved on August 28, 2017.

2We refer to the donor by the male personal pronoun and to the patient by the female personal pronoun.
3See the Factbook by the Japan Society for Transplantation, http://www.asas.or.jp/jst/pro/pro8.html.
4“Conventionally” means that this practice is not illegal, but is followed by the medical community as the ethical

guideline published in the Japan Society for Transplantation. A transplant from non-relatives of a patient needs special
permission in hospitals conducting the transplant. The guideline is available on http://www.asas.or.jp/jst/about/

about12.html, accessed on March 5, 2018.
5The numbers are for 50 patients. See Table II in Ergin, Sönmez, and Ünver (2017).
6See the official news at Okayama University, https://www.okayama-u.ac.jp/eng/news/index_id4469.html. The

web was accessed on March 2, 1998.
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Figure 1: Benefits from hybrid transplantation.

Note: In the figure, one lung from the decease donor, dc, is available, patient 1 of blood type A has a donor of blood
type O, and patient 2 of blood type O has two donors with blood types A and O. The allocation indicated by the arrows
shows that with donor exchange, patient 1 receives the hybrid transplant, while patient 2 the living donor transplant.

exchange donors for living donor transplants but can do so under hybrid transplantation. Hybrid
transplantation can enhance live-donor exchange in the sense that patients could not receive trans-
plants even under donor exchange if only living donor transplantation were allowed (see Figure 1).
Moreover, if we consider only two-way exchange under live donor transplantation, O-blood type pa-
tients do not benefit from donor exchange (Lemma 1 in Ergin, Sönmez, and Ünver, 2017). However,
with the introduction of hybrid transplantation, such patients can receive transplants (see Figure 1).

Taking account into hybrid transplantation poses several new theoretical challenges. The model we
introduce has one deceased donor and finitely many patients who bring a number of their relatives as
(compatible or incompatible) living donors. A patient may have multi-unit demand as she is assigned
two living donors for living donor transplantation, or is assigned one cadaveric lung and one living
donor for hybrid transplantation, unlike the standard matching model with unit demand. Organs
are indivisible goods, a cadaveric organ is taken to be a social endowment (common ownership), and
living donors are those owned by patients (private ownership). Thus, a patient can simultaneously
participate in the two “dual” markets for deceased donors and living donors.7 Thus the treatment of
hybrid transplantation naturally leads to the model with mixed ownership. Our model is the first
real-life application of matching problems with multi-unit demand and mixed ownership.8 In such a
model, a desirable mechanism has not been discussed.

We search for a matching mechanism – a procedure of assigning donors to patients for transplants
based on their medical types and preferences – which should have desirable properties of individual
rationality, Pareto efficiency, fairness, and incentive compatibility of strategy-proofness. We focus on
individual rational allocations in which each patient receives an assignment at least as good as the
no transplant. The Pareto efficiency we use is the standard one. We propose a new fairness notion,
called ⪰-fairness, based on the priority, ⪰, of patients. A patient regards an allocation ⪰-unfair if she
can improve with the cadaveric lungs assigned to lower-priority patients whenever she can play the

7We use the term “dual organ markets” for the following two meanings. First, it expresses the multi-unit demand
like Ergin, Sönmez, and Ünver (2017) do. Second, patients simultaneously participates in the two markets for deceased
donors and living donors.

8An exception is Roth, Sönmez, and Ünver (2004). In their kidney exchange model, they have living donors and
the waiting option of putting patients on higher priority in the waiting list of patients. The waiting option implicitly
expresses the treatment of deceased donors. On the other hand, we explicitly model the situation in which a patient
can access to and use resources in both markets for living donors and those for deceased donors.
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role of assigned patients. Fair allocations are those not ⪰-unfair. Finally, the strategy-proofness we
use is also the standard one where truth telling is a weak dominant strategy in the induced preference
revelation game.

We examine the current Japanese mechanism that is only for assigning cadaveric lungs. We show in
Proposition 3 that it is neither strategy-proof nor ⪰-fair, though it is individually rational and Pareto
efficient. Instead, we propose a priority mechanism in which the highest-priority patient selects all
of her favorite individual rational allocations, the second-highest patient selects all of her favorite
among those selected by the highest-priority patient, and so on. Then we show in Theorem 1 that in
regimes without donor exchange, including the current Japanese one, the priority mechanism recovers
strategy-proofness and ⪰-fairness, still keeping individual rationality and Pareto efficiency. However,
once we allow for donor exchange, the strategy-proofness will be violated (Proposition 4), because
a lower-priority patient can, by misreporting, narrow down the higher-priority patient’s allocations
by providing her donors and then obtain more favorite cadaveric transplants. It turns out that such
a negative result is from a general impossibility result (Theorem 2) under any regime with donor
exchange: no mechanism is individually rational, Pareto efficient, ⪰-fair, and strategy-proof. Note
that the priority mechanism satisfies all of the properties except for strategy-proofness. We observe
that misreporting is risky in the priority mechanism in that if the medical types were different, a
misreporting patient would get no-transplant instead of some transplant. With this observation, we
introduce uncertainty about the medical type of the deceased donor as well as other patients’ medical
types and preferences. Then the priority mechanism is shown to be robust against manipulation, that
is, the truth-telling profile is a Bayesian Nash equilibrium (Theorem 3).

We introduce the dual organ markets in Section 2. The model covers dual-donor organ exchange
(Ergin, Sönmez, and Ünver, 2017) for dual-graft liver transplantation, bilateral living-donor lung
transplantation, and simulataneous liver liver-kidney transplantation, with new strucgture of hybrid
transplantation when both deceased and living donors coexist. Our description in the paper is for
lung for simplicity, but the model is applicable to any other organ by selectively ignoring some parts of
the model. In Section 3, several properties of mechanisms. All proofs are relegated to the Appendix.
Section 4 discusses our main results regarding the current Japanese mechanism and the priority
mechanism. Finally, Section 5 concludes. Omitted proofs are given in the Appendix.

1.1 Related literature

In the matching problem with unit demand, a model with social endowments is called a house allo-
cation problem (Hylland and Zeckhauser, 1979); the one with private ownership is called a housing
market (Shapley and Scarf, 1974); the one with mixed ownership is a house allocation problem with
existing tenants (Abdulkadiroğlu and Sönmez, 1999) which Roth, Sönmez, and Ünver (2004) apply
to donor exchange for kidney transplantation. In dichotomous preferences, Roth, Sönmez, and Ünver
(2005) further investigates a priority mechanism under private ownership in which higher-priority
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patients narrow down their favorite allocations.
For multi-unit demand, a matching problem with social endowment is studied by, for example,

Klaus and Miyagawa (2001); Budish and Cantillon (2012), while the one with private endowment
is studied by Moulin (1995); Konishi, Quint, and Wako (2001). Its special case where objects are
exogenously separated by types is a multiple-type market (e.g., Moulin 1995; Anno and Kurino 2016).

The most related paper is Ergin, Sönmez, and Ünver (2017) which is modeled as a matching
problem with multi-unit demand and private endowment. Their model is a special case of our model
when a deceased donor is not compatible with any patients. In this case, they focus on maximal
matching instead of a mechanism. Our priority mechanism can achieve their maximal matching for a
two-way donor exchange, too.

2 Model: Dual Organ Markets

2.1 Basics

We describe the model for dual organ markets. Although our theory covers both cases of lung and
kidney, our description is for the most complex case of lung with multi-unit demand as the other
organ of kidney with one unit demand can be easily understood with trivial modification.

There are one deceased donor who donates her (one or two) lungs and finitely many patients each of
whom accompanies living donors. All of patients and donors have (medical) types for transplantation
which determines which donor can donate to which patient. All patients have a priority for lungs
from a deceased donor which is typically determined by their waiting time. Formally, a model is a list
(N, {DL

i }i∈N , DC , (T,�), θ,⪰) which satisfies the following conditions:

1. N := {1, . . . , n} is a finite set of patients. We suppose that each patient has authority to decide
for transplantation with enough medical knowledge.9 We assume that N contains at least two
patients.

2. For each i ∈ N , DL
i is the finite set of patient i’s living donors. With this condition, patients

have different numbers of their living donors.10 We assume that DL
i ∩ DL

j = ∅ for all i, j ∈ N

with i ̸= j. That is, no living donor is shared by two patients. Since the main focus of this
paper involves living donor exchange, we assume that at least two patients have multiple living
donors. Let DL := ∪i∈ND

L
i be the set of all living donors in the market.

3. DC := {dc} where dc is the cadaveric donor. We assume that the cadaveric donor is not one of
the donors registering as a living donor of a patient, i.e., DC∩DL = ∅. We denote D := DL∪DC .

9This is because a patient can be considered to represent a team with her doctor. She does not necessarily know
nor understand her own health status for transplantation, but she makes decision about whether to take a transplant.
On the other hand, a medical doctor knows her health status, but cannot force her for a transplant.

10Note that this setting generalizes the assumption of Ergin, Sönmez, and Ünver (2017) in which each patient has
exactly two living donors.
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4. (T,�) = ×K
k=1(Tk,⊵k) is a medical type space where there are K kinds of component medical

type spaces, and for each k ∈ {1, . . . , K}, Tk is a finite set of k-th types equipped with a
reflexive binary relation ⊵k where tk ⊵k t′k means that tk is compatible with t′k. For each
{t, t′} ∈ T = ×K

k=1Tk, a donor of type t is compatible with a patient of type t′ if and only if for
each k ∈ {1, . . . , K}, tk ⊵k t

′
k. This is denoted as t ⊵ t′.

In case that a component medical type space is defined by blood types, written as (TB,�B),

TB := {O,A,B,AB}, and

�B := {(O,A), (O,B), (O,AB), (A,AB), (B,AB)} ∪ {(X,X) | X ∈ B}.

We call (TB,�B) the ABO type space. We assume that the collection of component type
spaces {(Tk,�k)}Kk=1 contains the ABO type space.

5. θ = (θdc , θ1, . . . , θn) represents the medical status of all agents. For brevity but slight confusion,
we call it a type profile.

• θdc := (θdcq, θdcT ) ∈ {1, 2} × T is the medical status, or type, of the cadaveric donor where
the cadaveric donor can supply θdcq lungs and is of medical type θdcT . Let Θdc := {1, 2}×T

denote the set of types of the cadaveric donor.

• For each i ∈ N , θi = (θi(i), (θi(d))d∈DL
i
) ∈ T {i}×DL

i is the medical status, or type, of patient
i which indicates her own medical type θi(i) ∈ T and her living donors’ medical types
(θi(d))d∈DL

i
∈ TDL

i . We assume that the set of living donors of patient i contains at most
one donor whose type is compatible with patient i. That is, for all d, d′ ∈ DL

i , θi(d) �
θi(i) and θi(d

′)�θi(i) imply d = d′. This is because a patient would conduct a living-donor
transplant with her own compatible donors if she has at least two compatible donors. In
other words, our model captures the market for the patients who cannot have a transplant
with only own donors. Note that this simplification is also employed in Ergin, Sönmez, and
Ünver (2017).

• Let Θi be the set of types of patient i. Let Θ := Θdc × Θ1 × . . . × Θn be the set of type
profiles. For each i ∈ N , let Θ−i := Θdc ×

∏
j ̸=iΘj. For notational simplicity, given θ ∈ Θ,

let θ(i) denote θi(i) for each i ∈ N , and θ(d) denote θi(d) for each i ∈ N and each d ∈ DL
i .

6. The symbol ⪰ represents a priority order for patients. Mathematically, it is a complete, transitive
and anti-symmetric binary relation over N .

A dual organ market is the model above together with a preference profile of patients. We will
introduce the preferences after defining allocations in the next subsection.
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2.2 Allocation

To describe the notion of assignments, we first clarify what kind of transplants are potentially available
for each patient i ∈ N under a given type profile θ. A transplant for patient i is expressed by a pair
xi = (xC

i , x
L
i ) where xC

i is the number of cadaveric lungs and xL
i is the set of living donors. Given

θ ∈ Θ, we classify available transplants as follows.

1. Double-lung transplantation (also known as bilateral transplantation): Transplanting two
lungs of a deceased donor to a patient. The set of such transplants for patient i is denoted by

X20
i (θ) :=

{(2, ∅)} if θdcq = 2 and θdcT � θ(i),

∅ otherwise.
.

2. Single-lung transplantation: Transplanting a single lung of a deceased donor to a patient.
The set of such transplants for patient i is denoted by

X10
i (θ) :=

{(1, ∅)} if θdcT � θ(i),

∅ otherwise.

3. Living-donor lung transplantation: Transplanting two lobes from two living donors, one for
each, to a patient. The set of such transplants for patient i is denoted by

X02
i (θ) :=

{
(0, xL)

∣∣∣∣∣ i) xL ∈ 2D
L

and |xL| = 2, and
ii) ∀d ∈ xL, θ(d) � θ(i)

}

4. Hybrid lung transplantation: Transplanting a single lung of a deceased donor and a lobe of
a living donor to a patient. The set of such transplants for patient i is denoted by

X11
i (θ) :=


{
(1, xL)

∣∣∣∣∣ i) xL ∈ 2D
L

and |xL| = 1, and

ii) ∀d ∈ xL, θ(d) � θ(i)

}
if θdcT � θ(i),

∅ otherwise.

This was newly conducted at Okayama University Hospital. In particular, let X̃11
i (θ) be the set

of hybrid transplants with i’s own donor, i.e., X̃11
i (θ) := {(1, xL) ∈ X11

i (θ) | xL ⊆ DL
i }.

5. Null transplantation: The transplant (0, ∅), called the null transplant, means that patient
i will not receive any transplant. The set X00

i (θ) = {(0, ∅)} denotes the one that contains only
the null transplant.11

11Actually, the set X00
i (θ) does not depend on the type profile θ. However, for notational consistency, we do not use

the notation without the reference for the type profile such as X00
i .
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Figure 2: Inflow and outflow are not balanced.

Then the set of potentially possible transplants for patient i under θ, Xi(θ), is defined as follows.

Xi(θ) := X20
i (θ) ∪X10

i (θ) ∪X11
i (θ) ∪X02

i (θ) ∪X00
i (θ).

We will later describe by preferences which transplant is sufficient or not for saving a patient.
Given a type profile θ ∈ Θ, an allocation, aθ = (aθi )i∈N =

(
(aθCi , aθLi )

)
i∈N

∈
∏

i∈N Xi(θ), describes

a distribution of transplants among patients. In particular, we say that aθi ∈ Xi(θ) is an assignment
of patient i at aθ, or a transplant of patient i at aθ. We impose three conditions on allocations. The
first is a physical constraint: the number of cadaveric lungs used at the allocation cannot exceed the
number of cadaveric lungs supplied by the deceased donor. That is,

∑
i∈N

aθCi ≤ θdcq. (1)

The second is also a physical constraint: the number of lobes of lung that a living donor can donate
is at most one. Note that for each patient i, aθLi ∈ 2D

L describes who donates a lobe of lung to i.
Thus, to formalize the second condition, we just need to require that a living donor should not be
included at two living-donor assignments at an allocation. That is,

∀i, j ∈ N with i ̸= j, aθLi ∩ aθLj = ∅. (2)

The last condition is motivated by the allocations described in Figure 2. At the allocation in
the left figure, patient i’s donor di provides a lobe of lung to patient j, even though her intended
patient i does not receive a transplant. This allocation would fail to achieve the goal of donor di who
participates in the market to relieve patient i. At the allocation in the right figure, both patients i

and j receive transplants. However, their treatment is very different. Patient i receives a donation
from dj in exchange for the donation by donors’ di2 and di3. This situation might arise when the type
of patient i is so rare that she cannot find a compatible donor except for di1. In this case, if i finally
finds dj as her compatible donor, she and her own donors might be willing to accept dj in exchange for
donors’ di2 and di3. However, this type of exchange has a flavor of price mechanism which is strictly
prohibited for the distribution of organs in most countries.
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In this paper, we will not be involved in a radical interpretation of an allocation that needs a
drastic change of Organ Transplant Law. To construct an allocation system without controversial
concepts, we employ the cautious condition, requiring that each patient’s benefit from the market as
the number of lobes of lung from others’ donors should not exceed the contribution of her own donors
to other patients as the number of lobes of lung. That is,

∀i ∈ N,
∣∣∣aθLi \DL

i

∣∣∣ ≤ ∣∣∣DL
i ∩

(
∪j ̸=i a

θL
j

)∣∣∣. (3)

The lefthand side of the inequality is the number of lobes of lung from other patients’ living donors,
while the righthand side of the inequality is the number of i’s own donors who donate to other patients.
We call this condition the Balanced Condition, or BC for short. Note that the allocations in Figure
2 are excluded because patient j violates BC. Let us emphasize that this condition is implicitly
employed in the Ergin, Sönmez, and Ünver’s (2017) live-donor exchange model . Thus, our model
with cadaveric and living donors under BC is a natural extension of their model. We denote the set
of all allocations under θ by A(θ). Moreover, let A be the set of all potentially possible allocations,
i.e., A := ∪θ∈ΘA(θ).

