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Abstract. This paper studies a two stage economy where the non-monetary assign-
ments of indivisible objects are followed by market transactions. In this economy, there
are finitely many players and finitely many types of indivisible objects and one divisi-
ble good called money. Every player demands at most one object besides money. The
first stage is governed by a non-monetary assignment mechanism, while the second stage
is governed by the market. We impose the obtainability condition on the first stage
mechanism, which requires that each player has an option to obtain any unassigned ob-
ject. This condition is satisfied by a broad class of mechanisms, including the Boston
mechanism and deferred acceptance algorithm. We define an equilibrium concept called
perfect market equilibrium (PME) and its refined concept. We then analyze three classes
of situations, the case with abundant money, the case where some players (e.g., firms)
cannot obtain objects (e.g., degree) in the first stage, waiting for some other players
(e.g., students) obtain them and trade the objects with them in the future, and the third
case with no money. We set forth some sufficient conditions under which existence and
efficiency are guaranteed and compare the three situations in terms of these conditions.
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“Laura had always been a pioneer girl rather than a farmer’s daughter,
always moving on to new places before the fields grew large.” –Laura Ingalls
Wilder, “First four years”1

1. Introduction

This paper studies a two stage model where the non-monetary assignments of indivisible
objects are followed by market transactions. This model is related to the following couple
of situations. First, consider a problem of college admission where students select a college
to be admitted. They do so strategically, taking into account their future job prospects,
rather than truthfully expressing their intrinsic preferences such as their love for campus.
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Next, consider the following historical case of the United States: after Homestead Act was
enacted in 1862, pioneers of the great prairie obtained a piece of land (160 acres) in return
for living there and cultivating the land. After acquisition, the lands were freely traded
in the market. Also, imagine several firms that strategically develop new technology to
obtain patents. The intellectual property rights are assigned to firms on the first-come-
first-served basis. After the acquisition of the rights, they can sell their patents to other
firms or keep them and commercialize the invented technology in the market. The fourth
example is a situation in which office spaces in a newly constructed building are alloted to
faculty members. In the first stage, the department assigns rooms to the members based
on some predetermined rule. Then, the members are allowed to exchange their rooms
afterwards.

A common observation in the above cases is that there are two stages, an assignment
stage and a market stage, and that assignment through a formal or informal non-price
mechanism of the first stage affects and is affected by what people obtain in the subsequent
market, and therefore, players therein would choose objects to obtain in the assignment
stage in a strategic manner, taking into account their prospects in the market stage. This
observation raises a number of questions: under what conditions does equilibrium exist?
when does the first stage assignment matter in terms of efficiency? what do we miss if the
assignment stage and the market stage are separately analyzed?

In order to examine these questions, we construct a two-stage model. In this model,
there are finitely many players and finitely many types of indivisible objects and one
divisible good called money. Every player demands at most one object besides money.
Also, players have different priorities at each object type in the first stage. Each object
has a limited amount of capacity, called quota. Each player has a quasi-linear utility
function.

The first stage is governed by a non-monetary assignment mechanism. A mechanism is
a pair of the set of strategy profiles and an assignment rule. Given a mechanism, players
simultaneously choose strategies to obtain one unit of some object. Then, the mechanism
chooses an allocation based on the selected strategy profile and priorities. That is if
the number of the players who choose a certain object type exceeds its quota, then the
players with top priority will obtain the objects up to the quota; otherwise, the objects
are alloted to all the players who choose it. In the analysis, we do not assume any specific
mechanism, but put conditions that mechanisms should satisfy. The conditions we require
are so broad that in most of the analysis, both the Boston mechanism and the deferred
acceptance algorithm satisfy them. Throughout this paper, we assume that the mechanism
satisfies a condition called obtainability, which requires that every player has a strategy
to obtain an object if there is an unassigned object that is available to the player under
some strategy profile.

The second stage is governed by the market. The players are endowed with the objects
assigned in the first stage as well as money. The priority no longer matters in the second
stage. The players can trade objects as a price taker. Each player’s payoff is determined by
the indivisible good and the money held at the end of the second stage. In particular, what
they obtain in the first stage matter only to the extent that it affects the final allocation
in the second stage.
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We introduce an equilibrium concept called perfect market equilibrium (PME) to ana-
lyze these situations. PME requires that a market equilibrium be realized in each market
of the second stage, and that each player selects an optimal strategy in the mechanism,
taking into consideration what will happen in the second stage. In order to capture play-
ers’ incentives in the first stage, we define an induced game, where the payoff of each
strategy profile is defined by the corresponding market equilibrium outcome. PME is a
Nash equilibrium in this induced game.

We also consider a refined concept of PME, Permutation independent PME (PIPME).
It requires that the price profiles of the second stage are the same between two initial
endowment profiles as long as their total endowments are the same. This concept reflects
the idea of anonymity and (partial) price-taking behavior. It reflects, in addition to per-
fection, the idea of anonymity as changes in object holders would not change the price
system as long as the total endowments are unchanged. It also reflects the idea of price
taking behavior in the sense that even if one changes his/her strategy in the assignment
stage, it would not affect the second stage price system as long as the total endowments
are unchanged. Indeed, in many mechanisms, including the Boston mechanism and the
deferred acceptance algorithm, if there are a sufficient number of players who take un-
dominated strategies, a unilateral deviation would not affect the total amount of objects
available for the second stage market. Our interest resides in the allocation of indivisible
objects and money in PME as well as PIPME.

In the analysis, two criteria are used to evaluate the allocation in PME: one is Pareto
optimality, and the other is efficiency. If an allocation is Pareto optimal, then there is
no allocation where all the players weakly prefer and at least one player strictly prefers
to this allocation. An efficient allocation maximizes the social welfare, which is equal to
the sum of the players’ utility values. We also introduce ω-optimality and ω-efficiency
given an endowment ω of the second stage, which correspond to optimality and efficiency,
respectively. Given ω, an ω-optimal (resp. ω-efficient) allocation is not necessarily an
optimal (resp. efficient) allocation, especially when there are some unassigned objects in
the first stage.

With this two-stage model and solution concepts, we analyze three types of situations.
The first type of situation, analyzed in Section 3 is the one in which players have abun-
dant money. This situation corresponds to an assignment stage followed by monetary
transactions.

The existence of market equilibrium in the second stage is guaranteed as shown by
Gale (1984). Therefore, PME always exists in this case. We show the efficiency and the
uniqueness of PME object allocation provided that every object is scarce, or there is a
sufficient demand for every object. Its proof is an application of the first fundamental
theorem of welfare economics.2 The assumption of scarcity, however, is essential to the
results. We discuss an example where efficiency and uniqueness do not hold due to the
lack of scarcity. If the scarcity assumption is violated, an ω− efficient allocation in the
market may not coincide with the unique efficient allocation in the two-stage economy.

The second type of situation is analyzed in Section 4. It is the one in which the buyers
and the sellers of the objects in the second stage market are inherently separated. In other

2See, e.g., Mas-Colell, Whinston, Green, et al. (1995).
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words, the players who obtain indivisible objects in the first stage will turn to be their
sellers in the subsequent market. Students choose a college to be admitted, while firms
hire a student based on the college he/she graduates from. No student hopes to stay in the
college forever, and all of them enter the labor market as a seller after their graduation,
trading their labor backed by their degrees with firms that evaluate the skills attached
to the college degrees. Students strategically choose a college, taking into account their
future job prospects.

In this application, we show that PME always exists as market equilibrium does provided
the scarcity of objects for both students and firms. Also, we show that PME achieves an
efficient and unique object allocation. In addition to this, we show that there is a strict
order of positive prices on object types in the second stage. This implies that students
preferences happen to be same as sorted by strictly positive prices because students does
not feel any value on object holding. Then, the priority structure determines which player
can owns what objects in the first stage. In the second stage, all the students with an
object in the first stage can sell his/her owning to firms. And, object allocation in the
market becomes efficient and unique because firms’ monetary endowment assures that
objects are exchanged from a student to a firm who values it.

The third type of situation, analyzed in Section 5, is an assignment stage followed by
exchanges where there is no money, or monetary transactions are considered inappropriate.

The existence of market equilibrium in the second stage is not guaranteed unless various
conditions are met. For example, if the quota of some object exceeds one, market equilib-
rium may not exist. This also implies that the existence of PME is not guaranteed unless
the quota of each object type is limited to one. On the other hand, Pareto optimality
of PME does not require even scarcity on condition that it exists. Again, the proof for
optimality is an application of that of the first fundamental theorem of welfare economics.

To examine the relationships between the perfection of players and the first stage mech-
anism, we relate PME to stability. An allocation is said to be stable if every player prefers
his/her assignment to any object that is held by another player whose priority is lower
than the player in question and to any unassigned object. We introduce another equilib-
rium concept, called stable market equilibrium (SME) for the analysis with no money. It
imposes stability on the market equilibrium object allocation. SME, unlike PME, con-
siders neither the incentive to deviate in the first stage nor off-the-equilibrium outcomes,
and therefore, it is much easier to construct SME than PME. We show that if there is
no priority cycle defined by Ergin (2002), then together with some other conditions, SME
exists, and there exists a PME of which object allocation is the same as that of SME.

Since we analyze a two-stage model that consists of non-monetary assignments in the
first stage and market transactions in the second, our analysis is based on a variety of
existing literature even if we limit our attention to the papers that are directly related to
the present one.

The present model closely follows the literature on assignment problems. The college
admissions problem is adopted from Gale and Shapley (1962) and Roth and Sotomayor
(1989). Sotomayor (2008) formulates a game form and define a Nash equilibrium to
analyze stable matching mechanisms. What is new in the present paper, other than
considering a two stage economy, is that we set forth the condition of obtainability, which
requires that anyone can obtain any unassigned object as long as it is physically available.
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This condition is not so stringent that the set of mechanisms satisfying it includes serial
dictatorship, the Boston mechanism, and the deferred acceptance algorithm as examples.
In the sense that similar results hold as long as the mechanism satisfies obtainability, the
second stage market will minimize the difference between these mechanisms, correcting
any efficiency loss through market transactions.3

Ergin (2002) shows that no cycle of priority, or acyclicity, is equivalent to Pareto opti-
mality of the outcome in the deferred acceptance mechanism. This condition of acyclicity
turns out to play a critical role in relating stable allocations to PME allocations.4

This paper is based upon some results in the existing literature on markets with in-
divisible goods. Shapley and Scarf (1974) shows non-emptiness of core and existence of
competitive equilibrium when there is no money. We use their result directly in proving
the existence of market equilibrium in the case of no money. Kaneko (1982) shows non-
emptiness of core under no-transferable utility. Wako (1984) shows strong core is inside
the set of competitive equilibrium and conditions under which strong core exists. Quinzii
(1984) shows the existence of competitive equilibrium in an economy with indivisible goods
and money. We use this result directly in stating the existence result of market equilibrium
in the case of abundant money.

We consider the case of abundant money, which requires that everyone has a sufficient
amount of money that matches his/her highest willingness-to-pay, and the case of no
money. If money holdings are in between, i.e., some player has a positive amount of money
but not as much as his/her reservation value for some goods, then we face difficulty in
the proof of existence. Indeed, Gale (1984) shows that competitive equilibrium exists if,
among others, demand correspondence has a closed graph. But, in the in-between case,
the demand correspondence for some goods does not become closed in general, and the
existence proof fails to work.5

If we view the second stage endowment as the assignment of property rights, then the
analysis of the present paper is related to Coase’s theorem (see Coase (1960)). In the
present context, the theorem implies that irrespective of the assignment of property right,
the market will lead to an efficient allocation. Papers related to Coase’s theorem are
abundant. In the present context, it is worth mentioning Demsetz (1964), which states
that under smooth markets, zero pricing of scarce good does not lead to inefficiency, and
Jehiel and Moldovanu (1999), which considers assignment with resale and shows that the
assignment of property right is irrelevant if there are resale processes. In the present
paper, if money is abundant and the scarcity condition holds, then the situation becomes
a special case of Jehiel and Moldovanu (1999). In other cases, however, their presumption
does not hold, and the result may not hold in general.

