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Abstract

We consider one-sided matching problems in which agents can endogenously ac-
quire information about objects to evaluate their values more precisely. In such
situations, whether agents acquire information or not crucially depends on their be-
liefs about their choice set, i.e., the set of objects each agent can obtain by changing
his report. In this paper, we fix the assignment rule to the random serial dicta-
torship, and study the efficiency of each disclosure policy of choice sets. With a
stylized environment where there is only one object that has ex ante unobserv-
able private-value component, we demonstrate that the full disclosure policy, which
always discloses each agent’s choice set, is typically inefficient, because it fails to
internalize the positive externality of information acquisition. Then, we illustrate
that obscuring the information about the best available fixed-valued objects, we can
induce more efficient information acquisition. We also show that in the worst case,
the loss of the full disclosure policy relative to the optimal one is large.
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1 Introduction

The random serial dictatorship mechanism (RSD) is used in many real-world problems

because it satisfies a lot of nice properties — RSD is strategy-proof, simple, fair, trans-

parent and easy to understand and implement. Practically, there are various ways to

implement RSD. Some clearing houses disclose neither information regarding priority or-

ders nor choices made by earlier dictators (sometimes, such clearing houses draw the

lotteries after receiving agents’ preference reports) while the others implement RSD in

a sequential form, i.e., fully disclose the choice set (the set of available objects) to the

current dictator and ask him to pick a favorite one.

The difference in disclosure policies does not make difference in resultant matchings if

preferences are exogenously endowed. Because RSD is strategy-proof, regardless of their

beliefs about the choice sets, agents report truthful preference order. However, if agents

endogenously acquire information about their preferences, an agent may want to acquire

more information on his taste given a particular choice set, while he would take some-

thing without further investigation when his choice set is something else. Furthermore,

disclosure policies crucially affect agents’ beliefs about their choice sets, and therefore,

different disclosure policies typically generate very different decision makings for informa-

tion acquisition. In this study, we present the optimal choice set disclosure policy that

induces efficient information acquisition.

The following are two illustrative examples for different disclosure policies implemented

in real-world problems:

Example 1 (Sequential Disclosure). If an allocation problem is not too large, RSD is

typically implemented in a sequential form. For example, the cubicle (office space) as-

signment mechanism for Ph.D. students in Stanford Economics Department employs (a

variant of) RSD in a sequential form. The seniority is used as the primary key of the

order of priorities, and the random numbers are used to sort students within each year-in-

program. The cubicles are allocated to second to sixth-year students. Third to sixth-year

students, who are already assigned some cubicles, need to relinquish their cubicles to par-

ticipate in the mechanism; thus, once a student decides to participate, he does not have

the property right for his current cubicle. The detailed process is as follows:
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1. The administrator draws the lottery to assign choice ordering. Then, she announces

all the realized lottery numbers to the public.

2. [Four days later] Students who are currently assigned a cubicle notify the administra-

tors of their intention to relinquish their cubicle and enter the draw. If incumbents

(third to sixth-year students) want to change their cubicle, they need to relinquish

the property right for their cubicles at this moment.

3. [Three days later] Third to sixth-year students (wanting to change their cubicles) are

assembled, and sequentially choose the cubicles by pointing their favorite cubicles

from the set of remaining ones. All the choices are immediately disclosed to the

public.

4. [Two days later] Second-year students are assembled, and sequentially choose their

cubicles.

The crucial facts are (i) students have enough time to check the surroundings of some

cubicles after observing their endowed priority (including the realization of the random

lottery number), and (ii) the sequential picking process is divided to two stages so that

students of low priority (second-year students) can acquire information contingent on the

choices of earlier dictators (third to sixth-year students). Hence, each student can flexibly

change which information to acquire contingent on his belief about the set of cubicles

available for him.

Example 2 (No Disclosure). If an allocation problem is large, it is difficult to assemble

participants to implement RSD in a sequential form, and therefore, RSD is run through

some computer systems. In this case, participants are physically separated, and cannot

directly observe the choices of the others. Hence, if the clearing house chooses to not

disclose the information about the lottery numbers and/or earlier dictators’ choices, each

participant has much less information about his choice set than Example 1 when he

submits his preference sheet to the clearing house.

For example, in the graduate student housing assignment of Stanford university, while

the students are aware of their priority from their characteristics (e.g. incoming Ph.D.
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students have higher priority than already enrolled master’s students), they are not in-

formed their lottery numbers beforehand (the realized lottery numbers are disclosed after

the assignment is finalized). Therefore, students have to write their preference sheet with-

out observing sufficient information for specifying their options available in their turn, and

they cannot acquire information for residences contingent on the set of room-types avail-

able for them.

Example 3 (Lottery Number Disclosure). Some clearing houses, including those of the

housing assignment mechanism of Rutgers University,1 Fairfield University,2 Lehigh uni-

versity,3 and Washington University in St. Louis,4 explicitly declare that they disclose

the lottery numbers of the applicants at the beginning of the assignment process. While

applicants cannot observe the actual available room-types, they can infer the available

room-types in their turns from the lottery numbers, and can make contingent information

acquisition.

While only a few clearing houses stipulate how the information about the remaining

objects and the lottery numbers are disclosed, it is not difficult to find more anecdotal

evidences with which the clearing houses employs various different disclosure policies.

However, the performance of the different disclosure policies has not been well-examined

in the literature.

Mathematically, choice set disclosure policies for RSD can be represented as signal

structures. Contingent on the current dictator’s priority and the set of remaining objects,

the planner sends a signal to the current dictator. Observing the signal, the current dicta-

tor forms a posterior belief about his choice set, and decides how he acquires information.