Our notion of allocations describes not only which patients are assigned lungs and lung lobes from
donors, but also which transplants are conducted. This point is technically important. For example,
if the assignment (1, {di}) for patient i just described the former, it would not be clear whether the
actual transplant is single-lung or hybrid. For this reason, we interpret the assignment aθi of agent
i as the conducted transplant, and assume that the transplant using all of the lungs described in aθi

will be conducted.

Remark 1 (Lungs not described in an assignment). Based on the above interpretation, we explain how
lungs that do not appear in an allocation are treated.

1. At an allocation aθ ∈ A(θ), if
∑

i∈N aθCi < θdcq, then θdcq−
∑

i∈N aθCi units of the cadaveric lungs
are disposed at the allocation aθ.

2. At an allocation aθ ∈ A(θ), if a living donor di ∈ DL
i does not appear in any patient’s assignment

i.e., di ̸∈ aθL1 ∪ . . . ∪ aθLn , then di does not receive any surgery operation at the allocation.

As a consequence of conditions imposed on allocations, we have the following simple pattern of
allocations, the Balanced Condition holds with equality.

Proposition 1. Under any type profile θ ∈ Θ, every allocation aθ ∈ A(θ) is balanced in the following
sense.

∀i ∈ N,
∣∣∣aθLi \DL

i

∣∣∣ = ∣∣∣DL
i ∩

(
∪j ̸=i a

θL
j

)∣∣∣.
Namely, for each i ∈ N , the number of lobes of a lung donated to i from other patients’ donors is
balanced with the number of i’s donors who donate to other patients.
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Donation of living donors to non-relatives
unacceptable acceptable

Hybrid transpl. unacceptable Regime O Regime E
acceptable Regime H Regime EH

Table 1: Four regimes

2.3 Preference

We formulate the preferences of patients. To this end, it is useful to have the notations R(Z) and
P(Z) for any finite set Z: R(Z) is the set of complete and transitive binary relations on Z, while
P(Z) is the set of complete, transitive, and anti-symmetric binary relations on Z.

We assume that each patient has a preference on the set of transplantation types {20, 10, 11, 02, 00},
where 20, 10, 11, 02, and 00 stand for double-lung, single-lung, hybrid, living-donor, and null trans-
plantation, respectively. That is, each patient i ∈ N has a strict preference Ri ∈ P({20, 10, 11, 02, 00})
on the set of transplantation types. Note that the formulation of a preference is free from a given
type profile θ. Let R be the set of preferences, i.e., R := P({20, 10, 11, 02, 00}). For each Ri ∈ R,
the anti-symmetric part and symmetric part of Ri are denoted by Pi and Ii, respectively. For each
Ri ∈ R, a transplantation type α is acceptable at Ri if she prefers α to the null transplantation 00.
Let Aci(Ri) be the set of acceptable transplantation types at Ri, i.e., Aci(Ri) := {α | α Pi 00}.

Based on a preference Ri ∈ R over transplantation types, we induce a preference over available
transplants under a type profile θ. Namely, given θ ∈ Θ, we assume that a patient i ∈ N with her
preference Ri ∈ R has a preference Ri(θ) ∈ R (Xi(θ)) defined as follows;

∀α, β ∈ {20, 10, 11, 02, 00},∀xi ∈ Xα
i (θ),∀yi ∈ Xβ

i (θ), xi Ri(θ) yi ⇔ α Ri β.

Note that, in the induced preference Ri(θ), patients are indifferent between two transplants in the
same type transplantation. Without any confusion, we abuse the notation Ri to represent Ri(θ). That
is, we write xi Ri yi instead of xi Ri(θ) yi for two transplants xi, yi ∈ Xi(θ) under a type profile θ.

Given a type profile θ, a transplant xi ∈ Xi(θ) is called acceptable to agent i with her preference
Ri if she prefers s transplant xi to nothing, i.e., xi Pi (0, ∅). Let Aci(Ri; θ) be the set of acceptable
transplants for agent i with Ri under θ.

A preference profile is a list R = (Ri)i∈N ∈ RN consisting of preferences of all patients. The
set of all preference profiles RN is called the preference domain.

2.4 Regimes: Legal Constraints

The feasibility of an allocation is determined not only by medical technologies but also by social envi-
ronments. By social environment we mean legal and ethical one that stipulates whether a medically
possible transplant is socially acceptable and implementable without much administrative and mon-
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etary burden. In our paper we examine two types of constraints for social environments: (i) hybrid
transplantation and (ii) donation of living donors to non-relative patients. According to how these
constraints are treated, we consider the following (2× 2) kinds of regimes (See Table 1).

2.4.1 Regime O

Regime O is the environment before the introduction of live-donor exchange and hybrid transplan-
tation technology.12 Since each patient cannot have a live-donor transplant with her own donors, only
cadaveric (single-lung or double-lung) transplantation is possible. Thus, given θ ∈ Θ, an allocation
aθ ∈ A(θ) is feasible under regime O if for each i ∈ N , aθi ∈ X20

i (θ)∪X10
i (θ)∪X00

i (θ). Let AO(θ) be
the set of feasible allocations at θ under regime O.

2.4.2 Regime E

Regime E is the environment with the introduction of live-donor exchange to the original market.
Donor exchanges (Ergin, Sönmez, and Ünver, 2017) are allowed, in addition to cadaveric (single-lung
or double-lung) and living donor transplantation. Thus, given θ ∈ Θ, an allocation aθ ∈ A(θ) is
feasible under regime E if for each i ∈ N , aθi ∈ X20

i (θ)∪X10
i (θ)∪X02

i (θ)∪X00
i (θ). Let AE(θ) be the

set of feasible allocations at θ under regime E.

2.4.3 Regime H

Regime H is the environment with the introduction of hybrid transplantation technology to the
original market. The hybrid transplant between a patient and one of her own donors is allowed, in
addition to cadaveric lung transplantation. Thus, given θ ∈ Θ, an allocation aθ ∈ A(θ) is feasible
under regime H if for each i ∈ N , aθi ∈ X20

i (θ) ∪X10
i (θ) ∪ X̃11

i (θ) ∪X00
i (θ). Let AH(θ) be the set of

feasible allocations at θ under regime H.

2.4.4 Regime HE

Regime HE is the environment with the introduction of both live-donor exchange and hybrid trans-
plantation technology to the original market. All types of (cadaveric lung, living donor, hybrid)
transplantation are possible. Thus, given θ ∈ Θ, every allocation aθ ∈ A(θ) is feasible under regime
HE. Let AHE(θ) be the set of feasible allocations at θ under regime HE. The new patterns of exchange
that our paper advocates is an exchange of donors for hybrid transplantation. At the left allocation
in Figure 3, both patients i and j receive a hybrid transplant with the other’s donor. At the middle in
Figure 3, patient i receives a hybrid transplant while j receives a living-donor transplant. This alloca-
tion suggests that the hybrid transplant makes the living-donor transplant possible.13 Theoretically,

12Because this is the “original” state of the market, we call the regime “O”.
13The literature on kidney exchange considers the system that allows patients to exchange their donors with the right

to receive a cadaveric kidney (Roth, Sönmez, and Ünver, 2004). Note that it contains a exchange of living-donor kidney
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Figure 3: Hybrid exchange opens up new patterns of allocation.

the number of living-donor transplants caused by a hybrid transplant can be any large number. At
the right in Figure 3, three living-donor transplants are implemented.

Remark 2. By definition, we have the following relations among the sets of feasible allocations under
various regimes.

AO(θ) ⊆ AE(θ)

⊇ ⊇
AH(θ) ⊆ AHE(θ)

2.5 Dual organ markets under various regimes

Now we summarize our model. A dual organ market under regime Y ∈ {O,E,H,HE} consists
of the following components:

1. (N, {DL
i }i∈N , DC , (T,�), θ,⪰) as described in Section 2.1.

2. R = (Ri)i∈N ∈ RN , a preference profile as described in Section 2.3;

3. AY (θ), the set of feasible allocations under regime Y as described in Section 2.4.

We assume that there is a clearinghouse whose goal is to distribute transplants among agents in a
“desirable” way.14 To do so, it needs to collect the decentralized information about

• types of market participants θ = (θi)i∈N and

• preferences of patients R.

Together with the type of the cadaveric donor, the clearinghouse processes the information in de-
termining a feasible allocation.15 The procedure is called a mechanism. Formally, a mechanism
under regime Y is a function φ from RN × Θ to ∪θ∈ΘAY (θ) such that for each (R; θ) ∈ RN × Θ,

and deceased-donor kidney. What is new in the middle allocation in Figure 3 is that patient i who receives a hybrid
transplant exchanges her living-donor with patient j’s living-donor.

14In the next section, we will discuss what allocations are desirable.
15We assume that the type information of the cadaveric donor is known by the clearinghouse whenever a cadaveric

donor appears. This is natural because it is reported by a medical doctor who is in charge of the cadaveric donor. The
clearinghouse shares the information with medical doctors in charge who are out of our model.
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φ(R; θ) ∈ AY (θ). That is, the clearinghouse has patients report their types and preferences. Ex-
pressing the information by type and preference profile (R; θ) ∈ RN × Θ, the clearinghouse uses a
mechanism φ to determine an allocation φ(R; θ) ∈ AY (θ) feasible under regime Y .

3 Properties of Mechanisms

In a general indivisible goods resource allocation problem, the desirable properties for a mechanism to
satisfy are individual rationality, efficiency, fairness, and incentive compatibility. We introduce these
properties for our dual organ market. We fix a regime Y ∈ {O,E,H,HE} throughout this section.

3.1 Individual rationality

We introduce individual rationality for our model. It is a condition on allocations in which any
patient does not hurt from participating in a market. In other words, it is not the case that any
patient receives her transplant worse than the null transplant (0, ∅). Thus, the individual rationality
is the minimum natural requirement for any allocation to be implemented. Formally we define:

Definition 1. Under regime Y , an allocation aθ ∈ AY (θ) is individually rational at (R; θ) ∈ RN×Θ

if for each patient i ∈ N , aθi is acceptable at Ri. We denote by IY (R; θ) the set of all individually
rational allocations at (R; θ). Moreover, a mechanism under regime Y , φ, is individually rational
if for each (R; θ) ∈ Θ×RN , the selected allocation φ(R; θ) ∈ AY (θ) is individually rational at (R; θ).

3.2 Efficiency

We define three notions of efficiency. The first is the standard notion of Pareto efficiency. Under
regime Y , an allocation aθ ∈ AY (θ) is Pareto efficient at (R; θ) ∈ RN × Θ if there is no allocation
bθ ∈ AY (θ) such that for each i ∈ N , bθi Ri a

θ
i , and for some i ∈ N , bθi Pi a

θ
i . A mechanism under

regime Y , φ, is Pareto efficient if for each (R; θ) ∈ RN ×Θ, the selected allocation φ(R; θ) is Pareto
efficient at (R; θ).

We next introduce the notions of non-wastefulness for our dual organ market. The standard
notion of non-wastefulness is defined for indivisible goods resource allocation problems under common
ownership and unit demand where no agent initially owns an object and an agent consumes one
object. The non-wastefulness means that “unused” objects cannot be assigned to benefit some agent
without affecting anybody else’s assignment (Balinski and Sönmez, 1999). On the other hand, our
dual organ market has mixed ownership and multi-unit demand. Thus the unused objects available for
a patient are disposed cadaveric lungs and a lobe of her own donors who do not donate at the original
allocation. Thus, each patient could potentially access to the unused objects in addition to the original
assignment without affecting anybody else’s assignment. Although the set of better opportunities can
be well captured by the set of unused objects under unit demand, the appropriate extension to our
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model with multi-unit demand and mixed ownership should include both unused objects and the
original individual assignment. If a patient finds a better transplant within her potentially accessible
objects, she might feel that the original assignment is wasteful in terms of opportunity. The following
notion of induced allocation explicitly describes each patient’s potentially accessible objects.

Definition 2 (Induced allocation, or shadow allocation). Given a type profile θ ∈ Θ and an allocation
aθ =

(
(aθCi , aθLi )

)
i∈N ∈ A(θ), we define the induced allocation aθ =

(
(aθCi , aθLi )

)
i∈N as follows: For

each i ∈ N ,
(i) aθCi := aθCi +

(
θdcq −

∑
j∈N aθCj

)
, and

(ii) aθLi := aθLi ∪ {d ∈ DL
i

∣∣d ̸∈ ∪j ̸=ia
θL
j }.

In words, patient i’s induced cadaveric lung assignment aθCi is the sum of numbers of cadaveric lung
she receives at aθ and the disposed cadaveric lungs at aθ. Patient i’s induced live donor assignment
aθLi denotes the union of her assignment at aθ and her own donors who do not donate to other patient
at aθ. Thus, aθi formalizes the potentially accessible resources of patient i at aθ without changing
other patients’ assignment. Now, we are ready to introduce non-wastefulness.

Definition 3. Under regime Y , an allocation aθ ∈ AY (θ) is non-wasteful at (R; θ) ∈ Θ ×RN if it
is not the case that there exist i ∈ N and bi ∈ Xi(θ) such that (i) bi Pi a

θ
i , (ii) (bi; a

θ
−i) ∈ AY (θ), and

(iii) bCi ≤ aθCi and bLi ⊆ aθLi .

The condition says that patient i cannot find (i) a better transplant (ii) which is allowed under
regime Y without affecting others’ assignments, and (iii) which can be constructed within patient i’s
accessible resources at aθ. For example, if aθi = (1, ∅) is a single-lung transplant, then bi = (1, {di})
can be a hybrid transplant if patient i’s compatible own donor di does not donate at aθ, i.e., di ∈ aLi .

In addition to being non-wasteful, an allocation is strongly non-wasteful if it maximizes the number
of cadaveric lungs used among individually rational allocations. That is,

Definition 4. Under regime Y , an allocation aθ ∈ AY (θ) is strongly non-wasteful at (R; θ) ∈
RN ×Θ if aθ is non-wasteful, and ∑

i∈N

aθCi = max
bθ∈IY (R;θ)

∑
j∈N

bθCj .

We say that a mechanism under regime Y , φ, is (strongly) non-wasteful if for each (R; θ) ∈ RN×Θ,
the selected allocation φ(R; θ) ∈ AY (θ) is (strongly) non-wasteful at (R; θ).

Example 1 (Non-wasteful but strongly wasteful allocation). Let (T,�) = (TB,�B).16 Let θ ∈ Θ be
such that θdc = (2, A) and θ(1) = θ(2) = A. Suppose also that for each i ∈ N\{1, 2} and each d ∈ DL,
θ(i) = O and θ(d) = AB. Let R ∈ RN be a preference profile described by the following table.

16This assumption enable us to simplify the description without any loss of generality as it corresponds with the
assumption that all patients and donors have the identical medical type except for the ABO blood type.
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Figure 4: Logical relationship among efficiency concepts

Under regime O or H. Under regime E or HE.

Note: SNW stands for strong non-wastefulness, NW for non-wastefulness, and PE for Pareto efficiency.

R1 10 00 · · ·
R2 20 00 · · ·

Thus patients 1 and 2 can receive donation only from the cadaveric donor. Moreover, patient 1 finds
the only single-lung transplant acceptable, and patient 2 the only double-lung transplant acceptable.
Consider an allocation aθ := ((1, ∅), (0, ∅)) where one cadaveric lung is transplanted to patient 1,
but the other is disposed so that patient 2 receives the null transplant.17 Obviously aθ is non-
wasteful. However, one lung is disposed and the two lungs can be transplanted to patient 2 in another
allocation bθ := ((0, ∅), (2, ∅)) ∈ IY (R; θ), and thus allocation aθ is strongly wasteful. Note that∑

i∈N aθCi = 1 < 2 =
∑

i∈N bθCi . ♢

The following remark clarifies the logical relationship among our efficiency notions (See Figure 4).

Remark 3. We have the following three statements. Sentences without a reference for regime hold
under any regime. The proofs are in the Appendix. Let (R; θ) ∈ RN ×Θ.

1. If an allocation is strongly non-wasteful at (R; θ), then it is non-wasteful at (R; θ). The converse
is not true.

2. If an allocation is Pareto efficient at (R; θ), then it is non-wasteful at (R; θ). The converse is
also true only if Y ∈ {O,H}.

