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Abstract

The inception of macro-prudential policy frameworks in the wake of the global financial crisis
raises questions of how macro-prudential and monetary policies should be coordinated. We ex-
amine these questions through the lens of a macroeconomic model featuring nominal rigidities,
housing, incomplete risk-sharing between borrower and saver households, and macro-prudential
tools in the form of mortgage loan-to-value and bank capital requirements. We derive a welfare-
based loss function which suggests a role for active macro-prudential policy to enhance risk-
sharing. Macro-prudential policy faces tradeoffs, however, and complete macro-prudential sta-
bilization is not generally possible in our model. Nonetheless, simulations of a housing boom and
bust suggest that macro-prudential tools could alleviate debt-deleveraging and help avoid zero
lower bound episodes, even when macro-prudential tools themselves impose only occasionally

binding constraints on debt dynamics in the economy.
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1 Introduction

With the recovery in the UK economy broadening and gaining momentum in recent
months, the Bank of England is now focussed on turning that recovery into a durable

expansion. To do so, our policy tools must be used in concert. Carney (2014)

In the aftermath of the global financial crisis, macro-prudential policy frameworks have been
established and developed across the world. The inception of these frameworks raises questions of
how new policy tools should be operated and how macro-prudential and monetary policies should
be coordinated.

These questions have particular resonance given the conditions currently facing policymakers
in many advanced economies. Since the financial crisis, monetary policy has been set with a view
to supporting economic activity and hence preventing inflation from falling below target. That
has required a prolonged period of low, sometimes negative, short-term policy rates and a raft of
so-called unconventional monetary policy measures. These policies have supported asset prices and
kept borrowing costs low. However, these effects have also given rise to concerns that such monetary
conditions may lead to levels of indebtedness that threaten financial stability. In some cases, macro-
prudential policy instruments have been used to guard against these risks. So the policy mix in
many economies has been ‘loose’ monetary policy and ‘tight’ macro-prudential policy.!

In this paper, we examine these questions through the lens of a simple and commonly used mod-
eling framework. Our model is rich enough to generate meaningful policy tradeoffs, but sufficiently
simple to deliver tractable expressions for welfare and analytical results under some parameteriza-
tions.

Our model incorporates borrowing constraints and nominal rigidities. These frictions give rise
to meaningful roles for macro-prudential policy and monetary policy respectively. The financial
friction takes the form of a collateral constraint, following Kiyotaki and Moore (1997) and Iacoviello
(2005) among many others. The collateral constraint limits the amount that relatively impatient
households can borrow. Specifically, their debt cannot exceed a particular fraction of the value
of the housing stock that they own: there is a ‘loan to value’ (LTV) constraint which the macro-
prudential authority can vary. In turn, borrowing by relatively impatient households is financed by
saving by more patient households (‘savers’). A perfectly competitive banking system intermediates
the flow of saving from savers to borrowers. Banks are subject to a capital requirement and we
assume that raising equity is costly (see also Justiniano et al., 2014). As such, variation in capital

requirements generates fluctuations in the spread between borrowing and deposit rates, providing

IThe quote at the start of the paper is from the opening statement at a press conference explaining the decision
of Bank of England’s Financial Policy Committee to limit the quantity of new lending at high loan-to-value ratios.
That statement explains that: “The existence of macro-prudential tools allows monetary policy to focus on its
primary responsibility of price stability. In other words, monetary policy does not need to be diverted to address a
sector-specific risk in the housing market.” Similarly, authorities in Canada have tightened macro-prudential policy
several times since the financial crisis (see Krznar and Morsink, 2014) while the official policy rate has remained low.
Conversely, the policy mix in Sweden has been a subject of much controversy and debate (see, for example, Jansson,
2014; Svensson, 2011).



the authorities with a second macro-prudential tool in addition to the LTV, albeit one that is costly
to deploy. Finally, the nominal frictions are Calvo (1983) contracts, standard in the New Keynesian
literature.

We derive a welfare-based loss function as a quadratic approximation to a weighted average
of the utilities of borrowers and savers. The loss function has five (quadratic) terms. Two terms
stem from the nominal rigidities in the model and are familiar from New Keynesian models: the
policymaker seeks to stabilize the output gap and inflation. The remaining terms are generated by
the financial friction: the policymaker seeks to stabilize the distribution of non-durable consumption
and housing consumption between borrowers and savers—the ‘consumption gap’ and the ‘housing
gap’ respectively. The presence of household heterogeneity therefore gives rise to objectives whose
origin lies in the incompleteness of risk sharing between households in the economy. The final term
in the loss function captures the costs of varying capital requirements, which themselves stem from
the non-zero cost of equity we assume outside of steady state.

We use the model to study how monetary and macro-prudential policies should optimally re-
spond to shocks. To build some intuition, we first focus on a linear approximation of the model
around a steady state in which the borrowing constraint is always binding and the full value of
housing can be used as collateral. We demonstrate that macro-prudential policy generally faces
a tradeoff in stabilizing the distribution of consumption and the distribution of housing services
even when prices are flexible and both macro-prudential tools are used. We also show that mone-
tary policy alone has relatively little control over these distributions, particularly the distribution
of housing between borrowers and savers. In other words, imperfect risk sharing is a real phe-
nomenon whose consequences could be addressed by macro-prudential policies, but these policies
also imply costs that must be accounted for when deploying them. This tradeoff prevents complete
macro-prudential stabilization using the tools we study, even under flexible prices.

To examine the quantitative implications of the model for optimal monetary and macro-prudential
policy, we explore numerical experiments designed to simulate a housing boom and subsequent
house price correction, calibrated with reference to the experiences of the United Kingdom and the
United States in the decades preceding and following 2008 (Figure 1). This allows us to examine
the extent to which macro-prudential tools could have complemented monetary policy in achieving
macroeconomic stabilization goals in the face of a house price fall large enough to force the nominal
rate to the zero bound.

We find that macro-prudential policies, in the form of the LTV tool and bank capital require-
ments, allow for better stabilization of the consumption and housing gaps, but also allow monetary
policy to fully stabilize the output gap and inflation because the short-term nominal interest rate
does not hit the zero bound. In other words, during a house price correction the optimal conduct
of macro-prudential policies mitigates the fall in the ‘equilibrium real rate of interest’ (that is, the
real interest rate consistent with closing the output gap Ferguson, 2004).

When the LTV tool is not available to the policymaker, the behavior of policy during the

recovery from a housing bust is broadly consistent with the ‘loose’ monetary policy and ‘tight’
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Figure 1: UK house prices and mortgage debt

macro-prudential policy mix observed in many economies in recent years. In that case, following
an initial cut in response to the fall in house prices, capital requirements are progressively tight-
ened. This macro-prudential policy behavior slows the speed of de-leveraging and ensures that
the equilibrium real interest rate recovers more quickly than otherwise. The faster recovery of the
equilibrium real interest rate allows monetary policy to liftoff from the zero bound earlier than
would otherwise have been the case. However, after liftoff the optimal monetary policy stance is
slightly stimulative, to cushion the aggregate demand effects from tightening capital requirements.

Our results contribute to a growing literature exploring the conduct and coordination of macro-
prudential policy. In the context of optimal policy, Angelini et al. (2012), Bean et al. (2010) and
de Paoli and Paustian (2017) consider the coordination between monetary and macro-prudential
policies in models with similar frictions to ours. Those papers also find that there are cases in which
it is optimal to adjust monetary and macro-prudential policy instruments in opposite directions.
The welfare-based loss function in our model is similar to that derived by Andres et al. (2013) in a
similar model, and bears similarity to Curdia and Woodford (2010). However, those authors focus
on the analysis of optimal monetary policy and do not explore macro-prudential policy.

Other papers with a greater focus on macro-prudential policies include Angeloni and Faia (2013),
Gertler et al. (2012), Clerc et al. (2015), Christiano and Ikeda (2016) and Aikman et al. (2018).
The focus of each of these papers is on macro-prudential bank capital instruments, whereas we also
consider a macro-prudential LTV tool. The potential of using LTV instruments is of particular
relevance for countries like the UK, where mortgage lending is the single largest asset class on
domestic banks’ balance sheets, and is also the single largest liability class on households’ balance

sheets.



Finally, Eggertsson and Krugman (2012b) study the implications of households’ debt-deleveraging
for monetary policy in a model similar to ours, while Korinek and Simsek (2016) and Farhi and
Werning (2016) study the theoretical implications of the zero bound constraint on monetary policy
and distortions in financial markets for optimal macro-prudential policies.

The rest of the paper is organised as follows. Section 2 presents the model. Section 3 derives
a linear-quadratic approximation of the equilibrium and discusses some analytical results. Section
4 illustrates the optimal joint conduct of monetary and macro-prudential policy via numerical

simulations. Section 5 concludes.

2 Model

The economic agents in the model are households, banks, firms, and the government. Households
are heterogeneous in their degree of patience. Banks transfer funds from savers to borrowers and
fund their operations with a mix of deposits and equity. Firms produce goods for consumption.

The government conducts monetary and macro-prudential policy.

2.1 Households

Patient households (i.e. savers, indexed by s) have a higher discount factor than impatient house-
holds (i.e. borrowers, indexed by b). We denote with £ € (0, 1) the mass of borrowers, and normalise

the total size of the population to one. We also assume perfect risk sharing within each group.

2.1.1 Savers

A generic saver household ¢ € [0,1 — &) decides how much to consume in goods Cf (i) and housing
services H} (i),? save in deposits D (i) and equity Ej (i) of financial intermediaries, and work L; (i),

to maximise

o s ,—ul s
. (5[ e 7t . _ X A1
WS =F t (1 _ 2C (Z)) XH HS l—op L LS +p , 1
3(0) {gﬁ[ OO ) 4 B (7 0) 7~ P () M)
where 5 € (0,1) is the individual discount factor, z > 0 is the degree of absolute risk aversion,
o, > 0 is the inverse elasticity of housing demand, ¢ > 0 is the inverse Frisch elasticity of labour
supply, and x7;, x7 > 0 are type-specific normalisation constants. Preferences include an aggregate
housing preference shock, u?, common to all households.

The budget constraint for patient household i is

P,C; (i) + Dj (i) + Ef (i) + (1 + 7" Qe H; (i) =
WiL; (i) + R Dj_y (i) + R{_ Ej_1 (3) + Qe (3) + Q5 (i) — T7 (i) — Ty (3),

2We make the standard assumption that the flow of housing services is proportional to the stock of housing.



where P, is the consumption price index, ()¢ is the nominal house price, W/ is the nominal wage for
savers, Rf_l is the nominal return on bank deposits, and Rf_; is the nominal return on bank equity.?
The variable T} (i) captures lump-sum taxes while €2§(7) denotes the savers’ share of remunerated
profits from intermediate goods producers and from banks. The constant 7" is a tax/subsidy on
savers’ housing that we assume is set to deliver an efficient steady state in the housing market.
The final term in the budget constraint is a cost associated with deviations from some preferred
portfolio level of bank equity & > 0
(i) =

REDY/(1-¢) 1-¢

vOB() ||’ ReD?
2

with ¥ > 0. For analytical convenience, we express the adjustment cost relative to aggregate bank

lending £D?, which savers take as given.*

2.1.2 Borrowers

A generic borrower household ¢ € [1 — ¢, 1] maximizes the same per-period utility as savers (1) but

discounts the future at lower rate g, € (0, 8s). The borrower’s budget constraint is
P,CY(i) = DY(i) + QuH (i) = WYL (i) — Re_y DYy (i) + QuHy 1 () + Q7(i) — T} (i),

where D?(i) is the amount of borrowing at time ¢, T} () are lump-sum taxes, including those used to
obtain an efficient allocation of consumption in the model’s steady state, and Q°(i) denotes profits
from ownership of intermediate goods producing firms.

As common in the literature (e.g Kiyotaki and Moore, 1997), we assume that a collateral
constraint limits impatient households’ ability to borrow. In particular, their total liabilities cannot

exceed a (potentially time-varying) fraction of their current housing wealth
DY(i) < ©:Q:Hy (i),

where ©; € [0,1]. The term ©; represents the maximum loan-to-value (LTV) ratio available to
borrowers. The standard interpretation of such a constraint is that lenders (in this case, the
financial intermediaries) require borrowers to have a stake in a leveraged investment to prevent
moral hazard behavior. In our policy analysis, we will consider cases in which the macro-prudential
authority sets the maximum LTV that banks can extend to borrowers. In this sense, the LTV ratio

is part of the macro-prudential toolkit that we will study below.

3 As in Benigno et al. (2014), the introduction of type-specific wages and exponential utility simplifies aggregation,
and facilitates the derivation of a welfare criterion for the economy as a whole.

4The introduction of this adjustment cost function is a simple way to distinguish bank equity from bank debt
(deposits), and captures the idea that deposits are generally more liquid, and thus easier for households to adjust.
Little of substance would change in the first-order accurate solution to the model that we examine if we specified
bank equity as a state-contingent claim.



2.2 Banks

A continuum of perfectly competitive banks, indexed by k € [0, 1], raise funds from savers in the
form of deposits and equity (their liabilities), and make loans (their assets) to borrowers. Bank k’s
balance sheet identity is

D (k) = D} (k) + E; (k). (2)

In addition, we assume that equity must account for at least a fraction &; of the total amount of
loans banks extend to borrowers
Ej (k) > 7Dy (k). (3)

The presence of equity adjustment costs breaks down the irrelevance of the capital structure
(the Modigliani-Miller theorem). Savers demand a premium for holding equity, which banks pass
on to borrowers in the form of a higher interest rate. From the perspective of the bank, equity is
expensive, and thus deposits are the preferential source of funding. In the absence of any constraint,
banks would choose to operate with zero equity and leverage would be unbounded. Equation (3)
ensures finite leverage for financial intermediaries.

As in the case of the LTV parameter, we will consider two possible interpretations of ;. The
first treats this variable as exogenous, relying on the notion that financial institutions target a
certain leverage ratio due to market forces (Adrian and Shin, 2010). According to the second
interpretation, while the constraint still plays the role of limiting banks’ leverage, it is the macro-
prudential authority that sets the capital requirement on financial institutions. In this sense, .
becomes the second macro-prudential tool for the regulatory authority. Several recent contributions
have discussed capital requirements as one of the key instruments to avoid financial crises in the
future (e.g. Admati and Hellwig, 2014; Miles et al., 2013). In our analysis, we will focus on the
interaction between capital requirements and interest rate setting.

Independently of its interpretation, the capital requirement constraint is always binding in
equilibrium, exactly because financial intermediaries seek to minimize their equity requirement.
If the capital constraint of all banks were slack, one bank could marginally increase its leverage,
charge a lower loan rate, and take the whole market. Therefore, competition drives the banking
sector against the constraint.

Banks’ profits are
Pi(k) = Ry D; (k) — R{D; (k) — R{E} (k) = [R{ — (1 — k) R{ — ke R{) D} (K),

where the second equality follows from substituting the balance sheet constraint (2) and the cap-
ital requirement (3) at equality. The zero-profit condition implies that the loan rate is a linear

combination of the return on equity and the return on deposits
RV = Ry RS + (1 — &) RY,

where the time-varying capital requirement represents the weight on the return on equity. A surprise



rise in &, whether due to an exogenous shock or a policy decision, forces banks to delever and raises

credit spreads.

2.3 Production

A representative retailer combines intermediate goods according to a technology with constant

elasticity of substitution ¢ > 1

€

1 1 =1
Ytz[/o Yi(f) df} ,

where Y;(f) represents the intermediate good produced by firm f € [0, 1]. Expenditure minimisation

implies that the demand for a generic intermediate good is

(4)

where P;(f) is the price of the variety produced by firm f and the aggregate price index is

P = [/Olpt(f)l—adf]lis.

Intermediate goods producers operate in monopolistic competition, are owned by savers and
borrowers according to their shares in the population, and employ labour to produce variety f

according to

Yi(f) = ALe(f)- (5)
Aggregate technology A; follows a stationary autoregressive process in logs

— a
In Ay = ar = paas—1 + €,

with p, € (0,1) and € ~ N(0,02). To simplify aggregation, we assume L;(f) is a geometric average

of borrower and saver labour, with weights reflecting the shares of the two types
Li(f) = [LENIELE NS,
and the corresponding wage index is
Wi = (W))S (W)=

Intermediate goods producers set prices on a staggered basis. As customary, we solve their
optimization problem in two steps. First, for given pricing decisions, firms minimize their costs,
which implies that the nominal marginal cost M; is independent of each firm’s characteristics. The
second step of the intermediate goods producers problem is to determine their pricing decision. As

in Calvo (1983), we assume firms reset their price P;(f) in each period with a constant probability



1 — )\, taking as given the demand for their variety, while the complementary measure of firms A
keeps their price unchanged. The optimal price setting decision for firms that do adjust at time ¢
solves

max Et {Z )\iQt,t—i-v[(l + Tp)Pt(f) - Mt—i—v]}/;&-i—v(f)} ’

Pt(f) =0

subject to (4), where 7P is a subsidy to make steady state production efficient. Intermediate goods
producers are owned by households of both types in proportion to their shares in the population.

Therefore, we assume that the discount rate for future profits is

Qt,t+v = (Q?,Hv)g(@f,tw)lia

where Qit% = szefz(ciyﬂ(i)*cg () is the stochastic discount factor between period t and ¢ + v of

type j = {b, s}.

2.4 Equilibrium

Because of the assumption of risk-sharing within each group, all households of a given type consume
the same amount of goods and housing services and work the same number of hours. Therefore,
in what follows, we drop the index ¢ and characterize the equilibrium in terms of type-aggregates.
Similarly, because all financial intermediaries make identical decisions in terms of interest rate
setting, we drop also the index k and simply refer to the aggregate balance sheet of the banking
sector.