After observing additional information (if any), the current dictator’s preference order,

i.e., the order of expected payoffs from the objects conditional on the acquired informa-

tion, is finalized. Since RSD is strategy-proof, he truthfully reports his preference list

to the planner, and the planner mechanically assigns the best remaining object to him.
1http://ruoncampus.rutgers.edu/lottery/lottery-application-process/ ; last visited on 05/10/17.
2https://www.fairfield.edu/media/fairfielduniversitywebsite/documents/student/res lotterybooklet12-

13.pdf ; last visited on 05/10/17
3http://financeadmin.lehigh.edu/content/housing-selection-process-rising-3rd-4th-5th-year-

undergraduate-students ; last visited on 05/10/17
4http://reslife.wustl.edu/applying-for-housing/housing-selection-subsite/rounds/ ; last visited on

05/10/17
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Then, the set of remaining objects is updated, and it becomes the next dictator’s turn.

In this environment, the planner controls the disclosure policy to maximize the social

welfare.

Surprisingly, even with independent and private values (i.e., there are no hidden states

that commonly influence multiple agents’ preferences) the full disclosure policy does not

always maximize the ex ante expected payoffs — the no disclosure policy sometimes

outperforms the full disclosure policy, and typically there exists an optimal disclosure

policy which outperforms both of these two. This is because information acquisition has

positive externalities: if an agent investigates an uncertain-valued object and takes it

only when its private value for him is large, he can sometimes preserve an ex ante more

valuable object for the next mover. Therefore, if an early dictator investigates more, a late

dictator is better off. The full disclosure policy fails to internalize this externality, and

therefore, inefficient. Accordingly, the welfare-maximizing planner wants to encourage

more information acquisition than the level achieved by full disclosure.

How can we induce more information acquisition when monetary transfers are not al-

lowed? Here, we can use the technique of Bayesian persuasion (introduced by Kamenica

and Gentzkow (2011)) to improve the social welfare. As we have argued, the beliefs about

choice sets are crucial for agents’ decision making for information acquisition. More specif-

ically, whether or not an agent investigates the uncertain-valued object crucially depends

on the value of the outside option, which he can take when the investigation reveals that

the uncertain-valued object is unattractive for him. By controlling this information, the

planner can effectively convince agents to make more investigations.

The optimal disclosure policy sometimes largely outperforms the full disclosure policy.

We show that the difference between the social welfare achieved by optimal disclosure and

full disclosure is asymptotically equal to the maximal loss from discarding the uncertain-

valued object. In this sense, the gain from using an optimal disclosure policy, instead of

full disclosure, is unbounded.

The remainder of the paper is organized as follows. Section 2 surveys the literature.

Section 3 describes the model. Section 4 characterizes (i) the equilibrium investigation

strategy under full disclosure, (ii) the first-best investigation strategy, and (iii) the optimal

disclosure policy. Section 5 compares the performance of these three, and derives the
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worst-case welfare difference. Section 6 discusses the generality of our qualitative results.

Section 7 concludes.

2 Related Literature

A number of papers have investigated pros and cons of the (non-random) serial dicta-

torship mechanism (SD) and RSD. Abdulkadiroğlu and Sonmez (1998) prove that the

matching generated by RSD coincides the core from random endowments. Svensson

(1999) characterizes that SD is a unique mechanism that is group strategy-proof and

neutral. While Bogomolnaia and Moulin (2001) show that RSD is not always ex ante or-

dinally efficient, Che and Kojima (2010) show that the inefficiency of RSD disappears in

some large markets; thus, it is approximately ordinally efficient in such markets. Li (2016)

shows that if RSD is implemented in a sequential form, it satisfies a stronger notion of

strategy-proofness, which is named obvious strategy-proofness. Later, Pycia and Troyan

(2016) characterized that RSD (implemented in the sequential-form) is a unique mecha-

nism that is obviously strategy-proof, efficient, and symmetric. Overall, the performance

of RSD is highly appreciated, and therefore, widely used in practice.

There are also a large amount of preceding papers on designing information struc-

tures. Kamenica and Gentzkow (2011) study the sender-receiver game and characterize

the optimal signal structure, which effectively persuade the receiver to take the action

demanded by the sender. This technique is called Bayesian persuasion. The choice set

disclosure problem, which we study in this paper, is a special case of this situation as

the sender (the planner) wants to control the receiver’s activity (the agents’ information

acquisition) through disclosure of the information of the choice sets, in order to maximize

the sender’s expected payoff (the social welfare).

Gershkov and Szentes (2009), Kremer, Mansour, and Perry (2014), Che and Hörner

(2015), Doval and Ely (2016), and Glazer, Kremer, and Perry (2016) study the design

of the recommendation system that enhances social learning. Similar to our work, in

their model, the planner control the agents’ beliefs through disclosure of the information,

which the planner can manage (e.g. the order of moves and the results of experimentation

by earlier agents), to induce more information acquisition. It is worth noting that they
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study incentives in information acquisition for the common state, while we assume that

the states are idiosyncratic. If the model contains a hidden state whose realization affects

the payoffs of all the agents, information acquisition naturally benefits the other agents.

On the other hand, we show that even with private values (i.e., there is no common

states), if each object has a limited capacity, information acquisition also has positive

externality effects, and a similar technique can improve the social welfare in the one-sided

matching problems. In addition, to our knowledge, this is the first study that investigates

the structure of strategic experimentation in one-sided matching problems.