3. There is no logical relationship between Pareto efficiency and strong non-wastefulness under any
regime Y ∈ {E,HE}.

3.3 Fairness

In our dual organ market, we have a priority ⪰ given as one component of the market. The priority
expresses the right of patients receiving cadaveric lungs. In this subsection we introduce the notion
of fairness with respect to the priority.

In our notion, each patient i has the the following minimum ethical view that if some patient, j,
of lower priority than i uses cadaveric lungs, then patient i can take them from j for her transplant,
except when the role of j is critical for a transplant for a patient, k, of higher priority than i.

17The assignments for i ∈ N\{1, 2} are necessarily the null transplant (0, ∅), and thus they are omitted in the
description of the allocations.
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Definition 5. Under regime Y , patient i ∈ N regards an allocation aθ ∈ AY (θ) as ⪰-unfair at
(R; θ) ∈ RN × Θ if there is bθ ∈ IY (R; θ) such that (i) bθi Pi a

θ
i , (ii) bθCi > aθCi and for each j ∈ N

with j ≻ i, bθCj = aθCj and (iii) for each j ∈ N , aθj Pj b
θ
j implies aθCj > bθCj . Moreover, an allocation

aθ ∈ AY (θ) is ⪰-fair at (R; θ) ∈ RN ×Θ if no agent regards aθ as ⪰-unfair at (R; θ).

In words, aθ is ⪰-unfair at (R; θ) if a patient i can find an individually rational allocation bθ in
which (i) i is better off, (ii) with cadaveric lungs taken up from a lower-priority patient (iii) without
making any other patient worse off except for the one who is taken away a cadaveric lung. We say
that a mechanism under regime Y , φ, is ⪰-fair if for each (R; θ) ∈ RN × Θ, the selected allocation
φ(R; θ) ∈ AY (θ) is ⪰-fair at (R; θ).

The following remark clarifies the logical relationship between ⪰-fairness and axioms previously
introduced.

Remark 4. We have the following two statements. Sentences without a reference for regime hold under
any regime.

1. ⪰-fairness does not imply individual rationality. Under any regime Y ∈ {E,HE}, even the
combination of Pareto efficiency and ⪰-fairness does not imply individual rationality.

2. There is no logical relationship between ⪰-fairness and any one of the three efficiency notions
of non-wastefulness, strong non-wastefulness, and Pareto efficiency.

The following impossibility asserts that strong non-wastefulness is too demanding as an efficiency
notion as long as we employ individual rationality and ⪰-fairness as basic axioms for a mechanism.

Proposition 2. Under any regime Y ∈ {O,E,H,HE}, there exists (R; θ) ∈ RN × Θ such that no
allocation is individually rational, strongly non-wasteful, and ⪰-fair at (R; θ).

3.4 Incentive compatibility

We employ strategy-proofness as our incentive compatibility condition. In our model, each patient has
two pieces of information about herself: type θi and preference Ri. We do not treat these information
symmetrically, since the former is verifiable by the other medical doctors, while the latter is her private
information. Thus, we assume that her reporting type θi is sincere, while her reporting preference Ri

may not. In other words, preference reporting is the only source of strategic manipulation.

Assumption 1 (Sincere reporting about types). Each patient reports her type sincerely.

Under the above assumption, the following is a standard definition of strategy-proofness.

Definition 6. A mechanism under regime Y , φ, is strategy-proof if for each (R; θ) ∈ RN ×Θ, each
i ∈ N , and each R′

i ∈ R, φi(R; θ) Ri φi(R
′
i, R−i; θ).
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4 Main Results

In this section, we first investigate the mechanism currently used in Japan under regime O.18 We show
that the Japanese mechanism is individually rational and Pareto efficient, but is neither ⪰-fair nor
strategy-proof. Then, we propose priority mechanisms that can be used for any regime, and show its
prominence for our dual organ market. To define these mechanisms, we use the notation Top(⪰,M)

which is the highest-priority patient among those in the non-empty set M of patients. That is, for
each i ∈ M , Top(⪰,M) ⪰ i.

4.1 Case study: the Japanese mechanism

We describe the Japanese mechanism that works only under regime O. To this end, we introduce the
following notations. For each (R; θ) ∈ RN ×Θ,

• N(R; θ) := {i ∈ N | (2, ∅) ∈ Aci(Ri; θ) or (1, ∅) ∈ Aci(Ri; θ)} is the set of all candidates of the
deceased donor transplantation;

• N20(R; θ) = {i ∈ N(R; θ) | 20 Pi 00 Pi 10} is the set of all patients who think the only the
double-lung transplants as acceptable;

• N21(R; θ) = {i ∈ N(R; θ) | 20 Pi 10 Pi 00} is the set of all patients who prefer the double-lung
transplants to single-lung ones;

• N10(R; θ) = {i ∈ N(R; θ) | 10 Pi 00 Pi 20} is the set of all patients who think the only
single-lung transplants as acceptable;

• N12(R; θ) = {i ∈ N(R; θ) | 10 Pi 20 Pi 00} is the set of all patients who prefer the single-lung
transplants to double-lung ones.

Note that the sets N20(R; θ), N21(R; θ), N10(R; θ), and N12(R; θ) are disjoint.

Definition 7 (Japanese mechanism). Under the regime O, the Japanese mechanism, φJ , selects
an allocation for each (R; θ) ∈ RN ×Θ as follows.

First, we consider the case with θdcq = 2. If N(R; θ) = ∅, then let φJ(R; θ) =
(
(0, ∅), · · · , (0, ∅)

)
.

Otherwise, let i1 := Top(⪰;N(R; θ)).
Case 1: i1 ∈ N20(R; θ) ∪N21(R; θ).
For each i ∈ N ,

φJ
i (R; θ) =

(2, ∅) if i = i1,

(0, ∅) if i ̸= i1.

Case 2: i1 ∈ N10(R; θ) ∪N12(R; θ) and
(
N10(R; θ) ∪N12(R; θ)

)
\{i1} ≠ ∅.

18We formalize the mechanism based on the recipient selection rule described in http://www.jotnw.or.jp/jotnw/

law_manual/pdf/rec-lungs.pdf.
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Let i2 := Top(⪰;
(
N10(R; θ) ∪N12(R; θ)

)
\{i1}). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i1 or i = i2,

(0, ∅) if i ∈ N\{i1, i2}.
Case 3: N10(R; θ) ∪N12(R; θ) = {i1}.

Case 3.1: N21(R; θ) ̸= ∅.
Let i3 := Top(⪰;N21(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i1 or i = i3,

(0, ∅) if i ∈ N\{i1, i3}.
Case 3.2: N21(R; θ) = ∅.

Case 3.2.1: i1 ∈ N10(R; θ) and N20(R; θ) ̸= ∅.
Let i4 := Top(⪰;N20(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(2, ∅) if i = i4,

(0, ∅) if i ̸= i4.

Case 3.2.2: i1 ∈ N12(R; θ) or N20(R; θ) = ∅.
For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i1,

(0, ∅) if i ̸= i1.

Next, we consider the case with θdcq = 1. If N21(R; θ) ∪ N12(R; θ) ∪ N10(R; θ) = ∅, then let
φJ(R; θ) =

(
(0, ∅), · · · , (0, ∅)

)
. Otherwise,

Case 4: N12(R; θ) ∪N10(R; θ) ̸= ∅.
Let i5 := Top(⪰;N12(R; θ) ∪N10(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i5,

(0, ∅) if i ̸= i5.

Case 5: N12(R; θ) ∪N10(R; θ) = ∅.
Let i6 := Top(⪰;

(
N21(R; θ)). For each i ∈ N ,

φJ
i (R; θ) =

(1, ∅) if i = i6,

(0, ∅) if i ̸= i6.

The Japanese mechanism has aspiration for a strongly non-wasteful allocation in a situation where
the compatible highest-priority patient has the unit demand with rejecting two units. In that situation,
if (1) there is no lower-priority patient with unit demand and (2) at least one lower-priority patient
demands two units, then the mechanism skips the compatible highest-priority patient, and assigns
two lungs to the compatible highest-priority patient who demands two units to reduce the number of
disposed cadaveric lungs (See Case 3.2.1 in the definition of the Japanese mechanism).19

19More precisely, this type of skip is not applied if the cadaveric donor is not one of the relatives of the compatible
highest-priority patient at Case 3.2.1. Since we assume that DC ∩DL = ∅, this case is omitted from the description of
the Japanese mechanism.
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Table 2: Preferences for Example 2
R1 10 20 00 · · ·
R2 20 00 · · ·

R′
1 10 00 · · ·

However, the attempt to reduce the number of disposed cadaveric lungs is not fully achieved by
the current mechanism, i.e., there is another situation where it fails to assign cadaveric lungs in a
strongly non-wasteful manner. Moreover, the anomalistic allocation by the mechanism can be a source
of unfairness and strategic manipulation. These points are captured by the following example.

Example 2 (Flaws of the Japanese mechanism). Suppose that only patients 1 and 2 have the identical
type with the two units of cadaveric lungs. That is, let θ ∈ Θ be such that θdcq = 2, θ(1) = θ(2) = θdcT ,
and for each i ∈ N\{1, 2}, θdcT ̸ � θ(i). Suppose also that patient 1 has higher priority than patient
2 does, i.e., 1 ≻ 2.

Flaw 1 (φJ is strongly wasteful). Let R ∈ RN be a preference profile in Table 2. Then N(R; θ) =

{1, 2}, N12(R; θ) = {1}, N20(R; θ) = {2}, N21(R; θ) = N10(R; θ) = ∅ and i1 = 1. Thus, Case 3.2.2
in the definition of φJ applies and thus φJ(R; θ) =

(
(1, ∅), (0, ∅)

)
. However, since

(
(0, ∅), (2, ∅)

)
is

individually rational at (R; θ), φJ(R; θ) is strongly wasteful at (R; θ).

Flaw 2 (φJ is not ⪰-fair nor strategy-proof). Let R′
1 ∈ R be a preference in Table 2. Let

R′ := (R′
1, R2). Then N(R′; θ) = {1, 2}, N10(R′; θ) = {1}, N20(R′; θ) = {2}, and i1 = 1. Thus Case

3.2.1 in the definition of φJ applies and then i4 = 2 so that φJ(R′; θ) = ((0, ∅), (2, ∅)). Higher-priority
patient 1 can be better off from a lung assigned to lower-priority patient 2 at φJ(R′; θ). Thus, φJ(R′; θ)

is not ⪰-fair at (R′; θ).
Now consider the strategic deviation of patient 1 from R′

1 to R1. Then, the allocation selected at
(R1, R2; θ) = (R; θ) is

(
(1, ∅), (0, ∅)

)
(See the calculation at Flaw 1). Thus, φJ

1 (R1, R2; θ) = (1, ∅) P ′
1

(0, ∅) = φJ
1 (R

′
1, R2; θ), which violates strategy-proofness. ♢

The following summarizes the properties of the Japanese mechanism. The proof is in the Appendix.

Proposition 3. Under regime O, the Japanese mechanism φJ is (i) individually rational, (ii) Pareto
efficient, (iii) not strongly non-wasteful, (iv) not ⪰-fair, and (v) not strategy-proof.

4.2 Priority mechanism

To introduce the priority mechanism, we need the following notation. Let σ : {1, . . . , n} → N be
the bijection that represents the priority order. That is, for each i ∈ {1, . . . , n}, σ selects the i-th
highest-priority patient, i.e., σ(1) ≻ σ(2) ≻ · · · ≻ σ(n).
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Figure 5: Allocations a, b and c in Example

Definition 8 (Priority mechanism). The priority correspondence under regime Y , ΦY , is the
nonempty-valued correspondence from RN×Θ to ∪θ∈ΘAY (θ) that selects feasible allocations in AY (θ)

for each (R; θ) ∈ RN ×Θ as follows.
Round 0: ΦY

0 (R; θ) selects all individually rational allocations at (R; θ). That is, ΦY
0 (R; θ) := IY (R; θ).

Round k ∈ {1, . . . , n}: ΦY
k (R; θ) selects all allocations that kth-priority patient, σ(k), prefers the most

among those in ΦY
k−1(R; θ). That is, ΦY

k (R; θ) :=
{
aθ ∈ ΦY

k−1(R; θ) | ∀bθ ∈ ΦY
k−1(R; θ), aθσ(k) Rσ(k) b

θ
σ(k)

}
.

Let ΦY (R; θ) := ΦY
n (R; θ).

A priority mechanism under regime Y , φP , is a selection from the priority correspondence, i.e.,
for each (R; θ) ∈ RN ×Θ, φP (R; θ) ∈ ΦY (R; θ).

Example 3 (Priority mechanism). This example describes the procedure of the priority mechanism
(Figure 5). There are three patients each of whom has exactly two living donors. For each i ∈ {1, 2, 3},
the types of patient i and her donors are shown in box i in the figures. For example, in box 1, patient
1’s type is shown in the left-hand side of the box, i.e., θ1(1) = A, while her two donors have the
identical type B as shown in the right-hand side of the same box. Suppose that patient 1 has the
highest priority, patient 2 the second, and patient 3 the third. The preferences of patients are given
as follows. R1 : 02, 20, 00, R2 : 11, 02, 00, R3 : 11, 02, 00.

In the first round, patient 1 chooses her assignment. Since her best is living-donor transplantation,
all feasible allocations in which patient 1 receives a living donor transplant are selected by the priority
correspondence. Such allocations are abundant, and some of them are given in Figure 5: allocations
a, b, and c. Note that all three allocations are indifferent for patient 1, while patient 2 and 3 are not.

In the second round, patient 2 chooses her assignment. Since her best is hybrid transplantation,
some allocations selected in the first round are rejected. Among allocations a, b, and c, allocation a

is rejected, since it assigns a living-donor transplant to patient 2. On the other hand, allocations b

and c remain selected at the second round, since it assigns a living-donor transplant to patient 1 and
a hybrid transplant to patient 2. Note that patient 3 is not indifferent between b and c.

In the third round, patient 3 chooses her assignment. Since her best is hybrid transplantation,
some allocations selected in the second round are rejected. Among allocations b and c, allocation b is
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rejected, since it assigns a living-donor transplant to patient 3.
Consequently, the priority correspondence contains allocation c. As shown in this example, in each

round, the priority mechanism selects the best feasible allocations for the chooser at the round not to
harm the higher-priority patients.20 ♢

Remark 5. The difference in regimes makes some differences on the nature of priority mechanisms.
The following items 2 and 3 are basic. The proofs are in the Appendix.

1. Under any regime Y ∈ {O,E,H,HE}, if both φ and φ̃ are priority mechanisms, then they are
welfare equivalent. That is, for each (R; θ) ∈ RN ×Θ and each i ∈ N , φi(R; θ) Ii φ̃i(R; θ).

2. Under any regime Y ∈ {O,H}, ΦY is single-valued. Thus a priority mechanism is unique.

3. Under any regime Y ∈ {E,HE}, ΦY may not be single-valued. Thus a priority mechanism may
not be unique.

4.2.1 Performance of priority mechanism under regimes O and H

Under regimes without donor exchange (regime O or H), the performance of the priority mechanism
is quite good:

Theorem 1. Under any regime Y ∈ {O,H}, the priority mechanism is individually rational, Pareto
efficient, ⪰-fair, and strategy-proof.

The priority mechanism overcomes the two major flaws of the Japanese mechanism – the violation
of ⪰-fairness and strategy-proofness. Moreover, the prominence is kept even under the introduction
of hybrid transplantation. However, by Proposition 2, strong non-wastefulness is not overcome. This
is viewed as an inevitable cost for a mechanism to be individually rational and ⪰-fair.

4.2.2 Performance of priority mechanism under regimes E and HE

Under regimes with donor exchange (regime E or HE), each priority mechanism keeps its good
performance for the normative side.

Proposition 4. Under any regime Y ∈ {E,HE}, each priority mechanism is individually rational,
Pareto efficient, and ⪰-fair. However, it is not strategy-proof.

One of the critical differences between regimes with and without donor exchange lies on the degree
of manipulability of the mechanisms. In particular, under regimes with donor exchange, a patient can
hide her own donors by rejecting hybrid and living-donor transplants in her preference.21 Recall that

20Rigorously speaking, a variant of c is also selected by the priority correspondence. It is the allocation in which the
donation from the patient 3’s second donor is replaced by the one from patient 3’s first donor. Note that c and its
variant are indifferent for all patients.

21Note that hiding donors has no positive effect for that patient under the regimes without donor exchange.
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Figure 6: Allocations a and b in Example 4

we focus on balanced allocations (Proposition 1). Thus, if a patient pretends that she cannot accept
any hybrid and living-donor transplants, then no other patients can use her living-donors. This type
of strategic behavior is a source for the manipulation of a mechanism. Consequently, every priority
mechanism is manipulable. To see this, consider the following example.