3Experimental studies may be needed to discern these mechanisms. If one confines attention on the
first assignment stage, one may refer to Chen and Sönmez (2006) that compares three mechanisms, the
Boston mechanism, the deferred acceptance algorithm, and top trading cycles, in an experiment.

4See also Kojima and Manea (2010), which takes axiomatic approaches on deferred acceptance
mechanisms.

5To be precise, the demand correspondence does not have a closed graph if one has no money, either.
However, in this particular case, we have the existence result due to Shapley and Scarf (1974) and others
as we have seen.
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The rest of the paper is organized as follows. Section 2 presents a model and solution
concepts as well as some preliminary results. Section 3 studies situations with abundant
money. Section 4 studies a situation where the population is divided into two groups,
students and firms. Section 5 studies situations with no money. Some proofs and the
definitions of some mechanisms are relegated to appendices.

2. Model

We consider a two stage economy. In the first stage, players play a game to obtain
objects, while in the second stage, the market opens to allocate objects and money, if any.
The object allocation in the first stage is governed by a mechanism, which may or may
not be a formal one, depending on applications. On the other hand, an object allocation
in the second stage is determined through a pure exchange economy based on the profile
of the initial endowments, objects and money. In this model, the initial object endowment
profile in the second stage is the outcome of the first stage.

2.1. Preliminaries. N is a finite set of players. O is a finite set of objects. There is
a null object, denoted ϕ. We may call ϕ an object and any a in O a tangible object
whenever convenient. Let Ō = O ∪ {ϕ}. The objects are indivisible, and each agent
demands at most one unit of the object. For any a ∈ O, a has a quota qa ∈ {1, 2, . . .}.
Also, let qϕ be any number satisfying qϕ > |N |. A quota profile is denoted by q = (qa)a∈Ō.

Given a vector µ = (µi)i∈N ∈ ŌN and a ∈ Ō, let µa = {i ∈ N |µi = a} be the set of
the players who hold a. An object allocation is µ that satisfies |µa| ≤ qa for all a ∈ O.
A+ = {µ ∈ ŌN | ∀a ∈ Ō |µa| ≤ qa} is the set of all the object allocations.

In this economy, the players may have money as endowment. Let m̄i ∈ R+ be the
monetary endowment of player i ∈ N . We write m̄ = (m̄i)i∈N . An allocation is given by
x = (µ,m) ∈ X ≡ A+ × RN

+ with
∑

i∈N mi ≤
∑

i∈N m̄i. Note that there is a liquidity
constraint, i.e., no player can borrow money.

For every i ∈ N , Ri is a preference relation over Ō × R+, the set of pairs of objects
and money. R = (Ri)i∈N is a preference profile of the players. Let Pi denote i’s strict
preference over Ō×R+, i.e., for all x and x′ in X, xPix

′ if xRix
′ and not x′Rix. We write

P = (Pi)i∈N . Also, Ii (i ∈ N) is the indifference relation induced by Ri, i.e., for all x and
x′, xIix

′ if xRix
′ and x′Rix.

We assume that the preference relation Ri (i ∈ N) is rational, i.e., complete and tran-
sitive. Let R (resp. P) be the set of (resp. strict) preferences.

We measure i’s value vi(a) of object a by money. Let vi(a) (i ∈ N , a ∈ O) be a number
such that (ϕ, vi(a)) and (a, 0) are indifferent, i.e., (ϕ, vi(a))Ii(a, 0). We assume such a
number exists. We assume that there is no income effect, i.e.,

∀i ∈ N∀a ∈ O∀mi ≥ 0∀r ∈ R (ϕ,mi)Ri(a, 0) ⇒ (ϕ,mi + r)Ri(a, r).

We also assume that (µi,mi)Pi(µi,m
′
i) if and only if mi > m′

i. Therefore, we can represent
player i’s preference by a quasi-linear utility function, i.e.,

ui(a,m
′
i) = vi(a) +m′

i.
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We assume that these values are generic unless otherwise mentioned. In particular, we
assume that for all N ′, N ′′ ⊂ N , and all allocations µ′, µ′′ ∈ A+,∑

i∈N ′

vi(µ
′
i) ̸=

∑
j∈N ′′

vj(µ
′′
j )

holds.
We use two criteria to evaluate allocations in terms of utility. One is Pareto criterion

and the other is social welfare. Consider two allocations x and x′ in X. We say that x
Pareto dominates x′ if for all i ∈ N , xiRix

′
i holds, and for some j ∈ N , xjPjx

′
j holds. An

allocation x is Pareto optimal if there is no allocation that Pareto dominates x.
The second criterion is social welfare. For each allocation (µ,m), a social welfare is

given by W (µ) =
∑

i∈N vi(µi). We say that (µ,m) is efficient if µ ∈ argmaxµ′∈A+ W (µ′)
holds.

For every a ∈ O, ⪰a is a total order over N at a ∈ O, i.e., it is complete, transitive,
and anti-symmetry. This binary relation ⪰a induces ≻a for all a ∈ O: for all i, j ∈ N ,
i ≻a j holds if and only if i ⪰a j but not j ⪰a i. It defines the order of players’ priority
at object a, i.e., i ≻a j means that i has higher priority than j at a. Let ≻= (≻a)a∈O be
the priority profile at all the objects. S is a set of all the priority profiles. Given the set
N of players, an economy E is denoted by E = ⟨R,≻, q, m̄⟩.

2.2. The first stage: Assignment. In the first stage, the players obtain objects based
on priority through a mechanism. A mechanism is a pair

M = ⟨Σ, λ⟩,

where Σ = (Σi)i∈N is the set of strategy profiles with Σi being the set of i’s strategies and
λ : Σ → A+ is an outcome function. Given an economy E = ⟨R,≻, q, m̄⟩, both Σ and λ
may reflect ≻ and q, but neither R nor m̄. That is, if the number of the players who choose
a certain object type exceeds its quota, then the players with top priority will obtain the
objects up to the quota; otherwise, the objects are alloted to all the players who choose
it. Given a mechanism M , for each i ∈ N , Ai ⊂ Ō is the set of available object types for
player i. An object type a is in Ai if λi(σ) = a holds for some σ ∈ Σ. Assume that for all
i in N , ϕ is in Ai. Let A be a subset of A+ such that for all µ ∈ A and all i ∈ N , µi ∈ Ai

holds. We may write λ : Σ → A in the sequel.
Next, we define obtainability, which roughly states that if there is an unassigned object,

each player has an option of obtaining it.

Condition 2.1. A mechanism M = ⟨Σ, λ⟩ satisfies obtainability, i.e.,

(Obtainability): For all σ ∈ Σ, if |λa(σ)| < qa holds for some a ∈ O, then for all
i ∈ N with a in Ai, there exists σ̂i ∈ Σi that satisfies λ(σ̂i, σ−i) = a.

This condition is satisfied by various mechanisms, including serial dictatorship, the first-
come-first-served rule (the Boston mechanism), and the deferred acceptance algorithm.

2.3. The second stage: Market. The players participate in the market in the second
stage. To begin with, several related concepts are defined given the initial object allocation
ω, which is the outcome of the first stage.
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Given an initial object allocation ω ∈ A of the second stage, an allocation x = (µ,m) ∈
X is ω-feasible if for all a ∈ O, |µa| ≤ |ωa| holds. Aω denotes the set of ω-feasible
allocations. Also, Oω = {a ∈ O||ωa| > 0} is the set of available objects, and Ōω =
Oω ∪ {ϕ}.

Next, given ω ∈ A and a ∈ O, let |ωa| be a total endowment of object a in the second
stage. We write a total endowment profile, or simply total endowment, |ω| = (|ωa|)a∈O.
The initial endowment ω of the second stage is said to be exhaustive if every object is
assigned to some player, i.e., |ω| = q holds. Also, an object allocation µ is ω-exhaustive if
|µ| = |ω| holds where |µ| is similarly defined as |ω|.

Note that the quantity restriction is only on the objects in O, i.e., not on ϕ. Next,
ω-Pareto optimality and ω-efficiency are defined.

Definition 2.1. Given an initial object allocation ω of the second stage, an allocation x is
ω-Pareto optimal (ω-optimal) if there does not exist an ω-feasible allocation x′ that Pareto
dominates x. Also, an allocation (µ,m) is ω-efficient if there does not exist an ω-feasible
allocation (µ′,m′) such that W (µ′) > W (µ).

The following lemma states the relationship between ω-optimality (resp. ω-efficiency)
and Pareto optimality (resp. efficiency). It is a direct consequence of the respective
definitions.

Lemma 2.1. If ω is exhaustive, then an ω-optimal (resp. ω-efficient) allocation is also
Pareto optimal (resp. efficient).

Proof.
Suppose that ω ∈ A is exhaustive. Then Aω = A+ holds. Thus, the definition of ω-
optimality (resp. ω-efficiency) becomes identical to that of Pareto optimality (resp. effi-
ciency). □

The concept we use for the second stage is market equilibrium. The second stage market
is given by ⟨m̄,R, ω⟩.

Definition 2.2. Given a triple ⟨m̄,R, ω⟩, (p, x) = (p, µ,m) ∈ RŌω

+ ×Aω×RN
+ is a market

equilibrium under ⟨m̄,R, ω⟩ (or simply under ω if there is no confusion) if x is ω-feasible,
pϕ = 0, and

(1) ∀i ∈ N pµi +mi = pωi + m̄i ,
(2) ∀i ∈ N ∀a ∈ Ōω[m̄i + pωi ≥ pa ⇒ (µi,mi)Ri(a, m̄i + pωi − pa)] ,
(3) ∀a ∈ Oω [|µa| < |ωa| ⇒ pa = 0].

Note that Definition 2.2, especially pϕ = 0 and (3), together with ω-feasibility implies
that the objects in O are free disposal.

2.4. The two stage economy and perfect market equilbirium. We combine the two
stages, considering an economy E = ⟨R,≻, q, m̄⟩. First, we introduce an induced game.

Definition 2.3. Given a mechanism M = ⟨Σ, λ⟩ and a profile (p(ω), x(ω))ω∈A, player i’s
induced payoff is

ũi(σ) = ui(x(λ(σ))).
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Given a mechanism M = ⟨Σ, λ⟩ and a profile (p(ω), x(ω))ω∈A, an induced game Γ is a
profile ⟨N,Σ, (ũi)i∈N ⟩.

Given an induced game Γ, we naturally extend the strategy space to include mixed
strategies. A mixed strategy ρi of player i ∈ N is a probability distribution over Σi, i.e.,

ρi ∈ ∆(Σi) ≡
{
ρi : Σi → [0, 1] |

∑
σi∈Σi

ρi(σi) = 1
}
.

We allow mixed strategies in the definition of equilibrium. To do so, let us define the ex-
pected payoff under a mixed strategy profile ρ and a market equilibrium profile
(µ(ω),m(ω))ω∈A as follows:

E [ũi(·)|ρ] =
∑
σ∈Σ

ρ(σ) [vi(µi(λ(σ))) +mi(λ(σ))] ,

where ρ(σ) = Πi∈Nρi(σi) is the product of ρi(σi) across the players.
Now, we present an equilibrium concept that reflects the idea of perfection.

Definition 2.4. Given a mechanism M = ⟨Σ, λ⟩ and a two stage economy
E = ⟨R,≻, q, m̄⟩, (ρ, (p(ω), x(ω))ω∈A) is a perfect market equilibrium (PME) if

(1) for all ω ∈ A, (p(ω), x(ω)) is a market equilibrium under ω;
(2) ρ is a Nash equilibrium of the induced game Γ, i.e.,

E [ũi(·)|ρ] ≥ E
[
ũi(·)|(ρ′i, ρ−i)

]
.

Given a PME, we sometimes call its on-path allocation a PME allocation. Analogously,
we call its on-path object allocation a PME object allocation.