Bade (2015) studies endogenous information acquisition in house allocation problems,

and proves that (non-random) SD together with the full disclosure policy is a unique

mechanism that satisfies ordinal efficiency and group strategy-proofness. Importantly,

unlike our work, Bade (2015) evaluates mechanisms by ordinal efficiency without requiring

mechanisms to be fair (hence, the order of dictatorship does not have to be randomized).

Fairness makes a crucial difference between our analysis; since more information always

benefits the current mover, disclosing full information to the current mover always leads to

ordinal efficiency, even when it hurts the successive movers. Indeed, we verify that under

some circumstances, disclosing full information to earlier dictators reduces the expected

payoffs of successors. Furthermore, when the priority order must be randomized, agents’

ex ante expected payoffs are sometimes improved by increasing late dictators’ payoffs at

the expense of early dictators’ payoffs. Accordingly, the full disclosure policy is inefficient

if (i) we need to randomize the priority order to achieve a fair assignment, and (ii) agents’

payoffs are evaluated ex ante, i.e., before drawing the lotteries.

In terms of the search technology, this paper benefits from the literature of the box-

opening problem, originated by Weitzman (1979). In particular, in our model, the problem

that the agent faces under the full disclosure policy can be reduced to Doval (2016)’s one-

box problem. These papers study an optimal investigation strategy of single agent who

searches the value of objects and then makes a decision for which one to choose. We extend

this box-opening problem to a multi-agent setting, and discover the positive externality

of information acquisition.

Finally, a number of papers study the incentives in information acquisition when mon-

etary transfers are allowed. See, for example, Bergemann and Välimäki (2002), Hatfield,
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Kojima, and Kominers (2015), and Matsushima and Noda (2016). The literature shows

that as long as we assume private values and agents cannot acquire information over the

preferences of the others, the VCG mechanism can induce the first-best efficient informa-

tion acquisition.5 In contrast, we study the way to improve the social welfare without

monetary transfers, and find that we can achieve it by controlling agents’ information

about choice sets.

3 Model

Consider a one-sided matching problem of assigning indivisible objects to agents who can

consume at most one object each. There are finitely many ex ante symmetric agents

i ∈ I , {1, 2, · · · , K + 1}, and finitely many different objects k ∈ K , {0, 1, · · · , K}.

Since |I| = |K| = K + 1, we can focus on one-to-one perfect matchings. Each agent

receives von Neumann–Morgenstern utility from his assignment — if agent i’s object is

k ∈ K, he receives vik. We call object 0 the box because each agent i does not know its

precise value ex ante. The value of object 0, which is denoted by vi0, follows a cumulative

distribution function F , i.i.d. across agents (hence, we are assuming private values, rather

than common values). We assume
∫∞
−∞ |v

i
0|dF (vi0) <∞. The values of objects 1, 2, · · · , K,

which we refer alternatives, are deterministic, and satisfy vik = vk for k ∈ K\{0}. Without

loss of generality, we label them v1 ≥ v2 ≥ · · · ≥ vK .6

The assignment rule is fixed to RSD. Since agents are ex ante symmetric, without

loss of generality, we can label agent i as the i-th dictator of the serial dictatorship. On

the other hand, we control information of choice sets, i.e., the set of remaining objects,

H ⊂ K, in each agent’s turn. More formally, at the beginning, the planner commits to

a disclosure policy (S, π), where S is a finite realization space and π : I × (2K) → ∆(S)

is the signal distributions conditional on the agent’s priority i and his choice set H ⊂ K.
5Kleinberg, Waggoner, and Weyl (2016) show that if information acquisition is instantaneous, i.e., each

agent can immediately acquire information at any moment, Dutch auctions may induce more information
acquisition.

6Compared with the literature on the one-sided matching problems, our environment is very stylized.
On the other hand, to study information design for strategic experimentation and social learning, we
usually consider stylized environments to obtain clear-cut results. For example, agents only have binary
choices of actions in the model of Kremer et al. (2014) and Che and Hörner (2015). We will discuss how
we can generalize the insights from our stylized environment in Subsection 6.1.
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Note that the planner can conceal each agent’s priority; thus, each agent is not aware of

his priority i, unless the planner decides to disclose it.

After observing a realization of the signal s ∈ S but before making the preference

report, each agent can decide whether or not to investigate the box. Therefore, whether

an agent investigates the box can depends on his posterior belief, which is generated by

the signal realization s ∈ S. If agent i chooses to investigate, he will pay the investigation

cost, which is normalized to 1, and observes the realization of vi0. If agent i does not

investigate, object 0 is worth EF [vi0] , µ to him on average. Since RSD is strategy-proof,

after evaluating object 0, agents report their preferences truthfully, and take the most

preferred object in H.

Controlling the disclosure policy (S, π), he planner wants to achieve ex ante ordinal

efficiency, which is a basic efficiency criterion for random mechanisms, defined by Bogo-

molnaia and Moulin (2001). Since agents are assumed ex ante symmetric and the priority

order is determined uniformly randomly, a disclosure policy is ex ante ordinally efficient

if and only if it maximizes the average payoff of agents. Hence, the aim of the central

planner is equivalent to maximization of the average payoff of agents.