Example 4 (Manipulation of the priority mechanism). There are two patients, patients 1 and 2, each
of whom has exactly two living donors. The priority is 1 ≻ 2. Their medical types and preferences
are illustrated in Figure 6.

Under true preferences (R1, R2), patient 1 can accept only living-donor transplant, while patient 2
prefers a deceased-donor transplant to a living-donor transplant. Then the priority mechanism selects
allocation a in the left figure as follows. In the first round, patient 1 chooses allocation a, since it is
her most preferred transplant. In the second round, allocation a is the only allocation that patient 2
can choose. Thus allocation a is selected. Note that this allocation cannot be implemented without
patient 2’s living donors.

Now suppose that patient 2 deviates from R2 to R′
2. At R′

2, patient 2 hides the fact that she
can accept a living-donor transplant. This is a kind of “truncated strategy” well-known in two-
sided matching models (Roth and Sotomayor, 1990). Note that, for patient 1, to get a living donor
transplant, the living donors of patient 2 are critical. Consequently, since the hiding strategy of patient
2 narrows down the opportunity for patient 1, she cannot help but choose the null transplant in the
first round of the priority mechanism. This enables patient 2 to get a more preferred transplant, i.e.,
the deceased-donor transplant. ♢

A natural question arising from Proposition 4 is: Is there a mechanism satisfying all axioms listed
in the proposition? The answer is negative.

Theorem 2. Under any regime Y ∈ {E,HE}, no mechanism is individually rational, Pareto efficient,
⪰-fair, and strategy-proof.

Since no mechanism satisfies all axioms listed in Theorem 2, we have to give up at least one of
the axioms to design a plausible mechanism under a regime with donor exchange. Since Proposition
4 says that under regimes with donor exchange, each priority mechanism satisfies three of our four
basic axioms, priority mechanisms attain one of the best we can choose. Moreover, we will see a posi-
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Figure 7: Allocations a and c in Example

tive aspect of priority mechanisms which are robust against strategic manipulation under incomplete
information, although they are not strategy-proof under complete information.

4.3 Preference revelation game with incomplete information under prior-

ity mechanism

The successful manipulation of the priority mechanism in Example 4 heavily depends on the complete
information setup. In practice, the type of deceased donors is uncertain, and the types of other patients
and living donors are usually not open to the public. Thus the manipulation of the mechanism pertains
to the risk of missing an opportunity for a transplant. To see this point, let us consider the previous
example with one modification.

Example 5 (Manipulation of the priority mechanism is risky). Consider Example 4 where patient 2 of
blood type B gets the deceased donor of the same blood type by manipulating the priority mechanism
with the truncation strategy. However, when the blood type of the deceased donor is type A instead
of type B, her truncation strategy ends up with no transplants for both patients (Figure 7). In other
words, she cannot receive a living-donor transplant as well as a deceased-donor transplant because the
truncation strategy not only narrows down the opportunity for the higher-priority patient but also
the one for herself. In this sense, the manipulation strategy is risky.

Summing up, without accurate information about resources, i.e., types of deceased-donor and other
patients’ living donors, the manipulation behavior may be harmful to the manipulator, too. In that
sense, the truncation strategy is “a double-edge sword” for the manipulator.22 ♢

Motivated by the above example, we introduce incomplete information into our model. We assume
that each patient can observe only her own type and preference, not the others’. That is, she knows her
own preference and type (Ri, θi), but does not know other patients’ (R−i; θ−i), including the deceased
donor’s.23 Formally, we consider a preference revelation game G = (N,DC , {DL

i }i∈N , (T,�),Θdc , {R×
Θi}i∈N , {u∗

i }i∈N , Y, φP , {pi}i∈N), where

22In Lemma 2 of the Appendix, we show that all successful manipulation strategies of the priority mechanism are
necessarily “double-edge” in the sense that they always narrow down the possible assignment for the manipulator.

23This setup is suitable for Japan, because patients simply register for the Japan Organ Transplant Network without
any communication with other patients.
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1. The symbols N,DC , {DL
i }i∈N , (T,�),Θdc are the same as in the complete information model:

Each of them represents the set of patients, the set of cadaveric donors, the collection of the set
of living donors, the type space for the medical status of patients and donors and the type space
of the cadaveric donor, respectively.

2. For each i ∈ N , R×Θi denotes patient i’s action set. It also represents patient i’s “type space”
in the standard Bayesian game terminology.

3. For each i ∈ N , u∗
i : {20, 10, 11, 02, 00} ×

(
R × Θi

)
→ R is a state-dependent utility function.

For each (Ri, θi) ∈ R×Θi, u∗
i (· |Ri, θi) represents Ri. Without any confusion, given θ ∈ Θ, for

each xθ
i ∈ Xi(θ), u∗

i (x
θ
i |Ri, θi) denotes the value of u∗

i (· |Ri, θi) at the transplantation type of
xθ
i .

4. A priority mechanism φP under regime Y is fixed.

5. For each i ∈ N , pi : RN ×Θ → [0, 1] is a probability distribution that represents patient i’s prior
belief. We assume that pi has full support, i.e., for each (R; θ) ∈ RN × Θ, pi(R; θ) > 0. Note
that we do not place the common prior assumption. For each (Ri, θi) ∈ R × Θi, the posterior
belief is denoted by pi(· |Ri, θi), i.e., it is the function from RN\{i} × Θ−i to [0, 1] defined as
pi(R−i; θ−i |Ri, θi) :=

pi(Ri,R−i;θi,θ−i)∑
(R′

−i
;θ′−i

)∈RN\{i}×Θ−i
pi(Ri,R′

−i;θi,θ
′
−i)

.

Now we make an assumption on the players’ utility functions that reflects the huge gap in utilities
between acceptable transplants and unacceptable ones. To describe it, for each i ∈ N and each
(Ri, θi) ∈ R×Θi, we introduce the following two notations:

• UD(u∗
i ;Ri, θi) :=

 max
α∈Aci(Ri)

u∗
i (α |Ri, θi)− min

α∈Aci(Ri)
u∗
i (α |Ri, θi) if Aci(Ri) ̸= ∅,

0 if Aci(Ri) = ∅.

• pi(Ri, θi) := min
(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi).

In words, UD(u∗
i ;Ri, θi) denotes the utility difference between the best acceptable transplantation

and the worst acceptable one which in turn shows the maximal gain from the quality improvement
when a patient gets an acceptable transplant instead of another. Given patient i’s own type (Ri, θi) ∈
R×Θi, the most unlikely event occurs with probability pi(Ri, θi) in patient i’s perspective. Note that
pi(Ri, θi) > 0, since we assume that pi has a full support.

Assumption 2 (Huge utility gap between acceptable and unacceptable transplants). Even at the most
unlikely event, the expected utility loss from the worst acceptable transplant to the best unacceptable
one is so huge that a patient cannot recover it even if she gets an additional utility UD(u∗

i ;Ri, θi) in
every other event. Formally, for each i ∈ N and each (Ri, θi) ∈ R × Θi with at least one acceptable
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transplantation type at Ri, we have the following inequality:

p
i
(Ri, θi)

(
min

α∈Aci(Ri)
u∗
i (α |Ri, θi)− u∗

i (00 |Ri, θi)
)
> (1− p

i
(Ri, θi))

( ∣∣RN\{i} ×Θ−i

∣∣− 1
)
UD(u∗

i ;Ri, θi).

Since an assignment in our model represents a transplant, an unacceptable transplant can be
interpreted as the death of the patient. Thus, it is natural that there is a huge utility gap between
acceptable and unacceptable transplants.

For each player i ∈ N , a strategy is a function si : R × Θi → R × Θi such that for each
(Ri, θi) ∈ R × Θi, the submitted type is sincere one, i.e., the second coordinate of si(Ri, θi) is θi.
Recall that the medical condition of a patient and her donors θi is verifiable by medical doctors (See
Assumption 1).24 Let Si be the set of patient i’s strategies. The identity mapping s∗i ∈ Si is called
the truth-telling strategy.

Before introducing the equilibrium concept of the game G, we use the following simplifying
notation. For each (R; θ) = (R1, . . . , Rn; θdc , θ1, . . . , θn) ∈ RN × Θ, we sometimes denote it as
(θdc ; (R1, θ1), . . . , (Rn, θn)). Moreover, when we focus on a patient i, we denote it as (θdc ; (Ri, θi); (Rj, θj)j ̸=i).
A strategy profile s = (s1, . . . , sn) ∈

∏
i∈N Si is a Bayesian Nash equilibrium in G if for each i ∈ N ,

each (Ri, θi) ∈ R×Θi, and each R′
i ∈ R,∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi)u
∗
i

(
φP
i (θdc ; si(Ri, θi);

(
sj(Rj, θj)

)
j ̸=i

)
∣∣∣Ri, θi

)

≥
∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |Ri, θi)u
∗
i

(
φP
i (θdc ; (R

′
i, θi);

(
sj(Rj, θj)

)
j ̸=i

)
∣∣∣Ri, θi

)
.

The main result of this subsection shows that each priority mechanism is robust against strategic
manipulation even under regimes with living-donor exchange under incomplete information. To show
that positive result, we need some specification and simplification that decently approximate the real
world. We make the following three assumptions.

Assumption 3 (The number of component type spaces are two). The collection of component type
spaces {(Tk,�k)}Kk=1 is simplified to the one with the length two, i.e., K = 2, such that (T1,�1) is the
blood type space (TB,�B); (T2,�2) is the other factor space that needs coincidence, i.e., for all t2, t′2 ∈
T2, t2 �2 t

′
2 ⇔ t2 = t′2; T2 contains at least four elements. We denote it as T2 = {I, II, III, IV, . . .}.

This assumption seems too specific, but can reasonably accommodate the current practice. For
example, consider the simplest space TB×T2 = TB×{l, s}×{c1, c2} where the component space {l, s}
of T2 expresses the sizes of lungs, large (l) or small (s); moreover, the component space {c1, c2} of T2

does the types of leucocyte. There are many types of leucocyte which are an important compatibility

24Each patient knows that other patients submit own medical type honestly. However, she does not know which
types are realized.
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condition. However, these types cannot be classifed with clear formula.25 For this reason, the cross-
match test is used and there would be at least two types which are incompatible with each other.26

What is common within T2 space is that it needs coincidence of types for a donor and a recipient.
With these two component spaces of T2, it is reasonable to assume at least four elements in T2. Hence
our example space satisfies Assumption 3. Note that T2 can be any larger cardinality as long as it
contains four elements.

Assumption 4 (On the number of living donors of each patient). The following three conditions
hold.27

1. Each patient has at most two living donors, i.e., for each i ∈ N , |DL
i | ≤ 2.

2. At least four patients have multiple living donors, i.e., there exist distinct i, j, k, ℓ ∈ N such that
for each m ∈ {i, j, k, ℓ}, |DL

m| = 2.

3. The highest-priority patient σ(1) has multiple living donors, i.e., |DL
σ(1)| ≥ 2.

The first two conditions in Assumption 4 are quite weak, because hundreds of patients are in
line for deceased donors in Japan. The last condition seems strong, but actually weak, because our
notion of donors include potential donors who are incompatible donors and usually do not show up
in hospitals. Theoretically speaking, this assumption is for simplification. That is, to maintain our
main result of Theorem 3, we can drop Assumption 4 when there are at least four patients and each
of them faces further uncertainty about the number of the other patients’ living donors.

Assumption 5 (Type space restriction). For each i ∈ N , we redefine the type space Θi to slightly
restrict a feasible type profile.28

Θi :=

{
θi ∈ T {i}∪DL

i

∣∣∣∣∣ i) ∀d, d′ ∈ DL
i , θi(d) � θi(i) and θi(d) � θi(i) ⇒ d = d′,

ii) ∀d ∈ DL
i , θi(d) ̸= θi(i)

}
.

The new definition of the type space excludes that a patient has a living donor who is not only
compatible with the intended patient but also has the identical type with the patient. Let us emphasize

25We would like to thank Prof. Takahiro Oto for numerous useful comments from his expertise.
26Although red blood cell has four types of A, B, O, AB, leucocyte also has many types. The human leucocyte is first

classified into three types of A, B, DR, and then each of A, B, DR is classified into dozens of antigen types. Moreover,
there are unknown types, i.e., the antigens have not yet been exhausted. It is known that every human being has two
of the HLA (human leucocyte antigen)s. Thus, for example, when each of A, B, DR types are assumed to contain 20
antigens, human HLA types are

(
60
2

)
= 1770. The extreme diversity and the existence of unknown types make it hard

to specify which type is compatible with the given type. For this reason, in practice, the cross-match test is carried out
to experiment whether the patient’s and donor’s blood have the immunological rejection in HLA type. In our example,
the HLA type is described by the two types for simplicity. Note that our general setup, especially the fact that T2 can
be large as long as it contains four types, allows more complex type spaces.

27A special case of the model satisfying this assumption is a market formed by four or more patients with exactly
two living donors for each.

28The role of Assumption 5 is critical only when Y = HE. Theorem 3 can be proved without it if Y ∈ {O,E,H}.
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that the new definition does not necessarily exclude a compatible living donor. It only excludes the
complete coincidence between the type of a patient and her own donor. Since T2 can be any large set,
the restriction of the type space makes almost no loss of generality.29

Now we are ready to state our main result of this subsection that asserts each priority mechanism is
robust against strategic behavior under incomplete information even when the living donor exchange
is allowed.

Theorem 3. The truth-telling strategy profile s∗ = (s∗1, . . . , s
∗
n) ∈

∏
i∈N Si is a Bayesian Nash equi-

librium in G.

5 Conclusion

We introduce a dual organ markets where patients are in the two markets for deceased donors and
living donors. We investigated the properties of the priority mechanism. Without donor exchange,
the priority mechanism is shown to be individually rational, Pareto efficient, fair, and strategy-proof.
However, once we allow for donor exchange, we lose its strategy-proofness. Because patients’ manip-
ulation is risky, we show that the priority mechanism is robust against any manipulation by showing
that the truth-telling profile is a Bayesian Nash equilibrium.
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Appendix: Proofs

Proof of Proposition 1. Let aθ ∈ A(θ) be arbitrary. First, we show two claims.

Claim 1.
∪
i∈N

(
aθLi \DL

i

)
=
∪
i∈N

[
DL

i ∩

(∪
j ̸=i

aθLj

)]
.

To show that the LHS of the equality is a subset of the RHS, let d ∈ ∪i∈N
(
aθLi \DL

i

)
. Then there

is i ∈ N such that d ∈ aθLi \DL
i . Since d ∈ DL = ∪j∈ND

L
j and d ̸∈ DL

i , there is j0 ∈ N\{i} such that
d ∈ DL

j0
. Moreover, d ∈ aθLi ⊆ ∪j ̸=j0a

θL
j . Thus d ∈ DL

j0
∩
(
∪j ̸=j0a

θL
j

)
.

To show the converse, let d ∈ ∪i∈N
[
DL

i ∩
(
∪j ̸=ia

θL
j

)]
. Then there is i ∈ N such that d ∈ DL

i ∩(
∪j ̸=ia

θL
j

)
. Thus, there is j0 ∈ N\{i} such that d ∈ aθLj0 . Since DL

i ∩DL
j0
= ∅, d ∈ DL

i implies d ̸∈ DL
j0

.
Thus d ∈ aθLj0 \D

L
j0

. 2
Claim 2. Both

∪
i∈N

(
aθLi \DL

i

)
and

∪
i∈N

[
DL

i ∩

(∪
j ̸=i

aθLj

)]
are a direct union.

Let i, i′ ∈ N be distinct. If d ∈
(
aθLi \DL

i

)
∩
(
aθLi′ \DL

i′

)
, then d ∈ aθLi ∩aθLi′ . This violates the second

condition of an allocation (2). Thus ∪i∈N
(
aθLi \DL

i

)
is direct a union.

If d ∈
[
DL

i ∩
(∪

j ̸=i a
θL
j

)]
∩
[
DL

i′ ∩
(∪

j ̸=i′ a
θL
j

)]
, then d ∈ DL

i ∩ DL
i′ , a contradiction. Thus,

∪i∈N
[
DL

i ∩
(
∪j ̸=ia

θL
j

)]
is also a direct union. 2

Now we turn back to the proof of Proposition 1. We have

∑
i∈N

∣∣∣aθLi \DL
i

∣∣∣ = ∣∣∣∣∣∪
i∈N

(
aθLi \DL

i

)∣∣∣∣∣ =
∣∣∣∣∣∪
i∈N

[
DL

i ∩

(∪
j ̸=i

aθLj

)]∣∣∣∣∣ =∑
i∈N

∣∣∣∣∣DL
i ∩

(∪
j ̸=i

aθLj

)∣∣∣∣∣ . (∗)

Note that the first and the third equalities follow from Claim 2, while the second one follows from
Claim 1. On the other hand, BC requires

∀i ∈ N,
∣∣∣aθLi \DL

i

∣∣∣ ≤ ∣∣∣DL
i ∩

(
∪j ̸=i a

θL
j

)∣∣∣.
For the equality (∗) to be true, BC must hold with equality for each i ∈ N .