For a given specification of monetary and macro-prudential policy, an imperfectly competitive
equilibrium for this economy is a sequence of quantities and prices such that households and in-
termediate goods producers optimise subject to the relevant constraints, final good producers and
banks make zero profits, and all markets clear.® In particular, for the goods market, total pro-
duction must equal the sum of consumption of the two types plus the resources spent for portfolio
adjustment costs®

Y, =£CP + (1= 6)C; + T, (6)

1—¢ v /R 2
T, = / Ly(i)di = 5 (”t - 1) REDY.
0 K

We assume housing is in fixed supply (i.e., land). The housing market equilibrium then requires

where

H=¢H) + (1-§H], (7)

5 Appendix A reports the equilibrium conditions for the private sector and the details of aggregation.

5The resource constraint follows from combining the budget constraints of the two types (aggregated over their
respective measures) with the financial intermediaries balance sheet, under the assumption that the government
adjusts residually the lump-sum transfers to savers.



where H is the total available stock of housing.” Finally, in the credit market, total bank loans
must equal total household borrowing. Thus, the aggregate balance sheet for the financial sector

respects
D) = (1-&)(D; + E}),

where per-capita real private debt (derived from the borrowers’ budget constraint) evolves according

to

+CP -, + %(Hf —HY )+ T,
t

Dy _ Ry, Di

P T P

and 77 is a subsidy that ensures the steady state allocation is efficient.

3 Linear-Quadratic Framework

Our ultimate objective is to study the optimal joint conduct of monetary and macro-prudential
policy. In this section, we aim to obtain some analytical results following the approach of the optimal
monetary policy literature (e.g. Clarida et al., 1999; Woodford, 2003), and derive a linear-quadratic
approximation to our model with nominal rigidities and financial frictions. We approximate the
model around a zero-inflation steady state in which the collateral constraint binds. An appropriate
choice of taxes and subsidies ensures that the steady state allocation is efficient. Appendix C

reports the details of the derivations.

3.1 Quadratic Loss Function

To derive the welfare-based loss function, we take the average of the per-period utility functions of
borrowers and savers, weighting each type according to their share in the population. We assume
that policymakers discount the future at rate 3,.% A second-order approximation of the resulting
objective gives

1, — -
£0 X §E0 Zﬁ‘i (.’IJ% + )\7|—7Tt2 + AHK% + )\cég + )\hh?) ) (8)
t=0

where lower-case variables denote log-deviations from the efficient steady state, x: = y — vy is
b

the efficient output gap (with y; representing the efficient level of output), ¢ = ¢ — ¢} is the
consumption gap between borrowers and savers, and he = hi’ — h{ is the housing gap between
borrowers and savers. The weights on deviations of inflation and capital requirements from target
are

€

— and Ak v

A :
Ty o+

"The absolute level of this variable plays no role in the analysis.

8Benigno et al. (2014) assume that the discount factor of the two types is the same in the limit (8, — f8s), and
that borrowing/lending position are determined by the initial distribution of wealth. We retain the heterogeneity
in the discount factors but effectively assume that the policymaker is chosen among the population of savers. This
choice is obviously arbitrary but we can solve the optimal policy problem for any value of 8 € (0,1).

10



where v = (1 — SA)(1 — N)(0 + ¢) /A, while the weights on the consumption and housing gaps are

€0-Qolltoty) o _otl-8

=T o) ot

The loss function (8) features two sets of terms. The first includes the efficient output gap and
inflation—the standard variables that appear in the welfare-based loss function of a large class of
New Keynesian models. Their presence in the loss function reflects the two distortions associated
with price rigidities. First, such rigidities open up a “labour wedge”, causing the level of output to
deviate from its efficient level. Second, staggered price setting implies an inefficient dispersion in
prices, which is proportional to the rate of inflation.

The second set of terms in (8), comprising the consumption gap and the housing gap, arise
from the heterogeneity between household types and, in particular, from the fact that one group of
households are credit-constrained while the others are not. The collateral constraint generates an
inefficiency because of incomplete insurance. In the absence of the collateral constraint, households
could insure each other against variation in their housing and consumption bundles. The collateral
constraint limits the amount of borrowing that can take place to carry out this insurance in full.
As a result, risk sharing is imperfect. An analogous argument applies to housing. Imperfect risk
sharing therefore becomes a source of welfare losses the policymaker accounts for when setting
policy optimally. Finally, the term A,x? accounts for the costs associated with the use of capital

requirements as a policy tool.”

3.2 Linearised Constraints

In this section, we combine the linearised equilibrium relations to obtain a parsimonious set of
constraints for the optimal policy problem in our linear-quadratic setting.'® To simplify the deriva-
tions, we assume © = 1 (a 100% LTV ratio). We return to the case © < 1 in the quantitative
analysis. Appendix D provides additional details on the derivations.
On the supply side, as common in the literature, we can rewrite the Phillips curve in terms of
the efficient output gap
Ty = oy + BEimip1 +uf, 9)

where uf is an exogenous cost-push shock.
On the demand side, we write an aggregate demand curve in terms of the output gap and the
consumption gap
xp — 6 = —0 iy — Bymp1) + Ee(@e41 — E6p1) + 15, (10)

where v{ is a combination of exogenous shocks defined in the appendix. In a standard representative

91f we treat the leverage ratio as an exogenous—albeit time-varying—constraint, the costs of its fluctuations
become independent of policy, and thus irrelevant for ranking alternative policies in terms of welfare. In this case,
the welfare objective only has four terms but the policymaker has one fewer tool for stabilization purposes.

10Unless otherwise stated, lower-case variables denote log-deviations from steady state. For a generic variable Z;,
with steady state value Z, z: = In(Z:/Z).

11



agent model, the consumption gap is zero, and all agents behave like the savers in our economy.
The consumption gap in (10) summarises the impact of debt obligations, house prices and LTV
ratios on aggregate demand due to the lack of risk sharing.

We derive an equation for the housing gap by taking the difference of the housing demand

equations between borrowers and savers. The resulting expression is

7 w—E&(Bs — By) . Bs — Bo o
P AVl Bl VAP _E % (2 E
t ThEw (it ¢Te41) + p— (q¢ tqt+1) Uhf(xt tTe11)
_ 1_ g
+ o+ b - —— Ly, 10l (1)
Oh OpW OpW

where w and ' are combinations of fundamental parameters and shocks, respectively, defined in
the appendix.
To complete the description of the housing block, we take a population-weighted average of the

housing demand equation to obtain an aggregate house price equation that reads as

it 0 _d-p)
wtpB w4+

ow

B
— K g 12
w1 B YEg 4 i1 v, (12)

w4+

g = — (it — Bympy) + Eiripq +

where v/ is a combination of fundamental shocks defined in the appendix.

In the neighborhood of a steady state in which the borrowing constraint binds, debt is a function

of the LTV constraint, house prices and the housing gap
di =0+ g+ (1 — ). (13)
We can keep track of its dynamics via the borrowers’ budget constraint

! _55,5. (14)

db = i(z’t_l + PR +diy — )+ (1= &) (hy — hy—1) +

Bs n

The set of endogenous states in the model consists of private debt, the nominal interest rate, and
the leverage ratio. Since we solve the optimal policy problem under discretion, with endogenous
state variables, we need to keep track of the effects of current actions on future losses through the
evolution of the states. In this respect, we can simplify the optimal policy problem by defining a

single composite state variable
St Edg—FZ't—leit—,Bs(l —f)ilt, (15)

which captures the burden of debt at maturity for borrowers relative to the discounted quantity
of housing owned. Using this composite state variable, we can rewrite the borrowing constraint at
equality as

St =0t +q + i +Yre + (1 — Bs)(1 — &) hy. (16)

Similarly, the law of motion of debt can be rewritten as the law of motion of the single state variable

12



as
Sy = ;(Stl =) i+ re+ (1= Be) (1 — €)he +

In this way, we have reduced the endogenous states from three to one, and we can characterise the

Sa. (17)

effects of current decisions on future losses via the variable Sy only.

The joint optimal monetary and macro-prudential problem under discretion consists of mini-
mizing (8) subject to the constraints (9)-(14), or, equivalently, (9)-(12), (16), and (17). In general,
the policymaker can choose three instruments (the nominal interest rate, i;, the LTV ratio, 6, and
the capital requirement, ;) to implement the optimal plan. To fix ideas before deriving optimal
policy plan in the most general case, however, we start from a simple benchmark without nom-
inal rigidities in which debt is issued in real terms. This special case allows us to focus on the

characteristics of macro-prudential policy, abstracting from its interactions with monetary policy.

3.3 Optimal Macro-Prudential Policy under Flexible Prices

To highlight the effects of macro-prudential policy, we focus on the efficient equilibrium of the model.
With flexible prices (A — 0) and no markup shocks (uj* = 0, Vt), productivity fully determines
output, which becomes exogenous (y; = y;), so that the output gap is always zero (z; = 0, Vt).
In addition, the weight on inflation in (8) is zero (A; = 0). Hence, the first two terms in the loss
function disappear. The job of the policy authority then becomes to stabilize the consumption and
housing gap, and—if used as an instrument—minimize the volatility of capital requirements.

The Phillips curve is no longer a constraint for the optimal policy plan. Since the output gap
is always zero, the aggregate demand curve determines the consumption gap as a function of the
real interest rate r;

~ 1 ~
§6p = oy + EECpp1 — vy

The other constraints correspond to equation (11), (12), (16), and (17), after imposing a zero
output gap in all periods. In addition, because of the assumption that debt is in real terms,
inflation disappears from the model and the nominal interest rate is replaced by the real interest
rate.

Appendix E.1 sets up the Lagrangian that describes the optimal policy problem under discretion
and derives the first order conditions. After solving out for the Lagrange multipliers, we can express
the optimal policy plan in terms of two targeting rules. The first instructs the policymaker how to

set capital requirements in response to an opening up of the consumption and housing gap
ke = Bl + Pphy, (18)

where ®. and ®; are coefficients defined in the appendix, where we also demonstrate that both
coefficients are positive for empirically plausible parameterizations of the model.
Rule (18) is static and requires the policymaker to increase capital requirements whenever either

a consumption gap or a housing gap (or both) opens up. Positive consumption or housing gaps
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signal excess demand by borrowers, and hence require a tightening of financial conditions. The
policymaker achieves this goal by raising capital requirements, thus reducing credit and making it
more expensive for borrowers.

The second rule is dynamic and forward looking
&+ Qnhy = QEéi41, (19)

where 2, and 2. are coefficients defined in the appendix. Given that the static targeting rule sets
capital requirement, we can think of rule (19) as implicitly determining the optimal LTV ratio. In
particular, the combination of current consumption and housing gaps on the left-hand side must
be proportional to the expected future consumption gap.

Through the effects on the composite state variable (and in particular debt, but also current
interest rates and capital requirements) optimal policy affects future losses. Under discretion, the
policymaker cannot commit to any policy in the future. Therefore, current decisions need to take
into account the effects on future outcomes. For example, if a negative shock hits the economy
in the current period and opens up the consumption and housing gaps, the policymaker should
relax capital requirements to minimize its macroeconomic impact. However, once the shock dies
out, such an expansionary policy will contribute to overheat the economy. The policymaker should
use the LTV ratio to ensure that current policy is not excessively costly in the future by allowing
for excessive leverage. The example is purely illustrative and does not necessarily mean that the
policymaker should always adjust the macro-prudential instruments in opposite directions.

The targeting rules derived above illustrate that it is not generally possible for macro-prudential
policy to achieve full stabilization: that is, a stable equilibrium with & = hy = k¢, V. We can
demonstrate this using an informal proof by contradiction. If it was possible to deliver such an
allocation using these targeting rules, then those rules also imply that x; = 0 (from (18)) and
Ei¢i+1 = 0 (from (19)). These conditions (together with the conjectured full stabilization alloca-

tions) can be substituted into the Euler equation and the real version of (17) to give:
St =By S + ovf

which implies an explosive trajectory for the composite state variable, since 85 < 1.
In the next section we shall see how the features of optimal macro-prudential policy under
discretion in the efficient equilibrium extend to the case with nominal rigidities and interact with

the optimal conduct of conventional monetary policy.

3.4 Monetary and Macro-Prudential Policies with Sticky Prices

As in the previous section, we report here the optimal targeting rules for monetary and macro-
prudential policy under discretion, and refer to Appendix E.2 for the details of the derivation.
The first result is that the introduction of sticky prices does not change the nature of the static

tradeoffs for the macro-prudential authority. Equation (18) continues to describe the optimal
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setting of capital requirements.'!

A second static targeting rule characterizes optimal monetary policy
T + ’}/)\ﬂ-ﬂ't + AC = 0, (20)

where A, is a coefficient defined in the appendix. Equation (20) resembles the standard New Keyne-
sian monetary targeting rule under discretion, but also includes an adjustment for the consumption
gap. Since the coefficient on the consumption gap A. is positive for empirically relevant calibra-
tions, monetary policy will typically “lean against the wind”. Everything else equal, a shock that
opens a positive consumption gap requires a negative combination of the output gap and inflation
(appropriately weighted), contrary to the standard case (Clarida et al., 1999) in which the same
combination should be set equal to zero.

The last targeting rule extends the optimal setting of the LTV ratio to the case of sticky prices
G+ Yowp + Tam + Thhy = TeRedeia, (21)

where Y,, T, Ty, and Y. are coefficients defined in the appendix. With sticky prices, the optimal
setting of LTV ratios needs to take into account also current inflation and output gap.

As in the efficient equilibrium, the current policy decisions affect future outcomes and losses
through the composite state variable. A negative shock that hits the economy in the current
period not only creates distributional effects, opening up a consumption and housing gap, but also
negatively affects inflation and the output gap. The policymaker should respond to the shock by
relaxing monetary and financial conditions, without losing sight of effects of the current policy
response on future outcomes and losses. A simple extension of the argument in Section 3.3 shows
that full stabilization is generally not possible, even in the absence of cost-push shocks.

In sum, the rules (18), (20), and (21) reveal a rich interaction between monetary and macro-
prudential policy that operates via the output gap and inflation on the monetary side, and the
consumption and housing gap on the macro-prudential side. The next section makes the targeting
criteria above operational in the context of a house price boom scenario that mimics some aspects

of the recent crisis.

4 Quantitative Experiments

In this section, we use our model to study the interaction of monetary and macro-prudential policies
in a stylized simulation of a house price boom. Our objective is to explore the interaction of mon-
etary and macro-prudential policies under alternative ‘policy configurations’, when accounting for
the presence of occasionally binding constraints. We consider several policy configurations, specify-

ing which policy instruments may be used, which policymakers (monetary and/or macro-prudential)

11 Formally, in the appendix we show that a subset of the first order conditions for the problem with sticky prices
are identical to the static first order conditions of the case with flexible prices and real debt. Therefore, we can derive
the same static macro-prudential rule.
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may use them and the objectives of the policymaker(s). Occasionally binding constraints are of
interest because policy instruments (the short-term nominal interest rate and capital requirements)
may be constrained by a lower bound and because the borrowing constraint may become slack.
Both of these cases will change the ability of policy to stabilize the economy.

To provide a somewhat more realistic dynamic structure of the model, we incorporate a slow-
moving borrowing limit in the same way as Guerrieri and Iacoviello (2017) and Justiniano et al.
(2015). This modification is intended to generate more persistent movements in debt and its
marginal value (that is, the multiplier x). In principle, it is possible to incorporate a wide range
of additional frictions to enhance the dynamic properties of the model (as Guerrieri and Iacoviello,
2017, do, for example). Here, we focus on the slow-moving borrowing limit largely because it does
not affect the derivation of the welfare-based loss function while introducing some quantitative
relevance.

Specifically, we assume that borrowers face the following borrowing constraint:
Di(i) < 9aDi_y(i) + (1 = 74) ©,QuH{ (i) (22)

where v4 € [0, 1) is a parameter controlling the extent to which the debt limit depends on the house-
hold’s debt in the previous period. As argued by Guerrieri and Iacoviello (2017), this formulation
can be interpreted as capturing the idea that only a fraction of borrowers experience a change to
their borrowing limit each period (which may be associated with moving or re-mortgaging). One
implication of this formulation is that movements in debt adjust only gradually to changes in the
value of the housing stock, which is consistent with the data in Figure 1. The modification to
the specification of the borrowing limit affects the Euler equation and housing demand equation of
borrowers as shown in Appendix F.1. When 74 = 0 and © = 1 the model collapses to the version

discussed in Section 3.4.

4.1 Parameter Values

The parameter values used for the simulation exercises are shown in Table 1. Most of the parameter
values are taken from the careful estimation of a similar (though richer) model on US data by
Guerrieri and Tacoviello (2017). We focus discussion on the remaining parameters.

We set 5, = 0.99, implying that borrowers are less patient than implied by the estimate of
0.992 by Guerrieri and Iacoviello (2017). The relative discount factors of borrowers and lenders are
crucial for the extent to which changes in house price expectations cause the borrowing constraint
to become slack. Our lower value of (3 increases the steady state value of the borrowing constraint
multiplier so that larger shocks are required for the constraint to become slack. We set the slope
of the Phillips curve in line with the assumption in Eggertsson and Woodford (2003).'2

Two parameters that are important in determining the response to housing demand shocks are

12This requires a Calvo price adjustment parameter of 0.8875, a little lower than the estimate of Guerrieri and
Tacoviello (2017).
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Description Value Comments/issues/questions

Bs Saver discount factor 0.995  Guerrieri and Iacoviello (2017)
o Inverse elasticity of substitution (consumption) 1 Guerrieri and ITacoviello (2017)
¢ Inverse Frisch elasticity 1 Guerrieri and Iacoviello (2017)
¥4 Debt limit inertia 0.7 Guerrieri and ITacoviello (2017)
©  Debt limit (fraction of house value) 0.9 Guerrieri and Tacoviello (2017)
~v  Slope of Phillips curve 0.024 Eggertsson and Woodford (2003)
By, Borrower discount factor 0.99 See text.