Under every disclosure policy, all of the alternatives (K \ {0} = {1, 2, · · · , K}) are

consumed, and the payoffs from them are the same across disclosure policies. Hence, the

only variable part of the average expected payoff is the expected valuation of the box and

the investigation cost for it. Therefore, an optimal disclosure policy maximizes the net

payoff from the box, i.e.,

(the equilibrium expected valuation of the box given the disclosure policy)

− (the equilibrium expected investigation cost given the disclosure policy) ,

which we define as the social welfare. We mathematically describe the form of it later.
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4 Characterization

4.1 Full Disclosure

We say that (S, π) is the full disclosure policy if S = 2K and π(i,H)(H) = 1 for every

i ∈ I and H ∈ 2K. If the planner takes the full disclosure policy, each agent can obtain all

the information about his choice set; thus, if agent i’s choice set is H, he believes that his

choice set is H with probability 1. If we implement RSD in a sequential form and endow

each dictator enough time for investigating the box (if any) in each dictator’s turn, the

signal sent to the agent is equivalent to the full disclosure policy.

If 0 /∈ H, i.e., object 0 is not available, clearly the agent does not investigate it because

he cannot choose it even if he finds it attractive. Similarly, if H \{0} = ∅, i.e., only object

0 is available, clearly the agent does not investigate either because he cannot change his

assignment from the box even if he finds the box unattractive. Hence, for these two cases,

the box is never investigated.

If both object 0 and at least one alternative is available, each agent needs to decide

whether or not investigate the box. In this case, his decision problem reduces to the

single-agent one-box search problem, which is well-studied by Doval (2016). Define k ,

minl∈H\{0} l. Since younger alternative is better, vk = maxl∈H\{0} vl. Since the agent

always takes either (i) the box (object 0) or (ii) the best alternative (object k), the value

of vk provides us sufficient information for the agent’s decision making.

If agent i investigates the box, he would choose object 0 if and only if vi0 > vk. On the

other hand, if he chooses to not investigate, he would choose either object 0 or k without

investigation, and gets an expected payoff of max{µ, vk}. Hence, it is optimal for agent i

to investigate the box if and only if

∫ ∞
vk

vi0dF (vi0) + F (vk)vk − 1 ≥ max{µ, vk}. (1)

Defining

C(vk) ,
∫ ∞
vk

vi0dF (vi0) + F (vk)vk − 1−max{µ, vk},
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(1) is equivalently rewritten as C(vk) ≥ 0. Since

C ′(v) =

F (v) ≥ 0 if v ≤ µ

−(1− F (v)) ≤ 0 otherwise,

C is maximized at v = µ. Furthermore, whenever F is not degenerate, 0 < F (µ) < 1,

and therefore, µ is the unique maximizer of C. Hence, when C(µ) > 0, (1) is satisfied if

and only if vk ∈ [β, ρ], where β and ρ are two solutions of

C(v) = 0

with ρ > β.

If C(µ) < 0, investigation and too costly; thus, no agents investigates object 0 in all

the cases. To make the problem nontrivial, from now, we always assume that C(µ) > 0.

Given C(µ) > 0, clearly, ρ > µ > β holds. We call ρ the reservation value and

β the backup value. Intuitively, if vk > ρ, the gain from investigation is small because

there is a sufficiently attractive available alternative. Hence, he wants to take object k

without spending the investigation cost. On the contrary, if vk < β, the alternative is too

unattractive and it is not likely that vi0 is much smaller than vk. Hence, the agent wants

to take the box without spending the investigation cost. Accordingly, agent i wants to

investigate the box if and only if the value of the best alternative locates in the middle.

Proposition 1 (Doval (2016)). For H ∈ 2K such that H \ {0} 6= ∅, define k(H) ,

minl∈H\{0} l. Under the full disclosure policy, the following investigation strategy σ :

2K \ {∅} → {0, 1} maximizes the agent’s expected payoff:

σ(H) ,

1 if 0 ∈ H,H \ {0} 6= ∅, and vk(H) ∈ [β, ρ]

0 otherwise.

What is the social welfare achieved by the full disclosure policy? If {k ∈ K : β ≤ vk ≤
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ρ} = ∅, it is equal to µ because no agents investigate the box. Otherwise, let

r , arg min
k∈K\{0}

{k ∈ K \ {0} : β ≤ vk ≤ ρ} ,

b , arg max
k∈K\{0}

{k ∈ K \ {0} : β ≤ vk ≤ ρ}

Then, vr−1 > ρ ≥ vr ≥ · · · ≥ vb ≥ β > vb+1. Hence, each agent investigates the box if

and only if k ∈ {r, r + 1, · · · , b}. Accordingly, the social welfare from the full disclosure

policy is

W Full =

[∫ ∞
vr

vi0dF (vi0)− 1

]
+ F (vr)

[∫ ∞
vr+1

vi0dF (vi0)− 1

]
+ · · ·+ F (vr) · · · · · F (vb−1)

[∫ ∞
vb

vi0dF (vi0)− 1

]
+ F (vr) · · · · · F (vb−1)F (vb) · µ

=
b∑

k=r

[
k−1∏
l=r

F (vl)

] [∫ ∞
vk

vi0dF (vi0)− 1

]
+

[
b∏

k=r

F (vk)

]
µ

=µ+
b∑

k=r

[
k−1∏
l=r

F (vl)

][∫ ∞
vk

vi0dF (vi0)− 1− µ+ F (vk)µ

]
.

Define

G(vk) ,
∫ ∞
vk

vi0dF (vi0)− 1− µ+ F (vk)µ.

Then,

W Full = µ+
b∑

k=r

[
k−1∏
l=r

F (vl)

]
G(vk).

Hence, the increment of the social welfare from voluntary investigation is a weighted

sum of G(vk). Next proposition says that this is positive as long as k ∈ {r, r + 1, · · · , b},

i.e., agents voluntarily investigate the box under full disclosure.