To show Remark 3, we need the following lemma.

Lemma 1. Under any regime Y ∈ {O,H}, non-wastefulness implies individual rationality.

Proof. Let (R; θ) ∈ RN×Θ. We show the contrapositive. Suppose that aθ ∈ AY (θ) is not individually
rational at (R; θ). Then we have a patient i ∈ N such that (0, ∅) Pi a

θ
i . Since Y ∈ {O,H}, no patient

j ∈ N\{i} uses a lobe of a donor in DL
i at aθ. That is, for each j ∈ N\{i}, aθLj ∩DL

i = ∅. Thus, letting
bθi := (0, ∅), we have (i) bθi Pi a

θ
i , (ii) (bθi ; a

θ
−i) ∈ AY (θ) and (iii) bθCi = 0 < aθCi and bθLi = ∅ ⊆ aθLi .

This means that aθ is wasteful at (R; θ).

Proof of Remark 3. (Item 1) The first part is trivial. The second one is already shown in Example
1.
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(Item 2) Since the first part is trivial, we only show the second part. Let Y ∈ {O,H} and (R; θ) ∈
RN × Θ. Suppose that aθ ∈ AY (θ) is non-wasteful at (R; θ). Let bθ ∈ AY (θ) be such that for each
i ∈ N , bθi Ri a

θ
i . It is sufficient to show that there is no i ∈ N such that bθi Pi a

θ
i . We consider four

cases separately according to the distribution of cadaveric lungs. Note that aθ is individually rational
at (R; θ) by Lemma 1. Consequently, bθ is also individually rational at (R; θ).
Case 1: ∃i ∈ N s.t. aθi ∈ X20

i (θ). Note that no patient, except for patient i, receives a non-
null transplant at aθ, since all cadaveric lungs are used by i and the regime under consideration is
Y ∈ {O,H}. Thus, at the induced allocation, aθi = (2, DL

i ). If patient i’s assignment bθi is not (2, ∅),
i.e., bθi ∈ X10

i (θ) ∪ X̃11
i (θ) ∪ X00

i (θ), then bθi Pi aθi , bθCi ≤ aθCi , and bθLi ⊆ aθLi . This violates the
non-wastefulness of aθ at (R; θ). Thus bθi = (2, ∅). Note that as bθCi = 2 and Y ∈ {O,H}, no patient,
except for patient i, receives a non-null transplant at bθ. Thus bθ = aθ.
Case 2:

∑
i∈N aθCi = 2 and ̸ ∃i ∈ N s.t. aθi ∈ X20

i (θ). Then there exist i, j ∈ N such that i ̸= j and
aθCi = aθCj = 1. Note that no patient, except for patients i and j, receives a non-null transplant at
aθ, since all cadaveric lungs are used by i and j, and the regime under consideration is Y ∈ {O,H}.
Thus, at the induced allocation, aθi = (1, DL

i ) and aθj = (1, DL
j ).

If bθi = (2, ∅), then bθCj = 0. Since Y ∈ {O,H}, bθj = (0, ∅). However, this violates the fact that
bθj Rj a

θ
j Pj (0, ∅), as bθj Rj a

θ
j , aθj (̸= (0, ∅)) is individually rational at (R; θ). Thus bθi ̸= (2, ∅). Thus,

as Y ∈ {O,H}, bθi ∈ X10
i (θ)∪X̃11

i (θ)∪X00
i (θ). Note that bθCi ≤ aθCi and bθLi ⊆ aθLi . Therefore, bθi Pi a

θ
i

is impossible as it violates the non-wastefulness of aθ at (R; θ). Thus bθi Ii a
θ
i . Since Y ∈ {O,H},

bθi = aθi . By the identical argument, we have bθj = aθj . Note that, as Y ∈ {O,H}, no patient, except
for patients i and j, receives a non-null transplant at bθ. Thus bθ = aθ.
Case 3:

∑
i∈N aθCi = 1. We treat two cases separately according to the number of available cadaveric

lungs.
Case 3.1: θdcq = 1. We can show that bθ = aθ by the same argument as the proof for Case 1.
Case 3.2: θdcq = 2. Let i ∈ N be the patient such that aθCi = 1. Note that, since Y ∈ {O,H}, no
patient, except for patient i, receives a non-null transplant at aθ. Note also that one cadaveric lung
is disposed at aθ. Thus, the induced allocation is as follows: For each j ∈ N ,

aθj =

(2, DL
j ) if j = i,

(1, DL
j ) if j ̸= i.

Note that, since Y ∈ {O,H}, bθi satisfies that bθCi ≤ aθCi and bθLi ⊆ aθLi . Therefore, bθi Pi aθi is
impossible as it violates the non-wastefulness of aθ at (R; θ). Thus bθi Ii aθi . Since Y ∈ {O,H},
bθi = aθi . Thus bθCi = 1.

Since patient i uses one unit of cadaveric lung at bθ, for each j ∈ N\{i}, bθCj ≤ 1. Thus bθj ∈
X10

j (θ) ∪ X̃11
j (θ) ∪ X00

j (θ). Note that bθj satisfies that bθCj ≤ aθCj and bθLj ⊆ aθLj , since Y ∈ {O,H}.
Therefore, bθj Pj aθj is impossible as it violates the non-wastefulness of aθ at (R; θ). Thus bθj Ij aθj .
Since Y ∈ {O,H}, bθj = aθj = (0, ∅). Summing up with aθi = bθi , we obtain bθ = aθ.
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Case 4:
∑

i∈N aθCi = 0. Note that no patient receives a non-null transplant at aθ, since Y ∈ {O,H}.
Note also that all cadaveric lungs are disposed at aθ. Thus the induced allocation is: for each i ∈ N ,
aθi = (θdcq, D

L
i ). If patient i’s assignment bθi is in X20

i (θ)∪X10
i (θ)∪ X̃11

i (θ)∪X00
i (θ) and bθi Pi a

θ
i , then

aθ is wasteful at (R; θ). Thus, bθi ̸∈ X20
i (θ) ∪ X10

i (θ) ∪ X̃11
i (θ) ∪ X00

i (θ) or aθi Ri b
θ
i . Note that since

Y ∈ {O,H}, bθi ̸∈ X20
i (θ)∪X10

i (θ)∪ X̃11
i (θ)∪X00

i (θ) is impossible. Thus aθi Ri b
θ
i . Because we assume

that bθi Ri a
θ
i , this implies aθi Ii b

θ
i . Since Y ∈ {O,H}, bθi = aθi . Thus bθ = aθ.

As bθ = aθ for all of the four cases, no patient prefers bθ to aθ. This completes the proof of Item 2.

(Item 3) We show the statement by two examples. First, we show that Pareto efficiency does not imply
strong non-wastefulness. Obviously, allocation aθ described in Example 1 is Pareto efficient, while
it is strongly wasteful. Next, we show that strong non-wastefulness does not imply Pareto efficiency
under any regime Y ∈ {E,HE}. Let (T,�) = (TB,�B). Assume, without loss of generality, that
patients 1 and 2 have multiple living donors. Let d11, d12 ∈ DL

1 and d21, d22 ∈ DL
2 . Let θ ∈ Θ be such

that θdcT = AB, θ(1) = θ(d21) = θ(d22) = A and θ(2) = θ(d11) = θ(d12) = B. Suppose that for each
i ∈ N\{1, 2} and each d ∈ DL\{d11, d12, d21, d22}, θ(i) = O and θ(d) = AB. Let R ∈ RN be such that

R1 02 00 · · ·
R2 02 00 · · ·

Consider the allocation aθ := ((0, ∅), (0, ∅)). The allocation is trivially non-wasteful at (R; θ). Note
that no feasible allocation uses a cadaveric lung, since the deceased donor is not compatible with any
patients. Thus aθ is strongly non-wasteful at (R; θ). On the other hand, since it is Pareto dominated
by allocation ((0, {d21, d22}), (0, {d11, d12})), aθ is not Pareto efficient at (R; θ).

Proof of Remark 4. (First half of Item 1: ⪰-fairness ̸⇒ individual rationality) We prove it by an
example. Let (T,�) = (TB,�B). Let i be the highest-priority patient. Let θ ∈ Θ be such that
θdc = (2, A) and θ(i) = A. Let R ∈ RN be such that Ri · · · 00 20 · · · . An allocation where
i receives (2, ∅) is trivially ⪰-fair because the highest-priority patient receives all cadaveric lungs.
However, (2, ∅) is not acceptable for patient i, i.e., the allocation is not in IY (R; θ).

(The latter half of Item 1: Pareto efficiency and ⪰-fairness ̸⇒ individual rationality) We prove it by
an example. Let (T,�) = (TB,�B). Assume, without loss of generality, that patients 1 and 2 have
multiple living donors. Let d11, d12 ∈ DL

1 and d21, d22 ∈ DL
2 . Let θ ∈ Θ be such that θdcT = AB,

θ(1) = θ(d21) = θ(d22) = A and θ(2) = θ(d11) = θ(d12) = B. Suppose that for each i ∈ N\{1, 2} and
each d ∈ DL\{d11, d12, d21, d22}, θ(i) = O and θ(d) = AB. Let R ∈ RN be such that

R1 02 00 · · ·
R2 00 02 · · ·
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Consider allocation aθ := ((0, {d21, d22}), (0, {d11, d12})) ∈ AY (θ). Note that aθ is not individually
rational at (R; θ) because aθ2 is not acceptable for patient 2.

We claim that aθ is Pareto efficient and ⪰-fair at (R; θ). Since no patient is compatible with the
cadaveric lung, aθ is trivially ⪰-fair at (R; θ). Next we show the Pareto efficiency. Suppose that
bθ ∈ AY (θ) is such that bθ1 R1 aθ1 and bθ2 R2 aθ2. Note that X02

1 = {(0, {d21, d22})}. Thus, since the
living-donor transplantation, 02, is the top choice at R1, bθ1 = aθ1. By Proposition 1, patient 2 receives
two lobes of other patient’s donors because her own donors (d21 and d22) donate two lobes to other
patient in total. Thus bθ2 = (0, {d11, d12}). Thus bθ = aθ. This completes the proof of Pareto efficiency.

(Item 2) We show it by an example. Let (T,�) = (TB,�B). Assume, without loss of generality, that
1 ≻ 2. Let θ ∈ Θ be such that θdc = (2, A) and θ(1) = θ(2) = A. Suppose that for each i ∈ N\{1, 2}
and each d ∈ DL, θ(i) = O and θ(d) = AB. Let R ∈ RN be such that

R1 10 20 00 · · ·
R2 20 00 · · ·

First, consider allocation aθ := ((0, ∅), (2, ∅)) ∈ AY (θ). This allocation is non-wasteful, strongly
non-wasteful, and Pareto efficient at (R; θ), because the two cadaveric lungs go to patient 2 whose
top choice is (2, ∅) and the market has no living donor compatible with a patient. However, aθ is not
⪰-fair at (R; θ), because patient 1 can be better off by using cadaveric lungs assigned to lower-priority
patient (patient 2). Thus, neither non-wastefulness, strong non-wastefulness, nor Pareto efficiency
implies ⪰-fairness.

Next, consider allocation bθ := ((2, ∅), (0, ∅)). Since the highest-priority patient 1 uses all cadaveric
lungs, bθ is trivially ⪰-fair at (R; θ). However, bθ is wasteful at (R; θ), because patient 1 can be better
off by disposing of one cadaveric lung without affecting patient 2’s assignment. Formally, letting
cθ1 := (1, ∅), (i) cθ1 P1 bθ1, (ii) (cθ1, b

θ
2) ∈ AY (θ) and (iii) cθC1 = 1 ≤ b

θC

1 and cθL1 = ∅ ⊆ b
θL

1 . This
means that bθ is wasteful at (R; θ). Thanks to Remark 3, bθ is strongly wasteful at (R; θ), and
not Pareto efficient at (R; θ). Thus ≻-fairness does not imply any one of non-wastefulness, strong
non-wastefulness and Pareto efficiency.

Proof of Proposition 2. We prove it by an example. We use the same example as in Example 1.
Assume, without loss of generality, that the priority is given as 1 ≻ 2. Obviously, IY (R; θ) consists of
just three allocations: aθ :=

(
(1, ∅), (0, ∅)

)
, bθ :=

(
(0, ∅), (2, ∅)

)
, and cθ :=

(
(0, ∅), (0, ∅)

)
. Allocation

aθ is ⪰-fair, but is strongly wasteful, since the two cadaveric lungs can be used at allocation bθ. Next,
allocation bθ is strongly non-wasteful, but is not ⪰-fair, since agent 1 can be better off by using one
cadaveric lung assigned for agent 2 who is of lower priority than agent 1. Finally, allocation cθ is
wasteful, since one of the agents 1 and 2 can be better off by using the disposed lungs. Thus, no
individually rational allocation satisfies ⪰-fairness and strong non-wastefulness at (R; θ).
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Proof of Proposition 3. Item (i) is trivial. Items (iii) to (v) are shown in Example 2. So it remains
to show (ii). Since Pareto efficiency is equivalent to non-wastefulness under regime O by Remark 3,
we show that φJ is non-wasteful. Note that under regime O, non-wastefulness only requires that no
patient be better off by using a disposed cadaveric lung. This is straightforward.

Proof of Remark 5. (Item 1) Trivial.

(Item 2) Let Y ∈ {O,H}. We show that for each (R; θ) ∈ RN × Θ, ΦY (R; θ) is a singleton. Let
aθ, bθ ∈ ΦY (R; θ). By Item 1, for each i ∈ N, aθi Ii bθi . Note that regimes O and H allow only
transplants in X20

i (θ), X10
i (θ), X̃11

i (θ), and X00
i (θ). Thus, aθi Ii bθi implies aθi = bθi . Thus aθ = bθ.

(Item 3) Let Y ∈ {E,HE}. We show that for some (R; θ) ∈ RN ×Θ, ΦY (R; θ) contains at least two
allocations. Let (T,�) = (TB,�B). Assume, without loss of generality, that patients 1 and 2 have
multiple living donors. Let d11, d12 ∈ DL

1 and d21, d22 ∈ DL
2 . Let θ ∈ Θ be such that θdcT = AB,

θ(1) = θ(d21) = A, θ(2) = θ(d11) = B and θ(d12) = θ(d22) = O. Suppose that for each i ∈ N\{1, 2}
and each d ∈ DL\{d11, d12, d21, d22}, θ(i) = O and θ(d) = AB. Let R ∈ RN be such that

R1 02 00 · · ·
R2 02 00 · · ·

Note that the only compatible donors for patients in N\{1, 2} are d12 and d22. Thus, if a patient
i ∈ N\{1, 2} receives a non-null transplant at an allocation, it must be (0, {d12, d22}). However, in
that case, patients 1 and 2 also receive a non-null transplant with receiving at least one other patient’s
living donor (Proposition 1). Because there are not enough compatible donors for patients 1 and 2 to
receive a non-null transplant without d12 and d22, every feasible allocation assigns the null transplant
(0, ∅) to patients in N\{1, 2}.

For any priority order ⪰, ΦY (R; θ) contains all allocations where patients 1 and 2 receive living-
donor transplants. Note that both ((0, {d12, d21}), (0, {d11, d22})) and

(
(0, DL

2 ), (0, D
L
1 )
)

are in ΦY (R; θ).

Note that in the following proof, there is no specification of regime except for strategy-proofness.

Proof of Theorem 1. We assume, without loss of generality, that 1 ≻ 2 ≻ . . . ≻ n.
(Individual rationality) Trivial.

(Pareto efficiency) Let (R; θ) ∈ RN × Θ. Suppose to the contrary that there is an allocation aθ ∈
AY (θ) such that for each i ∈ N , aθi Ri φP

i (R; θ) and for some i ∈ N , aθi Pi φP
i (R; θ). Note that

aθ ∈ IY (R; θ) = ΦY
0 (R; θ), since aθ Pareto-dominates an individually rational allocation φP (R; θ).