We also consider a refined concept of PME. The following concept of permutation
independent PME requires that if the total endowments of the second stage are the same
between the two outcomes of the first stage, then the equilibrium price vectors are the
same. This reflects the idea of anonymity, i.e., changes in object holders would not change
the price system as long as the total endowments are unchanged.6

Definition 2.5. (ρ, (p(ω), x(ω))ω∈A) is a permutation independent perfect market equi-
librium (PIPME) if it is a PME, and for all ω, ω̂ ∈ A,

(PI): |ω| = |ω̂| ⇒ p(ω) = p(ω̂).

Let Q =
∑

a∈O q
a. We sometimes assume in the sequel that objects are scarce, which

turns out to be essential for some of the subsequent results.

Condition 2.2.
Every object in O is scarce if

(Scarcity): for all a ∈ O, |{i ∈ N |vi(a) > 0, a ∈ Ai}| > 2Q holds.

Lemma 2.2. Assume (Scarcity). Then, we have the following:

(1) µ is exhaustive if an allocation (µ,m) is Pareto optimal;

6This definition also reflects the idea of price taking behavior in the sense that even if one changes
his/her strategy in the assignment stage, it would not affect the second stage price system as long as the
total endowments are unchanged. Indeed, in many mechanisms, including the Boston mechanism and the
deferred acceptance algorithm, if there are a sufficient number of players who take undominated strategies,
a unilateral deviation would not affect the total amount of objects available for the second stage market.
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(2) given ω ∈ A, µ is ω-exhaustive if an allocation (µ,m) is ω-optimal;
(3) given ω ∈ A, pa > 0 holds for all a ∈ O, and µ is ω-exhaustive if (p, µ,m) is a

market equilibrium under ω.

Proof.
Assume (Scarcity) in Assumption 2.2 throughout the proof. Suppose an allocation (µ,m)
is Pareto optimal. And, suppose the contrary. Then, there exists a ∈ O, |µa| < qa.
The scarcity implies that there exists i ∈ µϕ s.t. (a,mi)Pi(ϕ,mi). We can construct
an allocation (ν,m) where νi = a and νj = µj for j other than i. Then, (ν,m) Pareto
dominates (µ,m). This is a contradiction to Pareto optimality.

The second claim is verified in the same manner as the first.
As for (3), suppose the contrary, i.e., there exists a market equilibrium (p, µ,m) under

ω such that for some a in O pa = 0 holds. Take such object a. Since the object a is scarce,
|{i ∈ N |vi(a) > 0}| > 2Q holds. This implies that there exists at least one j in µϕ s.t.
vj(a) > 0 and mj = m̄j . Therefore, µj = ϕ and mj does not maximize j’s utility. This is
a contradiction to that (p, µ,m) is a market equilibrium under ω. Once pa > 0 is proven,
|µa| = |ωa| immediately follows from the definition of market equilibrium (excess supply
of some object implies that its price is zero). □

We now consider the incentives in the first stage and claim the following.

Lemma 2.3. Assume (Scarcity) and (Obtainability). If σ is a PME pure strategy, then
λ(σ) is exhaustive, i.e., |λ(σ)| = q.

Proof.
Assume (Scarcity) and (Obtainability). Let (σ, (p(ω), µ(ω),m(ω))ω∈A) be a PME in pure
strategy. Suppose the contrary, i.e., that |λa(σ)| < qa holds for some a ∈ O. Take such an
a. Then, (Scarcity) implies that there exists i ∈ N such that λi(σ) = ϕ, µi(λ(σ)) = ϕ, and
vi(a) > 0. Take such an i. Note that this player i is the one who obtains an object in O
in neither stage. (Obtainability) implies that there exists σ̂i ∈ Σi such that λ(σ̂i, σ−i) = a
holds. Take such a σ̂i. Then vi(a) > 0 implies (λi(σ̂i, σ−i), m̄i)Pi(µi(λ(σ)), m̄i). In the
second stage, we have xi(λ(σ̂i, σ−i))Ri(λi(σ̂i, σ−i), m̄i). Hence,

xi(λ(σ̂i, σ−i)) Pi (µi(λ(σ)), m̄i),

i.e., player i has an incentive to deviate and obtain a. This is a contradiction to that
(σ, (p(ω), µ(ω),m(ω))ω∈A) is a PME. □

3. Perfect Market Equilibrium under Abundant Money

This section assumes that the set of available object types for player i, Ai, is equal to
Ō for all i ∈ N .

We assume that everyone has a sufficient amount of money. Formally, we have the
following.

Condition 3.1.
Money is abundant (for all the players):

(Abundance): for all i ∈ N , m̄i ≥ maxa∈Ō vi(a) holds.
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If money is abundant, then under the assumption of no income effect, utility becomes
transferable, and the definition of Pareto optimality (resp. ω-optimality) is reduced to
that of efficiency (resp. ω-efficiency).

3.1. Existence and efficiency. First, we have the existence result of market equilibrium
in the second stage due to Quinzii (1984).

Claim 3.1. (Quinzii (1984)) Assume (Abundance). Then for all ω ∈ A, there exists at
least one market equilibrium under ω.

If there exists a market equilibrium under every ω, then by assigning a market equi-
librium allocation under each ω, we can construct a game for the first stage. Then PME
exists in the mixed strategy profile space since the existence of PME is reduced to the
existence of Nash equilibrium. Thus, the following result is stated without proof.

Theorem 3.2. Assume (Abundance). Then, there exists at least one PME.

The abundance of money (Abundance) is crucial to the existence result. Indeed, as we
shall see in Section 5, if money is not abundant, then market equilibrium may not exist
under ω, and therefore, PME may not exist, either.

If money is abundant, the quasi-linearity of the utility functions implies that the demand
correspondence is independent of the initial allocation (ω, m̄) of the second stage, i.e., the
object choice µi of player i is given by

(3.1) µi ∈ arg max
a∈Ōω

{vi(a)− pa}.

Corollary 3.3. Assume (Abundance). Suppose that there is a PME. Then, there exists
at least one PIPME whose object allocation is identical to the PME object allocation.

To prove this corollary, let us define the following. Given ω ∈ A, let

Ωω = {ω̂ ∈ A | |ω̂| = |ω|} .

It is verified that these sets form equivalence classes. Let Ω = {Ω1, . . . ,ΩL} be a partition

of A, i.e., Ωℓ ∩ Ωℓ′ = ∅ for ℓ ̸= ℓ′ and ∪L
i=1Ω

ℓ = A.

Proof.
Assume (Abundance). Suppose that (ρ, (p(ω), µ(ω),m(ω))ω∈A) is PME. We construct a
PIPME (ρ∗, (p∗(ω), µ∗(ω),m∗(ω))ω∈A) as follows. Consider Ω = {Ω1, . . . ,ΩL}. For each
ℓ = 1, . . . , L, take an ω̂ℓ ∈ Ωℓ in an arbitrary manner. Then for each ℓ = 1, . . . , L and each
ω ∈ Ωℓ, let

p∗(ω) = p(ω̂ℓ),

µ∗(ω) = µ(ω̂ℓ),

m∗
i = m̄i − p∗µ∗

i (ω)
+ p∗ωi

, i ∈ N.

Given the price p∗(ω), for each player i, the optimal object is µi(ω̂
ℓ) since the demand

correspondence does not depend on the initial endowment by Equation (3.1). Also, m∗
i

is determined by player i’s budget constraint. Thus, (p∗(ω), µ∗(ω),m∗(ω)) is a market
equilibrium under ω. This completes the construction of the second stage equilibrium
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profile (p∗(ω), x∗(ω))ω∈A with (PI). Since the first stage strategy profile ρ∗ is simply a
Nash equilibrium of the induced game. This completes the proof.

□
The next lemma states that every market equilibrium is ω-efficient, and therefore, that

the final object allocations in two markets with the same total initial endowment are the
same even if the initial endowment profiles are different.

Lemma 3.4. Assume (Abundance). Given any ω ∈ A, the market equilibrium allocation
under ω is ω-efficient. Also, for any ω, ω̂ ∈ A with |ω| = |ω̂|, the market equilibrium object
allocations under ω and ω̂ are same.

Proof.
Assume (Abundance). Suppose (p, µ,m) is a market equilibrium under ω. First, we show
ω-efficiency. Suppose the contrary, i.e., that there exists η ∈ Aω such that W (η) > W (µ)
holds.

For every player i, (3.1) implies

(3.2) vi(µi)− pµi ≥ vi(ηi)− pηi .

From (3.2), we have

(3.3) pηi − pµi ≥ vi(ηi)− vi(µi)

for all i ∈ N .
By taking the summation of the both sides across i ∈ N , (3.3) implies

(3.4)
∑
i∈N

[pηi − pµi ] ≥W (η)−W (µ) > 0.

Therefore, we have

(3.5)
∑
i∈N

pηi >
∑
i∈N

pµi .

Rewriting the above inequality, we have

(3.6)
∑
a∈O

|ηa|pa >
∑
a∈O

|µa|pa.

This implies that there exists an object a ∈ O such that |ηa| > |µa| and pa > 0 hold.
However, |µa| < |ηa| ≤ |ωa| implies pa = 0 by the equilibrium condition. This is a
contradiction.

Next, suppose that (p, µ,m) and (p̂, µ̂, m̂) are market equilibria under ω and ω̂, respec-
tively, such that |ω| = |ω̂| holds. Suppose the contrary, i.e., that µ ̸= µ̂ holds. By the
genericity of v’s, we have W (µ) ̸= W (µ̂). This is a contradiction to what we have proven
above.

□
Once we have proven the above lemmata, it is relatively straightforward to show the

efficiency and uniqueness (with respect to the object allocation) of PME provided that
the scarcity condition holds.
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Theorem 3.5. Assume (Obtainability), (Scarcity), and (Abundance). Any PME alloca-
tion is efficient, and therefore, PME object allocation is unique if it exists.

Proof.
Assume (Obtainability), (Scarcity), and (Abundance). Suppose that
(σ, (p(ω), µ(ω), m(ω))ω∈A) is a PME. Then from Lemma 3.4, µ(λ(σ)) is ω-efficient
with ω = λ(σ). Lemma 2.3 implies |λa(σ)| = qa holds for all a ∈ O. Then Lemma 2.1
implies that (µ(λ(σ)),m(λ(σ))) is efficient.

The uniqueness follows due to the genericity assumption. □
3.2. Violation of scarcity may cause inefficiency. Scarcity plays a critical role in
some results of Subsection 3.1. If the scarcity condition (Scarcity) is violated, neither
efficiency nor uniqueness of object allocation is guaranteed. To see this, we consider the
following example.

i A B
vi(x) 100 80
vi(y) 40 60
vi(z) 50 −10

Table 3.1. Values

B ≻a A, a = x, y, z

Table 3.2. Priority

Let N = {A,B} and O = {x, y, z}. Also, let the values and the priority be given by
Tables 3.1 and 3.2, respectively. For example, we have vA(x) = 100 and B ≻x A. In this
economy, there is a PME where efficiency is not attained. Note that

arg max
µ∈A+

[vA(µA) + vB(µB)] = {(x, y)}

holds, i.e., efficiency is attained if and only if A otains x, and B obtains y provided that no
money is wasted. We would like to construct a PME where (z, x) is the object allocation
obtained on the equilibrium path so that efficiency is not attained.

on-path A’s dev B’s dev
ω (z, x) (y, x) (z, y)
px 70 100 −
py − 40 50
pz 10 − 40

Table 3.3. Prices

on-path A’s dev B’s dev
ω (z, x) (y, x) (z, y)
µ (z, x) (x, y) (z, y)

A’s gain 50 40 60
B’s gain 80 120 50
W (µ) 130 160 110

Table 3.4. Utility gains

Suppose that the price systems (px, py, pz) under (y, x) and (z, x) are given in Table
3.3. Under this price system profile, ω = (ωA, ωB) = (z, x) is the equilibrium outcome of
the first stage as well as the second. Note that y is not available in this subgame, which is
critical for this example. In order to check the incentive of A, consider ω′ = (y, x). This is
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the most stringent constraint. The utility gains after obtaining the respective objects on
the path as well as off the paths that can be reached by a unilateral deviation are shown
in Table 3.4. For example, if ω = (z, x) holds, then µ = (z, x) is realized with the utility
gain of player A being vA(z) = 50, while if ω′ = (y, x) holds, then µ = (x, y) is realized
with the gain of A being vA(x)− px + py = 40. Player B’s incentive not to deviate to y in
the first stage is similarly checked by using the same tables (Tables 3.3 and 3.4).

on-path A’s dev B’s dev
ω (y, x) (z, x) (y, z)
px 90 90 −
py 70 − 30
pz − 40 30

Table 3.5. Prices

on-path A’s dev B’s dev
ω (y, x) (z, x) (y, z)
µ (x, y) (z, x) (z, y)

A’s gain 80 50 50
B’s gain 80 80 60
W (µ) 160 130 110

Table 3.6. Utility gains

There is another PME with a different outcome. Table 3.5 shows the price systems
(px, py, pz) under (y, x), (z, x), and (y, z), which are ω on the equilibrium path, the one
attained by A’s unilateral deviation, and the one attained by B’s unilateral deviaiton,
respectively. Under this price system profile, ω = (y, x) is the equilibrium outcome of
the first stage, and µ = (x, y) is the object allocation of the second stage, and so on, as
shown in Table 3.6. It is verified that no player has an incentive to make a unilateral
deviation. Under ω = (y, x), the players trade their holdings so that the final object
allocation becomes (x, y).