¢ Fraction of borrowers in economy 0.57  Cloyne et al. (2016)

17 Debt: GDP ratio 1.8 BIS data (1990-2000)

1 Elasticity of funding cost to capital ratio 0.05 See text.

op, Inverse elasticity of substitution (housing) 25 See text.

prn  Housing demand shock persistence 0.85 See text.

Table 1: Parameter Values

the persistence of the shock and the intertemporal substitution elasticity. We assume a moderate
level of persistence, setting pp = 0.85, which is somewhat smaller than the modal estimate of 0.98
from Guerrieri and Iacoviello (2017). We set o5, = 25 which implies that housing demand is rather
insensitive to movements in the real house price. Guerrieri and Iacoviello (2017) assume o, = 1, but
also incorporate habit formation in the sub-utility function for housing. The high degree of habit
formation that they estimate implies that the short-run elasticity of housing demand to changes in
the house price is much lower than unity. By setting o, = 25, we aim to replicate this qualitative
behavior without complicating the model and particularly the derivation of the welfare-based loss
function.'?

The remaining parameters are set with reference to UK data. To set £ we refer to the analysis
in Cloyne et al. (2016), who study the behavior of households by tenure type. Their data imply

that UK household shares are roughly: 30% homeowners; 40% mortgagors and 30% renters. Since

0.4
0.3+0.4

population shares of mortgagors and homeowners in the data.'*

We set 1 with reference to UK household debt to GDP ratios. According to BIS data, this
ratio averaged around 60% between 1990 and 2000.' Around three quarters of household debt
is mortgage debt, which suggests setting 7 = 0.6 x 0.75 x 4 ~ 1.8 (since 7 is the ratio of debt to
quarterly GDP).

We assume the steady state capital ratio k is 10%, close to the average reported in Meeks (2017)
for UK banks over the period 1990-2008. Given that, the key determinant of the transmission of

changes in x; through to credit spreads is the parameter » = Wk. In its final report to the

our model does not include renters, we set & = ~ 0.57 so that it represents the relative

130f course, our approach also reduces the long-run elasticity of housing demand to house prices, so that it is less
flexible than the introduction of habit formation.

Y Guerrieri and Tacoviello (2017) estimate that the fraction of labor income accruing to borrowers is around 0.5.
Since labor income is allocated in proportion to population share in our model, this suggests a similar value for &.

15This period precedes the run up in house prices before the financial crisis. We use this period for our calibration
as we aim to mimic the pre-crisis house price rise in our simulation.
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BIS, Macroeconomic Assessment Group (2010) estimate that a 1 percentage point rise in capital
requirements would have a peak effect on GDP of between -0.05% and -0.35%. A partial equilibrium
thought experiment implies that this effect would be generated by an increase in (annualized) short-
term nominal interest rates of between 0.2pp and 1.4pp when ¢ = 1, as in our calibration. However,
in our model, credit spreads are only faced by about 60% of households, so the spread would need
to increase by around 0.3-2.3pp on an annualized basis. We assume that the change in spreads is 2
percentage points, towards the top of this range. Taken together, these assumptions imply a value
of W solving (0.02/4) = ¥ x 0.10 x 0.1, or equivalently, a value of v given by (0.02/4)/0.1 = 0.05.16

4.2 Simulation Methodology

Our simulation is designed to generate a prolonged rise in the real price of housing followed by a
sharp fall. The simulation is calibrated to deliver a similar increase in real house prices that was
observed in pre-crisis UK data (Figure 1). The fall in prices is much more extreme than observed
in the United Kingdom because our aim is to generate a sufficiently large downturn that monetary
policy may be constrained by the zero bound purely as a consequence of the house price fall. In
this respect, perhaps, the simulation more closely resembles the US experience.

To generate a steady increase in house prices, we apply a sequence of unanticipated shocks to
housing preferences u?, t=1,...,K. In each period, we solve the model (applying the occasionally
binding constraints when necessary) conditional on agents’ information up to that date. For the
boom phase, the sequence of shocks is increasing, so that u? > uf}_l fort =1,..., K —1. The ‘bust’
occurs in period K: a large negative housing preference shock is realised, which acts to reverse
most of the previous increase in house prices. To match the slow pre-crisis increase in house prices
we set assume that the boom lasts for 30 quarters (K = 31).

We use a piecewise linear solution approach to account for the possibility that (a) the short-
term nominal interest rate is constrained by the zero lower bound and/or (b) borrowers’ debt limit
(22) does not bind. This approach takes account of the possibility that the occasionally binding
constraints may apply in future periods, but does not account for the risk that future shocks
may cause the constraints to bind. This means that our solution approach does not account for the
skewness that may be generated in the expected distribution of future outcomes (e.g. of output and
inflation) by the possibility of being constrained in future. Our solution methodology is therefore
similar to the OccBin toolkit developed by Guerrieri and Iacoviello (2015). Appendix F.4 contains

a detailed description of our method.

4.3 Alternative Policy Configurations

In our simulations, we study the macroeconomic effects of a housing boom under several alternative
assumptions about the conduct of monetary and macro-prudential policies. These assumptions are

motivated by the nature of central bank remits in the past and the way that the introduction of new

16Meeks (2017) estimates that a 50 basis point rise in capital requirements raises mortgages spreads by 20-25
annualized basis points at its peak. This implies a somewhat lower value of ¥ = 0.0125.
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Policy variant Policy assumptions

Monetary Macro-prudential
Flexible inflation targeting | minimize £§77 Inactive (6; = k¢ = 0)
Leaning against the wind minimize £y  Inactive (6; = k; = 0)
Macro-prudential leadership | minimize Eg T minimize E(])V[ aP
Full co-ordination minimize £,

Table 2: Alternative policy assumptions used in simulations

macro-prudential policy instruments may affect those remits in the future. However, a common
assumption that policy is set to minimize a loss function subject to constraints on their actions, as
advocated in the context of monetary policy by Svensson (1999).

Our alternative assumptions are based around the following decomposition of the welfare-based

loss function given in equation (8):

Lo Boy BL(af + Axm?) +Bo > L (Aer? + Aclf + Mih?) (23)
t=0 t=0

g

—p,FIT —prMaP
=cf =r}

The first component of the loss function, L’g T 'is intended to capture the objectives encoded in
the ‘flexible inflation targeting’ mandates of many central banks in the pre-crisis period. The second

component, Eé\/f ab

, captures ‘macro-prudential’ considerations. There are many potential ways to
allocate objectives to different policymakers. For example, de Paoli and Paustian (2017) examine
a case in which the concern for output stabilization is divided between the monetary policymaker
and macro-prudential policymaker. Our decomposition is based on the observation that if we take
the limiting case in which the share of borrowers collapses to zero (§ — 0) and (hence) the banking
sector disappears (¥ — 0), the model collapses to a standard New Keynesian model in which the
only friction arises from price stickiness and the only policy instrument is the short-term nominal
interest rate. So the existence of the financial frictions in our model generates both additional
terms in the loss function and additional instruments with which to address them.

On the basis of the decomposition of the welfare-based loss function in (23), Table 2 details the
set of policy assumptions (or delegation schemes) that we consider in the next subsections. We
explain the motivation and present the results for each variant in turn.

We assume that the policymakers set policy in a time-consistent manner and are therefore
unable to use promises of future policy actions to improve stabilization outcomes today.!” One
motivation for studying time consistent policies is to limit the power of monetary policy at the
zero bound. It is well known that optimal commitment policies can be very effective at mitigating

the effects of the zero bound in standard New Keynesian models (see, for example, Eggertsson

" Formally, we solve for a Markov-perfect policy. In each period, policymakers acts as a Stackelberg leader with
respect to private agents and future policymakers. Current policymakers takes the decision rules of future policy-
makers as given. In equilibrium, the decisions of policymakers in the current period satisfy the decision rule followed
by future policymakers. See Appendix F for technical details.
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and Woodford, 2003). Our setting, therefore, maximizes the potential scope for macro-prudential
policies to improve outcomes when used alongside monetary policy.

Our analysis therefore contributes to an emerging literature studying monetary and macro-
prudential policies under discretion. Bianchi and Mendoza (2013) argue that then nature of finan-
cial frictions generates an inherent time inconsistency problem for macro-prudential policymakers.
Using a model similar to ours, Laureys and Meeks (2017) demonstrate the striking result that
discretionary policies can generate better outcomes than a class of simple macro-prudential policy

rules (to which policymakers commit) that have been widely studied in the existing literature.

4.4 The Baseline: Flexible Inflation Targeting

Our first experiment considers the case in which a monetary policymaker pursues a ‘flexible inflation
targeting’ mandate, with no macro-prudential policy in place. That is, we assume that the monetary
policymaker is tasked with using the short-term nominal interest rate to minimize the loss function
EOF IT and macro-prudential policy is not used. We use Eg IT a5 a simple characterization of the pre-
crisis monetary policy arrangements in which central banks used the short-term nominal interest
rate to pursue stabilization objectives defined in terms of inflation and aggregate real activity. As
such, it represents a natural benchmark policy assumption against which to compare the alternatives
considered in subsequent sub-sections.

These assumptions imply that, when unconstrained by the zero bound, the monetary policy-

maker implements a standard flexible inflation-targeting criterion
Ty + YAz = 0, (24)

which is identical to the case of the baseline New Keynesian models (Clarida et al., 1999; Woodford,
2003). Despite the additional richness of our model relative to the canonical New Keynesian model,
this ‘static’ optimality condition is preserved because the policymaker’s current decisions have no
effect on the ability of future policymakers to set policy optimally. That is, in the absence of the zero
bound, even though the model contains two endogenous state variables neither of them constrain
the ability of future policymakers to stabilize the output gap and inflation by an appropriate choice
of the nominal interest rate. However, the monetary policymaker may be constrained by the zero
lower bound on the policy rate.

We use the flexible inflation targeting case as the baseline against which alternative policy
configurations will be compared in the following subsections. As we will see, the broad contours of
the housing boom in the baseline simulation match some of the qualitative features of the Great
Moderation period: house prices rise strongly (and debt increases substantially, albeit by less than
house valuations), but the output gap and inflation were well stabilized with relatively low nominal

interest rates.
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Figure 2: A housing boom/bust: ‘flexible inflation targeting’ and ‘leaning against the wind’

4.5 Leaning Against the Wind

Our second policy configuration assumes that the monetary policymaker sets the short-term nom-
inal interest rate to minimize the welfare-based loss function, £y. Macro-prudential policy is again
assumed to be inactive (so that x; = 6; = 0,V¢). This setting is therefore one in which the mone-
tary policymaker can be said to ‘lean against the wind’ by setting the short-term nominal interest
rate to address both the traditional focus of monetary policy (that is Eg ITY and macro-prudential
considerations (as captured by £3/7).

Figure 2 compares outcomes generated by ‘leaning against the wind’ with those from the ‘flexible
inflation targeting’ benchmark. Several important results stand out.

First, leaning against the wind requires an extreme increase in the short-term nominal interest
rate during the boom phase. Relative to flexible inflation targeting, the main success of leaning
against the wind during the boom phase is a stable housing gap. The effects on the other variables in
the loss function are large. Tighter monetary policy pushes output below potential for the duration
of the boom, by a sizable amount. However, relative to the flexible inflation targeting benchmark,
tighter monetary policy has very little effect on house prices and debt is actually higher.'® Higher
interest rates increase debt serving costs and reduce aggregate activity, thus raising the debt to
GDP ratio as argued by Svensson (2013). These results chime with the commonly held view among
monetary policymakers that a policy of leaning against the wind in the pre-crisis period would have

required substantial increases in the short-term policy rate, with substantial effects on the variables

18The negative output gap is accompanied by a negative consumption gap so that borrowers’ consumption is
particularly weak. As a result, the borrowing constraint always binds (see top right panel) and the house price boom
generates a pronounced increase in debt.
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that appear explicitly in central bank mandates (output and inflation) but relatively little effect on
debt and house prices (see, for example, Bean et al., 2010; Jansson, 2017).

One reason why our simulation exhibits these properties is that the preference shocks used to
generate the simulation have a very strong and direct effect on house prices. The shocks generate
an increase in the housing demand of both savers and borrowers. Given the fixed aggregate stock
of housing, this results in an increase in house prices in equilibrium. This means that the ability
of monetary policy actions to influence the housing market is limited. Some proponents of leaning
against the wind may argue that higher interest rates should moderate expectations of future house
prices and reduce housing demand in the near term. While present in our model, this mechanism
is relatively weak compared with the direct effects of the preference shocks.

Second, while the increase in the policy rate during the housing boom generates a substantial fall
in output, inflation is persistently above target. This reflects the recursive nature of our simulation:
the boom is generated by a sequence of unanticipated increases in housing demand. At each
point in time, house prices are expected to gradually fall back to steady state, a process that will
be accompanied by a loosening of monetary policy and a subsequent boom in output. Because
the Phillips curve in the model is relatively flat, inflation responds more to expected inflation
(which is above target because of the anticipated boom) than to the current output gap.!¥ A
general implication of this observation is that swings in the short-term interest rate are much more
pronounced under a leaning against the wind policy.

Finally, and relatedly, the bust phase creates a more severe recession under the leaning against
the wind policy. Just as during the boom phase the policy prescribes a tighter course for monetary
policy, the bust implies that, absent the zero bound constraint, it would be optimal to set the policy
rate substantially below zero. This exacerbates the effect of the zero bound, generating substantial
shortfalls in the output gap, inflation and the consumption and housing gaps. The deep recession is
also associated with a collapse in house prices and a much sharper deleveraging process, compared
with the outcomes under flexible inflation targeting.

The effect of alternative monetary/macro-prudential policy configurations during a recovery
from a recession is of topical relevance, since many macro-prudential policy regimes have been put
in place during a period when monetary policy has been constrained by the zero bound. The policy
normalization phase (as economies recover) is therefore likely to be the first time we see active
macro-prudential policies in many economies. The appropriate policy mix during this period is an
open question, which our simulations shed some light on.

We can explain the effect of alternative policy configurations through the lens of a simple ap-
proach favored by some monetary policymakers. This approach uses the concept of the ‘equilibrium
real rate of interest’ as a metric by which to assess the appropriate stance of monetary policy.2’

Structural models have an internally consistent analogue of the equilibrium rate (in our model it

19Figure G.1 in Appendix G demonstrates this by plotting the recursive paths underlying the simulation.
20The equilibrium real rate is sometimes called the ‘neutral rate’ or ‘natural rate’ but we avoid this terminology to
avoid confusion with model-based concepts.
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would be the real interest rate that prevails in the efficient equilibrium).2! However, many policy-
makers favor a more general concept, namely the real rate of interest consistent with a zero output
gap. For example, Ferguson (2004) defines it as “the level of the real federal funds rate that, if
allowed to prevail for a couple of years, would place economic activity at its potential”.

We can uncover the equilibrium real rate in our model by writing equation (10) as
xr = Bpapir — 0 (ip — Bympgr — r9)

where

ri = o V] 4+ & (¢ — Eiryr)]

corresponds to the ‘general’ definition of the equilibrium real interest rate: if the short term real
interest rate were to track the path of r°¢; then the output gap would be closed.

In our simulations, there are no consumption preference shocks, so that vy = 0, V¢ and hence:
eq __ ~
ryt = —0lEAci1q

These observations reveal that the equilibrium real interest rate is endogenous in our model:
it is a function of the consumption gap which will be affected by debt, among other factors. This
property is shared with the models of Eggertsson and Krugman (2012a) and Benigno et al. (2014),
who also assume that the household sector includes distinct borrowers and savers.

Figure 3 zooms in on the ‘bust’ phase of Figure 2 and explores the relative performance of
‘flexible inflation targeting’ (FIT) and ‘leaning against the wind’ (LATW), through the lens of the
equilibrium real interest rate. We observe that all goal variables in the welfare-based loss function
are considerably further from target in the LATW case: social welfare is unambiguously lower when
the policymaker is tasked with using the short-term policy rate to minimize social welfare losses
rather than focusing on a flexible inflation targeting mandate.

This result follows from the fact that LATW policy prescribes very active use of the nominal
interest rate. In the context of a large negative shock, the zero bound is therefore a more severe
constraint on the policymaker. The recovery of a very large initial consumption gap implies a
very negative neutral rate, that unwinds very slowly. The presence of the zero bound on the
policy rate prevents the policy maker from closing the output gap and the anticipation of a longer
period of constrained monetary policy depresses aggregate demand in the near term, validating the

expectation of a prolonged liquidity trap.

4.6 Macro-prudential Leadership

We now investigate whether outcomes can be materially improved by using macro-prudential poli-

cies. We first assume that monetary and macro-prudential policymakers pursue independent ob-

21The existence of internally consistent neutral rates in DSGE models has allowed researchers to examine the extent
to which policymakers have set policy close to a model-based estimate of the neutral rate. See, for example, Curdia
et al. (2015).
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Figure 3: Housing bust and recovery: ‘flexible inflation targeting’ and ‘leaning against the wind’

jectives. The macro-prudential policymaker is assumed to minimize Eé” ap

using the instruments
0; and k;. The monetary policymaker sets the policy rate i; to minimize Eg IT Both policymakers
act under discretion.