Let i ∈ N be the highest-priority patient among those who prefer aθ to φP (R; θ). Note that this
implies that for each j ∈ N with j ≻ i, aθj Ij φ

P
j (R; θ). Thus aθ ∈ ΦY

i−1(R; θ). Since aθi Pi φ
P
i (R; θ),

φP (R; θ) ̸∈ ΦY
i (R; θ) ⊇ ΦY (R; θ), a contradiction.
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(⪰-fairness) Let (R; θ) ∈ RN × Θ. Let aθ := φP (R; θ). Suppose to the contrary that there is an
allocation bθ ∈ IY (R; θ) such that for some i ∈ N , (i) bθi Pi a

θ
i , (ii) bθCi > aθCi and for each j ∈ N with

j ≻ i, bθCj = aθCj and (iii) for each j ∈ N , aθj Pj b
θ
j implies aθCj > bθCj .

If for each j ∈ N with j ≻ i, bθj Rj aθj , then allocation aθ is excluded from the priority corre-
spondence at some step, the latest step i, of the algorithm. That is, there is j ∈ {1, . . . , i} such that
aθ ̸∈ ΦY

j (R; θ) ⊇ ΦY (R; θ), a contradiction. Thus there is j ∈ N with j ≻ i such that aθj Pj bθj . By
Item (iii), aθCj > bθCj . This contradicts the second part of Item (ii).

(Strategy-proofness) Let Y ∈ {O,H}. Suppose to the contrary that there are (R; θ) ∈ RN ×Θ, i ∈ N

and R′
i ∈ R such that φP

i (R
′
i, R−i; θ) Pi φ

P
i (R; θ). For notational simplicity, let R′ := (R′

i, R−i).
Since regime Y does not allow for donor exchange, any preference misreporting cannot affect the

individual assignment of higher-priority patients in the priority mechanism. That is, for each j ∈ N

with j ≻ i, φP
j (R; θ) Ij φ

P
j (R

′; θ). Thus, since indifferent individual assignments are identical in regime
Y , for each j ∈ N with j ≻ i, φP

j (R; θ) = φP
j (R

′; θ). Note that φP (R′; θ) is individually rational at
(R; θ) because φP

i (R
′; θ) Pi φ

P
i (R; θ) Ri (0, ∅) and R′

−i = R−i. Thus φP (R′; θ) ∈ IY (R; θ) = ΦY
0 (R; θ).

Thus we obtain φP (R′; θ) ∈ ΦY
i−1(R; θ). Hence φP (R; θ) ̸∈ ΦY

i (R; θ) ⊇ ΦY (R; θ), a contradiction.

Proof of Proposition 4. The proof of individual rationality, Pareto efficiency, and ⪰-fairness is
identical with that of Theorem 1. Non-strategy-proofness is by Example 4.

Proof of Theorem 2. Suppose to the contrary that a mechanism under Y ∈ {E,HE}, φ, satisfies
all axioms stated in Theorem 2. Let (T,�) = (TB,�B). Assume, without loss of generality, that
patients 1 and 2 have multiple living donors and that 1 ≻ 2. Let d11, d12 ∈ DL

1 and d21, d22 ∈ DL
2 . Let

θ ∈ Θ be such that θdc = (2, O), θ(1) = θ(d21) = θ(d22) = A and θ(2) = θ(d11) = θ(d12) = B. Let
R1, R

′
1, R2, R

′
2 ∈ R be preferences of patients 1 and 2 described by the following table.

R1 02 10 00 · · ·
R′

1 02 20 10 00 · · ·
R2 10 02 00 · · ·
R′

2 10 00 · · ·

Let R−{1,2} ∈ RN\{1,2} be a preference profile such that each patient j ∈ N\{1, 2} has (0, ∅) as the
most preferred in Rj. Note that each patient in N\{1, 2} receives (0, ∅), no matter when patients 1
and 2 submit any preference because φ is individually rational. In the subsequent part of the proof,
we omit their assignments in the description of an allocation. First, we show the following claim.

Claim. φ(R1, R2, R−{1,2}; θ) = ((1, ∅), (1, ∅)).
Suppose to the contrary that φ(R1, R2, R−{1,2}; θ) ̸= ((1, ∅), (1, ∅)). Note that the only individually

rational and Pareto efficient allocations at (R1, R2, R−{1,2}; θ) are aθ := ((0, {d21, d22}), (0, {d11, d12}))
and bθ := ((1, ∅), (1, ∅)). Thus, by the contradiction hypothesis, φ(R1, R2, R−{1,2}; θ) = aθ. On the
other hand, bθ is the only individually rational and Pareto efficient allocation at (R1, R

′
2, R−{1,2}; θ).
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Thus φ(R1, R
′
2, R−{1,2}; θ) = bθ. Therefore, φ2(R1, R

′
2, R−{1,2}; θ) P2 φ2(R1, R2, R−{1,2}; θ), a violation

of strategy-proofness of φ. This completes the proof of Claim.

Next, we consider patient 1’s assignment at φ(R′
1, R2, R−{1,2}; θ). Note that since φ is individually

rational, φ1(R
′
1, R2, R−{1,2}; θ) is one of the following assignments: (0, ∅), (1, ∅), (2, ∅), (0, {d21, d22}).

We separately derive a contradiction for each case.
Case 1: φ1(R

′
1, R2, R−{1,2}; θ) = (0, ∅). Then φ1(R1, R2, R−{1,2}; θ) = (1, ∅) P ′

1 (0, ∅) = φ1(R
′
1, R2, R−{1,2}; θ),

a violation of strategy-proofness of φ.
Case 2: φ1(R

′
1, R2, R−{1,2}; θ) = (1, ∅). Since φ(R′

1, R2, R−{1,2}; θ) is Pareto efficient at (R′
1, R2, R−{1,2}; θ),

the assignment of patient 2 is φ2(R
′
1, R2, R−{1,2}; θ) = (1, ∅), i.e., φ(R′

1, R2, R−{1,2}; θ) = bθ. However,
bθ is not ⪰-fair at (R′

1, R2, R−{1,2}; θ), because cθ := ((2, ∅), (0, ∅)) ∈ IY (R′
1, R2, R−{1,2}; θ). This

violates the ⪰-fairness of φ.
Case 3: φ1(R

′
1, R2, R−{1,2}; θ) = (2, ∅). Note that no patient in N\{2} uses patient 2’s living donor.

By Proposition 1, patient 2’s assignment does not other’s living donor. Moreover, patient 2 cannot use
cadaveric lung, since all two units of cadaveric lungs are assigned to patient 1. Thus the assignment
of patient 2 is φ2(R

′
1, R2, R−{1,2}; θ) = (0, ∅), i.e., φ(R′

1, R2, R−{1,2}; θ) = cθ. However, cθ is Pareto
dominated by aθ at (R′

1, R2, R−{1,2}; θ). This violates Pareto efficiency of φ.
Case 4: φ1(R

′
1, R2, R−{1,2}; θ) = (0, {d21, d22}). We have φ1(R

′
1, R2, R−{1,2}; θ) = (0, {d21, d22}) P1

(1, ∅) = φ1(R1, R2, R−{1,2}; θ), a violation of strategy-proofness of φ.

Since the above four cases exhaust all possibilities of φ1(R
′
1, R2, R−{1,2}; θ), we conclude that

φ(R′
1, R2, R−{1,2}; θ) is not well-defined, a contradiction.

To prove Theorem 3, we need two lemmas. Lemma 2 says that if a patient can successfully ma-
nipulate a priority mechanism, then the assignment under the true preference necessarily contains
other patient’s intended donor. Consequently, the transplant is an acceptable one at the true pref-
erence. Moreover, at the false preference, the assignment under the true preference is evaluated as
unacceptable. That is, successful manipulation forces the patient to pretend that she cannot accept
a transplantation type which is actually an acceptable one.

Lemma 2. Under any regime Y ∈ {E,HE}, for each (R; θ) ∈ RN ×Θ, each i ∈ N , and each R′
i ∈ R,

if φP
i (R

′
i, R−i; θ) Pi φ

P
i (Ri, R−i; θ), then

(i) φP
i (Ri, R−i; θ) ∈

(
X11

i (θ)\X̃11
i (θ)

)
∪X02

i (θ). Consequently, φP
i (Ri, R−i; θ) ̸= (0, ∅).

(ii) φP
i (R

′
i, R−i; θ) P

′
i (0, ∅) P ′

i φ
P
i (Ri, R−i; θ).

Proof. Let (R; θ) ∈ RN × Θ, i ∈ N and R′
i ∈ R. Suppose φP

i (R
′
i, R−i; θ) Pi φP

i (Ri, R−i; θ). For
notational simplicity, let bθ := φP (R′

i, R−i; θ) and aθ := φP (Ri, R−i; θ). Assume, without loss of
generality, that 1 ≻ 2 ≻ . . . ≻ n.

Proof of Item (i). Suppose to the contrary that aθi ̸∈
(
X11

i (θ)\X̃11
i (θ)

)
∪X02

i (θ). Namely, aθi is a
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double-lung, single-lung, hybrid with own donor, or null transplant. We claim

∀j ∈ N with j ≻ i, bθj Ij a
θ
j . (4)

To show (4), suppose to the contrary that at least one patient j ∈ N with j ≻ i is not indifferent
between bθj and aθj , i.e., bθj Pj aθj or aθj Pj bθj . We derive a contradiction for each case separately.
Without loss of generality, suppose that j is the highest-priority patient who has such a preference.
Case 1: aθj Pj b

θ
j . Let cθ be such that

cθk =

(0, ∅) if k = i,

aθk if k ̸= i.

Note that cθ ∈ AY (θ), since aθi does not use other’s donor. Moreover, cθ ∈ IY (R′
i, R−i; θ), since the

only difference between (Ri, R−i; θ) and (R′
i, R−i; θ) is patient i’s preference. Thus cθ ∈ ΦY

0 (R
′
i, R−i; θ).

By the definition of j, for each k < j, cθk = aθk Ik bθk. Thus cθ ∈ ΦY
j−1(R

′
i, R−i; θ). Since aθj Pj bθj ,

bθ ̸∈ ΦY
j (R

′
i, R−i; θ) ⊇ ΦY (R′

i, R−i; θ). However, bθ = φP (R′
i, R−i; θ) ∈ ΦY (R′

i, R−i; θ), a contradiction.
Case 2: bθj Pj aθj . Since bθ ∈ IY (R′

i, R−i; θ) and bθi Pi aθi Ri (0, ∅), bθ ∈ IY (Ri, R−i; θ). Thus
bθ ∈ ΦY

0 (Ri, R−i; θ). By the definition of j, for each k < j, aθk Ik bθk. Thus bθ ∈ ΦY
j−1(Ri, R−i; θ). Thus,

aθ ̸∈ ΦY
j (Ri, R−i; θ) ⊇ ΦY (Ri, R−i; θ). However, aθ = φP (Ri, R−i; θ) ∈ ΦY (Ri, R−i; θ), a contradiction.

Summing up Cases 1 and 2, we get (4).
Now we complete the proof of Item (i). Note that as we have seen in Case 2, bθ ∈ IY (Ri, R−i; θ).

Thus, by (4), bθ ∈ ΦY
i−1(Ri, R−i; θ). Since bθi Pi a

θ
i , aθ ̸∈ ΦY

i (Ri, R−i; θ) ⊇ ΦY (Ri, R−i; θ). However,
aθ = φP (Ri, R−i; θ) ∈ ΦY (Ri, R−i; θ), a contradiction. □
Proof of Item (ii): We show the first part of Item (ii). Since φP is individually rational, it is
obvious that bθi = φP

i (R
′
i, R−i; θ) R

′
i (0, ∅). If bθi = (0, ∅), then (0, ∅) Pi a

θ
i = φP

i (Ri, R−i; θ), a violation
to individual rationality of φP . Thus we obtain bθi P

′
i (0, ∅).

Next, we show the second part of Item (ii), i.e., (0, ∅) P ′
i aθi . Suppose to the contrary that

aθi R
′
i (0, ∅). Then, both aθ and bθ are individually rational at both (Ri, R−i; θ) and (R′

i, R−i; θ), since
the only difference between (Ri, R−i; θ) and (R′

i, R−i; θ) is patient i’s preference. We consider the
following two cases separately, and derive a contradiction for each.
Case 1: ∀j ∈ N with j ≻ i, aθj Ij bθj . By bθ ∈ IY (Ri, R−i; θ) and the assumption for Case 1, bθ ∈
ΦY

i−1(Ri, R−i; θ). Since bθi Pi a
θ
i , aθ ̸∈ ΦY

i (Ri, R−i; θ) ⊇ ΦY (Ri, R−i; θ). Thus, aθ = φP (Ri, R−i; θ) ̸∈
ΦY (Ri, R−i; θ), a contradiction.
Case 2: Let j ∈ N be the highest-priority patient with j ≻ i and not aθj Ij b

θ
j .

Case 2.1: aθj Pj bθj . By aθ ∈ IY (R′
i, R−i; θ) and the assumption for Case 2.1, aθ ∈ ΦY

j−1(R
′
i, R−i; θ).

Since aθj Pj bθj , bθ ̸∈ ΦY
j (R

′
i, R−i; θ) ⊇ ΦY (R′

i, R−i; θ). Thus, bθ = φP (R′
i, R−i; θ) ̸∈ ΦY (R′

i, R−i; θ), a
contradiction.
Case 2.2: bθj Pj aθj . By bθ ∈ IY (Ri, R−i; θ) and the assumption for Case 2.2, bθ ∈ ΦY

j−1(Ri, R−i; θ).
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Figure 8: Patient with a profitable deviation necessarily plays a critical role in the allocation.

Since bθj Pj aθj , aθ ̸∈ ΦY
j (Ri, R−i; θ) ⊇ ΦY (Ri, R−i; θ). Thus, aθ = φP (Ri, R−i; θ) ̸∈ ΦY (Ri, R−i; θ), a

contradiction.

Lemma 3 says that a patient i has a profitable deviation only if she has a donor di such that a
donor with i’s type cannot donate to a patient with di’s type. To see why this is true, let us take a
look at Figure 8. Let i be a patient who has donors with identical type except for the blood type.
In that figure, x, y, and z represent the blood types of patient i, 1st donor of i, and 2nd donor of i,
respectively. Suppose that patient i has a profitable deviation. That is, she has a false preference
with which she can get a more preferable transplant to the one with the true preference. Suppose
also that the figure describes the allocation when patient i submits her true preference. Let us call
the allocation a. By Lemma 2, patient i gets a hybrid transplant with other’s donor or living donor
transplant at a. In either case, she uses a living donor from other patient, say dk. By Proposition 1,
one of the patient i’s donors donates to a patient, say j.

We claim that group i’s contribution at a must be critical to maintain the welfare level of other
patients. If x �1 z holds, then the donor dk can donate to patient j directly, because the blood type
compatibility relation �1 = �B is transitive. This means that the patients in N\{i} can attain the
welfare level of a without the contribution of group i. Consequently, even if patient i reports a pref-
erence which states that ai is unacceptable, other patients can keep consuming transplants indifferent
with a−i. Thus patient i’s deviation has no effect on the priority mechanism. This contradicts that
patient i has a profitable deviation. Thus, x cannot be blood-type-compatible with z, i.e., x ̸ �1 z.

Lemma 3. Let Y ∈ {E,HE}, (R; θ) ∈ RN × Θ and i ∈ N . Suppose that for each d ∈ DL
i , θ(d) is

identical with θ(i) except for the blood type, i.e., θ2(d) = θ2(i). Then,

[
∃R′

i ∈ R s.t. φP
i (R

′
i, R−i; θ) Pi φ

P
i (Ri, R−i; θ)

]
⇒
[
∃d ∈ DL

i s.t. θ1(i) ̸ �1 θ1(d)
]
.

Proof. Assume, without loss of generality, 1 ≻ 2 ≻ . . . ≻ n. Suppose to the contrary that

∀d ∈ DL
i , θ1(i) �1 θ1(d). (5)
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Fix patient i’s profitable deviation R′
i ∈ R. For notational simplicity, let bθ := φP (R′

i, R−i; θ) and
aθ := φP (R; θ). The proof consists of three steps.

Step 1: Defining new allocations b′θ and a′θ. We define b′θ and a′θ in AY (θ) based on bθ and aθ. Since
the way to generate a′θ from aθ is the same as the one for b′θ from bθ, we only describe the construction
of b′θ in detail. The definition of b′θ varies according to the number of other patient’s living donors in
bθLi . Each case below corresponds to the case where the number is 0, 1 and 2, respectively.
Case 1: bθi ∈ X20

i (θ) ∪X10
i (θ) ∪ X̃11

i (θ) ∪X00
i (θ). For each m ∈ N ,

b′θm :=

(0, ∅) if m = i,

bθm if m ̸= i.