Proposition 2. For all vk ∈ R,

G(vk) ≥ C(vk) (2)

The equality holds if and only if vk = µ.

Proofs are relegated to the appendix.
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Figure 1: Proposition 2 shows that whenever an agent wants to investigate under the full
disclosure policy (i.e., the blue line is above zero), its contribution to the social welfare is
also positive (i.e., the orange line is above zero).

Proposition 2 indicates that if an agent is “nearly indifferent” for whether or not

acquire information, there is a significant welfare gain from investigation. When vk ≈ ρ,

the alternative is ex ante more valuable than the box. Then, if an agent investigates the

box and finds that it has a good taste to him, the best alternative, which is commonly

attractive for all the agents, is preserved for the next agent. Similarly, when vk ≈ β, the

box is ex ante more valuable than the alternative. Then, if an agent investigates the box

and finds that it has a bad taste to him, then the box, which is better than the alternative

on average, is preserved. In both cases, investigation increases the probability that an ex

ante more valuable object is preserved for the next agent, and later agents will receive

a significant welfare gain from the current agent’s investigation. Here, investigation has

positive externality.

Proposition 2 also indicates the following two facts. First, voluntary investigation

induced by the full disclosure policy is never socially wasteful, but it always increases

the net value of object 0. Second, typically, the full disclosure policy provides a too weak

incentive for investigation. If we can induce more investigation, we can sometimes improve

the social welfare.
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4.2 First-Best Investigation Strategy

Next, assuming that the planner can enforce each agent to investigate or not, we will char-

acterize the first-best investigation strategy. Formally, a first-best investigation strategy

maximizes the following social welfare function:

W (p) ,
K∑
l=1

[
l−1∏
m=1

(1− pm(1− F (vm)))

]
pl

[∫ ∞
vl

vi0dF (vi0)− 1

]

+
K∏
m=1

(1− pm(1− F (vm)))µ

= µ+
K∑
l=1

[
l−1∏
m=1

(1− pm(1− F (vm)))

]
plG(vl)

where p = (p1, · · · , pK), subject to pl ∈ [0, 1] for l = 1, 2, · · · , K. Here, pk denotes the

probability that the planner enforces the agent to investigate the box conditional on the

event that (i) object 0 is available, i.e., 0 ∈ H, and (ii) there exists at least one available

alternative, and the best alternative is object k, i.e., k = minl∈H\{0} l. Whenever either (i)

or (ii) is not satisfied, investigation is simply wasteful, and therefore, the planner never

wants to make agents to investigate the box. The maximizer of W , pFB is called the

first-best investigation strategy. Indeed, if the planner can observe whether each agent

investigates or not (thus, she can enforce agents to take a socially optimal investigation

strategy) while she cannot observe the realized value of the box, the first-best investigation

strategy is the one the welfare-maximizing planner would take.

pFB can be constructed by dynamic programming. It is convenient to define the

continuation social welfare:

Wk(pk:K) ,
K∑
l=k

[
l−1∏
m=k

(1− pm(1− F (vm)))

]
plG(vl)

where pk:l denotes (pk, pk+1, · · · , pl). Then, W0(p) + µ = W (p) and the first-best investi-

gation strategy pFB maximizes Wk for every k ∈ K \ {0}. We define W FB
k , Wk(p

FB
k:K).

We construct pFBk and W FB
k backward. W FB

K+1 = 0 because object 0 is no longer
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investigated if no alternatives are available. Given W FB
k+1, pFBk solves

W FB
k = max

pk∈[0,1]

{
pkG(vk) + (1− pk(1− F (vk))W

FB
k+1

}
.

Taking the derivative, we obtain that pFBk = 1 is optimal if

1

1− F (vk)
G(vk) ≥ W FB

k+1. (3)

In this manner, we can construct the first-best investigation strategy pFB.

Although we need to use dynamic programming to obtain pFB, pFB can partially be

characterized by some threshold values. Define the social reservation value ρ∗ and social

backup value β∗ by two solutions of

G(v) = 0 (4)

with ρ∗ > β∗. Since we assume C(µ) > 0, and G(v) ≥ C(v) holds by Proposition 2, (4)

actually has two solutions. Note that

G′(v) = (µ− v) · f(v),

which implies that G is increasing for v < µ, and decreasing for v > µ. Therefore,

G(vk) ≥ 0 if and only if vk ∈ [β∗, ρ∗]. The following inequalities are also immediate from

Proposition 2:

ρ∗ > ρ > µ > β > β∗.

This relationship is also illustrated in Figure 1.

We can obtain the partial threshold-value characterization of the first-best investiga-

tion strategy with β∗, ρ, and ρ∗. Specifically, pFB satisfies the following properties.

Proposition 3.

1. vk < β∗ implies pFBk = 0.

2. vk > ρ∗ implies pFBk = 0.
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3. vk ∈ (β∗, ρ) implies pFBk = 1.

Importantly, the first-best strategy investigates more often than the equilibrium strat-

egy under the full disclosure policy. The first-best strategy always investigates when the

value of the best alternative is in (β, ρ), i.e., when an agent is willing to investigate with

full information. In addition, the first-best strategy (i) always investigates the box when

the value of the best alternative is in (β∗, β), and (ii) sometimes investigates the box when

the value of the best alternative is in (ρ, ρ∗).

Proposition 3 does not tell us the value of pk when vk ∈ (ρ, ρ∗). Indeed, whether the

box is investigated with object k by the first-best strategy depends not only on vk but also

the sequence of (vk+1, vk+2, · · · , vK). This is why we need to use dynamic programming

to obtain the first-best strategy. The following observations are crucial for understanding

this feature.