We assume that the macro-prudential policymaker sets its instruments first within each period:
it is the (within period) ‘leader’.?> The assumption of macro-prudential leadership means that
the argument regarding the irrelevance of state variables for the monetary policymaker in Section
4.4 also applies in this case. So the monetary policymaker will implement the targeting criterion
(24) unless prevented from doing so by the zero lower bound. The macro-prudential policymaker
internalizes this behavior when setting policy at the beginning of the period.??

Figure 4 compares outcomes under macro-prudential leadership with those under flexible in-
flation targeting. We observe that an independently operated macro-prudential policy enables the
monetary policymaker to completely stabilize the output gap and inflation (dashed blue lines).
There is no recession when the real house price falls because macro-prudential policy is aggres-
sively loosened. The tightening of borrowing conditions implies that the multiplier y varies much
less than in the case in which only monetary policy is used (solid red lines). The loosening of
macro-prudential policy when house prices fall results in a much slower fall in aggregate debt (less
deleveraging), which helps to avoid large movements in the consumption and housing gaps. Since
borrowers are not required to reduce their debt levels as rapidly as would be the case with a fixed
LTV, their consumption does not fall as drastically. Accordingly, a much smaller cut in the nomi-

nal policy rate is required to stabilize the output gap and inflation, so that monetary policy is not

22de Paoli and Paustian (2017) also study this timing protocol, among others.
23To implement this variant, we add (24) as a constraint (alongside the private sector optimality conditions) to an
optimal policy problem that minimizes £/ using 6, and k.
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Figure 4: A housing boom/bust: ‘flexible inflation targeting’ and ‘macro-prudential leadership’

constrained by the zero lower bound.

The use of the LTV as a macro-prudential policy instrument also has implications for macroe-
conomic dynamics during the housing boom. In the initial phase, a tightening of macro-prudential
policy limits the increase in debt and succeeds in stabilizing the housing gap. In the boom phase,
debt hardly increases because macro-prudential policy tightens steadily, reducing the maximum
LTV by more than 20 percentage points — essentially offsetting the direct effect of the house price
increase on borrowing limits.

The power of the LTV instrument is illustrated by the fact that the optimal trajectory for the
bank capital ratio (k) is virtually unchanged. The main reason for this result is that the effect of
changes in the capital ratio on spreads (¢) is very small. This means that very large changes in
capital requirements are required to have a substantial influence on spreads. But large changes in
k also incur a direct cost in the ‘macro-prudential’ loss function E(])V[ @P The net effect is that the

capital ratio is adjusted relatively little, with a correspondingly small marginal effect on outcomes.?*

24This effect is explained further in Appendix F.3.
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Figure 5: A housing boom/bust: ‘flexible inflation targeting’ and ‘full co-ordination’

4.7 Full Co-ordination

Our final experiment considers the case in which the monetary and macro-prudential policy instru-
ments are set jointly to minimize the welfare-based loss function L£y. Because the LTV limit (6)
is so powerful, as demonstrated by the results in Section 4.6, we consider the cases in which all
instruments may be used and also the case in which the policy instruments are restricted to the
short-term nominal interest rate (i) and the bank capital ratio (k).

Figure 5 compares outcomes under full co-ordination with the benchmark flexible inflation
targeting policy. When the LTV limit is not used (blue dashed lines), outcomes under coordination
are qualitatively similar to those under the leaning against the wind policy. In this case, because
we assume that the LTV instrument is not used, the only difference with leaning against the wind
is that the bank capital ratio is available as an additional policy instrument. The welfare-based
loss function implies that changes in the bank capital ratio are costly. As explained above, when
combined with the fact that the effects of bank capital ratios on spreads and (hence) macroeconomic
outcomes are relatively small, in equilibrium the bank capital ratio is adjusted relatively little during
the boom phase. As with leaning against the wind, co-ordinated policy generates a substantial
increase in the nominal policy rate during the boom phase, resulting in a negative output gap and

consumption gap. The bust is also associated with a prolonged period at the zero lower bound.

26



However, the ability to use the bank capital ratio as an instrument generates some differences
with the leaning against the wind policy. Macro-prudential policy is tightened during the boom
and loosened dramatically in the bust phase. Relative to leaning against the wind, these actions
help to mitigate the effects on inflation and the output and consumption gaps during both the
boom and the bust.?’

During the bust phase, the bank capital ratio is cut aggressively such that the lower bound
(assumed to be zero) binds for one period.?® Loosening macro-prudential policy so aggressively at
the beginning of the bust phase imposes direct welfare costs. However, by doing so the coordinated
policymaker is able to shorten the duration of the liquidity trap and stimulate spending. Indeed,
although the bust phase is associated with (temporarily) large consumption and housing gaps, the
recession is limited: both the output gap and inflation move quickly into positive territory.

Turning to the case in which all instruments are used (black dot-dashed lines), we observe that
the ability to set the LTV limit has a material effect on the results. The LTV limit is reduced
substantially during the boom, offsetting the effects of house prices on debt, which actually falls.
The tightening in LTV policy during the boom is accompanied by a loosening of monetary policy
and bank capital ratios. Indeed, the nominal policy rate drops very close to the zero bound
towards the end of the boom phase, supporting a slightly positive output gap. During the bust,
the stance implied by the individual instruments is reversed: LTV policy is loosened substantially,
while monetary policy and capital ratios tighten.?” This configuration of policy instruments during
the bust phase is the opposite of the ‘loose monetary, tight macro-prudential’ adopted in some
countries since the post-crisis period. However, Figure 5 makes clear that the nature of the optimal
policy mix depends critically on the set of instruments that are available to the policymaker.
Importantly, instruments that are broadly equivalent to the LTV ratio in our model have not been
widely available or operational in many economies.

With this in mind, we again focus in on the bust phase of the simulation. Figure 6 compares
outcomes under the ‘leaning against the wind’ policy with co-ordinated interest rate and bank
capital policy. Recall that these policy configurations both assume that the policymaker is at-
tempting to minimize the (discounted) social welfare loss, £o. The only difference lies in whether
the policymaker has access to the capital requirement alongside the short-term nominal interest
rate.

Figure 6 reveals that allowing the policymaker to use capital requirements alongside the policy

rate improves outcomes substantially. In the period of the housing bust, capital ratios are set at

23Inflation undershoots during the boom because the contraction in output, while smaller than under leaning
against the wind, is also more persistent. See Figure G.2 in Appendix G.

26Since the zero bound on the short-term nominal rate is also binding in this period, the nominal rate of return
to saving is zero and the return to borrowing is negative. Imposing a zero bound on saving rates can be justified
by the assumption that there exists a zero interest alternative saving instrument (eg cash). Allowing the borrowing
rate to become negative creates an arbitrage opportunity for borrowers by borrowing from banks and investing the
loans in higher return savings instruments. However, they cannot exploit it as borrowing is limited by the collateral
constraint.

2TIndeed, the small recession in response to the drop in housing demand is an optimal response rather than a result
of the zero bound binding.
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Figure 6: Housing bust and recovery: ‘leaning against the wind’ and co-ordinated bank capital and
interest rate policies

their lower bound. Even though the policy rate is initially constrained, low capital ratios reduce
borrowing costs and help to support the consumption gap. The consumption gap converges back
to zero relatively slowly, so that the equilibrium real interest rate recovers back to normal more
quickly than under the LATW policy. This permits an earlier liftoff from the zero bound, though
the policy stance is expansionary even after liftoff. The expectation that policy will be conducted
in this way means that, relative to the LATW case, long-term real rates are low. Relatively low
real interest rates moderate the initial fall in the output gap during the house price correction.
One interpretation of Figure 6 is that the coordinated policy stance during the recovery phase
is consistent with the typical monetary/macro-prudential policy mix favored by policymakers in
recent years. During the recovery phase, macro-prudential policy is tightening (as bank capital

ratios rise) alongside a prolonged period of relatively loose monetary policy.

5 Conclusion

We develop a simple model to examine the interaction of monetary and macro-prudential policies.
Our model is rich enough to generate meaningful policy tradeoffs, but sufficiently simple to deliver
tractable expressions for welfare and analytical results under some parameterizations. We derive a
welfare-based loss function as a quadratic approximation to a weighted average of the utilities of
borrowers and savers.

We use the model to study how monetary and macro-prudential policies (LTV ratios and capital

requirements) should optimally respond to shocks. To build intuition, we derive some analytical
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results under restrictive assumptions on parameters and nature of the constraints. In this simplified
setting, we demonstrate that macro-prudential policy generally faces a trade-off in stabilizing the
distribution of consumption and the distribution of housing services, even when prices are flexible
and both macro-prudential tools are used. We also show that monetary policy alone has relatively
little control over these distributions, particularly the distribution of housing between borrowers
and savers. In other words, imperfect risk sharing is a real phenomenon whose consequences could
be addressed by macro-prudential policies. Nevertheless, these policies also imply costs that must
be accounted for in deploying them. This tradeoff prevents complete macro-prudential stabilization
given the tools we study even under flexible prices.

We use the model to explore a simulation of a prolonged boom followed by a sharp fall in
house prices. When there is a single monetary policymaker pursuing a ‘flexible inflation targeting’
mandate (minimizing a loss function that includes only the output gap and inflation), the house
price fall causes a recession because monetary policy is constrained by the zero bound. During the
housing boom, increases in the policy rate required to stabilize the output gap and inflation are
moderated because the borrowing constraint becomes slack. Although the output gap and inflation
are fully stabilized during the boom, welfare losses are incurred because monetary policy is unable
to stabilize the consumption and housing gaps. Allowing macro-prudential policies to focus on
stabilizing the consumption and housing gaps improves welfare substantially. Indeed, the existence
of macro-prudential policy implies that there is no recession after the house price fall: if the LTV
tool is used optimally, monetary policy is able to stabilize the output gap and inflation without
hitting the zero bound.

Our results have important implications for the current economic environment. As economic
conditions improve in many countries, and central banks move away from the effective lower bound,
macro-prudential decisions may have non-negligible effects on the nature of the recovery. Indeed,
it would seem prudent, as our initial quote of Carney (2014) suggests, to use all policy tools in

concert.
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Appendix

A Private Sector Optimality Conditions and Aggregation

This appendix reports the optimality conditions of the private sector (savers, borrowers, and inter-
mediate goods producers) and the details of the aggregation.
A.1 Savers

Starting with savers, the first order condition for deposits is

. W R4
E, [ﬁse—dcal(z)—c*f(z))t] 1,
Ui
where II; = P,/P,_; is the gross inflation rate. The corresponding condition for bank equity is
E, [&ez(cal(i)c:(i»Re] 4 [Et(“ _ 1} .
EAS} REDY/(1—€)

Combining the two Euler equation, we can obtain the no-arbitrage condition between equity and

(O () B — B Rd] _ [Ef(i)_ ]
B [ﬁse M |~V l&edya—o '

After rearranging, the first order condition for housing services can be written as

deposits

@ Xge MH ) 03, ()—C3 (i) QeL
1 = : E 1l )
(1+7 )Pt e—2Ci (1) + B | Bse” Py
The labour supply condition is
we = X Li)*
t T T 2Ci )

The budget constraint at equality completes the list of first order conditions for savers.

A.2 Borrowers

Moving on to borrowers, we attach a Lagrange multiplier normalised by the real marginal utility of
consumption (ﬂt(i)ze_zctb () / P;) to the collateral constraint. The first order condition for borrowed

funds is

—z 1)— ) Rb 7.(7
B et L) 1,

The first order condition for housing demand is

Q: x%e‘”? H) (i)~ (i)—Cl(i)) Q1
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The labour supply condition is
t e_ch(i) ’

The equilibrium conditions for borrower households include the complementary slackness condition
fu(i)[D} — ©,QHE (i)] = 0.
The budget constraint at equality completes the list of first order conditions for borrowers.

A.3 Firms

The text reports the optimality condition for banks, which is the result of perfect competition in
the financial sector.

To derive the expression for the marginal cost, we solve the dual problem

; ”tb b Wi
min L + Li(f),

subject to the technological constraint given by the production function. Let M;(f) be the multiplier
on the constraint (the real marginal cost). The first order conditions for the two types of labour

are

wy syl _ Yi(f)
?t = fMt(f>AtL?(f))£ 1Lt(f>1 ¢ - fMt(f)L?(f)
L/ b PNETS =€ (1 Yi(f)
2] (1 =M (f) ALy (f)) L (f) (1 é)Mt(f)Lf(f)-

Taking the ratio between the two first order conditions above shows that at the optimum all firms
choose the same proportion of labor of the two types. As a consequence, the marginal cost is
independent of firm-specific characteristics (My(f) = M;). Furthermore, if we take a geometric
average of the two first order conditions above, with weights £ and 1 — &, respectively, we obtain

the expression for the marginal cost

Wi/ Py

Mt - 65(1 _é.)l_gAta

where the expression for the aggregate wage index is reported in the text.
Intermediate goods producers set prices on a staggered basis. Their optimality condition can

be summarised by a non-linear Phillips curve

“\T 1o

1
Xut <1 — )\H§_1> -
Xot ’
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where X1 represents the present discounted value of real costs

£
X1t =

26 SO My + BAR(IT Xi11),
and Xy; represents the present discounted value of real revenues
Xor = (14 7P)2e 29 +1Y; + BAEL(ITE Xop4 1),

A.4 Aggregation

To aggregate within types, we simply integrate over the measure of households in each group.
Consumption of savers and borrowers is
1-¢ 1
Ci(i)di = (1 —€)C; and CP(i)di = £CP,
0 1-¢
while housing demand is
1—¢ 1
Hi(i)di = (1 —&)H; and HY(i)di = €H?.
0 1—¢

In the credit market, total bank loans must equal total household borrowing
1 3
/ Db(k)dk = Db(i)di = Db,

0 1-¢

Similarly, for deposits and equity holdings we have
1 1-¢ 1 1-¢
/ Dj(k)dk = Dj(i)di = (1 —¢&)D; and / Ej(k)dk = Ef(i)di=(1—-¢&)E;}.
0 0

0 0

Using these expressions, we obtain the aggregate balance sheet for the financial sector and the
economy-wide capital constraint reported in the text.

Labour market clearing requires

1

1 1—¢ 1
[ rwna=[ wed-a-o1  ad [ L= [ sdodi-ez
0 0 0 1-¢

Aggregating production across firms yields

1 1
/ Yi(f)df = / ALY(F)ELE(f)\Cdf. (25)
0 0

As discussed in the previous section, the ratio of hours worked of different types is independent

of firm-specific characteristics. Therefore, using the labour market equilibrium conditions, we can
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rewrite the right-hand side of the previous expression as

1
/ ALY (LI ()4 = Ad(EL)S (1= &L ¢ = €51 — &) C ALy,

0

where aggregate labour is
Ly = (LY)S(LY)'. (26)

Using the demand for firm f’s product, the left-hand side of (25) can also be rewritten in terms of

aggregate variables only as )
| vicoar = s
where A; is an index of price dispersion, defined as
_[T[RN]
a= | [ L ] .

Given the definition of the price index and the assumption of staggered price setting, the index of

price dispersion evolves according to

1= A\ 77
-\ |

Ay = AT+ (1—N) (
Therefore, in the aggregate, production is described by
AY; =1 -8 AL,

The last step of the aggregation is the derivation of the law of motion of debt. To obtain this

equation, we start from the flow budget constraint of a generic borrower

PGy (i) — Dy (i) + Qe HY (i) = WPLy(i) — RY_ D} (i) + Qe H{_, (i) + (i) — T} (4).
We assume that each household i € [0, 1] receives an equal share of aggregate value added

QJ(i) = PY; — Wiy,
for j = {b, s}. From the first order conditions of intermediate goods producers we have
WPLL(f) = EMY(f) and WELE(f) = (1= §)MyYi(f)-
Integrating over firms, we obtain
WPLY = WL = WL, = MyAYs,

where we have used the labour market equilibrium conditions, the definition of the wage and labour
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indexes, and the definition of the price dispersion index.

Aggregating the borrowers’ individual budget constraints, we can then write

R} | D L@
11, PH 2

Q4
Cb—— HY — Y,
t Pt+Pt Lot

th 1 Tb? (27)

where 77 is a steady state net tax/subsidy, which includes the borrowers’ contribution to the firms’
subsidy that make steady state output efficient, and the subsidy borrowers receive to obtain an

efficient allocation. We can rewrite the last expression to capture the law of motion of debt

Dy _ Ry D,
P I Py

+C) -V, + @(Hb HY )+ T

B Efficient Steady State

This section first establishes the conditions under which a zero inflation (II = 1) steady state
is efficient, and then discusses how we can obtain efficiency of the steady state allocation in the
decentralised equilibrium.?®

Consider a social planner who maximises a weighted average of borrowers and savers’ per-period

welfare

U=EU(Ch H, L) + (1 - §U(C*, H*, L), (28)

for some Pareto weights §~ € [0,1], where U(CY, H7, L7) is the per-period utility function of type
j = {b,s}. The social planner chooses allocations subject to the constraints imposed by the
aggregate production function and the market clearing conditions for goods, housing, and labour.
Importantly, the planner is not subject to the borrowing constraint.

In steady state, there is no price dispersion (A = 1). We can further normalise steady state
productivity A to one and combine the production function with the goods and labour market
constraints to yield

(NI 8 =¢C + (1 - ¢)Ce.