Obviously, b′θ ∈ AY (θ).
Case 2: bθi ∈ X11

i (θ)\X̃11
i (θ) or

[
bθi ∈ X02

i (θ) and bθLi ∩DL
i ̸= ∅

]
. Let di ∈ DL

i be i’s donor who donates
to other patient, say k ∈ N\{i}, at bθ, i.e., di ∈ bθLk . Let dℓ ∈ DL

ℓ be other patient’s donor who
donates to i at bθ, i.e., ℓ ̸= i and dℓ ∈ bθLi . For each m ∈ N ,

b′θm :=


(0, ∅) if m = i,

(bθCk , (bθLk \{di}) ∪ {dℓ}) if m = k,

bθm if m ̸∈ {i, k}.

We claim that b′θ ∈ AY (θ). To show this, it is sufficient to prove that dℓ is compatible with k, i.e.,
θ(dℓ) � θ(k). First, we show

θ2(dℓ) �2 θ2(i) (∵ dℓ ∈ bθLi )

�2 θ2(di) (∵ Assumption of Lemma 3)
�2 θ2(k). (∵ di ∈ bθLk )

Since the binary relation �2 is the equality “=”, it is transitive. Thus θ2(dℓ) �2 θ2(k). Similarly,

θ1(dℓ) �1 θ1(i) (∵ dℓ ∈ bθLi )

�1 θ1(di) (∵ The contradiction hypothesis (5))
�1 θ1(k). (∵ di ∈ bθLk )

Since the binary relation �1 is transitive, θ1(dℓ) �1 θ1(k). In sum, θ(dℓ) � θ(k). Thus b′θ ∈ AY (θ).
Case 3: bθi ∈ X02

i (θ) and bθLi ∩DL
i = ∅. Let di1, di2 ∈ DL

i be i’s donor who donate to other patient(s),
say k, ℓ ∈ N\{i}, at bθ, i.e., di1 ∈ bθLk and di2 ∈ bθLℓ . Let dp, dq ∈ DL\DL

i be other patient’s donors
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who donate to i at bθ, i.e., bθLi = {dp, dq}. If k = ℓ, then let b′θ be such that for each m ∈ N ,

b′θm :=


(0, ∅) if m = i,

(0, {dp, dq}) if m = k,

bθm if m ̸∈ {i, k}.

If k ̸= ℓ, then let b′θ be such that for each m ∈ N ,

b′θm :=



(0, ∅) if m = i,

(bθCk , (bθLk \{di1}) ∪ {dp}) if m = k,

(bθCℓ , (bθLℓ \{di2}) ∪ {dq}) if m = ℓ,

bθm if m ̸∈ {i, k, ℓ}.

In either case, the proof for b′θ ∈ AY (θ) is the same as the one given in Case 2. Thus we omit it.

In the same manner, we define a′θ based on aθ.30 Note that every patient, except for i, receives
the same transplantation type at b′θ and bθ in each case. This is true at a′θ and aθ. Thus we have

∀k ∈ N\{i}, b′θk Ik b
θ
k and a′θk Ik a

θ
k. (6)

Step 2: We show ∀j ∈ N with j ≻ i, bθj Ij aθj . Suppose to the contrary that for some j ∈ N with j ≻ i,
bθj Pj a

θ
j or aθj Pj b

θ
j . Let j be the highest-priority patient among the patients who are not indifferent

between bθ and aθ.
First, suppose bθj Pj a

θ
j . Note that b′θ ∈ IY (R; θ) by b′θi = (0, ∅) and (6). Thus b′θ ∈ ΦY

0 (R; θ). By
the definition of j and (6), for each k ∈ N with k ≻ j, aθk Ik bθk Ik b′θk . Thus b′θ ∈ ΦY

j−1(R; θ). By (6),
b′θj Ij b

θ
j Pj a

θ
j . Thus we conclude aθ ̸∈ ΦY

j (R; θ) ⊇ ΦY (R; θ), contradicting aθ = φP (R; θ) ∈ ΦY (R; θ).
Next, suppose that aθj Pj bθj . Note that a′θ ∈ IY (R′

i, R−i; θ) by a′θi = (0, ∅) and (6). Thus
a′θ ∈ ΦY

0 (R
′
i, R−i; θ). By the definition of j and (6), for each k ∈ N with k ≻ j, bθk Ik aθk Ik a′θk . Thus

a′θ ∈ ΦY
j−1(R

′
i, R−i; θ). By (6), a′θj Ij a

θ
j Pj b

θ
j . Thus we conclude bθ ̸∈ ΦY

j (R
′
i, R−i; θ) ⊇ ΦY (R′

i, R−i; θ).
This contradicts bθ = φP (R′

i, R−i; θ) ∈ ΦY (R′
i, R−i; θ).

In either case, we obtain a contradiction. This completes the proof of Step 2.
Step 3: We complete the proof. Since bθ satisfies that bθi Pi aθi Ri (0, ∅) and ∀k ∈ N\{i}, bθk =

φP
k (R

′
i, R−i; θ) Rk (0, ∅), we have bθ ∈ IY (R; θ) = ΦY

0 (R; θ). Thus, by Step 2, bθ ∈ ΦY
i−1(R; θ). Since

bθi Pi a
θ
i , we conclude aθ ̸∈ ΦY

i (R; θ) ⊇ ΦY (R; θ). This contradicts aθ = φP (R; θ) ∈ ΦY (R; θ).

Proof of Theorem 3. Without loss of generality, assume that 1 ≻ 2 ≻ . . . ≻ n. Suppose to the

30By Lemma 2, aθi is a hybrid transplant with other’s donor or a living donor transplant. Thus Case 1 is redundant
to define a′θ.
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contrary that for some i ∈ N , (R∗
i , θ

∗
i ) ∈ R×Θi, and Ri ∈ R,∑

(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |R∗
i , θ

∗
i )u

∗
i

(
φP
i (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
<

∑
(R−i;θ−i)∈RN\{i}×Θ−i

pi(R−i; θ−i |R∗
i , θ

∗
i )u

∗
i

(
φP
i (θdc ; (Ri, θ

∗
i ); (Rj, θj)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
.

(7)

A direct consequence of the hypothesis (7) is that at least one (R′
−i; θ

′
−i) ∈ RN\{i} ×Θ−i, we have

u∗
i

(
φP
i (θ

′
dc ; (R

∗
i , θ

∗
i ); (R

′
j, θ

′
j)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
< u∗

i

(
φP
i (θ

′
dc ; (Ri, θ

∗
i ); (R

′
j, θ

′
j)j ̸=i)

∣∣∣R∗
i , θ

∗
i

)
(8)

Thus, patient i is not the highest-priority patient, i.e., i ̸= 1. Since φP
i (θ

′
dc
; (R∗

i , θ
∗
i ); (R

′
j, θ

′
j)j ̸=i) is

at least as good as (0, ∅) at R∗
i , patient i’s true preference R∗

i has at least one acceptable trans-
plantation type, i.e., Aci(R

∗
i ) ̸= ∅. Thus we can apply Assumption 2 to patient i. Moreover,

by Lemma 2, φP
i (θ

′
dc
; (R∗

i , θ
∗
i ); (R

′
j, θ

′
j)j ̸=i) ∈

(
X11

i (θ∗i , θ
′
−i)\X̃11

i (θ∗i , θ
′
−i)
)
∪ X02

i (θ∗i , θ
′
−i) and (0, ∅) Pi

φP
i (θ

′
dc
; (R∗

i , θ
∗
i ); (R

′
j, θ

′
j)j ̸=i). Consequently, at least one of the following two statements holds:

02 is acceptable at R∗
i , but not acceptable at Ri. (9)

11 is acceptable at R∗
i , but not acceptable at Ri. (10)

In the subsequent part of the proof, we show

∃(R−i; θ−i) ∈ RN\{i} ×Θ−i s.t.

 φP
i (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i) ∈ Aci(R

∗
i )

and
φP
i (θdc ; (Ri, θ

∗
i ); (Rj, θj)j ̸=i) = (0, ∅)

 . (11)

Note that (11) contradicts inequality (7) because Assumption 2 states that even if misreporting Ri is
successful for every (R̃−i; θ̃−i) ∈

(
RN\{i} ×Θ−i

)
\{(R−i; θ−i)}, i.e., φP

i (Ri, R̃−i; θ
∗
i , θ̃−i) P

∗
i φP

i (R
∗
i , R̃−i; θ

∗
i , θ̃−i),

the expected utility gain from misreporting is canceled out by the failure of misreporting at (R−i; θ−i)

(See statement (11)).
In the following, we construct (R−i; θ−i) ∈ RN\{i}×Θ−i to show (11) for each case separately. For

notational simplicity, we will use the following notation.

a := φP (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) and b := φP (θdc ; (Ri, θ

∗
i ); (Rj, θj)j ̸=i).

That is, a denotes the allocation under truth-telling at (R−i; θ−i) constructed in the case under
consideration, and b does the allocation under misreporting at (R−i; θ−i) constructed in the case
under consideration.

By Assumption 4, let j, k ∈ N\{1, i} be distinct patients who have two living donors. Let DL
1 =

{d11, d12}, DL
j = {dj1, dj2}, and DL

k = {dk1, dk2}.
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Figure 9: Allocations a and b in Case 1.1.1.

Case 1: Patient i has two living donors, i.e., |DL
i | = 2. Let DL

i = {di1, di2}.
Case 1.1: (9) holds.
Case 1.1.1: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 3. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, II), θ∗i (di2) = (z, III), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, IV )

) 
θ1(1) = (AB, II)

θ1(d11) = (O, II)

θ1(d12) = (O, I)


θj(j) = (AB, III)

θj(dj1) = (O, III)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.31

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {di1, d11}) if m = 1,

(0, {d12, dj2}) if m = i,

(0, {di2, dj1}) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient allocation at
(θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. □

Claim 1.1.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N , bm = (0, ∅).
Proof. Since 02 is unacceptable at Ri, patients 1 and j cannot receive living donor transplants.
Moreover the cadaveric lung is not compatible with any patient. □
Case 1.1.2: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 2.

31The preferences of patients in N\{1, i, j} are omitted because they are free. In the later cases, the omitted
preferences are free, too.
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Figure 10: Allocations a and b in Case 1.1.2.1.

Case 1.1.2.1: θ∗i2(di1) ̸= θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) = (y, I), θ∗i (di2) =

(z, II), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, III)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, II)

θ1(d12) = (O, I)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.2.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈

X02
m (θ∗i , θ−i) if m ∈ {1, i, j},

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient allocation at
(θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Claim 1.1.2.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N , bm = (0, ∅).
Proof. Since 02 is unacceptable at Ri, bi cannot be 02. Moreover the cadaveric lung is not compatible
with patient i. Thus bi = (0, ∅). This implies that di2 does not donate to any patient (Proposition 1).
Thus, bj = (0, ∅), since 02 is the only acceptable transplantation type for patient j. This implies that
dj1 and dj2 do not donate to any patient. Thus b1 = (0, ∅). 2
Case 1.1.2.2: θ∗i2(di1) = θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) = (y, II), θ∗i (di2) =

(z, II), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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Figure 11: Allocations a and b in Case 1.1.2.2.

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, IIV )

) 
θ1(1) = (AB, II)

θ1(d11) = (O, III)

θ1(d12) = (O, III)


θj(j) = (AB, III)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.2.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, DL
i ) if m = 1,

(0, DL
j ) if m = i,

(0, DL
1 ) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient allocation at
(θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Claim 1.1.2.2b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N , bm = (0, ∅).
Proof. Since 02 is unacceptable at Ri, bi cannot be 02. Moreover the cadaveric lung is not compatible
with patient i. Thus, bi = (0, ∅). This implies that di1 and di2 do not donate to any patient (Propo-
sition 1). Thus b1 = (0, ∅) since 02 is the only acceptable transplantation type for patient 1. This
implies that d11 and d12 do not donate to any patient. Thus bj = (0, ∅). 2
Case 1.1.3: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 1. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, I), θ∗i (di2) = (z, I), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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Figure 12: Allocations a and b in Case 1.1.3.

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (AB, III)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, II)

θ1(d12) = (O, II)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 02 00 · · ·
Rj 02 00 · · ·

Claim 1.1.3a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈

X02
m (θ∗i , θ−i) if m ∈ {1, i, j},

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j}.

Proof. Since the above allocation is the only individually rational and Pareto efficient allocation at
(θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Claim 1.1.3b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =


(0, DL

j ) if m = 1,

(0, DL
1 ) if m = j,

(0, ∅) if m ∈ N\{1, j}.

Proof. Since 02 is unacceptable at Ri, bi cannot be 02. Moreover the cadaveric lung is not compatible
with patient i. Thus bi = (0, ∅). The only individually rational and Pareto efficient allocation at
(θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), φP selects it. 2

Case 1.2: (10) holds.
Case 1.2.1: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 3. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, II), θ∗i (di2) = (z, III), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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• The definition of θ−i: For m ∈ N \ {1, i, j} and d ∈ DL
m,

{
θdc =

(
2, (O, I)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, I)

θ1(d12) = (O, II)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·

Claim 1.2.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j},

X11
m (θ∗i , θ−i) if m = i,

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j}.

Proof. Since the allocation described in the left hand side of Figure 13 belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d12 donates to a patient (Proposition
1). Since only patient j can receive d12’s donation, d12 ∈ aLj . Since the only acceptable transplanta-
tion type for j is 02, aj ∈ X02

j (θ∗i , θ−i). Since a1 and aj is 02, d11, dj1 and dj2 donate to a patient
respectively (Proposition 1). Since two of them donate to patient 1, the remaining one donates to
patient i. Since no other living donor is compatible with patient i, ai ∈ X11

i (θ∗i , θ−i). 2
Claim 1.2.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.1a, we can show that b1 is 02 only if bi is 11. However, since
11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient in N\{1} cannot use a
cadaveric lung. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}. Since patient j cannot find two
compatible living donors in DL\DL

1 , bj ̸∈ X02
j (θ∗i , θ−i). Thus bj = (0, ∅). Since patient m ∈ N\{1, j}

cannot find two compatible living donors in DL\(DL
1 ∪DL

j ), bm ̸∈ X02
m (θ∗i , θ−i). Thus bm = (0, ∅). 2

Case 1.2.2: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 2.
Case 1.2.2.1: θ∗i2(di1) ̸= θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) = (y, I), θ∗i (di2) =

(z, II), where x, y, z ∈ B. We consider the following three cases separately.
Case 1.2.2.1.1: y ̸ �1 x. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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Figure 13: Allocations a and b in Case 1.2.1.

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (x, I)

θ1(d11) = (O, II)

θ1(d12) = (O, III)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, III)


θk(k) = (AB, III)

θk(dk1) = (O, I)

θk(dk2) = (O, I){
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·
Rk 02 00 · · ·

Claim 1.2.2.1.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j, k},

X11
m (θ∗i , θ−i) if m = i,

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j, k}.

Proof. Since the allocation described in the left hand side of Figure 14 belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d11 and d12 donate to a patient re-
spectively (Proposition 1). Since only patients j and k can receive d11’s and d12’s donation respec-
tively, d11 ∈ aLj and d12 ∈ aLk . Since the only acceptable transplantation type for j and k is 02,
aj ∈ X02

j (θ∗i , θ−i) and ak ∈ X02
k (θ∗i , θ−i). Thus aLj = {d11, di2} and aLk = {d12, dj2}. Since aj and ak

are 02, dj1, dk1 and dk2 donate to a patient respectively (Proposition 1). Since two of them donate to
patient 1, the remaining one donates to patient i (Recall that y ̸ �1 x). Since no other living donor is
compatible with patient i, ai ∈ X11

i (θ∗i , θ−i). 2
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Figure 14: Allocations a and b in Case 1.2.2.1.1.

Claim 1.2.2.1.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.2.1.1a, we can show that b1 is 02 only if bi is 11. However,
since 11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient in N\{1} cannot use
a cadaveric lung. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}. Since patient k cannot find two
compatible living donors in DL\DL

1 , bk ̸∈ X02
k (θ∗i , θ−i). Thus bk = (0, ∅). Since patient m ∈ N\{1, k}

cannot find two compatible living donors in DL\(DL
1 ∪DL

k ), bm ̸∈ X02
m (θ∗i , θ−i). Thus bm = (0, ∅). 2

Case 1.2.2.1.2: y = x. Note that y = x implies that θ∗i (i) = (x, I) = (y, I) = θ∗i (di1). Thus, by
Assumption 5, this case is excluded.
Case 1.2.2.1.3: y �1 x and y ̸= x. Note that y �1 x and y ̸= x imply that the combination of x and
y is one of the following five: (O,A), (O,B), (O,AB), (A,AB), (B,AB). Note also that each of them
satisfies x ̸ �1 y. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (y, I)

θ1(d11) = (O, III)

θ1(d12) = (O, III)


θj(j) = (AB, III)

θj(dj1) = (x, I)

θj(dj2) = (y, I)

{
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·
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Figure 15: Allocations a and b in Case 1.2.2.1.3.