Thus, this example shows that if scarcity does not hold, then neither efficiency nor
uniquenss is guaranteed in some PME. Also, by reducing one unit of object z, the welfare
of the economy in some PME is strictly increased.

4. College Admission and Labor Market

We consider a decentralized labor market after college admission. There are two sets
of players. Ns is the set of students. Nf is the set of firms. We have N = Ns ∪ Nf

and Ns ∩ Nf = ∅. College degrees are objects. A firm can demand a degree only if it is

owned by some student.7 Every student selects a college (including not going to college,
corresponding to ϕ), taking into account the future job prospect. For all i ∈ Ns, the set
of available object types for player i in the first stage is Ai = Ō. On the other hand, for
all i ∈ Nf , the set of available object types for player i in the first stage is Ai = {ϕ}.

We assume the following.

Condition 4.1.

(Zero) for Ns: vi(a) = 0 holds for all i ∈ Ns and all a ∈ Ō,
(No money) for Ns: m̄i = 0 holds for all i ∈ Ns,
(Abundance) for Nf : m̄i > maxa∈O vi(a) holds for all i ∈ Nf .

7We do not consider signaling effects here.
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In the presence of (Zero) for Ns, we assume genericity only for Nf . Assumptions (Zero)
for Ns implies that the firms, not the students, intrinsically demand the college degrees.
Assumption (Abundance) for Nf implies that the firms have a sufficient amount of money
to pay the wages up to the marginal productivity of the students.

Given N0 ⊂ N , let AN0 = {ω ∈ A|i ∈ N \N0 → ωi = ϕ}.

Lemma 4.1. Assume (Zero) and (No money) for Ns, and (Abundance) for Nf . Given
ω ∈ A, there exists at least one market equilibrium under ⟨m̄,R, ω⟩.

Proof. See Appendix A.1. □
Then PME exists in the mixed strategy since the existence of PME is reduced to the

existence of subgame perfect equilibrium. The following result is stated below without
proof.

Theorem 4.2. Assume (Zero) and (No money) for Ns, and (Abundance) for Nf . Then
there exists at least one PME.

We have the following corollary that corresponds to Corollary 3.3.

Corollary 4.3. Assume (Zero) and (No money) for Ns, and (Abundance) for Nf . Suppose
that there is a PME. Then there exists at least one PIPME whose object allocation is
identical to the PME object allocation.

The proof of this corollary is essentially the same as that of Corollary 3.3. Nonetheless,
let us lay it out here as details are different between the two.

Proof.
Assume (Zero) and (No money) for Ns, and (Abundance) for Nf . Suppose that
(ρ, (p(ω), µ(ω),m(ω))ω∈A) is a PME.We construct a PIPME (ρ∗, (p∗(ω), µ∗(ω),m∗(ω))ω∈A)
as follows. Let Ω = {Ω1, . . . ,ΩL} be the partition of A as defined in the proof of Corol-
lary 3.3. For each ℓ = 1, . . . , L, take an ω̂ℓ ∈ Ωℓ in an arbitrary manner. Then for each
ℓ = 1, . . . , L and each ω ∈ Ωℓ, let

p∗(ω) = p(ω̂ℓ),

µ∗(ω) = µ(ω̂ℓ),

m∗
i = m̄i − p∗µ∗

i (ω)
+ p∗ωi

, i ∈ N.

Given the price p∗(ω), for each player i ∈ Nf , the optimal object is µi(ω̂
ℓ) since i’s demand

correspondence does not depend on the initial endowment. For i ∈ Ns, since i’s demand
correspondence does not depend on the initial endowment by (Zero), either. Also, m∗

i is
determined by player i’s budget constraint for i ∈ N .

Thus, (p∗(ω), µ∗(ω),m∗(ω)) is a market equilibrium under ω. This completes the con-
struction of the second stage equilibrium profile (p∗(ω), x∗(ω))ω∈A with (PI). Since the
first stage strategy profile ρ∗ is simply a Nash equilibrium of the induced game. This
completes the proof.

□
In order to state some of the subsequent results, we need to modify the definition of

scarcity.
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Condition 4.2.

(Scarcity’): |Ns| > Q and |{i ∈ Nf | vi(a) > 0}| > Q (a ∈ O) hold.

The next lemma shows that under (Scarcity’), among others, given ω ∈ A, every object
in Oω has a positive equilibrium price, that all the objects in Oω are allocated to the firms,
and that there is no remaining object.

Lemma 4.4. Assume (Zero) and (No money) for Ns, (Abundance) for Nf , and (Scarcity’).
Given ω ∈ A, any market object allocation under ω is ω-exhaustive, and pa > 0 and
µa ⊂ Nf hold for all a in Oω.

Proof.
Assume (Zero) and (No money) for Ns, (Abundance) for Nf , and (Scarcity’). Take ω ∈ A
as given. Suppose that (p, µ,m) is a market equilibrium under ⟨m̄,R, ω⟩. Suppose not,
i.e., for some a in Oω, pa = 0 holds in the market equilibrium. Take such an object a.
Due to (Scarcity’), |{i ∈ Nf |vi(a) > 0}| > Q holds. This implies that there exists at least

one j in µϕ ∩ Nf such that vj(a) > 0 and mj = m̄j , which implies (a,mj) Pj (ϕ, m̄j).
Therefore, (ϕ,mj) does not maximize j’s utility. This is a contradiction, i.e., pa > 0 holds
for all a ∈ Oω.

Then, the positive prices of all tangible objects in O and Definition 2.2 imply that µ is
ω-exhaustive.

Repeating the same argument as in the proof of Lemma 4.1, we verify that the positive
price of an object a in turn implies µa ⊂ Nf for all a ∈ Oω.

□

The next lemma shows the ω-efficiency of a market equilibrium under ω and compares
the outcomes across different initial endowments of the second stage.

Lemma 4.5. Assume (Zero) and (No money) for Ns, (Abundance) for Nf , and (Scarcity’).
Given ω ∈ A, suppose that (p, x) is a market equilibrium under ⟨m̄,R, ω⟩. Then, x is ω-
efficient. Also, suppose that (p, µ,m) is a market equilibrium under ⟨m̄,R, ω⟩, and that
(p̂, µ̂, m̂) is a market equilibrium under ⟨m̄,R, ω̂⟩, where ω and ω̂ are in A such that
|ω| = |ω̂| holds. Then, µ = µ̂ holds. In addition, there exists m′ such that (p, µ,m′) is a
market equilibrium under ⟨m̄,R, ω̂⟩.

Proof. See Appendix A.2. □

Theorem 4.6. Assume (Zero) and (No money) for Ns, (Abundance) for Nf , (Obtain-
ability) and (Scarcity’). Then any PME allocation is efficient, and therefore, PME object
allocation is unique if it exists.

Since the proof is similar to that of Lemma 3.4, we relegate it to the appendix.

Proof. See Appendix A.3. □

In the following examples, we show that if (Zero) is violated, i.e., if students with no
money have a positive value for some object, then PME may not exist, and that even if it
exists, a PME object allocation may not be efficient.
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A B C
x 10 20 20
y 20 10 10

Table 4.1. Value for Ns

D E F
x 1 1 2
y 2 2 1

Table 4.2. Value for Nf

Example 4.1.

Let the values for Ns and Nf be given in Tables 4.1 and 4.2, respectively. Suppose

ω = (x, y, y, ϕ, ϕ, ϕ).

Then we have no market equilibrium in the second stage under ω. To begin with, we have
px ≤ 20 and py ≤ 10. For if not, there would be excess supply with a positive price. Also,
we have px, py ≥ 2; if not, there will be excess demand for the object of which price is below
2. Consider two cases. First, suppose 2 ≤ px ≤ py ≤ 10. Then both B and C can afford
x, and therefore, the demand for x is at least two, which leads to excess demand as there
is only one unit of object x. Second, suppose px > py ≥ 2. Then no player demands x,
which leads to excess supply for x, supplied by A, with a positive price. Thus, no market
equilibrium exists.

Example 4.2. Let the values for Ns, Nf , and priority are given by Tables 4.3, 4.4,
and 4.5, respectively. Also, let the initial endowment profile of money be given by m =
(0, 0, m̄C , m̄D).

In this economy, the efficient object allocation is µ = (ϕ, x, ϕ, ϕ). However, B cannot
obtain x in PME. Actually, px will be in [25, 30] when the second stage becomes a market
equilibrium under an initial endowment (x, ϕ, ϕ, ϕ). Then, A’s utility becomes at least 25
after having x in the first stage. If A does not get x in the first stage, A’s utility becomes 0
regardless of the value of px. Therefore, getting x is strictly better for A in the first stage.
A can always get x because A has the highest priority. Hence, B will never obtain x in a
PME allocation.

A B
x 15 90

Table 4.3.
Values for Ns

C D
x 30 25

Table 4.4.
Values for Nf

A ≻x B

Table 4.5.
Priority for Ns

5. Perfect Market Equilibrium under No Money

This section assumes that the set Ai of available object types for i is equal to Ō for all
i ∈ N . We also assume that nobody has money, i.e., for all i ∈ N , m̄i = 0. We write,
for all µ, η ∈ A+, µiR

0
i ηi whenever (µi, 0)Ri(ηi, 0) holds. P

0
i and I0i are similarly defined
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by using Pi and Ii, respectively. Also, we assume that all goods are valuable for all the
players, i.e., for all i in N , for all a ∈ O vi(a) > 0 holds. In this section, we often need a
restriction on quotas. We assume that the quota of each object in O is one.

For convenience, we summarize some of the assumptions in the following.

Condition 5.1.

(No money): for all i ∈ N ,m̄i = 0,
(+Value): for all i in N and for all a ∈ O, vi(a) > 0,
(Quota1): for all a ∈ O, |qa| = 1.

If there is no money, the definition of Pareto optimality is reduced to the following.
We say that an object allocation µ Pareto dominates another object allocation η if for
all i ∈ N , µiR

0
i ηi holds, and for some j ∈ N , µjP

0
j ηj . An object allocation µ is Pareto

optimal if there is no object allocation that Pareto dominates µ. Accordingly, ω-Pareto
optimal allocation is defined.

5.1. Existence and optimality. The condition for the existence of market equilibrium
in the second stage is non-trivial in the case of no money. Shapley and Scarf (1974)
essentially showed that for any initial endowment, a market equilibrium exists if the quota
of each object is one.

Lemma 5.1. Assume (No money), (+Value), and (Quota1). Then for all ω ∈ A, market
equilibrium exists under ω.