Let 1 be the Lagrange multiplier on this constraint and ps be the multiplier on the housing

resource constraint. The first-order conditions for an efficient steady state are

UL = mé
1-9Us = m(1-9¢)
Uy = pob

1=Ups = pa(1—¢)
Uy, = mey/L
1-Us = m(l-¢Y/L*

28Without loss of generality, we normalize the price level to one so that all variables can be thought of as expressed
in real terms.
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If the Pareto weights coincide with the population weights (é = £), the marginal utility of con-

sumption and housing are equal across types

é’b == Ué‘s = M1 and ;{b == U}{s = U2,
and so are their levels. In addition, if the disutility of labour has a constant elasticity of substitution,
as we assumed, hours supplied by borrowers and savers are proportional to each other depending
on the disutility parameters y* and x®.

For a given type of household, we also obtain

Uéj M

U 1,'_[]' a pa
The ratio of the marginal utilities of consumption and housing for the two types are the same. The
efficient steady state also implies the usual optimality conditions that equates the marginal rate
of substitution between consumption and leisure to the marginal rate of transformation between
labour and output

U, Y

Ul L’

Assuming the subsidy 77 is set as to remove the distortions from monopolistic competition in

steady state (M = 1), the labour market equilibrium implies

XL 1 iy 17y
zexp(—zC?) | | zexp(—2zC¥) L
Using the goods and labour market clearing conditions, and replacing output with labour from the

production function, equilibrium hours solve

o B z
L¥ exp(zL) —(XbL)é (X‘z)lié.
We can choose the labour supply disutility parameters Xi to deliver a desired target for hours
worked by each group (e.g. 2/3 of the households’ time endowments). Given this result, the
production function pins down the equilibrium level of output. Therefore, importantly, the steady
state efficient level of output and hours is independent of the distribution of wealth/debt across
household types.

The next step is to find conditions under which the steady state allocation of the decentralised
economy is efficient. In particular, we seek the taxes that achieve this objective. In the steady

state of the decentralised economy, the savers’ discount rate pins down the real rate of interest

1

RY=—.
Bs

Since the ratio between equity and deposits is at its desired level, the spread between the return
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on equity and the return on deposits is zero, and so is the spread between loan and deposit rates
R’ = R® = R?

In what follows, we drop the superscripts from returns and simply call the steady state gross real
interest rate R. From the Fuler equation for borrowers, we can obtain the value of the Lagrange

multiplier on the collateral constraint
la =1- IBbR7

which is positive as long as our initial assumption 8, < 1/R = [ is satisfied (that is, borrowers are

relatively impatient).?? With a positive multiplier, the constraint binds, and so equilibrium debt is
D’ = 0QH".

Finally, we turn to the housing block. Starting from the law of motion of debt in steady state,

we can write

Ct=Y —T"— (R°—1)D".

In an efficient steady state, the level of consumption must be equal (C® = C*). Therefore, from
the resource constraint, we have that C®* = C* =Y = C. Substituting into the previous condition
yields
b 106 0.
Bs
where = D?/Y is the ratio of debt to GDP and 7° = T?/Y is subsidy to borrowers (net of their

contribution to the production subsidy) that equalises consumption across types.

The last element that we need to determine is the housing tax 7". In steady state, the housing
demand equation for borrowers is

b Hb —op
(1-Of— B)Q = XH(@Q

while for savers we have s (%)
X
(1+7—h_55)Q: He_zc )
where we have used the equality of consumption across types. For the steady state housing al-
location to be efficient, we must have that the numerator of the right-hand side of the last two

expressions (the marginal utility of housing) is equal across types.’’ Therefore, the steady state

Th=<ﬁs—ﬁb><1—§5),

29 Alternatively, we could write the value of the Lagrange multiplier on the borrowing constraint as ji = (s —
v)/Bs > 0, as long as Bs > By, which again corresponds to the initial assumption on the individual discount factors.
0 long hich agai ds to the initial ti the individual di t fact
30In addition, if the housing preference parameters are the same across households (Xb = x° = x), then also the
actual level of housing services consumed is the same (H® = H* = H).

housing tax must be
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where we used the expression for the steady state Lagrange multiplier i = 1 — /85, which we
obtained by combining the Euler equations for credit and deposits of the two types. Note that, the

steady state tax on housing is zero if either ©® = 3 or in the limit 8, — Ss.

B.1 Macro-Prudential Policy in the Efficient Equilibrium

This section shows that, in a flexible-price efficient equilibrium, macro-prudential policy carries
distributional consequences but has no impact on the level of aggregate activity.

As derived in Appendix A, labour supply for type j’s satisfies
X1, (L1)?

N

Wi = St
zexp(—zCY)

Weighting the labour supply of each type by their respective shares, using the definition of the

wage index, and equating with labour demand gives

[ XL (LE)? r [ A } IR
zexp(—2CY) zexp(—2C}) Ly
Using the definition of the labor aggregator and the resource constraint, we can simplify the previous
expression to
() () e Lyt
zexp[—2(Y; — Ty)]

:Y%a

where I'; is the portfolio adjustment cost term. In a flexible-price efficient equilibrium, the aggregate
production function is simply Y; = A;L;. Therefore, we can express the last condition in terms of

the efficient level of output Y;* as

£ S - *
OR)" O) v\ (29)
zexp(—zY) \ Ay b

In principle, portfolio adjustment costs associated with savers’ debt-equity choice do affect output
under flexible prices, but this effect is second order because I'; is quadratic. As a result, to a
first order approximation, the efficient level of output only depends on technology and preference
parameters.

In spite of no first-order effects on aggregate supply, macro-prudential measures retain distri-
butional consequences even in an efficient equilibrium. The macro-prudential authority will not
be indifferent between different levels of LTV ratios or capital requirements. We return to this
point in the next section after deriving a linear-quadratic approximation of the model that allows
us to study the optimal joint conduct of monetary and macro-prudential policy. The flexible-price

efficient equilibrium will be a useful starting point for our analysis.
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C Derivation of the Loss Function

We define the welfare objective for the policymaker Wy as the present discounted value of the per-
period utility of the two types, weighted by arbitrary weights 5 , and we assume the policymaker

discounts the future at rate By

Wo = Eo (Z 6§Ut> : (30)

t=0

where
Uy = EUCE HY L) + (1 - US(Cs, H L), (31)

In order to derive a quadratic welfare objective, we take a second-order approximation of (31)
around the efficient steady state in which C® =C* =C =Y, H = H* = H, and L* = L* = L.

Ignoring terms of order three and higher, we get:
- 1 ~ 1
U, — U ~ {UYCE - C%) + §Ufc(0tb —C"?] 4+ (1= 9[UL(CE — C*) + 3 UeelCF — C*)?)
& 1 & s s s 1 s s s
+{[Up(HY — HY) + §Uf€h(HE — H*)?+ (1 - &)[Us(Hf — H*) + §Uhh(Ht — H*)?]
& 1 & S(TS s 1 S(TS s
+E[UP(Ly - LY + 5U}}(L? — L")+ (1= O[US (L] - L®) + §Ull(Lt — L*)%].

Next, we factor out the marginal utility of consumption, housing, and the marginal disutility

of labour for each group to obtain

- 1U° - 1Us
Ut—UﬁéUf[(Cf—Cb)+§Uf§(0f’—cb)2] +(1—€)U5[(Cf—CS)+§UC§(Cf—CS)2]

cT7h b b 1Uflzh b b\2 NTTS s s 1U}§h s $\2

+EUR(H) — H?) + 5 —+(H — H”)*| + (1 = QU [(H; — H®) + (H — H)]
2 UP 2 Uy

cT7h b b 1UZIE b b\2 ENTTS s s 1Ul? s $\2

+§Ul[(Lt_L)+§W(Lt_L)]+(1_§)Ul [(Lt_L)"i_EF(Lt_L )7
l 1

Using the first-order conditions associated with the efficient steady state, we get

1U° 1U8
Uy — U ~ mg[(C) — C%) + 3 Ucf(Cf — C"?] + (1= &[(C; — C%) + 3 Uif(Cf - C*)?]
b b 1Ullzh b b\2 s s 1Usth S $\2
+ peb[(Hy — H) 4 55 (Hy — H°)* |+ pa(1 = OI(H} — H®) + 521 (Hf — H?)7]
2 Uy 2 U,
Y LU} N I /S,
—leﬁ[(L? - L'+ 5#@? — L") - m(1 _f)E[(Lt —L%) + 57?(1«: — L%)?].
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Given the assumed preferences, we have

Sf exp(—zC) o
- = — = — 7 = — —
U’ zexp(—zC) Y
Uhn _ Xuon(H)™ 1 oy
Ui Xl (HI) o Hi

Up _ xpe@)e™ ¢

Ul XLy L

After substituting for these semi-elasticities, we collect the linear terms in consumption and

housing to get

Ui~ U = 60}~ C*) + (1 = )(CF — O)] + pal€(HY — ) + (1 = €)(H} — )]
e [3(e el W (e e

2
~ s (et — Y 4 (1 - (a7 — )]
Y Y 1
&g l(E = 10 S B (L~ I = (1= ) (5 — 1) + (1~ 1) (32)

To eliminate first-order terms, we first make use of the identity
Zt = eln Zt,

for any variable Z;. We approximate Z; around In Z to the second order. Let y; = In Z;. Then, we
have

1
e el + ey —y) + ;e (m - y)”,

where we have ignored terms of order three and higher. Applying the transformation back, we get

1
Zy =2+ 22 ~Z)+ ;(nZ - InZ)?,

which implies

Zy — 7
7 _zt—i-fzf,
or
L
Zt EZ(1+Zt+§zt),

where we have defined z; = In(Z;/Z).

Now, we apply the approximation to the goods market resource constraint

Yy = EC7 4+ (1-€6)CF + Ty,
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where

U [ Ry 2
L= (H —~ 1> REDY.

Note that in steady state I'; is equal to zero, and that all first and second derivatives are zero
except for the second derivative with respect to k;. Therefore, up to a second order approximation,
we have

UiEDP
Ft ~ Kg KZ%,

where r; = (kK — £)/k. Consequently, up to the second order, the resource constraint becomes

WREDY o (ot oty 4 (1— 6)(C5 — O,

(Y —Y)

which gives us a second order approximation of aggregate consumption in terms of aggregate output

and adjustment costs

E(Ch— €M) + (1= )(Cr = %) = Vi + ) - L2 (33
Similarly, for the housing market resource constraint
H = ¢Hy + (1= H;,
we have
0=¢(H — H') + (1 - €)(Hf — H), (34)

so that the second term of the first line of (32) disappears.

Going back to our approximation, we can rewrite

U= U =Y (ye + éyf) - mMng%?
— gm e -+ -g(cp - o]
— Sma T et — 12+ (- g - )]
€T l(EE— L0 L B L~ L) — (1 - ) (L~ D) + 5 (L~ L)) (35)

Using the coeflicients defined above, we can further rearrange the previous expression as

Uy —U ~ m Yy — €lf — (1= &)I]

- %me? - %m\lf%&Dbfﬁ?
— SV [6eD? + (1= ()] — S [€? + (1~ ©)(h)?
— SEY (L)) — S = OV (1 +9)(0)°. (36)
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Next, we focus on eliminating the first-order terms left in the approximation. From the aggregate

production function derived in section A.4 we have
Av+y = ar + &l + (1= &)1,

where A; = A, — 1, since there is no price dispersion in steady state. Replacing from this equation
for the difference between output and the weighted average of two types’ labour supply, we can

write

1 1 - "
U —U ~ f/,Llef — §u1‘11n§Db/<c? — Y Ay

2
— oY [ + (1= €)(e)?] — guaonH [€) + (1 - )(h)?
= €Y (1 ) — (1 - OY (1+ )0

where we have dropped the term in productivity coming from the production function because it
is independent of policy.

At this point, the welfare objective is fully quadratic.?! However, we can further manipulate
the approximation to obtain terms that have a more meaningful economic interpretation. To this

end, we combine the terms in output, consumption

U= U = =5 {ole()? + (1= ()] — 4 + (1 + Q)@ + (1 - )7}
— oot [€RD? + (1~ €)(h))?
— YA~ L WRED R}, (37)

Let us focus on the first line of the right-hand side of (37). Adding and subtracting (¢ + o)y?,

we can write

ol€(ct)® + (1= )(c})’] = i + (1 + )[EE)* + (1 = )(1F)*] =
ole(e)? + (1= )(c})’] = i + (¢ + )i — (0 + )i + (L + )6 + (1 = €)(1)°].
We can take oy? inside the consumption terms and (1 + ¢)y? inside the labour terms to write

ofé(c})® + (1= €)(e})’] — v + (L+ @) [€W)* + (1 = (1)) =
(¢ +0)yi +ole(c))? + (1= 6)(c)? =]+ L+ ) + (1= ) — il (38)

31 As we will show formally below, A, is a price dispersion index, hence it is a term of order two.

44



Now we work with the second term of the right-hand side of (38), which we can write as
E(ct)® + (1= €)(c))?* — i = €l(c))” =yl + (1 = lc)? — vi]
= &(ct +u)(cf —yo) + (1= (e} +y)(cf — )

We use again the resource constraint to replace the difference between each type’s consumption

and output

E(})? + (L= €)(e)? — i = & +y) (L =) (] — ) — (1= &) +y)é(ef — ¢)
=£(1 - )( — &)l +ye) = (cf + 1)l

Before moving on, we need to take an approximation of the labour supply conditions

X4 (L)1t
ze—zCé’

s(LS 1+¢
—wrrt and IV g
ze *™i
Taking a geometric average of the above two conditions, with weights reflecting the two types’

shares, we get an aggregate labour supply condition of the form

XL(Lt)H‘p

ze—2(%i—Te) WilLs.

Substituting on the left-hand side for aggregate employment from the aggregate production func-

tion, we can write

XL AYy e 1 — W.L
L=\ A ze—=(Yi-Ty) — T
As we proved in section A .4, W] LJ WiLy for j = {b,s}. Therefore, we can write
XL AV 1 XD )t
EA-O\ A ze*(MmTe)  pe—2CP ze 20t

Approximating these two conditions and solving for each type’s labour supply, we obtain

Po— Aty b

t t Ty — ay 1_'_()0(07& Yt)
o

5 = A —a— —— (5 — ).

t t+ Yt —ay 1+<,0(t Yt)

Using the first order approximation of the resource constraint, we can rewrite the two conditions

above as

li) = At+yt—at—m(1—§)( f—cf)



Now we can move on to the third term of the right-hand side of (38) substituting out labour

supply of the two types.

U+ =) —vi =
2 2
. o . o
Aty —ar— ——0 =) =¢)| +(1=8) A4y —ar+ ——E(&—¢)| —vP.
1A +y —a 1+(p( (i t):| ( f)[t Yt — at 1_{_905(1& D — Y
We expand the two squared terms on the right-hand side of the last equation isolating the terms

in the consumption gap

P+ (1= —yi =
Elye — ar)® + € [

o
I+

o)

2
1 - >] 9y — ar)

2
el -] +20- 9 —a

1— —a)?+(1—

U= -0+ (-9 | -
where the term A, drops out because it is of order two, hence its square and its product with first
order terms is irrelevant for welfare up to the second order.

We can now combine terms and simplify to obtain

o b
14+

EWP + (1— OE) — 12 = (e — a)® + €01 — &) [

We replace (39) and (40) into (38)

olé(c))® + (1= €)(ef)’] — v + (L+ @) [€()* + (1 = ) ()7

2
=<¢+a>yf+a§<1—s><c?—cf>2+<1+so>{<yt—at>2+s<1—s> o) —yf}

— (o= 102 + €0~ 90 (LT ) (= et + (14 ) - )

Expanding the last term on the right-hand side and combining it with the first, we can write

ol€(ct)? + (1= )(c})’] = v + (L + @)[EI)* + (1 = €)(1)°]

1+0+
— (ol 20+ Pa o+ 60 - 90 (ST (- e
A first-order approximation of (29) gives us an expression for efficient output in terms of pro-

ductivity
1+
*
Yo = o+ <,0a

t-
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Replacing on the right-hand side of the equation above we have

oAE(el)? + (1= )] — v + (L+ Q) + (1 - 1))
e IR

=(0+90)(yt2—2y2‘yt)+£(1—£)0< Tt o cf

Since efficient output is independent of policy, we can add and subtract it from the right-hand side

to obtain

ol + (1= O] 37 + (1 + ) + (1 - OV
— (o )~ + 60— 90 (TTE ) (- i
W) (b — )2,

~ o+t e - 0o (LT

where z; =y — y/ is the efficient output gap.
We now go back to (37) and substitute the result we have just derived to obtain

1
Ui~ = —gm [0+ 9t + 601 - 0o (LTTE) (-

— o H [€RE + (1 - €)(hi)]
— YA - %m\w@gp%f. (41)

Next, we work with the second line of (41). From the linear approximation of the housing

market clearing condition, we have
hi = —(1—=&)(h{ —h})
hy = &(hy —hy).

Therefore, we have
E(h)* + (1= €)(h)* = €(1 = €)*(hy — hi)* + (1 = ) (hy — hi)?
= £(1 = &)(hf — 1))*.