Claim 1.2.2.1.3a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {di1, dj2}) if m = 1,

(1, {dj1}) if m = i,

(0, {d11, d12}) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the above allocation belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) = ΦY

0 (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i),

a1 ∈ X02
1 (θ∗i , θ−i). Since only di1 and dj2 are compatible with patient 1, a1 = (0, {di1, dj2}) (Recall

that x ̸ �1 y). Since a1 is 02, d11 and d12 donate to a patient respectively (Proposition 1). Since only
patients j can receive d11’s and d12’s donation, aj = (0, {d11, d12}). Since aj is 02, dj1 donates to a
patient (Proposition 1). Since patient 1 cannot receive dj1’s donation, it goes to i, i.e., dj1 ∈ aLi . Since
no other living donor is compatible with patient i, ai = (1, {dj1}). 2
Claim 1.2.2.1.3b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.2.1.3a, we can show that b1 is 02 only if bi is 11. However,
since 11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient in N\{1} cannot use
a cadaveric lung. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}. Since patient j cannot find two
compatible living donors in DL\DL

1 , bj ̸∈ X02
j (θ∗i , θ−i). Thus bj = (0, ∅). Since patient m ∈ N\{1, j}

cannot find two compatible living donors in DL\(DL
1 ∪DL

j ), bm ̸∈ X02
m (θ∗i , θ−i). Thus bm = (0, ∅). 2

Case 1.2.2.2: θ∗i2(di1) = θ∗i2(di2). Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) = (y, II), θ∗i (di2) =

(z, II), where x, y, z ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, I)

θ1(d12) = (O, III)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, III)


θk(k) = (AB, III)

θk(dk1) = (O, II)

θk(dk2) = (O, I){
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·
Rk 02 00 · · ·

Claim 1.2.2.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j, k}

X11
m (θ∗i , θ−i) if m = i

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j, k}.

Proof. Since the allocation described in the left hand side of Figure 16 belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d12 donates to a patient (Proposition 1).
Since only patients k can receive d12’s donation, d12 ∈ aLk . Since the only acceptable transplantation
type for patient k is 02, ak ∈ X02

k (θ∗i , θ−i). Thus aLk = {d12, dj2}. Since dj2 donates to patient k,
patient j receives an acceptable transplant, i.e. aj ∈ X02

j (θ∗i , θ−i). Thus aLj consists of dk1 and one of
di1 and di2 (Note that if aLj = DL

i , then dk1 cannot donate to any patient). Since a1, aj and ak are 02,
d11, dj1 and dk2 donate to a patient respectively (Proposition 1). Since two of them donate to patient
1, the remaining one donates to patient i, i.e., ai uses a living donor. Since no other living donor is
compatible with patient i, ai ∈ X11

i (θ∗i , θ−i). 2
Claim 1.2.2.2b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Claim 1.2.2.2a, we can show that b1 is 02 only if bi is 11. However,
since 11 is unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Thus each patient in N\{1} cannot use
a cadaveric lung. Thus bm is not 20, 10 or 11 for each m ∈ N\{1}. Since patient k cannot find two
compatible living donors in DL\DL

1 , bk ̸∈ X02
k (θ∗i , θ−i). Thus bk = (0, ∅). Since patient j cannot find

two compatible living donors in DL\(DL
1 ∪ DL

k ), bj ̸∈ X02
j (θ∗i , θ−i). Thus bj = (0, ∅). Since patient
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Figure 16: Allocations a and b in Case 1.2.2.2.

m ∈ N\{1, j, k} cannot find two compatible living donors in DL\(DL
1 ∪DL

j ∪DL
k ), bm ̸∈ X02

m (θ∗i , θ−i).
Thus bm = (0, ∅). 2
Case 1.2.3: | {θ∗i2(i), θ∗i2(di1), θ∗i2(di2)} | = 1. Without loss of generality, let θ∗i (i) = (x, I), θ∗i (di1) =

(y, I), θ∗i (di2) = (z, I), where x, y, z ∈ B. By the definition of Θi, at least one of di1 and di2 is not
compatible with patient i, i.e., y ̸ �1 x or z ̸ �1 x. Without loss of generality, assume that y ̸ �1 x.
Thus x ̸= AB. By Lemma 3, x ̸ �1 y or x ̸ �1 z. Thus x ̸= O. Summing up, we have x ∈ {A,B}.
Without loss of generality, we assume x = A till the end of Case 1.2.3.32

Note that since y ̸ �1 x, y ∈ {B,AB}. Moreover, we have the following two claims that narrow
down the combination of x, y and z.
Claim 1.2.3: The combination of x, y and z, written as (x, y, z), is one of the following five: (i)
(A,B,O), (ii) (A,B,B), (iii) (A,B,AB), (iv) (A,AB,O), and (v) (A,AB,B).
Proof. First, we show that y = B or z ∈ {O,B} by contradiction. Suppose to the contrary that
y ̸= B and z ̸∈ {O,B}. Since y ∈ {B,AB}, y = AB. Since z ∈ B\{O,B} = {A,AB}, we have
x = A �1 AB = y and x = A �1 z, contradicting Lemma 3.

Now we complete the proof of Claim 1.2.3. Note that x = A and y ∈ {B,AB}. First consider
the case with y = B. Since z = A is impossible by Assumption 5, we have (i), (ii), and (iii). Next
consider the case with y = AB. By the fact shown in the previous paragraph, we have z ∈ {O,B}.
Thus we have (iv) and (v). 2

We omit the proof for the case (v) because it is same as the one for case (iii). Let us consider the
following two cases of 1.2.3.1 and 1.2.3.2 separately.
Case 1.2.3.1: (x, y, z) is (i)(A,B,O) or (iv)(A,AB,O). Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:

32The same argument works for the case with x = B by replacing A with B and B with A in the proof given here.
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• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
1, (O, I)

) 
θ1(1) = (AB, II)

θ1(d11) = (O, II)

θ1(d12) = (O, I)


θj(j) = (O, I)

θj(dj1) = (A, I)

θj(dj2) = (O, II)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 02 00 · · ·
Rj 02 11 00 · · ·

Claim 1.2.3.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {d11, dj2}) if m = 1,

(1, {dj1}) if m = i,

(0, {d12, di2}) if m = j,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the allocation described in the LHS of Figure 17 belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since only d11 and dj2 are compatible with patient 1,
a1 = (0, {d11, dj2}). Note that this implies that aLj contains at least one living donor, i.e., aj is 11 or
02.

Since θdcq = 1, ai cannot be 20. Moreover, ai cannot be 10 since it implies that aj is not 11

(∵ patient j cannot use the cadaveric lung) and not 02 (∵ patient j cannot receive a donation from
di2 by Proposition 1). Moreover, ai cannot be 02 since it implies that di1 who has no compatible
patient donates to a patient. Moreover, ai cannot be 00 (∵ Since 11 is acceptable at R∗

i , the allocation
described in the left hand side of Figure 17 excludes the allocations that assign (0, ∅) to patient i).
Summing up, ai ∈ X11

i (θ∗i , θ−i). The allocation described in the LHS of Figure 17 enable patient
j to receive 02 under the condition that a1 ∈ X02

1 (θ∗i , θ−i) and ai ∈ X11
i (θ∗i , θ−i). Thus aj is 02.

Thus aj = (0, {d12, di2}) (∵ Only d12 and di2 are compatible living donors with patient j). Thus
ai = (1, {dj1}). 2
Claim 1.2.3.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =


(0, {d11, dj2}) if m = 1,

(1, {d12}) if m = j,

(0, ∅) if m ∈ N\{1, j}.

Proof. In a similar manner to Claim 1.2.3.1a, we can show that b1 = (0, {d11, dj2}). Note that this
implies that bLj contains at least one living donor, i.e., bj is 11 or 02.
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Figure 17: Allocations a and b in Case 1.2.3.1.

In a similar manner to Claim 1.2.3.1a, we can show that bi is not 20, 10 or 02. Moreover, since
11 is unacceptable at Ri, bi is not 11. Thus bi = (0, ∅). Since patient j cannot find compatible living
donors in DL\DL

1 , bj is not 02. Thus bj is 11 since the allocation described in the right hand side of
Figure 17 is available. Since it is the only allocation that assigns 02 to patient 1 and 11 to patient j,
we are done. 2
Case 1.2.3.2: (x, y, z) is (ii)(A,B,B) or (iii)(A,B,AB). Define (R−i; θ−i) ∈ RN\{i}×Θ−i as follows:

• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
1, (O, I)

) 
θ1(1) = (AB, II)

θ1(d11) = (O, II)

θ1(d12) = (B, I)


θj(j) = (B, I)

θj(dj1) = (A, I)

θj(dj2) = (O, II)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 02 00 · · ·
Rj 02 11 00 · · ·

Claim 1.2.3.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =



(0, {d11, dj2}) if m = 1,

(1, {dj1}) if m = i,

(0, {d12, di1}) if m = j and (iii) holds,

(0, {d12, di1}) or (0, {d12, di2}) if m = j and (ii) holds,

(0, ∅) if m ∈ N\{1, i, j}.

Proof. Since the allocation described in the LHS of Figure 18 belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since only d11 and dj2 are compatible with patient 1,
a1 = (0, {d11, dj2}). Note that this implies that aLj contains at least one living donor, i.e., aj is 11 or
02.
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Figure 18: Allocations a and b in Case 1.2.3.2.

Since θdcq = 1, ai cannot be 20. Moreover, ai cannot be 10 since it implies that aj is not 11 (∵
patient j cannot use the cadaveric lung) and not 02 (∵ patient j cannot receive a donation from a
patient in DL

i by Proposition 1). Moreover, ai cannot be 02 since it implies that both di1 and di2

donate to a patient respectively. Note that d12 also donates to a patient since a1 is 02. However,
since the economy can receive donation from at most two of di1, di2 and d12, one of di1 and di2 cannot
donate any patient. Thus ai is not 02. Moreover, ai cannot be 00 (∵ Since 11 is acceptable at R∗

i ,
the allocation described in the left hand side of Figure 18 excludes the allocations that assign (0, ∅)
to patient i). In sum, ai ∈ X11

i (θ∗i , θ−i). The allocation described in the left hand side of Figure 18
enable patient j to receive 02 under the condition that a1 ∈ X02

1 (θ∗i , θ−i) and ai ∈ X11
i (θ∗i , θ−i). Thus

aj is 02. Thus aLj consists of d12 and a donor in DL
i (∵ Donors in DL

j are not compatible with patient
j). Thus ai = (1, {dj1}). 2
Claim 1.2.3.2b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =


(0, {d11, dj2}) if m = 1,

(1, {d12}) if m = j,

(0, ∅) if m ∈ N\{1, j}.

Proof. In a similar manner to Claim 1.2.3.2a, we can show that b1 = (0, {d11, dj2}). Note that this
implies that bLj contains at least one living donor, i.e., bj is 11 or 02.

In a similar manner to Claim 1.2.3.2a, we can show that bi is not 20, 10 or 02. Moreover, since
11 is unacceptable at Ri, bi is not 11. Thus bi = (0, ∅). Since patient j cannot find compatible living
donors in DL\DL

1 , bj is not 02. Thus bj is 11 since the allocation described in the right hand side of
Figure 18 is available. Since it is the only allocation that assigns 02 to patient 1 and 11 to patient j,
we are done. 2
Case 2: Patient i has one living donors, i.e., |DL

i | = 1. Let DL
i = {di}. Note that, by Proposition 1,

patient i never receives a living donor transplant at any profile in RN ×Θ. Thus, (10) holds.
Case 2.1: | {θ∗i2(i), θ∗i2(di)} | = 2. Without loss of generality, let θ∗i (i) = (x, I) and θ∗i (di) = (y, II),
where x, y ∈ B. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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• The definition of θ−i: Let m ∈ N \ {1, i, j} and d ∈ DL
m.

{
θdc =

(
2, (O, I)

) 
θ1(1) = (AB, I)

θ1(d11) = (O, I)

θ1(d12) = (O, III)


θj(j) = (AB, II)

θj(dj1) = (O, I)

θj(dj2) = (O, III)


θk(k) = (AB, III)

θk(dk1) = (O, II)

θk(dk2) = (O, I){
θm(m) = (O, IV )

θm(d) = (AB, IV )

• The definition of R−i.

R1 02 20 00 · · ·
Rj 02 00 · · ·
Rk 02 00 · · ·

Claim 2.1a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am ∈


X02

m (θ∗i , θ−i) if m ∈ {1, j, k},

X11
m (θ∗i , θ−i) if m = i,

X00
m (θ∗i , θ−i) if m ∈ N\{1, i, j, k}.

Proof. Since the allocation described in the left hand side of Figure 19 belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) =

ΦY
0 (θdc ; (R

∗
i , θ

∗
i ); (Rj, θj)j ̸=i), a1 ∈ X02

1 (θ∗i , θ−i). Since a1 is 02, d12 donates to a patient (Proposition 1).
Since only patients k can receive d12’s donation, d12 ∈ aLk . Since the only acceptable transplantation
type for patient k is 02, ak ∈ X02

k (θ∗i , θ−i). Thus aLk = {d12, dj2}. Since dj2 donates to patient k,
patient j receives an acceptable transplant, i.e. aj ∈ X02

j (θ∗i , θ−i). Thus aLj = {di, dk1} (∵ Only di

and dk1 are compatible with patient j). Thus patient i receives a donation from a living donor, i.e.,
ai ∈ X11

i (θ∗i , θ−i). 2
Claim 2.1b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. In a similar manner to Case 2.1a, we can show that b1 is 02 only if bi is 11. Since 11 is
unacceptable at Ri, b1 is not 02. Thus b1 = (2, ∅). Since b1 does not use a living donor, d11 and d12

do not donate to any patient. Since patient k cannot find two compatible living donors in DL\DL
1 ,

bk is not 02. Thus bk = (0, ∅). Since bk does not use a living donor, dk1 and dk2 do not donate to
any patient. Since patient j cannot find two compatible living donors in DL\(DL

1 ∪DL
k ), bj is not 02.

Thus bj = (0, ∅). Since patient i cannot use a cadaveric lung, bi is not 20, 10 or 11. 2
Case 2.2: | {θ∗i2(i), θ∗i2(di)} | = 1. Without loss of generality, let θ∗i (i) = (x, I) and θ∗i (di) = (y, I),
where x, y ∈ B. Note that x ̸ �1 y by Lemma 3. Define (R−i; θ−i) ∈ RN\{i} ×Θ−i as follows:
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Figure 19: Allocations a and b in Case 2.1.

• The definition of θ−i: For m ∈ N \ {1, i, j} and d ∈ DL
m,

{
θdc =

(
2, (O, I)

) 
θ1(1) = (y, I)

θ1(d11) = (x, I)

θ1(d12) = (O, II)

{
θm(m) = (O, III)

θm(d) = (AB, III)

• The definition of R−i.

R1 11 20 00 · · ·

Claim 2.2a: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation a is, for each m ∈ N ,

am =


(1, {di}) if m = 1,

(1, {d11}) if m = i,

(0, ∅) if m ∈ N\{1, i}.

Proof. Since the above allocation belongs to IY (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i) = ΦY

0 (θdc ; (R
∗
i , θ

∗
i ); (Rj, θj)j ̸=i),

a1 ∈ X11
1 (θ∗i , θ−i). Since di is the only living donor compatible with patient 1, a1 = (1, {di}). By

Proposition 1, one of d11 and d12 donates to a patient. Since donor d12 has no compatible patient, d11
donates to patient i. Thus ai = (1, {d11}). 2
Claim 2.2b: For the above (R−i; θ−i) ∈ RN\{i} ×Θ−i, allocation b is, for each m ∈ N ,

bm =

(2, ∅) if m = 1,

(0, ∅) if m ∈ N\{1}.

Proof. Note that patient 1 cannot receive a hybrid transplant with own donor since x ̸ �1 y. Since
11 is unacceptable at Ri, b1 is not 11. Thus b1 = (2, ∅). Since patient 1 uses two units of cadaveric
lungs, patient i cannot use a cadaveric lung. Thus bi is not 20, 10 or 11. Thus bi = (0, ∅). 2
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Figure 20: Allocations a and b in Case 2.2.

Case 3: DL
i contains no living donor. Note that, by Proposition 1, patient i never receives a living

donor transplant or a hybrid transplant at any profile in RN ×Θ. Thus, by Lemma 2, patient i cannot
manipulate φP .
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