Proof.
Assume (No money), (+Value), and (Quota1). Shapley and Scarf (1974) shows that there
is a sequence of top trading cycles S1, . . . , SL where S1 ̸= ∅ is a top trading cycle in N ,
Sℓ+1 ̸= ∅ is a top trading cycle in N \ ∪ℓ

ℓ′=1Sℓ′ (ℓ = 1, . . . , L − 1), and ∪L
ℓ=1Sℓ = N

(see Appendix B.3 for the definition of top trading cycles). Next, Shapley and Scarf
(1974) attaches, in the present notation, a price pℓ to each good held by a player in Sℓ

(ℓ = 1, . . . , L− 1) in such a way that we have

p1 > · · · > pL > 0.

Then, the price system defined above constitutes a competitive price system.
We let p1, the highest price, not exceed mini∈N mina,b∈Ō, a ̸=b[vi(a) − vi(b)], which is

positive due to genericity. Then, no player has an incentive to deviate in the second stage
under ω. □

Using this claim and the existence result of subgame perfect equilibrium for a finite
game, we have the existence result for PME, which is stated without proof.

Theorem 5.2. Assume (No money), (+Value), and (Quota1). Then, there exists at least
one PME.

Next, we show that a market equilibrium allocation is “optimal” given the initial en-
dowment.

Lemma 5.3. Assume (No money). Suppose that given ω, µ is a market equilibrium object
allocation. Then, µ is ω-optimal.
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Since the proof of this lemma is an application of the standard proof of the first funda-
mental theorem of welfare economics, we relegate it to the appendix.

Proof. See Appendix A.4. □
The following proposition holds even if there is no scarcity of objects.

Theorem 5.4. Assume (Obtainability) and (No money). If there is a PME, then PME
object allocation is Pareto optimal.

Proof.
Assume (Obtainability) and (No money). Let µ ∈ A+ be a PME allocation, and let p be
the price profile in this PME. Suppose the contrary, i.e., that there exists η ∈ A+ that
Pareto dominates µ. Partition N into Ne and Nd where we have

ηiI
0
i µi if i ∈ Ne,

ηiP
0
i µi if i ∈ Nd.

Note Nd ̸= ∅. Since there is no indifferent object other than itself, ηi = µi holds for all
i ∈ Ne. Take any i0 ∈ Nd. Player i0 would have obtained ηi0 if it were available in either
stage. In the first stage, therefore, it must be the case that another player in Nd who
obtained ηi0 under µ; otherwise, player i0 could have obtained it directly in the first stage.
Also, player i0 could have obtained it in the second stage if pηi0 ≤ pµi0

. But, repeating
the same proof as the one in Lemma 5.3, we prove this would lead to a contradiction.

□
5.2. Quotas and values.
Existence is not guaranteed if the quota exceeds one for some object type as the next
example shows.

Example 5.1.

A B C
x 10 20 20
y 20 10 10

Table 5.1. Value

Let the values of this economy be given in Table 5.1. Suppose

ω = (x, y, y).

Then we have no market equilibrium in the second stage under ω. To begin with, we have
px ≤ 20 and py ≤ 10. For if not, there would be excess supply with a positive price.
Consider two cases. First, suppose px ≤ py ≤ 10. Then both B and C can afford x, and
therefore, the demand for x is at least two, which leads to excess demand as there is only
one unit of object x. Second, suppose px > py. Then no player demands x, which leads to
excess supply for x with a positive price. Thus, no market equilibrium exists.

Also, existence is not guaranteed if (+Value) in Assumption 5.1 is violated.
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Example 5.2.

A B C
x 20 −10 20
y 10 −20 10
ϕ 0 0 0

Table 5.2. Value

Let the values of this economy be given in Table 5.2. Suppose

ω = (ϕ, x, y).

Then we have no market equilibrium in the second stage under ω. Suppose the contrary,
i.e., that p is a market equilibrium price. First, we have pϕ = 0. Next, we would like to
show px = 0. Suppose not, i.e., px > 0. Then there must be a positive demand for x, which
occurs only if py ≥ px > 0 since C must demand x. This implies that there is no demand
for y since A has neither money nor object with a positive price. This is a contradiction.
Thus, px = 0 holds. But, this would induce the excess demand for x. Hence, no market
equilibrium exists.

5.3. Stability and Market Equilibrium. We define the concept of stable market equi-
librium (SME), which is a market equilibrium of which object allocation is stable. This
subsection studies the relationship between SME and PME. SME requires that the object
allocation of a market equilibrium should be stable. It considers neither the incentive in
the first stage nor off-the-path market equilibria of the second stage. Therefore, while it
is easy to verify some allocation is an SME allocation, it is not clear if the players really
follow this equilibrium. On the other hand, PME takes into account all the incentives,
both on and off-the equilibrium path, and in general, it is hard to characterize.

The stability of object allocations is also defined in the standard manner.

Definition 5.1. An object allocation µ ∈ A is stable if

• ∀i ∈ N , ∀j ∈ N [µj ∈ O ∧ i ≻µj j ⇒ µiR
0
iµj ],

• ∀a ∈ Ō ∀i ∈ N [|µa| < qa ⇒ µiR
0
i a].

Lemma 5.5. Assume (Scarcity). A stable object allocation is exhaustive.

Proof.
Assume (Scarcity). Suppose an object allocation µ is stable. Suppose not, i.e., there exists
a ∈ O |µa| < qa. The scarcity implies that there exists i ∈ µϕ s.t. vi(a) > 0. However,
this is a contradiction to that µ is stable. □

Definition 5.2. Given R and ≻, (p, µ, 0) is a stable market equilibrium (SME) if

• (p, µ, 0) is a market equilibrium under µ itself;
• µ is stable.
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In order to further study the solution concepts, we introduce the concept of priority
cycle as stated in Ergin (2002)8.

Definition 5.3. Let ≻ be a priority structure and q be a quota profile. A priority cycle is
constituted of distinct a, b ∈ O and i, j, k ∈ N such that the following is satisfied:
(C) Cycle condition: i ≻a j ≻a k ≻b i.

Definition 5.4. Let ≻ be a priority structure and q be a vector of quotas. A generalized
cycle of priority is constituted of distinct a1, a2, . . . , an ∈ O and i, k1, . . . , kn ∈ N such that
the following are satisfied:
(C ′) Cycle condition: k1 ≻a1 i ≻a1 kn ≻an kn−1 ≻an−1 kn−2 . . . k2 ≻a2 k1.

If ≻ has a generalized cycle, then it also has a cycle. However, this assertion can be
shown in the same way as in Ergin (2002). If the priority structure is not cyclical, it is
called acyclical. The following proposition states the existence of SME.

Proposition 5.6. Assume (Scarcity), (No money), (+Value), and (Quota1). SME exists
if the priority structure is acyclical.

Proof. See Appendix A.5.
□

Next, we have the following proposition, stating that an SME object allocation is Pareto
optimal.

Proposition 5.7. Assume (Scarcity) and (No money). Given SME object allocation µ,
µ is Pareto optimal.

Proof.
Assume (Scarcity) and (No money). From Lemma 5.3, for all ω ∈ A, µ is ω-optimal. From
Lemma 5.5, for all a ∈ O, |µa| = qa holds. Thus, µ is Pareto optimal.

□
Condition 5.2. A mechanism M = ⟨Σ, λ⟩ is a generalized first-come-first-served mecha-
nism if the following condition is satisfied.

(G): For all µ ∈ A+, there exists σ̂ ∈ Σ that satisfies the following properties:

(1) λ(σ̂) = µ;
(2) given i ∈ N and σ′i ∈ Σi, denote η = λ(σ′i, σ̂−i); then either one of the following

two cases holds:
• η = µ;
• ηi ̸= µi, and ηk = µk holds for all tangible object holder k ∈ ∪a∈Oµ

a except
for i him/herself and the player at ηi who is lower in priority than i and any
other player who was at ηi under µ.

Given i ∈ N and µi ∈ Ō, we call such a strategy, often denoted by σ̂i a Go-and-Get
(GG) strategy of player i for µi.

8The definition of the cycle and acyclicity are different from that of Ergin (2002) in that Ergin (2002)
includes the condition on scarcity in the definition as well
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This condition is satisfied, among others, by the first-come-first-served rule (the Boston
mechanism)9. It states that other than a deviator i, the only player j whose first stage
outcome is affected by i’s deviation is the one who is directly pushed out by i. The object
allocation for the other players is independent of such a deviation.

We now present the following result.

Proposition 5.8. Assume (Obtainability), (G), (Scarcity), (No money), (+Value), and
(Quota1). Assume also that there is no cycle of priority. Then, if (p, µ, 0) is an SME,
there exists a PME (ρ̂, (p̂(ω), µ̂(ω), 0)ω∈A) such that µ̂(λ(σ̂)) = µ holds for all σ̂ with
ρ̂(σ̂) > 0.

Proof. See Appendix A.6. □

Condition 5.3.

(DA): M = ⟨Σ, λ⟩ satisfies the definition of the deferred acceptance algorithm in
Appendix B.2.

Proposition 5.9. Assume (Obtainability), (DA), (Scarcity), (No money), (+Value), and
(Quota1). Assume also that there is no cycle of priority. Then, if (p, µ, 0) is an SME,
there exists a PME (ρ̂, (p̂(ω), µ̂(ω), 0)ω∈A) such that µ̂(λ(σ̂)) = µ holds for all σ̂ with
ρ̂(σ̂) > 0.

Proof. See Appendix A.7. □
The following is an example where an SME object allocation is not a PME object

allocation if there is a priority cycle.

Example 5.3. Assume (Obtainability),(Scarcity), (No money), (+Value), and (Quota1).
Assume (G) or (DA). Players’ object values are shown in Table 5.3. There is a priority
cycle:

B ≻x C ≻x A ≻y B.

We show that µ = (y, x, z) is a SME object allocation, but not a PME object allocation.

We can construct an SME, where pz ≥ px > py and µ = (µA, µB, µC) = (y, x, z) hold.
Note that this is a Pareto optimal allocation.

There is, however, no PME of which object allocation is µ = (y, x, z) on the equilibrium
path. To see this, suppose the contrary, i.e., that there is a PME (ρ, (p(ω), µ(ω),m(ω))ω∈A)
of which object allocation is µ = (y, x, z) on the equilibrium path with a positive probability.

Table 5.5 shows market equilibria under exhaustive endowments. For example, if ω =
(x, y, z), then there exists a unique object allocation µ(ω) = (x, y, z) that is a market
equilibrium under ω with the price condition [px ≥ pz > py] ∨ [pz ≥ px > py] as given in

9See Appendix B.1 for its definition.
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A B C
x 30 20 10
y 20 10 20
z 10 30 30

Table
5.3. Values

B ≻x C ≻x A
A ≻y B ≻y C
A ≻z C ≻z B

Table
5.4. Priority

ω p(ω) µ(ω)
(x, y, z) [px ≥ pz > py] ∨ [pz ≥ px > py] (x, y, z)
(x, z, y) [px ≥ pz > py] ∨ pz ≥ px > py] (x, z, y)
(y, x, z) pz ≥ px > py (y, x, z)
(y, z, x) pz > px = py (x, z, y)
(z, x, y) px = pz > py (x, z, y)
(z, y, x) px = pz > py (x, y, z)

Table 5.5. market equilibria under ω

the column of p(ω). Due to Lemma 2.3, we do not have to consider ω such that |ωa| < qa

for some a ∈ O.
Table 5.5 shows that the SME object allocation µ = (y, x, z) is achieved when the initial

object endowment is (y, x, z) itself, and that the price vector satisfies pz ≥ px > py.
We examine that (y, x, z) is not achieved as the initial object endowment neither under

(G) nor (DA).
Suppose (G). We consider that c1 = (y, x, z) is the players’ first choices in the message

submitted to the mechanism. Then, we check whether this c1 constitutes a PME strategy σ
or not. Due to Lemma 2.3, it suffices to check the incentive to deviate from c1 = (y, x, z).
It is verified that player A has an incentive to deviate from c1A = y in the first stage.
Indeed, consider the case that A changes to ĉ1A = z where A is ranked the highest in
terms of priority. Since C’s second choice must be y due to the definition of PME, and the
initial endowment becomes (z, x, y). If (z, x, y) is an initial endowment, the unique market
equilibrium object allocation becomes (x, z, y) according to Table 5.5. Therefore, A can be
better off by the deviation. This is a contradiction to that c1 = (y, x, z) constitutes a PME
strategy σ. It is verified that the best-response profile of the first-stage is either (z, x, y) or
(x, z, y). Therefore, for any ρ of PME, there is no σ which consists of c1 = (y, x, z) as a
first choices in the message in the support of ρ.