Notice also that the coefficient multiplying the housing term is puoH. Using the conditions for the

efficient steady state, we can rewrite
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We can choose the housing utility parameters X;; so that
J
U _
ulyY
Substituting back into the welfare approximation, we arrive at

1+o0+

1
—U~——uY 24¢e(1 -
U —-U 2,u,1 (0 + @)z +&( {)J( 1o

) (&= )2+ (1 - on(h — hi)?
.1
— YAy — o WRED K. (42)

Lastly, we take a second order approximation of the price dispersion index, which yields

A A 1 X
At = AAt_l 5 1— )\ﬂ't

Solving the previous difference equation backward, we have

t
A ~ 1 .
Ay =AA_ N—ig?
t 1+21_)\j:0 5,

for some initial level of price dispersion A_{. We are interested in the present discounted value of

the previous expression, that is

N )
> BA =5

21
t=0

o) t

t:O 7=0

where we have dropped the initial level of price dispersion as it is independent of policy. Let us
now focus on the double sum on the right-hand side of the last expression, which we can expand

to obtain

o] t
S BES XNTInE = md o+ By(Amd 4 ) + BENPRE + A+ ) +

t=0 7=0
= > (BN 75+ Bs Z(ﬁs Yt + B2 (BN +
7=0 7=0 7=0
=75 > (BN + 8wt Y (BN + B2m3 > (B +
j=0 j=0 Jj=0
o0 [o¢] 1 [o¢]
I DAV SR
t=0 §=0 t=0
Therefore, we can write
> A 1 AE =
tA _ - t, 2
;ﬁs T2 )\)(1—55/\); STt



Substituting back into the approximation of utility, we obtain

U= U =g (0 + @)t + 601 - 90 (T TEL ) (= e + €00 - ontht - 1i)?
A
Tewa *Wf] ’ (43)

where ¢ = Uk is the semi-elasticity of the borrowing rate to capital requirements and n = £D°/Y
is the aggregate debt-to-GDP ratio.
Therefore, up to the second order and ignoring terms independent of policy, we can rewrite the

welfare objective as

Q. o P
Wo By S B (57 4 Ae? + M+ A+ MiF?) (44)

t=0
where & = 2 — ¢} and hy = hY — h$ are the consumption and housing gaps, respectively. The

composite parameters in the loss function are

Q = wmY(o+y)

N AE
T (=M =B8N (0 + )
o= Y
K = o+ o
N = §1—=8o(l+o+y)
T (4ot
Y, = Sd=&on
h = .
o+

Observe that the higher is o, the greater the weight on the output and consumption gap terms,
though the weight on the consumption gap grows quadratically in o, whereas the weight on the
output gap is linear in o; the higher is ¢, the greater the weight on the aggregate output gap, and
the smaller the weight on the consumption gap.

To give a rough idea of magnitudes, take ¢ = ¢ = 1 as a baseline case. Then, the relative
weight on the consumption gap is A, = 3§(1 — £)/4. Since £(1 — &) reaches a maximum of 1/4, the
maximum relative weight on the consumption gap is 3/16. In general, the policymaker will attribute
more weight to the volatility of aggregate output than to the volatility of relative consumption.
Nevertheless, for a given policy, the latter may be large, thus becoming a significant source of
welfare costs. The ability to use multiple policy instruments to deal with different tradeoffs should

mitigate these costs.
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D Linearised Constraints

In this section, we derive a first-order approximation of the equilibrium conditions that constitute
the constraints for the optimal policy problem in our linear-quadratic setting. Unless otherwise
stated, lower-case variables denote log-deviations from steady state, that is, for a generic variable
X; with steady state value Z, Z; = In(Z;/Z).

D.1 Savers

The Euler equation for savers is
¢f = =0 iy — Eemgr) + Baciyy + uf, (45)

where 7 = In Rf is the net nominal interest rate on deposits, ¢ = zY is the inverse of the elasticity
of intertemporal substitution, and ui = p.uf_; + €f is an aggregate demand shock that also affects
the borrowers’ Euler equation, with p. € (0,1) and € ~ N(0,02). A similar condition applies
to equity investment, taking into account portfolio adjustment costs. Up to the first order, no
arbitrage therefore implies

i =iy + Vky. (46)

The labour supply condition for savers is
wi = @lf + ocf,

where wj is the log-deviation of the savers’ real wage.

Demand for housing by savers is

_ 1+Th_ﬁs
qt = 1+Th

B
(u? —ophi +0¢}) + ﬁEt(—acl‘a_l +oc¢ + q+1), (47)
where 7" = 8, — 8, — 1O (with i = 1 — 3,/f;) is a tax that makes the steady state allocation of
housing efficient, ¢; is the log-deviation of the real price of housing from its steady state value, and

ull = ppull | + €l is a housing demand shock, with p" € (0,1) and € ~ N(0,02).

D.2 Borrowers

The Euler equation for borrowers takes into account the effect of the collateral constraint

d ﬂm> FE, s (48)

b -1/ ,b
= —0 <zt — Eimer1 + T

where i? = In R? is the net nominal interest rate faced by borrowers. Note that, everything else
equal, a tightening of the collateral constraint (u; > 0) tends to raise the cost of borrowing for

impatient households.
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Labour supply for borrowers is

wy = @l + oc},

where w? is the log-deviation of the borrowers’ real wage.

Borrowers’ demand for housing is

By
1— 70

pO 1 =[O — By
1_ﬂ®(ﬂt+9t)+ 1= 0

g = (u? — ahhf + acf) + Et(—aci’ﬂ + acg +qi+1), (49)

where 6;, which can be either a shock or a macro-prudential policy instrument, is the log-deviation
of the collateral constraint parameter (the LTV ratio) from its steady state value.

The linearized borrowing constraint at equality is
db = 0; + q¢ + I, (50)

where d? denotes the log-deviation of the real quantity of debt from its steady state value.

Finally, from the borrowers’ budget constraint, we can derive the law of motion for debt as
. 1 1
di = RO+ dy oy —m) + g (hy = i) + (e = wn), (51)
where = (D°/P)/Y represents the steady state real household debt-to-GDP ratio.

D.3 Banks
Banks price loans as a weighted average between the return on equity and the deposit rate

il = Ri§ + (1 — )iz

Using the no arbitrage condition between return on equity and on deposits from the savers’ problem

(46), we obtain an expression for the spread of the the loan rate on the deposit rate
i = iy + Py, (52)

where ¢ = rRU/(1 — &) and k¢ is the log-deviation of the capital requirement from its steady state

value, which, like 6;, can be either a shock or a macro-prudential policy instrument.

D.4 Production

Up to a linear approximation, the production function is
Yt = Q¢ + lt-

The labour demand equation is

wy =mg + yp — lt,
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where m; is the real marginal cost. The wage bill must be equal across types
wi + 15 =w + 12,

where the wage index is
wy = Ewp + (1 = Ew}

and labour market clearing requires
=&+ (1 - &)l
Finally, the Phillips Curve is

(1-MA =B8N
A

T = my + BEm + g,

where u® = pul; + € is a mark-up shock, with p,, € (0,1) and € ~ N (0,02,).

D.5 Market Clearing

Goods market clearing entails
y = E&c; + (1= €)cf, (53)

while housing market clearing requires
Ehi + (1 —&hi =0. (54)
The market clearing conditions complete the description of the linearised model.

D.6 Gaps and Aggregate Variables

In what follows, we combine the equilibrium relations to obtain a parsimonious set of constraints
for the optimal policy problem. To simplify the derivations, we assume © = 1 (a 100% LTV ratio).
We return to the case © < 1 in the quantitative analysis.

On the supply side, we can rewrite the Phillips curve in terms of the efficient output gap by
noting that, with flexible prices and no markup shocks, m; = 0. Weighting the labour supply

equations by population shares, we can write the equilibrium in the labour market as

lf +ocf = ay,
where an * represents variables in the efficient equilibrium. Using the production function and the
resource constraint, we can solve for the efficient level of output

*_1+¢a
yt_(f—l-(p t-
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With sticky prices, the labour market equilibrium condition, expressed in terms of output, is

my = (0 + @)y — (L+p)ar = (0 +¢)(ye — i)

Replacing into the Phillips curve gives
e = ywr + BEimer +uy, (55)

where v = (0 + ¢)(1 — A\)(1 — BA) /A and x; =y, — y; is the efficient output gap.
On the demand side, we start from the savers’ Euler equation (45) and replace savers’ consump-

tion from the resource constraint (53) to obtain
yr — &6 = —0 iy — Bymign) + Ee(yesr — 6p1) + uf.
We can express the last equation in terms of output gap
xp— &€& = —0 (i — Bympgr) + Ey(@g1 — Eg1) + 15, (56)

where

—_ * *
vi = ui + Byl —yr-

The second condition that characterises aggregate demand comes from substituting housing
demand for borrowers from the market clearing condition (54) into the borrowing constraint equality
(50)

d} =0+ g+ (1= hy. (57)

Finally, we can replace the goods and housing market resource constraints, and the banking
condition (52) into the borrowers’ budget constraint (51) to obtain an equation for the law of
motion of debt

1-¢&.

1 . ~ -
Cli7 = f(Zt_l + 1/)I€t_1 + dgfl — 7Tt) + (1 - 5)(ht - ht—l) + Ct. (58)

Bs U]

For the housing gap, we take the difference of the two housing demand functions and eliminate

the multiplier on the borrowing constraint from borrowers’ Euler equation to obtain

(1= fi— By)onhs = —o(1 — @)E(c} — ¢fy1) — (1 — @) (if* — Bemeqr + uf) + fiby
+ (1= fi = B)oé + (Bs — Bo)(a — Begrar) + BoBro (2 — i) — BBio(cf — ¢41).

We can use the savers’ Euler equation to eliminate the last term of the previous expression, as
well as the banks’ zero profit condition to get rid of the borrowing rate. After substituting for

borrowers’ consumption from the resource constraint and using again the savers’ Euler equation,
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some manipulations allow us to write

hy = _W(it — Eimi) + Bsa;fb (¢t — Evqrr1) — aihg(xt —Eyrey1)
+ Uihét + (T/Zcuet - 10;511[)/115 + IJZZ, (59)
where
v = _Uihf’(y;‘ —Ewi1) + WJ 7

andw=1-f—f=pB(1/8s—1) > 0.
To complete the description of the demand side, we start by taking a population-weighted aver-
age of the two housing demand equations. We then use the goods and housing market equilibrium

conditions to get

(WH+B)qe = Ef(pe+04) +w (Uyt + U?) +§ﬁb[U(C?_Etc?+1)+EtQt+1]+(1_€)ﬁs [o(cf —E¢ciy 1) +Eiqeq1].

If we use the borrowers’ Euler equation to eliminate the Lagrange multiplier, replace borrowers’
consumption from the goods market equilibrium, savers’ consumption from their Euler equation,
and the borrowing rate from the banks’ zero profit condition, we obtain an aggregate house price

equation that reads as

: ow 9% (1 —p) B q
= —(iy — Eumr + ——FEixq + 0, — ki + ——E +v 60
q (it ¢T41) o g+ w+ﬁ¢t ot B tqi+1 + v} (60)
where
quiuh%—auc—i-&E -
t w+ﬁt t w+p tYi11

Given a specification of monetary and macro-prudential policy {i:, 04, k¢ }, equations (55)-(60),
constitute a system of six equations in six unknowns (x¢, 7, cff’ -, hf — hi, ¢, and df) that

characterises the equilibrium.

E Optimal Macro-Prudential Policy

In this section, we study optimal macro-prudential policy under discretion in the linear-quadratic
approximation that we have derived so far.

The definition of “optimal discretion” that we use requires the following protocol:
e At the start of each period nature reveals the values of all shocks.

e Today’s policymaker acts as a Stackelberg leader with respect to (a) private agents today;
(b) future policymakers and private agents. The policymaker acts after shocks are revealed,

so takes them as given.
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e Today’s policymaker is constrained by the behaviour of private agents today: outcomes today
must be compatible with the decisions of private agents. The policymaker is not constrained

by the decisions of private agents in the future (that is a problem for future policymakers).

e Today’s policymaker recognises that future policymakers will act according to a feedback rule
that determines outcomes (for the endogenous variables). That feedback rule is Markovian
in the sense that it determines outcomes as a function of the minimum number of variables
that can determine equilibrium in period ¢: the state vector plus the value of today’s shocks.

Today’s policymaker takes the feedback rule as given.

e We use the first order conditions of the policymaker’s problem to solve for a fixed point: the

future policymaker’s feedback rule and today’s decisions have the same form.

This definition of discretion is consistent with the implementation of the numerical simulations.

E.1 Flexible Prices

We begin with the case of flexible prices and real debt. In an efficient equilibrium, flexible prices
(A = 0) and no markup shocks (uf* = 0, V¢) imply, from the Phillips curve, that we have x; = 0,
that is, output is solely determined by productivity. Moreover, inflation disappears from the loss
function because A = 0. In addition, the nominal interest rate i; is replaced by the real interest
rate r¢, and inflation m; is also irrelevant for the equilibrium conditions.

The Lagrangian for the optimal policy problem under discretion is

) 1

L(Si—1,v¢) = _min -
{k¢,Ct,ht,re,0t,q:,5t } 2

— Oyt (€8 + 0 try + ERy g — vy)

5t St — B Sy — (1= €) (1= Ba) g —

— 05t [St_et_Qt_(1_5)(1_/85)ibt_7”t_w"‘5t}
§i §(1—f)

(ki + Al + Aph?) + BsEeL(St, vir)

— gét — Tt — Tﬂﬂt]

-0 +r— 0 + Kt — E — v
qt-Qt t w+ﬂt w+61/1t w+ g tqdt+1 t}
[~ w — — — o _ (L 1—7
— Opt | It + &8s ﬁb)Tt _Bh (9t — Eqiy1) — —C — L9t + MW% —
O’hfw OpW Op OpW OpW

where v; is the vector of exogenous shocks. Under discretion, the planner takes future policies as
given. With state variables, optimal policy under discretion corresponds to taking expectations of
future control variables (in our case, consumption in the Euler equation, and house prices in the
house price and housing gap equations) and losses as given, while internalising the effects of current

decisions on future losses and expected future variables through the state variable.
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The first order conditions for this problem are:

(1 i) 1=
0 = Aekt + Yoct + Yost — Wﬁjéqt - ﬁlwht (61)
1—
0= Acét + g(sxt + Jéct + O_i(;ht (62)
h
0= )\hilt +(1=Bs) (1 =8 bt + (1 —Ps) (1 —&) b5t — e (63)
0= — 0 Gt bt by — gy — 2SI P 5 (64)
O’hfw
_ S Ju
0=dgt + o /35qt + thdht (65)
0=5St—5qt+ﬂs_ﬁb5ht (66)
opw
OE L1 OECry1 B OE:qi41 Bs — By OE¢qi11
= B, _ St — By — 0o - b
0=F8—5, ~§ 55, om0t 0at e da = g, om  (67)
where £; = L£(S;—1,v¢). The envelope theorem gives us
oL 1
aSt—l — E ct- (68)

We seek to characterise the optimal policy plan under discretion in terms of a pair of targeting
rules. We can think of these two rules as determining, explicitly or implicitly, the optimal level of
capital requirements and LTV ratios.

Notice that equations (61)-(66) are static. We begin by manipulating those expressions to derive

the first targeting rule. In particular, subtracting (66) from (65) and rearranging, we have

(w+B)(Bs — B~ )

= o+ B+ )

Replacing the result back into (66) gives

Se (W+B)(Bs—Bp— ) Bs— DBy

= — Ont-
St opw(w + B+ &Q) Ohw ht

Recalling that 8 = €6 + (1 — &) s, we can simplify the coefficient in parenthesis above to obtain

fi(w + Bs)

08t = Gl B+ &)

Oht-

Consider now the first order condition (63). Replacing the results for d, and dg; obtained

above, we can write

1 f(w + Bs) An

P = {01 -6 T omww e ™ T B8

Bta
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or

1 A s
Spp = — |0t + —— " h|
e et -
where
1 f(w ~+ Bs)

Ch =

(1=B8)(1=¢)  opw(w+pB+E0)

Next, we can write (62) as

A 1€ o
—0zt = ¢ Ct+ n Oct + Uhﬁéht’
and (64) as
5xt - U(sct + J(SSt — O'(Sqt — iwéht
Oh fw

Adding the last two equations to each other yields

0= )g_cét-f- <1é__77£+0'> (5@"‘%}16 |:1— w_g(f}s_ﬁb)] 5ht+0’(53t—0'5qt.

The last three terms drop out because of (66). Hence, we can write

Ae ( 1-¢ )
0=—¢&+|——=+0) et 69
: & ¢ (69)
Consider now (61). We can replace for §, and dg¢ as a function of 9y, from the results derived

above to obtain

M o[ ietB) L EQ-m@—f—p) 1-A]g o

P opw(w+ B+ ER) opw(w+ B+ ER) opw

Simplifying the coefficient on dp; yields

A
—Hnt—i—éd— W"‘ﬁs

" ot B+ept =0

Using the equation that relates dy; to 6 and Ay derived above, we can rewrite the last expression

as

Ak w+ Bs 1

2R et — S
o T e B | T A= By -6

Factoring the terms in d.; and using the expression for (;, we can write

he| = 0.

A 5 o
iﬁt + ®bet — Pphy = 0,
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where
~ B 1
N apwlh
= A (w + Bs)
 Gonw(1 = Bs) (1 =) (w+ B+ &)

o
[
|

Finally, we can substitute from the relation between J.; and ¢ to obtain

ki = ®oCp + q)hilta (70)
where
i)
T A 1+ E(on-1)) 7
and "
o, = D,
h )\H h

It is straightforward to see that ®, > 0. In order for ®. > 0, we can simply check the sign of @,

which corresponds to ensure that its second component is less than one, or alternatively

OpW

1_53

(W+B+Ea) > (1= @)1 = &)(w+ Bs).

If o, = (1 — Bs)/w = Bs/Pp = 1, it is easy to check that the inequality above is satisfied. In our
baseline calibration for the quantitative experiments, we assume oj, = 25. More generally, ®. will
be positive for most reasonable parameter configurations.

So far we have derived a targeting rule in terms of contemporaneous endogenous variables. To
obtain the second targeting rule, we work with (67), which contains forward looking terms.