1. The planner cannot prevent the agent from taking a good alternative even when

she can enforce the agent to investigate the box. Therefore, if vk < ρ∗ is large, the

benefit of investigation is small, because the agent would not take the box when

vi0 ∈ [ρ, vk] while the planner wants the agent to take it.

2. Earlier investigation (with large vk) crowds out the probability of the successive

investigation. If an investigation with the alternative k reveals that vi0 > vk, in-

vestigations with alternatives k + 1, k + 2, · · · are not made, while they might be

more welfare-improving. Hence, the first-best strategy recommends investigation

with ρ < vk < ρ∗ if and only if the continuation social welfare from k + 1 (which is

determined by (vk+1, vk+2, · · · , vK)) is relatively small.

Examples 4 and 5 show that if vk ∈ (ρ, ρ∗), actually we cannot identify the value of pk,

without observing (vk+1, · · · , vK).

Example 4. Assume that ρ < v1 < ρ∗ and K = 1.7 In this case, if p1 = 0, the social

welfare is µ. On the other hand, if p1 = 1, the social welfare is

∫ ∞
v1

vi0dF (vi0) + F (v1)µ− 1 = G(v1) + µ.

7Alternatively, we can assume K is large but vk < β∗ for k = 2, 3, · · · ,K to obtain the same result.
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Hence, the planner demands investigation if and only if G(v1) > 0, or equivalently, v1 ∈

(β∗, ρ∗), which is actually satisfied by assumption. In this case, pFB1 = 1.

Before showing the next example, we introduce a fundamental property of the reser-

vation value, ρ.

Fact 1. For {v ∈ R : F (v) < 1}, 1
1−F (v)

G(v) increasing for v < ρ, and decreasing for

v > ρ. Hence, it is uniquely maximized at v = ρ. Furthermore,

1

1− F (ρ)
G(ρ) = ρ− µ.

Fact 1 implies that if ω is drawn from F and a decision maker can choose whether to

(i) make the current sample, ω, as his payoff, or (ii) discard the current sample and draw

another sample from F , the decision maker’s expected payoff is maximized when he sets

ρ as the threshold (i.e., if ω > ρ, he takes it, and otherwise, he picks another sample).

This is why ρ is named the “reservation” value. This also implies that in our setting,

the social welfare gets close to the supremum if there are approximately infinitely many

alternatives with value vk = ρ. Note that the resultant social welfare in this case is

µ+
1

1− F (ρ)
G(ρ) = ρ.

Example 5. Again, assume that ρ < v1 < ρ∗, but now assume that for a large K,

v2 = v3 = · · · = vK = ρ− ε where ε > 0 is a small number. pFB1 = 1 is optimal only if

1

1− F (v1)
G(v1) ≥ W FB

2 . (5)

On the other hand, since v2 = v3 = · · · = vK = ρ− ε,

W FB
2 =

K∑
k=2

[F (ρ− ε)]k−2G(ρ− ε).

Hence, taking ε > 0 small and K ∈ Z++ large, we can make W FB
2 arbitrarily close to

1

1− F (ρ)
G(ρ) = ρ− µ.
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Therefore, for all v1 > ρ, there exist ε > 0 and K ∈ Z++ such that (5) is not satisfied. In

such a case, pFB1 = 0.

4.3 Optimal Disclosure

In this subsection, we maximize the optimal disclosure policy, which induces the inves-

tigation strategy that maximizes the social welfare. By Proposition 1 of Kamenica and

Gentzkow (2011), we can restrict our attention to straightforward signals, whose realiza-

tion space is equal to the action space, i.e., S = {0, 1}. In other words, without loss of

generality, we can focus on disclosure policies that recommend “investigation” (s = 1) or

“not” (s = 0). The optimal disclosure policy pOpt solves

max
p

K∑
l=1

[
l−1∏
m=1

(1− pm(1− F (vm)))

]
plG(vl)

s.t. pk ∈ [0, 1] for k = 1, 2, · · · , K
K∑
l=1

[
l−1∏
m=1

(1− pm(1− F (vm)))

]
plC(vl) ≥ 0. (6)

Here, (6) is the incentive compatibility (IC) constraint for each agent to obey the planner’s

recommendation of “investigate,” i.e., the condition that agents actually want to make

investigation when he observes s = 1. Given a disclosure policy p and the agent is

recommended to “investigate” (receives s = 1), by Bayes’ rule, his posterior belief about

the best available alternative is object l is

∏l−1
m=1 (1− pm(1− F (vm))) pl∑K

h=1

[∏h−1
m=1 (1− pm(1− F (vm)))

]
ph
. (7)

Since the denominator of (7) is positive and common across all the terms in (6), it can

be crossed out. When the best alternative is l, his net gain from investigation is C(vl).

Accordingly, if LHS of (6), which represents the expected net payoff from the investigation

conditional on the planner send him s = 1, is non-negative, the agent would obey the

recommendation by the planner. Note that by Proposition 4 of Kamenica and Gentzkow

(2011), we can ignore the obedience constraint for s = 0.
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Clearly, for k = r, r + 1, · · · , b, we should take pOptk = 1 because the incentives of

the planner and the agents coincide. Letting pOptk = 1 for these k, not only the value

of the objective function is improved, but also the IC constraint is relaxed. However,

for vk ∈ (β∗, β) and vk ∈ (ρ, ρ∗), increasing pk tighten the constraint. Hence, if the IC

constraint is binding, i.e., the first-best investigation strategy pFB does not satisfy the

IC constraint, we need to select when to send the recommendation for “investigation” for

vk ∈ (β∗, β) and vk ∈ (ρ, ρ∗).