Next, suppose (DA). Under the truth-telling strategy, the initial object allocation is
(y, x, z). However, this truth-telling strategy itself is not PME strategy because A has an
incentive to deviate and obtain z. Repeating almost the same argument above, PME object
allocation is (x, z, y). Therefore, SME object allocation is not achieved as any PME object
allocation including the truth-telling strategy.

The assumption of no priority cycle is crucial in Theorem 5.8 and Theorem 5.9. This
example has a priority cycle, A ≻z C ≻z B ≻x A, and the theorems do not hold. The
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PME allocation in this example is (x, z, y). Note that the object x (resp. z) is the most
favorite object for A (resp. B). Since B has the lowest priority at the object z, B cannot
obtain it by himself. However, A can obtain it for B in the first stage and keep it from C
who also likes z the best. As the cycle exists, B has higher priority than A at the object x.
Then, B obtains x for A in order to exchange it with z. Therefore, the cyclicity enables
both A and B to obtain what they like most in the second stage.

A PME object allocation in the two stage economy may be different from an SME object
allocation if the assumptions of Theorem 5.8 and Theorem 5.9 are violated. The concept of
SME does not consider the incentive of the first stage. Therefore, if we separately analyze
each stage of the two stage economy, the outcome would be different from that attained in
the analysis of the two stage economy based on perfection.
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Appendix A. Proofs

A.1. Proof of Lemma 4.1.

Proof. Assume (Zero) and (No money) for Ns, and (Abundance) for Nf . Take ω ∈ A
as given. Consider ⟨m̄,R, ω⟩ in the second stage. We construct an auxiliary economy in
which the players in Ns also have a sufficient amount of money, i.e., (Abundance) holds
instead of (No money) for Ns. Let m̄′

i be the initial money holdings of i ∈ Ns, and let
m̄′ =

(
(m̄i)i∈Nf

, (m̄′
i)i∈Ns

)
. Then, for any ω ∈ A, a market equilibrium under ⟨m̄′, R, ω⟩

exists from Claim 3.1. Take one of such market equilibria, denoted by (p, µ,m). Partition
Ō into Ō+ and Ō0 where we have

a ∈ Ō+ if pa > 0,

a ∈ Ō0 if pa = 0.

Ō+ may be empty, while Ō0 is always nonempty as pϕ = 0 always holds.
Suppose that Ō+ is not empty in (p, µ,m). Take any object a ∈ Ō+. Then, from (3) of

Definition 2.2, this implies that |µa| = |ωa| holds for object a. We also have µa ⊂ Nf . For
if not, there exists j ∈ Ns with j ∈ µa. (Zero) implies

vj(a)− pa = 0− pa < 0 = vj(ϕ)− pϕ,

which violates the optimization condition of player j.
Next, take any player i ∈ Nf . Then, in the equilibrium, (µi, m̄i − pµi)Ri(b, m̄i − pb)

holds for all b ∈ Ō. Note that mi = m̄i − pµi holds.
Let m∗ =

(
(mi)i∈Nf

, (mi − m̄′
i)i∈Ns

)
. Next, we would like to show (p, µ,m∗) is a market

equilibrium under the original economy ⟨m̄,R, ω⟩.
Since neither the price nor the initial endowments of the players in Nf is altered, it

suffices to check the incentive of Ns. Since the above argument implies that µj ∈ Ō0

holds for all j in Ns, the reduction of the money endowment for Ns does not affect their
incentive in the market even if there is an object with a positive price. Thus, (p, µ,m∗) is
a market equilibrium under ⟨m̄,R, ω⟩.

If Ō+ is empty, then also µi ∈ Ō0 holds for all i in Ns, and the money has no impact
on the incentives of the members in Ns, either.

□

A.2. Proof of Lemma 4.5. This proof is similar to that of Lemma 3.4.

Proof.
Assume (Zero) and (No money) for Ns, (Abundance) for Nf , and (Scarcity’). Suppose that
(p, µ,m) is a market equilibrium under ⟨m̄,R, ω⟩. First, we show ω-efficiency. Suppose
the contrary, i.e., that there exists γ ∈ Aω ∩ ANf

such that W (γ) > W (µ) holds. For
every player i, the optimization for i ∈ Nf implies

(A.1) vi(µi)− pµi ≥ vi(γi)− pγi .

Rewriting (A.1), we have

(A.2) pγi − pµi ≥ vi(γi)− vi(µi)
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for all i ∈ Nf . By taking the summation of the both sides across i ∈ Nf , (A.2) implies

(A.3)
∑
i∈Nf

[pγi − pµi ] ≥W (γ)−W (µ) > 0.

Therefore, we have

(A.4)
∑
i∈Nf

pγi >
∑
i∈Nf

pµi .

Since µa ⊂ Nf holds for all a ∈ Oω from Lemma 4.4, we can sum both sides across N
instead of Nf , i.e.,

(A.5)
∑
i∈N

pγi >
∑
i∈N

pµi .

Rewriting the above inequality, we have

(A.6)
∑
a∈O

|γa|pa >
∑
a∈O

|µa|pa.

This implies that there exists an object a ∈ O such that |γa| > |µa| = |ωa| and pa > 0
hold from Lemma 4.4. However, |γa| > |ωa| is a contradiction to that γ is ω-feasible.

Next, we will show there exists m′ such that (p, µ,m′) is a market equilibrium under
⟨m̄,R, ω̂⟩. Due to quasi-linearity of the utility functions, for all i ∈ Nf , µi ∈argmaxa∈Ō[vi(a)−
m̄i] holds even if ω̂ is the initial object endowment. Also, for all j ∈ Ns, if ω̂j ∈ O, j
sells his/her object from Lemma 4.4. Let m′

i = m̄i − pµi for i in Nf and m′
j = pω̂j

for

j ∈ Ns. Then, since (p, µ,m) is a market equilibrium under ⟨m̄,R, ω⟩, the construction of
m′ implies that for all i ∈ Nf

(µi,m
′
i)Ri(a

′, m̄i − pa′)

holds for every a′ ∈ O. Also, for all j in Ns with ω̂j = a (a ∈ O)

(ϕ,m′
j)Pj(a

′, pa − pa′)

holds for every a′ ∈ O with a′ ̸= a. Also, for all j in Ns with ω̂j = ϕ, µj = ϕ and m′
j = 0

holds. We also have pa > 0 and |µa| = |ω̂a| for all a ∈ O. Thus, (p, µ,m′) is a market
equilibrium under ⟨m̄,R, ω̂⟩. □

A.3. Proof of Theorem 4.6. Assume (Zero) and (No money) for Ns, (Abundance) for
Nf , (Obtainability) and (Scarcity’). Suppose that the profile (σ, (p(ω), µ(ω),m(ω))ω∈A)
is a PME. In the following, note that λ(σ) ∈ A and µ(λ(σ)) ∈ ANf

hold for all σ ∈ Σ (see
Lemma 4.1).

To prove the theorem, it is useful to have the following lemma, which states that every
object is assigned to some player.

Lemma A.1. Assume (Zero) and (No money) for Ns, (Abundance) for Nf , (Obtainabil-
ity) and (Scarcity’). Suppose that the profile (σ, (p(ω), µ(ω),m(ω))ω∈A) is PME. Then,
|λa(σ)| = qa holds for every a ∈ O.
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Proof.
Assume (Zero) and (No money) forNs, (Abundance) forNf , (Obtainability) and (Scarcity’).
Suppose (σ, (p(ω), µ(ω),m(ω))ω∈A) is PME. Suppose the contrary, i.e., that |λa(σ)| < qa

holds for some a ∈ O. Take such an a.
(Scarcity’) together with Lemma 4.4 implies that there exists i ∈ Ns with λi(σ) = ϕ

and µi(λ(σ)) = ϕ. Take such an i. Note that this player i is the one who obtains any
object in O in neither stage. (Obtainability) implies that there exists σ̂i ∈ Σi such that
λ(σ̂i, σ−i) = a holds. Take such a strategy σ̂i. Then, i can sell object a at a strictly
positive price pa > 0 by Lemma 4.4.

Thus, player i has an incentive to deviate and obtain a. This is a contradiction to that
(σ, (p(ω), x(ω))ω∈A) is a PME.

□
Now, we return to the proof of the theorem. From Lemma 4.5, µ(λ(σ)) is ω-efficient.

Also, Lemmata 4.4 and A.1 imply

|µa(λ(σ))| = |λa(σ)| = qa

holds for all a ∈ O. Then Lemma 2.1 implies that µa(λ(σ)) is efficient. The uniqueness
follows due to the genericity assumption.

□

A.4. Proof of Lemma 5.3.

Proof.
Assume (No money) in Assumption 5.1. Since µ is a market equilibrium object allocation,
there exists p ∈ RO

+ with (p, µ, 0) being a market equilibrium under ω. Suppose the
contrary that there exists η ∈ Aω such that η Pareto dominates µ. Partition N into Ne

and Nd where we have

ηiI
0
i µi if i ∈ Ne,

ηiP
0
i µi if i ∈ Nd.

Note Nd ̸= ∅. Since there is no indifferent object other than itself, ηi = µi holds for
all i ∈ Ne. Take any i0 ∈ Nd. Player i0 could have obtained ηi0 in the second stage if
pηi0 ≤ pµi0

. Therefore, we must have

pηi0 > pµi0
.

There exists i1 ∈ Nd who obtained ηi0 under µ, i.e., µi1 = ηi0 . Thus, we have

pµi1
> pµi0

.

We repeat the same procedure to construct a sequence (i0, i1, i2, . . .) with

(A.1) pµik+1
> pµik

, k = 0, 1, 2, . . . ,

until the same player reappear along the sequence, i.e., iK = iL for some K < L. Adding
(A.1) from k = K to k = L− 1, we obtain

(A.2)
L−1∑
k=K

pµik+1
>

L−1∑
k=K

pµik
.
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The both sides are the same since iL = iK holds. This is a contradiction.
□

A.5. Proof of Proposition 5.6. Before proving the proposition, we state and prove the
following lemma.

Lemma A.2. Assume (Scarcity) in Assumption 2.2 and (No money), (+Value), and
(Quota1) in Assumption 5.1. If µ ∈ A+ is Pareto optimal, all the players in the trading
cycle mechanism with an initial object µ are in a trading cycle as a singleton.

Proof.
Assume (Scarcity) in Assumption 2.2 and (No money), (+Value), and (Quota1) in As-
sumption 5.1. Suppose not, i.e., there is a trading cycle (i1, . . . , iK) with K > 1. Then,
µik+1

P 0
ik
µik and µi1P

0
iK
µiK hold. This implies that we can construct γ ∈ A+ such that

for all j ∈ N \ {i1, . . . , iK}, γj = µj , for all k = 1, . . . ,K − 1, γik = µik+1
and γiK = µi1 .

Then, γ Pareto dominates µ. This is a contradiction to the assumption. □
Now, the proof of the proposition is provided. Assume (Scarcity) in Assumption 2.2 and

(No money), (+Value), and (Quota1) in Assumption 5.1. Also, suppose that the priority
structure is acyclical. Then, Ergin (2002) shows that the DA object allocation µ becomes
a stable and Pareto optimal allocation.

First, we assign a price to each object a using the trading cycle mechanism with an
initial object µ (see Appendix B.3 for the definition of the trading cycle mechanism). Let
(pa)a∈O be such a constructed price where p1, the highest price, not exceed

min
i∈N

min
a,b∈Ō, a ̸=b

[vi(a)− vi(b)],

which is positive due to genericity. Then, for all i ∈ N , for all a ∈ O if pµi ≥ pa holds
with a ̸= µi, then µiP

0
i a holds. Also, no player has an incentive to deviate in the second

stage under µ. Since Lemma A.2 implies that every player forms a trading cycle as a
singleton, the object allocation after the trading cycle mechanism with an initial object µ
is µ. Therefore, (p, µ, 0) is a market equilibrium under µ itself.