In our linear-quadratic setting, the Markov-perfect decision rules, and their conditional expec-

tations, are linear functions of the states, which implies

OEtZt 41

= Bza
0S5,

where, in our case, Z; = {¢, ¢}, and where B, denotes the coefficients of the linear relationship.

This consideration implies that we can write equation (67) as

p
0= Et5Ct+1 - gBé(sxt - 55’75 - 5ct + mBqéqt -

/Bs_ﬂb

ohw

Bqéhh

where we have used the envelope condition to substitute out for the value function. Next, we
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replace for 4, 04+ and dg; from the expressions derived above to obtain

- BB =Bo—ii)  Bs—B (el 1€ o
Oct = Etder41 + [Jhw(w B+ ) - - } Byont + £Bsz ( ¢ e + n Oct + ah£5ht>
fi(w + Bs)

opw(w + B+ i)

Oht-

We can simplify the coefficient in the square bracket and factor terms together as to obtain

1-¢ _ 1 AW+ B) (L4 w)(Bs— B L
(1 — 7”> 5ct - Et50t+1 + 0717 |:O'LL)BC+ w—l—ﬁ+£[c w+ﬁ—|—§ﬂ Bq:| 6ht + Bc)\cct'

Finally, we can use the solution for dp; and J. obtained above to write
&+ Qnhy = QEép41, (71)

where

EpAn[l +&(on —1)]
AelChnopw — Zp — (1 — £) By
0 Chnopw
‘ Chnopw —Ep — (1 = &) Bs
ﬂ(w + /Bs) - ﬂﬁs + w(/Bs - /Bb)B
w+ B+ & w+pB+eép T

2
=
I

= = owBz+

Note that the three coefficients above depend on Bz and B, which are unknown. We solve for

these coeflicients numerically using the method of undetermined coefficients.

99



E.2 Sticky Prices

With sticky prices, all terms in the loss function (44) are back in place. The Lagrangian for the

optimal policy problem under discretion becomes

. 1 ~ N
L(Si—1,v¢) = min - (m? + AeT2 A+ Ak + Aelr + )\hhf> + BsEL(St, Vig1)
{z¢,mt,5¢,Ct,he,7¢,0t,G¢,St 2

— 5@5 [a;t — §Et + O’il(it — Etﬂt+1) — ]Et (xt—l-l — fét-I—l) — Ijtc]

— Ot | St — B S + B — (1— &) (1 — Bs) by — ! _éét—it—wlit}

— st [St— 0n — s — it — Y — (1= B) (1= ) B

— Ogt _Qt + (i — Eymiqr) — %Et‘rt—i—l - wi—ﬂﬁet + mwﬁt -5 f_ BEtQtH — th}
— Ont _ilt + u)_i(}isw_ﬂb)(it — Eymiy1) — 52;wﬂb (gt — E¢qi41) + aihg(‘rt — Eyzi11)

o . 1—j
—*Ct—LGH- Ml/)’it—lf;l]
on Opw opw

— Ont [mp — vy — PEymq — V[

The main differences with respect to the case of flexible prices and real debt are the presence of
the output gap and the inflation rate in the loss function, and of the nominal interest rate and the

inflation rate in the structural equations.
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The first order conditions are:

o
0=a¢ — 0t — Thf&ht + Y0t (72)
0= )\ﬂ—ﬂ't — Bs_léct — 57Tt (73)
_ L EA-p) o 10
0 = Aek¢ + VPdet + Pdsy w1t Yoyt — (LY (74)
1—
0= Acét + géa:t + 756025 + i(()‘ht (75)
n Oh
0=—0 104t + Oct + 051 — Ogt — Méht (76)
opéw
_ §p i _
0= 51+ —F 0 + L = 0 (77)
ozzast—-5¢-+-ﬁs__ﬁb5ht (78)
W
0= Aphy + (1 =8 (1= Bs)0et + (1 — Bs) (1 = &) b5t — One (79)
OELi41 1 OEmi | OBy OECri1
= gt — Out — 05t — O¢
0=56=%s, +<” 95, a8, S s, )0t 05t da

8Et7ft+1 + ow aEt$t+1 B 3Et¢]t+1 s

05, w4+ B 85 w+p 9 e

LYz §(Bs = Bp) OBymin Bs — By OEuqia Lo OEx¢41
opéw 0S; oW 0S; opé 0S5

OEmi41
0S;

] ont + 8 Ot (80)

Like in the case of the efficient equilibrium, the envelope theorem requires

oL, 1
881 Bs

(81)

In order to derive the targeting rules for optimal policy under discretion in the case of sticky
prices, we start by noting that the first order conditions (74)-(79) are identical to the case with
flexible prices and real debt. Therefore, following the same steps as in the previous section, we can
derive a static macro-prudential rule identical to (70).

For the second targeting rule, we start from equation (72),which implies that

g

Ont + Yort-
oné

Opt = Xt —
Substituting this expression into (75) gives
- 1-¢
AcCt + €y + T5ct + 70t = 0.

We can then use (73) to eliminate ¢

1-¢& &y

AcCt + Exp + { — ] det +EYArm =0
n Bs
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Since the derivations of the static macro-prudential rule correspond to the flexible-price case,

we can use the solution for d. in (69) to obtain
x: + ’}/)\ﬂ-ﬂ't + AoG = 0, (82)

where

A = nAc(Bso — )
T Bl +E&(an 1))

For standard calibrations, (s is close to one, o bigger or equal than one, and ~ is quite small (of

the order of 0.1). Therefore, A, will generally be positive.

Equation (82) resembles the standard New Keynesian monetary targeting rule under discretion,
but also includes an adjustment for the consumption gap. Since A. > 0, monetary policy will
typically “lean against the wind”. Everything else equal, a shock that opens a positive consumption
gap would require a negative combination of output and inflation (appropriately weighted), contrary
to the standard case in which the same combination should be set equal to zero. Therefore, the
monetary authority contributes to financial stability with its interest rate policy.

As in the case of flexible prices, we derive the final targeting rule starting from the first order
condition with respect to S, which contains forward looking terms. We use again the envelope

theorem and the linearity argument to rewrite (80) as

Oct = Etéct+1 + (O_ICW +Cy — 505) Opt — 05t + <C7r + WO'CU Cy+ ﬁ Cq) 5qt

+ 3 w4+
+[W50%590ﬂ_58&cg+04&n+ﬁﬁﬁm

g
opw Tpw oné

where the C; coefficients (for ¢ = {m, z, ¢, q}) denote the loading of the endogenous variables on the
endogenous state Sy in the first-order Markov-perfect solution.
From here, we can proceed as in the case of flexible prices. In particular, we can rewrite the

previous expression as

B 1 e B ow I3
Oct = IE‘ftéct—‘rl + (U Cr+Cy fcc) Ozt — Ost + <C7r + W+ ﬁcx + w4+ BCQ) 5qt
+92ﬂ@1@@—&_&q+££;%+mmm
opéw opw oné

We can solve for d§,; and d,¢ from (72) and (73), respectively, to obtain
o
Ot = Tt — ——O0pt + YOnt,
Oh

and
57rt = >\7r7rt - 5;15@-
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Replacing these two expressions into the first order condition for S, we have

g
5ct = Et50t+l + (Uﬁlcﬂ + Cx - fC{;) |:H?t - T(Sht + '7( Tt — 5 5ct):| - 5St

<C + — ow v+ 6C’q> Ogt+ [w — &0 = 5b) Cr — Bs — Bqu + O;Cz] Ont+BCx ()\HTt - 55_15@) .

w+ 5 w+ B opéw oRw

We can now use the results for dg; and 0,4 derived in the case of flexible prices (as mentioned, these

conditions do not change with flexible prices) to obtain

Oct = E¢bery1 + (0716% +Cy — fcé) |:«73t - %féht +y(Aame — 5315&)} + ohwli(fjwj_ﬁﬁi)éﬁ) Ont
ow B N WtBB—B—R) . [w—EB—B). Bob, . o
(C TeTB w+pB " +w+5cq> opw(w + B+ &) 6ht+[ opéw Cr = Thw c +0hfcm O

+ BCx (>\7r7rt - Bs_léct) .

Collecting terms, we can rewrite

Yor
<1 + > Oct = E¢Oct+1 + (U_lcw + Cyp — EC)xp + XnAam + XpOny

Bs
where
Y= B+ H)Cr + Cp — ECs
and
_ ﬂ(w + /BS) Bs — By ow 0~ iBs + w(/Bs - /Bb)
Zht = opw(w + B+ &) * <1  opw )Oﬂ—i_ w+ﬁ0x+ ahcc ahw(w+ﬂ+£ﬂ)0 '

Finally, using the results for d;; and d.;+ derived in the case of flexible prices, we obtain the dynamic

targeting rule in the case of sticky prices

&+ Yowy + Tomy + Trhy = L Biéryn, (83)
where
_10 +Cx £C~
Y, =
e
EWAW
T, =
e
Y
Th = h2h
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and

A
e = <1+ Bs Ch> 14+ &(on—1)

Equation (83) is our third targeting rule. The parameters of this targeting rule depend on the
unknown C' coefficients. As in the case of flexible prices, we solve for these coefficients numerically

using the method of undetermined coefficients.

F Quantitative Experiment Details

In this Appendix, we provide more details of the approach used to compute the simulations in
Section 4.
F.1 Changes to model equations

Here we show the effects of adding a slow moving debt limit to the linearised model. We focus
on the equations that change. Because we wish to incorporate the effect of occasionally binding
constraints, we also need to work with equations that include the mulitplier on the borrowing
constraint, u, rather than the compact version of the model considered in Appendix E in which the

borrowing constraint is assumed to always bind.

Debt limit
Incorporating the slow-moving debt limit used by Guerrieri and Iacoviello (2017) gives:
d < (1L =7a) [0+ 0+ (L= ) o] +7a (dioy — ) (84)
where (as before) the housing gap is defined as:
hy = hb — h3

Housing demand and house prices

We start from the saver’s housing demand equation, (47):

"=

Bs

Ei (0¢] — ocjyy + q141)

Repeating the logic of the steady-state analysis for the simple model, but incorporating the
slow-moving debt limit, shows that the housing tax required to implement the efficient steady state
is:

h =By — (1 —72)0 — By

which collapses to the expression in Appendix B when ~; = 0.
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Note also that with a slow moving debt limit, the steady state multiplier on the borrowing

constraint is: .
i= 1— B By
L — 4P

which collapses to 1 — 35!, as previously derived, when 74 = 0.
We note that goods and housing market clearing imply, respectively, that:

s _ ~ *
c; =vs —EC + Y

hts :—filt

where ¢ is the consumption gap.

Using these definitions and rearranging gives:

at 11 h RS t t N t+1 t+1 T gt+1 f
where the composite shock
s — LT =B B

oy; + E: [0y} — 0yii1]

T 14 7h 14 7h

is independent of the housing preference shock.

We can repeat the process for the borrower’s housing demand equation:

. (1_'Yd)/16 1_(1_'Yd)/]9_5b b b h
Qt_1—(1—~y,j,),1®(“t+9t)+ 1— (1—q) i® (Uct Uhht+“t>
Br

_ E( b g 4 )
[—(—qae \70 7 T T

which collapses to (49) when 4 = 0.

The market clearing conditions imply:

S=w+(1—86)é&+y;
hi’:(l—{)ﬁt

Using these results and rearranging gives:

(1 —a) 1O 1—(1—7a) i© — B -,
fy _ 1_ B
qt 1—(1—1q) p© (et + 6) 1= (1— ) 0 [ah( &) hy — vy
to(l—=§)c+ox + T fbw) ﬂ@Et (1 — 0 (1 = &) Erq1 — opyr) + 2
where - Va6 ,
® - - —d) PO T P x b * *
1% = — o + _ E, (o .
' 1—(1—"q) 1O Yt 1—(1—4) © t( Yt yt+1)
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The multiplier on the borrowing constraint

With a slow-moving debt limit, the borrower’s first order conditions for consumption and debt are:

Ué),t (Z) =M\ (Z)
fu (i) Ac(i) _ B,E, [—w[‘t“ (i) | R (i)}

+
P, P, Py Py

Combining the first order conditions gives:

RY 7 j
(V86) — 1) 3 — s [ U - vd“t;tiﬂ o,

rearranging to

B Uti1 (1) RY = ~afiera (i)
1— (i) = Eefy 0 ., ; (87)
where 1 (3)
oo M2
PO = T

Aggregating and log-linearizing gives:

N Bp Byyaft
oc(1—m)"™" o(1-[)ps

——F
o(l—p)

o =Eec) ) + 0 Eemeg — (3¢ + 1brg) +

Once again, we can use the goods market clearing condition to write ¢” in terms of the con-

sumption gap and the output gap. This gives us:

x4+ (1= &) & =By (w1 + (1 — &) 1) + 0 ' Bympgr — 1— (1M_ ﬁ)ﬂt
Bb . Boyalt
o (1= ) B (i + re) + o (L= i) the+) + v

where

v = -y + By g +uf

is a composite shock that is independent of the housing preference shock.

The composite state variable, S

As before, we define a composite state variable:

55
Sy =il +db —
t = Zt + @
In equilibrium (ie imposing housing market equilibrium and the borrowing rate equation), we
have: 5. (1 )
Sy =iy + YK + d? — S<®§iLt (88)
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We can also write the borrower’s budget constraint in terms of the composite state variable:

1—-¢&- 1-€&.
dfs):ﬂs_l(st—l—ﬂt)-i- @ght‘i‘ ngct (89)

F.2 Optimal policy

The analysis of optimal discretionary policy mirrors the analytical approach for the simple model
(which assumes 74 = 0, © = 1 and that the borrowing constraint always binds). However, we also
include multipliers on the constraints that the nominal interest rate and bank capital instruments

must be positive (recognising that both are bounded).

F.2.1 The policy problem

We have:

1 = h
min 5 {x% + AeTp 4 Ak + Aelf + )‘hhg] + BpEeLit

— Ont [7Tt — YTt — 6Et7rt+1 - Um
— Ot [Tt — §C + o iy — Bemes1) — Be (w41 — E141) — l/f]

— Oap |dy — (1= ) |+ @ + (1 — f)ﬁt} — 4 (d?_1 - Wt) + 5?}

[
— Oct [df—5;15t1+55_177t— 1_§Bt_ 1;554

’ ©
- | e
— 054 | St — d? — 1y — Pk + B o 5}4
r 1-~)ii© 1— (1) A0 — x
5 Qt—%(uﬁr@tﬂ-%[Uh(l—f)ht—uﬂ
— Yqit - ~
—o0(1-§) ¢ —oxy — 1_(1’_8%[&5 (gre1 — 0 (1 =€) &1 — oxp 1) — 1
[ h— 7 ~ - ~
—Ont | Gt — 1—"_1:_7_hﬁs [O'hfht + Uﬂ — oz + 08¢ — %Et (0€¢41 — oaps1 + Gry1) — v°
[ (1= 8) & — By (@1 + (1= ) &) — 0 " Eemrear + stz
= Yu,t . 0
i +7U(1f71)55 (i¢ + hrg) — ﬁbﬁg)Etum -y

— (5,% [ir — B] — 07 [kt + K]

where the zero bound is B and the steady-state value of the bank capital ratio is x*. We use 3, to

denote the discount factor of the policymaker (and assume (3, = ¢ in our experiments).

F.2.2 First order conditions

In this variant of the model, there are two state variables, d® and S. To simplify the representation

of the first order conditions, we use a similar notation to Appendix E to capture the effects of the
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choice of the current state variable on expected future variables. Specifically, let:

_ OEYip
vZ= g

denote the effect of state variable Z on the expectation of variable Y. Similarly, let:

0L
Vi =
7.t 97,

be the effect of the state variable Z on the marginal future loss.