First, we show that the optimal disclosure policy takes the form of “an interval.”

Lemma 1.

1. If vm > vn > ρ and pOptm > 0, then pOptn = 1.

2. If β > vm > vn and pOptn > 0, then pOptm = 1.

Intuitively, as we can see in Figure 1, optimal disclosure has an interval structure

because if vk is closer to [β, ρ], the agent feels less painful to make investigation with this

alternative while the social gain from investigation is larger. Accordingly, investigation

with vk close to [β, ρ] is both cheap and valuable; thus, always prioritized. Accordingly,

the optimal disclosure policy has an interval structure.

Next, we need to choose whether to increase pk for the upper side or the lower side.

More formally, suppose that we currently have pk = 1 for k = u, u+1, · · · , d, and pk = 0 for

the others. Furthermore, the IC constraint is not binding, and ρ∗ > vu−1 and vd+1 > β∗,

i.e., we may be able to improve the social welfare by recommending more investigation.

Given Lemma 1, we have two choices — increasing pu−1 or increasing pd+1. We cannot

always recommend to investigate with both alternatives because the IC constraint may

get binding. Which one should we choose first?

Proposition 4 provides a criterion for this choice.

Proposition 4. Define

r∗ ,min
{
k ∈ K \ {0} : pFBk = 1

}
b∗ ,max{k ∈ K \ {0} : pFBk = 1}.
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For r∗ ≤ u < r and b > d ≥ b∗, define

Uu:d , −
G(vu) + (F (vu)− 1)

∑d−1
k=u+1

∏k−1
l=u+1 F (vl)G(vk)

C(vu) + (F (vu)− 1)
∑d−1

k=u+1

∏k−1
l=u+1 F (vl)C(vk)

,

Dd , −
G(vd)

C(vd)
.

Suppose that pOptu+1 = · · · = pOptd−1 = 1. Then, pOpt satisfies the following five conditions:

1. pOptu > 0 and pOptd = 0 imply Uu:d ≥ Dd.

2. pOptu = 0 and pOptd > 0 imply Uu:d ≤ Dd.

3. pOptu < 1 and pOptd = 1 imply Uu:d ≤ Dd.

4. pOptu = 1 and pOptd < 1 imply Uu:d ≥ Dd.

5. pOptu ∈ (0, 1), pOptd ∈ (0, 1) imply Uu:d = Dd.

While Uu:d−Dd is not equal to the total derivative of the objective function when we

increase pu and decrease pd, its sign always coincides. Accordingly, checking the sign of

Uu:d −Dd, we can obtain a local optimality condition.

Using this as the criterion, we can run a greedy algorithm for obtaining the optimal

disclosure policy. The disclosure policy generated by the following greedy algorithm always

satisfies the local optimality condition. Furthermore, since Uu:d and Dd are monotone (see

Lemmas 2 and 3 in the appendix for the detail), we can show that there exists an essentially

unique disclosure policy that satisfies the necessary condition of Lemma 4 together with

the IC constraint. Therefore, the disclosure policy generated by the greedy algorithm is

globally optimal.

Proposition 5. The optimal disclosure policy pOpt can be constructed by the following

greedy algorithm.

1. Initialize u = r, d = b and set pr = pr+1 = · · · = pb = 1, and pk = 0 for the others.

2. If Uu−1:d+1 ≥ Dd+1, increase pu−1. Otherwise, increase pd+1. If the IC constraint

binds, stop. If pu−1 = 1 or pd+1 = 1 is achieved before the IC constraint binds and

p = pFB holds, stop. Otherwise, iterate Step 2.

20



3. Return p as pOpt.

Figure 2: Comparison of full disclosure, optimal disclosure, and the first-best strategy.

5 Welfare Evaluation

5.1 Fixed F

We will evaluate the maximum difference in the performance between (i) the full disclosure

policy and the first-best investigation strategy, and (ii) the full disclosure policy and the

optimal disclosure policy. In this subsection, we fix F (the distribution of vi0), and only

change the sequence of the values of the alternatives (v1, v2, · · · , vK). Because F is fixed,

µ, β, and ρ are also fixed.

First, we compare the performance of the full disclosure policy and the first-best

strategy. Since Proposition 2 indicates that agents’ voluntary investigation under the full

disclosure policy always improves the social welfare, the worst case of the full disclosure

is “no alternatives induce investigation.” Indeed, no investigation takes place when for all

k ∈ K \ {0}, vk /∈ [β, ρ], and then, the social welfare achieved under full disclosure is µ.

Conversely, as we have shown in Fact 1, if there are a large number of alternatives

whose value is close to ρ, the social welfare from the first-best strategy would get close to

the supremum of the achievable social welfare, ρ.8 Furthermore, if vk’s are slightly above
8Recall that the supremum is ρ itself, as shown in Fact 1.
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ρ, i.e., vk = ρ + ε with ε > 0, the existence of such alternatives would not change the

investigation under full disclosure. Accordingly, the difference in the welfare between full

disclosure and the first-best can be arbitrary close to ρ− µ.

Next, we compare the performance of the full disclosure and the optimal disclosure

policy. In order to provide an incentive for investigating the box, we need to add an object

that satisfies vk ∈ (β, ρ) (otherwise, investigation cannot be optimal). To minimize the

social welfare from full disclosure, we must choose vk that minimizes

∫ ∞
vk

vi0dF (vi0) + F (vk)µ− 1

=µ+G(vk)

Since G has an inverse U-shape, it is minimized either when vk is close to β or close to ρ.