□
A.6. Proof of Proposition 5.8.

Proof.
Assume (Obtainability), (G), (Scarcity), (No money), (+Value), and (Quota1). Suppose
that (p, µ, 0) is an SME. We construct a first stage equilibrium strategy ρ̂ in the following
manner.

First, we construct a profile (p̂(ω), µ̂(ω), 0)ω∈A of the second stage equilibrium outcomes.
By the definition of SME, (p, µ, 0) is a market equilibrium under µ itself as an initial object
allocation of the second stage. Let (p̂(µ), µ̂(µ), 0) = (p, µ, 0). Note that |µa| = qa holds
for all a in O from 5.5. For each ω ∈ A with ω ̸= µ, there exists at least one ME from 5.1.
For such ω, let (p̂(ω), µ̂(ω), 0) be a market equilibrium of the second stage under ω. Note
that |µa| = ωa for all a in O holds by Lemma 2.2.

Given a constructed profile of (p̂(ω), µ̂(ω), 0)ω∈A and a given mechanism M , we define
an induced payoff and game Γ = ⟨N,Σ, (ũi)i∈N ⟩. Let σ̂ be a GG strategy profile for µ. Its
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existence is guaranteed by the condition (G). By the construction of (p̂(ω), µ̂(ω), 0)ω∈A,
µ̂(λ(σ̂)) = µ holds.

We consider ρ̂ that puts probability one on this σ̂. Then, the outcome of the first stage
is µ with probability one under ρ̂.

We want to show that (ρ̂, (p̂(ω), µ̂(ω), 0)ω∈A) is PME. Suppose not, i.e., that there exists
i ∈ N with ρ′i ̸= ρ̂i satisfying

(A.1) E
[
ui(·)|(ρ′i, ρ̂−i)

]
> E [ui(·)|ρ̂] .

Fix this player i throughout the proof.
Note that the allocation of the second stage changes only if someone changes the action

in the first stage since all the objects allocation in the second stage depends on the initial
object allocation of the second stage, i.e. λ(σ) induced by ρ̂.

Note also that if one has an incentive to deviate by using a mixed strategy, the player
has an incentive to do so by using some pure strategy as well. Assume, therefore, that ρ′i
puts probability one on σ′i ̸= σ̂i in the first round.

Inequality (A.1) holds only if player i obtains b ̸= µi with bP 0
i µi in the second stage

with a positive probability.
Let us write ω̂ = λ(σ′i, σ̂−i). Note that |ω̂a| = qa holds for all a in O. Player i, who

obtains ω̂i from player, say, j ̸= i by deviation, is willing to trade: otherwise, player i
would not have deviated in the first place due to the stability of µ and the condition (G).
Since there is no money, the only way to trade is through a trading cycle, (k0, k1, . . . , kn̄)
with k0 = kn̄ = i such that

ω̂kn+1 P
0
kn ω̂kn

holds for n = 0, 1, · · · , n̄− 1.
Note that every player ℓ except for i and j holds same object µℓ under ω̂. Also, this

implies that that j holds µi or ϕ under ω̂.
Let us divide the analysis into two cases. First, suppose that the above cycle does not

contain µi.
Each player in the cycle could not obtain what he/she likes due to priority. Indeed, the

condition (G) together with µ being an SME implies that for all n = 0, 1, 2, · · · , n̄− 1,

kn+1 ≻ω̂kn+1
kn.

Consider kn̄−1. This player was willing to obtain ω̂i = µj in the first stage under µ as well
as under ω̂, but could not. Note ω̂kn̄−1 = µkn̄−1 due to the condition (G). Therefore, we
have

j ≻µj kn̄−1.

Also, the fact that player i deprived j of µj implies

i ≻µj j,

since σ̂ is a GG strategy profile for µ. Thus, we have a priority cycle:

i ≻µj j ≻µj kn̄−1 ≻µn̄−1 kn̄−2 ≻µn̄−2 · · · ≻µk2
k1 ≻µk1

i,

which contradicts to acyclicity.
Second, suppose that the trading cycle contains µi. Similarly, we have

kn+1 ≻ω̂kn+1
kn
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for all n = 0, 1, 2, · · · , n̄−1. Now, there is a player, say, kℓ in the cycle, who likes to obtain
µi but cannot in the first stage under µ, i.e.,

µiP
0
kℓ
µkℓ , and i ≻µi kℓ.

Consider another trading cycle i = k0, k1, . . . , kℓ, i under µ rather than ω̂. The resulting
outcome Pareto dominates µ, which is a contradiction.

□

A.7. Proof of Proposition 5.9.

Proof.
Assume (Obtainability),(DA), (Scarcity), (No money), (+Value), and (Quota1). Suppose
that (p, µ, 0) is an SME. We construct a first stage equilibrium strategy ρ̂ in the following
manner.

First, we construct a profile (p̂(ω), µ̂(ω), 0)ω∈A of the second stage equilibrium outcomes.
By the definition of SME, (p, µ, 0) is a market equilibrium under µ itself as an initial object
allocation of the second stage. Let (p̂(µ), µ̂(µ), 0) = (p, µ, 0). Note that |µa| = qa holds
for all a in O from Lemma 5.5. For each ω ∈ A with ω ̸= µ, there exists at least one ME
from Lemma 5.1. For such ω, let (p̂(ω), µ̂(ω), 0) be a market equilibrium of the second
stage under ω. Note that µ̂(ω) is ω-exhaustive by Lemma 2.2.

Given the constructed profile (p̂(ω), µ̂(ω), 0)ω∈A of the second stage equilibrium out-
comes and a given DA mechanism M , we consider the induced game Γ = ⟨N,Σ, (ũi)i∈N ⟩.
Let σ̂ = ζ∗ be the profile of the truth-telling strategies as defined in Appendix B.2. Then,
λ(σ̂) = µ holds by Proposition 5.7 and B.2. By the construction of (p̂(ω), µ̂(ω), 0)ω∈A,
µ̂(λ(σ̂)) = µ holds.

We consider ρ̂ that puts probability one on this σ̂. Then, the outcome of the first stage
is µ with probability one under ρ̂.

We want to show that (ρ̂, (p̂(ω), µ̂(ω), 0)ω∈A) is PME. Suppose not, i.e., that there exists
i ∈ N with ρ′i ̸= ρ̂i satisfying

(A.2) E
[
ui(·)|(ρ′i, ρ̂−i)

]
> E [ui(·)|ρ̂] .

Fix this player i throughout the proof.
Note that the allocation of the second stage changes only if someone changes the action

in the first stage since all the objects allocation in the second stage depends on the initial
object allocation of the second stage, i.e. λ(σ̂) induced by ρ̂.

Note also that if one has an incentive to deviate by using a mixed strategy, the player
has an incentive to do so by using some pure strategy as well. Assume, therefore, that ρ′i
puts probability one on σ′i ̸= σ̂i in the first round.

Inequality (A.2) holds only if player i obtains an object that is preferred to µi in the
second stage with a positive probability.

Let us write ω̂ = λ(σ′i, σ̂−i). Note that |ω̂| = q holds. Player i, who obtains ω̂i from
player, say, j ̸= i by deviation, is willing to trade: otherwise, player i would not have
deviated in the first place due to the strategy-proofness of DA as shown by Dubins and
Freedman (1981). Since there is no money, the only way to trade is through a trading
cycle, (k0, k1, . . . , kn̄) with k0 = kn̄ = i such that

ω̂kn+1 P
0
kn ω̂kn
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holds for n = 0, 1, · · · , n̄− 1. Also, let Oe = {ω̂k1 , ω̂k2 , . . . , ω̂kn̄} be the set of object types
exchanged by the players in this trade cycle.

Note that ω̂ satisfies the following properties due to DA’s stability and strategy proof-
ness.

∀k ∈ N \ {i} ∀l ∈ N [ω̂l ∈ O ∧ k ≻ω̂l
l ⇒ ω̂kR

0
kω̂l],(A.3)

∀k ∈ N [ω̂kP
0
i λi(σ̂) ⇒ k ≻ω̂k

i].(A.4)

Now, we consider an auxiliary situation by altering the order of moves in DA. Note
that DA object allocation is not affected by the order of moves as discussed in Dubins
and Freedman (1981)10. First, we run DA algorithm without i. After this algorithm is
tentatively terminated, we put in player i in the algorithm and continue it until it stops.
Let t∗ be the step right after the algorithm is tentatively terminated, i.e., at step t∗, i is
put in the algorithm. Also, let η be a profile of players’ object holdings except i when the
algorithm is tentatively terminated. Note that (Scarcity) implies

(A.5) |η| = q.

Suppose that i’s strategy is σ′i, and that all of the other players take the truth-telling
strategies. Then, the stability of DA implies

∀k ∈ N \ {i} ∀l ∈ N \ {i} [ηl ∈ O ∧ k ≻ηl l ⇒ ηkR
0
kηl].(A.6)

We consider the steps after t∗. Suppose that i obtains ω̂i at step τ1 ≥ t∗ under σ′i for
the first time. Then, we have the following result, which is stated as a lemma inside this
proof.

Lemma A.3. If there is no cycle of priority, then we have

∀t = t∗, . . . , τ1 − 1 [i ̸∈ ∪a∈OΦ
a,t].(A.7)

Proof. Suppose not, i.e., that there exist t = t∗, . . . , τ1 − 1 and a ̸= ω̂i such that i is in
Φa,t for the first time (note that the case of a = ω̂i has already been taken care of by
the definition of τ1). Equation (A.5) implies that there exists a player j′ in Φa,t−1 who is
rejected at step t, i.e., j′ ∈ N \Φa,t. Moreover, N \∪b∈ŌΦ

b,t = {j′} because all of the other
players who are not assigned any object in O have gone to ϕ. Since i obtains ω̂i at step
τ1, there exists a step tκ̄ with t < tκ̄ < τ1 such that i is rejected at a, i.e., i ∈ N \ Φa,tκ̄ .
Let (a′, i′, t′) be a rejection triple that describes a situation in which i′ ∈ N is at a′ ∈ O
in step t′ − 1 and rejected at a′ in step t′. Then, we have a chain of rejection triples,

(a, j′, t) = (a1, j1, t1), (a2, j2, t2), . . . , (aκ̄, jκ̄, tκ̄) = (a, i, t′),

where jκ is rejected at aκ as jκ−1 chooses aκ in step tκ (κ = 2, . . . , κ̄−1). Suppose that all
the objects except for a in the rejection chain are distinct. Then, this chain of rejection
triples constitute a cycle of priority,

jκ̄−1 ≻a i ≻a j1 ≻a2 j2 ≻a3 · · · ≻aκ̄−1 jκ̄−1.

This is a contradiction.

10DA algorithm discussed in this auxiliary situation is essentially the same as the one defined in Dubins
and Freedman (1981).
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Next, suppose that all the objects except for a in the rejection chain are not distinct.
Then, we can also find a shorter cycle of priority than before by the same argument. This
completes the proof of Lemma A.3. □

-
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Figure A.1. A Trading Cycle and a Rejection Chain with Intersection

Let us continue the proof of the proposition. By Lemma A.3, given σ′i, ω̂i is the object
where i is accepted for the first time after t∗. This implies that Φa,τ1 = ηa for all objects
a in Ō except for ω̂i. When i comes to ω̂i at the step τ0, there must be a player, say ℓ1,
in ω̂i because η

a = Φa,t∗−1 (a ∈ Ō) holds. And, ℓ0 is rejected when i comes to ω̂i at step
τ1. A rejection triple (ω̂i, ℓ1, τ1) denotes the situation in which ℓ1 is at ω̂i in step τ1 − 1
and rejected at ω̂ℓ0 in step τ1.

Note that after step t∗, DA ends at step τr+1 when player ℓr, goes to ϕ after rejected
from an object ω̂ℓr−1 ∈ O. Also, after ℓ1 is rejected from ω̂i at step τ1, only one player
goes to a new object at every step till τr+1 under the assumptions.