Using this notation, the first order conditions to the problem are:

0= $t+757rt_5mt+0'5qt+0'5ht_5u,t
0= Apmt — 5 5ct— d(sdt

- 1-—
0= >\cct + 5633,1‘/ + Tlf(sc,t + o (1 - g) 5q,t - O-g(sh,t - (1 - 5) 5M7t

~ 1—
0= Aphe + (1 —vq) (1 = &) bas + @5 ﬁs £5St
1—(1—=7a) 1O — By 1+T — Bs
— 1—
1—(1—1q) 0 on (1 =€) da 1+ 7h T
0= (1-1a) 5d,t — Og,t — 5h,t
_ (1 - ’Yd) e 1 M
V= 1—(1—vd)ﬂ@5q’t y 1—/15”
Bo
0= Aokt + Yog — —————10,, ¢
t t /65 ( ) .t
(1 —a) 4O
= (1-—- )
0= — 0_15“ + 05t — U_ILNCSW - 5,?
ﬁs (1 - M)
0= BpVst + BBrsori+ [0 'Brs + Bys — EBzs] 00t — 054
B
B,s—0(l—-&) Bsg—0B,gl|6
+ 1— (1 o ’Yd) /:L@ [ q,S U( 6) S g ,S] q,t
Bs
+ 1+ 7k [5036,5 - UBm,S + Bq,S] 5h,t
1B o+ Bys+(1—&) Bas+ 2 2 _p s
+ |0 75—’_ ,5+( 6) ,S+ 0'(1—[1) w,S | Op,t
0= BpVip; + BBradns+ [0 ' Bragp + Byav — EBzav] Oat — Sa
By
B »w—0(1—-&DB:u»—0B 0
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As in the analysis of the simple model, we note that the marginal effect of changes in current
states on future losses will be equivalent to the effect on the current policymaker of a change in the

state they inherit. So:

oLy .4
8St_1 - Bs 6C,t
oLy _ _ +
7(%?_1 = 7d9d,t

which implies that:

Vs = By "Eibe i
Vap o = vdEt0d 141 (90)

This implies that the first order conditions with respect to S and d can be written as:

0= 5]3/8;1Et50,t+1 + ﬁBTr,S(STr,t + [UﬁlBﬂ',S + B:mS - gBé,S] 5:v,t - 55715

Bb
B,s—0(l—¢)Bsg— 0B,
T 1—(1—4) a0 [ q,S o §) Bzs — 0By 5] 0gt

1 fSTh [fo'Bé,S - UB:(:,S + Bq,S] 5h,t

_l’_

|0 Bys 4+ Bus 4 (1—€) Bog + 20 20
o (1—p)
0 = BpyaEida i1+ BBy gplrt + [UﬁlBﬂ,db + B, — §Ba,db] Ozt — 0dt — et + 05,
By
B
(1 e

1 —{ﬁ—sTh [gﬂBa’db — UBx,db + Bq,db] 5h,t

B, s|0ut (91)
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F.3 The role of ¢

In this section we consider how the value of ¢ affects macro-prudential policy. Note that k; only

enters the following equations:

Tt —+ (1 — 5) ét = Et (It+1 =+ (1 — g) 5t+1) — Ulﬁ(lﬂb—ﬂ) (Zt + l/Jlit — Etﬂ't+1)
1R By Yabbit Eipiss1 + vt

Yt + — =<
1—i" " o B (1—p)
St:it+¢l‘it+dg_63(1_£)ﬁt

If we define:
’%t = 'lp/ﬂ‘,t < Kt = 'l)bill/%t
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then these equations can be written as:

_ _ _ B S
v+ (1 -8 ¢ =E (w1 +(1 =& C41)—0 LY (it Ry — Bymern)
/68 (1 _:U’)
o By _abolt Eipte1 + vy

1_N Uﬁs( —[L)
Sp=idy+ ke +dl — Bs (1— &) Iy

This change of variables writes the model in ‘spread space’ since & is equiproportionate to 7 in
the model. Under this change of variables, the term in the loss function capturing the effects of

changes in the capital ratio is given by:
ki = A 207 = A\oii?

where
N n

Ap = ————
"o +9)

Notice that when ¢ — 0, A — oo and the cost of using & becomes very large. So capital ratios
will be used relatively little when ) is very low. In particular, the first order condition for & can
be written as: b 5 5

R o+ 1 b
Rkt=-——"|0  ———=0ut— 03¢+ 6f
1 Bs(1—p) " '

which implies that it collapses to £ = 0 as ¥ — 0.

F.4 Dealing with Occasionally Binding Constraints

The approach was set out by Holden and Paetz (2012) and is convenient in our case.

F.4.1 The Model and the Rational Expectations Solution

The set of first order conditions derived above can be stacked with the constraints (the equations

describing private sector behavior) in the form:
HpEixi11 + Hoxy + Hpxy—1 = Ve + Vs, (93)

The new component to the model is a vector of ‘shocks’ § that are introduced in order to impose
the occasionally binding constraints. These shocks are added to the model equations which do not
hold when the occasionally binding constraints are binding. In our case, §; = [5? L0 5{?]/

For example, consider the zero bound. The first order condition for the nominal interest rate,
(FoC: i), includes the ‘shock’, 6. When the zero bound does not bind, 6; = 0. When the zero
bound binds, & is chosen so that the nominal interest rate is equal to the lower bound.

A similar approach is used to account for the fact that the borrowing limit may not bind. The

evolution of the debt limit includes the ‘shock’ 6¢. When the borrowing constraint binds, §¢ = 0
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so that d? = (1 — ) [Gt +aq+(1-9 ﬁt} + 74 (d?_y — ) and the level of debt is determined by
the borrowing constraint. When the borrowing constraint is slack, ¢ > 0 is chosen so that the
multiplier on the constraint is zero (fi; = —fi**). In that case, d? < (1 —yq) |6: + ¢ + (1 — &) hy| +
Ya (df_; — m¢) and the level of debt is less than the borrowing constraint.

Our approach shares some similarities with the ‘OccBin’ approach developed by Guerrieri and
TIacoviello (2015). For example, when the ZLB binds, the targeting criterion (24) does not form
part of the model. Instead, the shock d;; is chosen to enforce that the interest rate satisfies the

ZLB ig the lower

zero bound: in effect, we replace (24) with the equation i; = %8 < 0 where i
bound. This is analogous to the OccBin approach of defining different sets of model equations that
apply when constraints are or are not binding. One advantage of our approach is that it scales
easily as the number of occasionally binding constraints grows.?? As we show below, our approach
also allows us to check for the uniqueness of the solution.

Our approach requires us to solve for the values of §; (with ¢ = 1,...) that impose the occasion-
ally binding constraints. To do that, we will use the rational expectations solution of the model

(93) which the Anderson and Moore (1985) algorithm delivers as:

oo
xy = By + $ey + Z FI®5E 6,44 (94)

i=0
where B, F', ® and ®4 are functions of the coefficient matrices Hp, Ho, Hp, ¥ and Vs in (93). The
solution in (94) is valid for any expected shock sequence {d¢+;}0,.>® This is important because our
solution must cope with the fact that the equilibrium in period ¢t may be affected by the expectation

that occasionally binding constraints are binding in period(s) s > ¢.

F.4.2 The Baseline Simulation

To simulate the model we first assume that none of the occasionally binding constraints binds.
This is our ‘baseline simulation’. To produce it we set 6; = 0,Vt and then from a given initial
condition xy and a realization of the shocks €; we compute x; = Bxy_1 + $¢; for t = 1,..., H for
some simulation horizon H.

With the baseline simulation in hand, we then check whether it violates the assumption that the
constraints never bind. So, for example, we check whether the implied trajectory of the multiplier
on the borrowing constraint is always positive (fiy > —f®°,Vt) and whether the path of the policy
rate is always positive (i; > %P Vt). If we find that any of these assumptions is violated in the
baseline, then we need to invoke a quadratic programming procedure to ensure that the occasionally

binding constraints are enforced.

32Incorporating N occasionally binding constraints using OccBin requires specifying 2% alternative sets of model
equations, whereas in our approach we need to add N ‘shocks’ (and possibly up to N auxiliary equations/variables
such as d9°P).

33 As long the shocks do not increase at a rate faster than (the inverse of) the maximum eigenvalue of F'.
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Figure F.7: Effects of occasionally binding constraints on housing boom/bust under ‘flexible infla-
tion targeting’

F.4.3 Implications of Occasionally Binding Constraints

To illustrate the effects of the occasionally binding constraints, Figure F.7 shows the outcome of
our housing boom/bust simulation when the policymaker pursues flexible inflation targeting. Two
variants of the simulation are shown. The solid red lines show the case in which the occasionally
binding constraints are ignored. In this case, the multiplier 4 on the borrowing constraint is
permitted to take negative values as is the nominal policy rate. The dashed blue lines show the
case in which the simulation respects the occasionally binding constraints.

The results demonstrate the importance of applying the occasionally binding constraints. When
disregarded, the policymaker is able to fully stabilize the output gap and inflation. However,
achieving that stabilization requires quite large fluctuations in the nominal interest rate. Indeed,
the collapse in housing demand generates a long period in which the nominal interest rate is
negative. Moreover, during the period of increasing house prices, nominal interest rates rise by
around two percentage points. This reaction is required in order to stabilize aggregate demand,
which is supported by increased consumption demand by borrowers, given that the multiplier on
the borrowing constraint enters negative territory.

When the occasionally binding constraints are imposed, it is no longer possible for the monetary
policymaker to stabilize the output gap and inflation when house prices fall. There is a recession
and a sharp decline in inflation while the nominal interest rate is constrained by the zero lower
bound. The occasionally binding constraints are also important during the house price boom. The
expectation of strong real house prices causes the borrowing constraint to go slack (so that the

multiplier p equals zero for a number of periods). Relative to the case in which the constraints
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are not applied (solid red lines), there is a smaller increase in debt and the consumption gap is
also smaller. The more moderate spending behavior of borrowers puts less pressure on aggregate
demand so that (before the house price collapse) aggregate demand and inflation are stabilized

with a relatively modest increase in the nominal interest rate.

F.4.4 Imposing the Occasionally Binding Constraints (OBC)

The OBC can be represented as inequality constraints on a set of ‘target variables’ which we will
denote as 7. In our case, 7 would include the policy rate and the multiplier on the borrowing
constraint. To impose the OBC, we will solve for a set of shocks {5t}£ , that impose the OBC.
The simulation horizon H can be chosen to be arbitrarily large.

The approach is based on the insight that the effect of the  shocks can be simply added to
the baseline simulation, given the linearity of the model. Inspection of (94) reveals that the effect
of the fundamental and § shocks enter linearly. So to find the set of § shocks that ensure that
the target variables satisfy the OBC, we solve for a set of shocks that, when added to the baseline
simulation will achieve this. To do so, we need to be able to record the impact of ¢ shocks at all
horizons t =1, ..., H on the target variables in all periods t =1,..., H.

Let S; be a selector matrix that selects the target variables from the vector of endogenous

variables. Thus:
Tt — STCCt (95)

Consider now the effects of the ¢ shocks {515}{1; , on the endogenous variables in period 1 of the

simulation. This is given by:
H-1
B1= Y F'®s014, (96)
i=0
which captures the fact that in period 1 all of the shocks occur in (present and) future periods.

The effects on the target variables are given by 71 = S, 77.

In period 2, we can use the RE solution to note that the effects on endogenous variables are:

H-2
Ty = BT + Z F'®s6544, (97)
i=0
and from the expression for Z1, we can write:
H-1 H-2
By=BY F'®s014i+ » Fi®sdoyi. (98)
i=0 i=0

This step provides a recursive scheme for building a matrix that maps the effects of shocks to

the dummy shocks in periods t = 1,..., H to the target variables in each period. The first (block)
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row of this matrix can be found by expanding (96):

01

?1:[541)5 S FRlas o S FHas || 6 | (99)

o |

The second row is built by using equation (98) to multiply the coefficients in the first row by

B and then adding the coefficients on shocks that arrive from period 2 onwards:

01

?2:[573% .. S.BFFlds5+ S, FF2d; ... S, BFI1d5+ S, FH 205 | | 6. |,

o |
and this can be applied for each row in turn.

This scheme implies that we can write the mapping from the dummy shocks to the target

variables as:

T =MD, (100)
where ) ) ) )
71 01
T=|% |, D= d& |, (101)
| TH | 0n |

and the rows of M are built using the recursive scheme described above.

Notice that if the number of OBCs is n, then 7 and § are n x 1 vectors so that 7 and D are
(nH) x 1. The mapping we have derived records the effects of all § shocks on all target variables.
This reflects the fact that there may be interactions between the different OBCs. For example,
if the borrowing constraint happens to be slack in a period of weak growth, economic outcomes
may be better than otherwise and so the ZLB becomes non-binding. To correctly capture these
types of effects we need to incorporate the effects of shocks that implement each OBC on all target
variables.

To incorporate the bounds on the OBCs, we compute the vector 7T as the deviation of the target
variables from their constraint values. This is just a normalization, but it is useful in setting up

the quadratic programming problem (because it allows us to incorporate a contemporary slackness
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condition easily). To do this, we simply record the relevant rows of the baseline simulation {xt}tH:l
and subtract the value of the constraints. This normalization implies that if the baseline simulation
implied T > 0, then the baseline solution, which assumes that the OBCs never bind, would be
correct.

We can now set up a quadratic progamming problem to solve for D:

1 R
min D' (M+M)D+T'D (102)
subject to: T 4+ MD >0 (103)
D >0 (104)

The problem in equations (102)—(104) can be understood as follows. The constraint (103)
ensures that the OBCs are respected. T is the baseline simulation for the target variables, measured
relative to the constraint values. MD = T is the marginal effect of the § shocks D on the target
variables. So 7 + MD is the path of the target variables measured relative to their constraints
after the 0 shocks have been applied: requiring this to be non-negative implies that the constraints
are respected.

The constraint (104) requires that the J shock values used to impose the constraints are positive.
This requirement ensures that the OBCs are truly binding. To see why this is important, suppose
for a moment that monetary policy is determined by a Taylor rule including a § shock to enforce
the ZLB. Consider a simulation in which there is an initial negative shock to demand that causes
the Taylor rule to prescribe a negative value for the policy rate in the first few periods of the
baseline simulation. Now suppose that we seek ¢ shocks to the Taylor rule to ensure that the ZLB
is respected. One solution could be to apply negative future shocks to the policy rule that push
future rates lower than the baseline simulation, but still above the zero bound. This could be
sufficient to stimulate demand in the near term such that the ZLB never binds (and so constraint
(103) is respected as a strict inequality).

Finally, note that the minimand (102) can be expanded as follows:

1., , ~, 1, 1., 1, 1~
5D (M+M)D+T'D= 3DMD + 5D MDD+ ST'D+ 5D'T
1

-7 (MD+’?) + % (MD+’?)ID,
where the first line exploits the fact that 7'D is a scalar and the second line collects terms. The
minimand is therefore analogous to a contemporary slackness condition: it achieves a minimum of
zero when D = 0 or T + MD = 0.

The above discussion assumed that the final constraint D > 0 is economically sensible given
the model at hand. For this to be true we require that an anticipated positive § shock that arrives
7 periods ahead will be expected to increase the bounded variable in period j. This seems like
it should be automatically satisfied, but the interaction of lead/lag relationships in models with

inertia means that it need not be satisfied. One example is the ‘reversed sign’ responses of some
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DSGE models to monetary policy shocks in the distant future.?*

It is straightforward to check whether the model suffers from this problem by inspecting the
signs of the diagonal elements of the M matrix. If they are all positive, then we can apply the
algorithm as presented above. If some are negative, we need to amend the D > 0 constraint to flip
the sign applied to the relevant elements of D.

Another issue is that the quadratic programming problem has a unique solution only if the
matrix (M 4+ M’) is positive semi-definite. A sufficient condition for the matrix to be positive
semi-definite is for its eigenvalues to be non-negative which can be easily checked.

Finally, there is no guarantee that a solution exists. For very large shocks, the overarching
assumption that the model returns to ‘normal’ in a finite period of time may be violated (for
example, the model may get stuck in a deflation trap). Non-existence is likely to be a problem
when there is a strong feedback between the OBCs. Again, in practice this can be checked by

ensuring that the § shocks are zero at the end of the simulation horizon H.

F.5 Incorporating instrument bounds under discretion

The approach for dealing with occasionally binding constraints described in the previous subsection
works well for cases in which the behavior of the model when the constraint binds is equivalent
to its behavior when a time-varying shock is appended to a time-invariant equation. So, a slack
borrowing constraint (so that the non-negativity constraint on the multiplier of that constraint is
binding) can be captured by appending a ‘shock’ to the equation describing evolution of the debt
limit. Similarly, a ‘shock’ can be appended to the ‘flexible inflation targeting’ criterion (24) and
used to impose the zero bound on the nominal interest rate.

This approach works because the equations to which the ‘shocks’ are appended are ones in which
the coefficients are constant. More generally, discretionary solutions with instrument bounds will
give rise to first order conditions with time varying coefficients. In particular, the ‘By,’ coefficients,
that capture the marginal effects of x; today on E;y;11 will not be constants during a period in
which the policy instruments are constrained. That is because the instrument constraints alter the
ability of the policymaker to affect the current state of the economy and hence expectations. The
first order conditions derived in Appendix F.2 assume that bounds on instruments never bind, so
that the marginal effects of allocations at date ¢ on expected outcomes at date ¢t + 1 incorporate
(in equilibrium) policy responses that are a linear function of the state vector.?

To deal with this issue, Brendon et al. (2011) develop an algorithm to solve for the equilibrium

34In this case a positive shock to the monetary policy rule in the distant future causes a contraction today because
of forward looking behavior. The monetary policy reaction function prescribes a near-term loosening in response to
the contractionary effect of the future policy tightening. If the variables that enter the policy rule and/or the policy
rate itself are sufficiently inertial, we may observe an equilibrium in which the policy rate is lower in period j because
the negative effects on the arguments of the rule outweigh the positive effects of the shock.

35For example, consider the marginal effect of debt on expected inflation, B 4. When unconstrained by the zero
bound, changes in the short-term nominal interest rate affect debt via borrowers’ budget constraints and hence future
allocations. But when constrained by the zero bound, the marginal effect of changes in current debt on expected
inflation do not include any response by the policymaker.
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allocations of a linear model subject to instrument constraints under perfect foresight. That algo-
rithm casts the problem into a discrete time dynamic programming problem, creating a set of first
order conditions that account for the number of periods that the instrument bound(s) are expected
to bind. This approach therefore generates ‘B, coefficients that vary during the period over which
the instruments are constrained. We use this algorithm to compute the equilibrium in our model
in the relevant cases.

As Brendon et al. (2011) note, their algorithm “unfortunately requires some guesswork” because
it is based on a ‘guess and verify’ procedure. To provide an initial guess for the periods in which
the instrument bounds are binding, we first solve the model using the first order conditions in
Appendix F.2 (that is, with time-invariant ‘B, coefficients) and impose instrument bounds using
the approach described in Appendix F.4.4. This provides a good starting guess which is then used
to initialize the algorithm in Brendon et al. (2011).36

36We are grateful to Matt Waldron for helpful discussions on these issues and for sharing his code to implement
the Brendon et al. (2011) algorithm.
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G Additional figures

Here we present selected paths from the ‘recursive simulation’ analyzed in Section 4.
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Figure G.1: Recursive simulation outcomes for ‘leaning against the wind’ policy assumption
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Figure G.2: Recursive simulation outcomes for ‘full coordination’ policy assumption
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