Then, there is a chain of rejection triples (ω̂ℓ0 , ℓ1, τ1), . . . , (ω̂ℓr−1 , ℓr, τr), where ℓ0 = i
and for each r′ = 1, . . . , r, ℓr′ is rejected at ω̂r′−1 at τr′ . Note that ω̂r′ is the object in O
that is obtained by ℓr′ in the first stage under (σ′i, σ̂−i). Note also that all the objects in
this chain are distinct; otherwise, there is a cycle of priority. This can be shown by the
same procedure as in the proof of Lemma A.3.

There exists an object in Oe that appears in the rejection chain since at least ω̂i is in
Oe. Therefore, at least one player, either player i or the one who is rejected after step τ1,
goes to an object in Oe. Let r∗ = 1, . . . , r be the greatest number among r′s such that
ω̂ℓr′−1

is in Oe, and (ω̂ℓr′−1
, ℓr′ , τr′) is in the rejection chain. Note that the last player ℓr

in the chain goes to ϕ, which is not in Oe. Therefore, ℓr∗ must go to some object not
in Oe. This implies that ℓr∗ is not in the trading cycle. Let n∗ be a number such that
kn∗ = ℓr∗−1.
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Note that ηℓr∗ = ω̂kn∗ . Also, a player kn∗−1 who is in the trading-cycle and will obtain
ω̂kn∗ after the exchange satisfies that ω̂kn∗P

0
kn∗−1

ηkn∗−1
: otherwise kn∗−1 has not been

rejected from η by step t∗ under the truth-telling strategy, and this leads to a contradiction.
Then, equation (A.6) implies ℓr∗ ≻ω̂kn∗ kn∗−1. Also, equation (A.3) implies that

kn∗ ≻ω̂kn∗ g holds.

Therefore, we can find a cycle of priority consisting of players in the trading cycle and
ℓr∗ rejected from ω̂kn∗ (note here that kn∗ is identical with ℓr∗−1; see Figure A.1),

kn∗ ≻ω̂kn∗ ℓr∗ ≻ω̂kn∗ kn∗−1 · · · ≻ω̂k1
i ≻ω̂i

kn̄−1 . . . kn∗+1 ≻ω̂kn∗+1
kn∗ .

Hence, this is a contradiction.
□

Appendix B. Mechanisms and Trading Cycles

B.1. First-come-first-served rule (Boston mechanism).
A First-come-first-served rule (FCFS) with priority, often called the Boston mechanism,
is defined here as a game in extensive form. In the first round, each player i ∈ N simulta-
neously chooses an object c1i ∈ Ai. Each object in O is assigned to the players who choose
it based on priority. In the tth round (t = 2, 3, . . .), the remaining players, who have not
been assigned to any object in O at the beginning of the t th round, simultaneously choose
an object. A strategy of player i ∈ N is the profile that consists of c1i in the first round
and cti in each proper subgame of the tth round in which player i is a remaining player.

Formally, we define a function λ̄ of players’ actions in the following manner and then
define the outcome function λ as a function of strategy profiles after that.

FCFS rule: Let qa0 = qa, λ̄0a = ∅, Ō0 = Ō and N0 = N as initial values. Construct
(λ̄ta(·))a∈Ō (t = 1, 2, . . .) as follows.
t-th round (t = 1, 2, . . .). Given a sequence of the first (t − 1) rounds choice profiles
ht = (c1, . . . , ct−1), which we call a history at t = 2, 3, . . ., where cτ = (cτi )i∈Nτ−1 ∈
×i∈Nτ−1Ai ∩ Ōτ−1 (τ = 1, . . . , t), and h1 is the null history, and given λ̄t−1,a = λ̄t−1,a(ht)
(a ∈ Ō), let

qat = max{qa,t−1 − |λ̄t−1,a|, 0}, (remaining quota),

Ōt = Ōt−1 \ {a′ ∈ Ō|qa′t = 0}, (remaining objects),

N t = N t−1 \ [∪a∈Ōλ̄
t−1,a], (remaining players).

Suppose now that ct is a choice profile by the players in N t. Let ht+1 = ht ◦ ct be a
concatenation. For each a ∈ Ō, construct λ̄ta = λ̄ta(ht ◦ ct) in the following manner:

(1) λ̄ta ⊂ Na(ct) ≡ {j ∈ N t|ctj = a}, (only applicants to a may be assigned to it),

(2) if the number of applicants to a exceeds its quota, i.e., |Na(ct)| > qat, then the
following two hold:
(a) |λ̄ta| = qat (all the units of a are assigned);
(b) ∀i ∈ λ̄ta ∀j ∈ [Na(ct) \ λ̄ta] [i ≻a j] (the assignment is based on priority in

the same round);
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(3) if the number of applicants to a does not exceed its quota, i.e., |Na(ct)| ≤ qat, then
λ̄ta = Na(ct) (all the applicants to a are accomodated).

For all i ∈ N and all a ∈ Ō, let λ̄i(c
1, . . . , ct) = a if i ∈ ∪t

τ=1λ̄
τa holds.

Continue this process until N t stops changing, i.e., until t = T where NT = NT−1. If
not, the game moves to the (t+ 1) th round.
Call hT+1 = (c1, . . . , cT ) the complete history.

If player i ∈ N is not assigned to any object in Ō until T , then let λ̄i(h
T+1) = ϕ. This

completes the construction of λ̄.

A strategy σi of a remaining player i ∈ N t−1 in the tth round (t = 1, 2, . . .) is a
function from the set of histories into Ai ∩ Ōt−1, i.e., given a history ht in the t-th round,
σi(h

t) ∈ Ai ∩ Ōt−1 (only available objects can be chosen).
Based on the above construction of λ̄ as a function of histories, we define the outcome

function λ as a function of strategy profiles. Given a strategy profile σ ∈ Σ and a history
ht for some t = 0, 1, 2, . . ., ct = (σi(h

t))i∈Nt−1 . This way, we induce the complete history
hT+1 (the actual value of T depends on strategy profiles). Let λi(σ) = λ̄i(h

T ) if hT+1 is
the complete history induced by σ. Let σ|ht be the induced strategy profile after history
ht, and λi(σ|ht) be the eventual outcome of player i ∈ N induced by σ after history ht.

A couple of remarks are in order. First, one cannot choose an object that is no longer
available, i.e., an object a ∈ O with qat = 0. Second, if a player chooses the null object
in the tth round, then he/she “obtains” ϕ immediately and is not entitled to any other
object in later rounds.

B.2. Deferred acceptance algorithm.
We define an allocation rule derived from the Deferred Acceptance algorithm. For each

i ∈ N , let ζi = (ζ1i , . . . , ζ
|Ō|
i ) be an order of object types submitted by player i, and let ζ∗i

be the order of objects induced by Ri, or the truth-telling strategy of player i, i.e., for all
k, ℓ = 1, . . . , |Ō|, k < ℓ implies ζ∗ki R0

i ζ
∗ℓ
i . Then, let Σi be the set of the orders of object

types of player i. Also, let ζ = (ζi)i∈N and Σ = ×i∈NΣi.
A non-monetary allocation rule is a function φ : Σ × S → A. Given ζ ∈ Σ and ≻∈ S,

player i ∈ N is assigned to object φi(ζ,≻).
Let us now specify φ so that it reflects the Deferred Acceptance algorithm. Given

N ′ ⊂ N and a ∈ Ō, let ψa(N ′) be a subset of N ′ defined as follows: (i) if |N ′| ≤ qa,
then ψa(N ′) = N ′ holds; (ii) if |N ′| > qa, then |ψa(N ′)| = qa, and for all i ∈ ψa(N ′)
and all j ∈ N ′ \ ψa(N ′), we have i ≻a j. For all N ′ ⊂ N , a ∈ Ō, and all ν ∈ ŌN , let
Ia(ν,N ′) = {i ∈ N ′|νi = a}.

Given ζ ∈ Σ and ≻, we consider the following steps.

Step 1:

N1 = N,

n1i = 1, (i ∈ N)

ν1 = (ζ
n1
i

i )i∈N ,

Φa,1 = ψa(Ia(ν1, N1)) (a ∈ Ō).
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Step t (t = 2, 3, . . .):

N t = N \ (∪a∈OΦ
a,t−1),

nti =

{
nt−1
i + 1 if i ∈ N t, νt−1

i ̸= ϕ, and nt−1
i < |Ō|,

nt−1
i otherwise, (i ∈ N)

νt = (ζ
nt
i

i )i∈N ,

Φa,t = ψa
(
Ia(νt, N t) ∪ Φa,t−1

)
(a ∈ Ō).

Continue this process until everyone is assigned to some object in Ō, i.e., ∪a∈ŌΦ
a,t = N .

Then, let Φa = Φa,t for each a ∈ Ō.
Given ζ and ≻, an allocation rule φ is said to be the Deferred Acceptance(DA) rule if

for all i ∈ N and all a ∈ Ō, φi(ζ,≻) = a if and only if i ∈ Φa.

Lemma B.1. Assume (Scarcity) and (No money). Let η = φ(ζ∗,≻). Suppose also that
µ ̸= η is stable. Then, µ is Pareto dominated by η.

Proof.
Assume (Scarcity) and (No money). Suppose not, i.e., that a stable object allocation
µ ̸= η = φ(ζ∗,≻) is not Pareto dominated by η. Then under genericity, there exists
k1 ∈ N such that µk1P

0
k1
ηk1 holds. Take such a player k1. Let a = µk1 . In DA algorithm

with ζ∗, in some step t1, k1 is rejected at a, i.e., νt1k1 = a and k1 /∈ Φa,t1 . Therefore, we

have j ≻a k1 for all j ∈ Φa,t1 . Then, the stability of η implies ∀j ∈ Φa,t1 µjR
0
ja holds.

By Lemma 5.5, the scarcity and stability of µ and η imply |µa| = |ηa| = qa holds. Then,
∃k2 ∈ Φa,t1 µk2 ̸= a. Note that µk2P

0
k2
a holds; otherwise, µ is not stable because k2 can

deprive k1 of a. Then, for such k2, there exists a step t2 s.t. t2 < t1 and k2 is rejected at
µk2 .

In this way, we can construct a sequence of players {kn}∞n=1 such that for each n =
3, 4, . . ., there exists a step tn such that tn < tn−1 and kn is rejected at µkn . This is a
contradiction since there are finitely many steps in DA algorithm. □

The following proposition is a direct consequence of the above lemmata, which is stated
without a proof.

Proposition B.2. Assume (Scarcity) in Assumption 2.2 and (No money) in Assumption
5.1. Suppose µ is stable and Pareto optimal. Also, suppose η is a DA object allocation.
Then, µ = η.

B.3. Top trading cycles. We define the top trading cycles due to Shapley and Scarf
(1974) in this appendix.11

Definition B.1. Assume (No money), (+Value), and (Quota1). Consider an object al-
location µ ∈ A+.

The following is the top trading cycles with an initial object µ.
Given N ′ ⊂ N and µ ∈ A+, we define a trading cycle among N ′ under µ as a

nonempty subset S of N ′, whose K − 1 members can be indexed in a cyclic order: S =

11See also Kesten (2006) and Piccione and Rubinstein (2007).
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{i1, i2, . . . , iK−1} with iK = i1, in such a way that each trader ik (k = 1, . . . ,K−1) weakly
prefers µik+1

to µj for all j ∈ N ′.
We then define the following algorithm.

Step0: Assign µ ∈ A+ to the players in N . Let N1 = N . Let p0 be any positive number.
Step t(t ≥ 1): There is at least one trading cycle among Nt under µ. Take one of them
and denote it St, which may be a singleton. Let Nt+1 = Nt \ St. Let the price of all the
objects held by the players in St be pt satisfying pt < pt−1.
Stop when Nt+1. Otherwise, go to Step t+ 1.

Note that the above algorithm is terminated in a finite number of steps since at least
one player is removed from the mechanism in each step. Since for all i in N , for all a in
O, vi(a) > 0 holds, ϕ is never chosen by any player until all the objects in O are removed.
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