The following proposition summarizes the above observations.

Proposition 6. Given F ,

1. For all (v1, v2, · · · , vK),

W FB −W Full < ρ− µ

This bound is tight.

2. There exists (v1, v2, · · · , vK) such that

WOpt −W Full < ρ− µ−min {G(ρ), G(β)}

This bound is tight.

5.2 The Worst Case of Worst Cases

Next, we control F to evaluate the performance of disclosure policies further. We choose

F satisfying support(F ) = [v, v̄] with some v, v̄, and derive the worst case difference as a

function of v̄ − v.
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Again, first, we compare the performance of the full disclosure and the first-best

strategy. As Doval (2016) shows, if F is a mean-preserving spread of F ′, ρ(F ) ≥ ρ(F ′)

holds. Since ρ−µ is increasing in ρ, to maximize the difference between full disclosure and

the first-best strategy, we can focus on the most dispersed distributions, i.e., the case of

binary distributions. Formally, we assume that F is parametrized by q ∈ (0, 1) such that

vi0 = v̄ with probability q and vi0 = v with probability 1−q. Clearly, F (β) = F (ρ) = 1−q.

In the case of binary values, ρ and β are determined by

∫ ∞
ρ

vi0dF (vi0) + F (ρ)ρ− 1− ρ = 0

⇔ qv̄ + (1− q)ρ− 1− ρ = 0,∫ ∞
β

vi0dF (vi0) + F (β)β − 1− µ = 0

⇔ qv̄ − (1− q)β − 1− (qv̄ + (1− q)v) = 0.

Therefore,

ρ = v̄ − 1

q
,

β = v +
1

1− q
.

Given this,

ρ− µ = (1− q)(v̄ − v)− 1

q
.

This is maximized by q = 1/
√
v̄ − v. Hence, the worst case welfare difference between the

full disclosure and the first-best is

(v̄ − v)− 2
√
v̄ − v. (8)

Next, we will evaluate the worst-case difference between the full disclosure policy and

the optimal disclosure policy. Unlike the comparison with the first-best, it is difficult to

obtain a tight upper bound of the welfare difference, because the binary distribution may
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not maximize the difference. However, (i) (8) is also a loose upper bound of WOpt−W Full

because

WOpt −W Full ≤ W FB −W Full < (v̄ − v)− 2
√
v̄ − v,

and (ii) by considering the worst-case in the case of binary distributions, we can evaluate

the tight upper bound from below.

It follows from

G(ρ) = G(β) = q(1− q)(v̄ − v)− 1

= q ·
{

(1− q)(v̄ − v)− 1

q

}
= q · (ρ− µ)

that

ρ− µ−min {G(ρ), G(β)}

=(1− q) · (ρ− µ). (9)

The maximizer of (9) does not have a tractable form. Here, we again use q = 1/
√
v̄ − v,

which is a maximizer of ρ − µ, to evaluate the tight upper bound from below. While

q = 1/
√
v̄ − v does not maximize (9), it is approximately optimal when v̄ − v is large

because q = 1/
√
v̄ − v is small in such a case. Substituting q = 1/

√
v̄ − v, we have

(v̄ − v)− 3
√
v̄ − v + 2.

Now, we verified that there exist F (which is a binary distribution) and (v1, v2, · · · , vK)

such that WOpt −W Full is close to (v̄ − v)− 3
√
v̄ − v + 2.

Proposition 7. There exists v, v̄ and F such that support(F ) = [v, v̄] that satisfy the

following:

1. For all (v1, v2, · · · , vK),

W FB −W Full < (v̄ − v)− 2
√
v̄ − v.
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This bound is tight.

2. For all (v1, v2, · · · , vK),

WOpt −W Full < (v̄ − v)− 2
√
v̄ − v.

Furthermore, for all ε > 0, there exists (v1, v2, · · · , vK) such that

WOpt −W Full > (v̄ − v)− 3
√
v̄ − v + 2− ε.

Proposition 7 indicates that the loss of the full disclosure policy might be large. Since

(v̄ − v)− 2
√
v̄ − v

v̄ − v
→ 1 as (v̄ − v)→∞,

(v̄ − v)− 3
√
v̄ − v + 2

v̄ − v
→ 1 as (v̄ − v)→∞,

when v̄ − v is large (i.e., relative to the investigation cost, which is normalized to 1), the

loss of full disclosure is asymptotically equal to v̄−v. This is the maximum possible welfare

loss. Even when we assign object 0 to an agent only when it has the worst realization,

i.e., vi0 = v, the loss cannot be larger than v̄ − v. In this sense, the loss of full disclosure

is asymptotically “unbounded.”

6 Discussion

6.1 Generalization

The model of this paper is stylized in the sense that we have made several restrictive

assumptions:

1. There exists only one type of uncertain-valued object.

2. The unique uncertain-valued object only has capacity one.

3. The values of alternatives are common across agents.
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It is difficult to relax the first assumption. First, if there are multiple uncertain-valued

objects, we can consider a very large variety of search technologies. Thus, the model

specification itself is already ambiguous. Second, even if we specify the search technology

in a certain manner, deriving each agent’s optimal strategy given disclosure policies is

difficult. Doval (2016) studies a single-agent search problem in which the agent can

sequentially acquire information (i.e., can acquire information about one object after

observing the result of prior investigations), and finds that even with two uncertain-valued

objects, characterization of the optimal strategy is difficult without a strong structure.

If we obscure the information about choice sets, each agent’s problem would become

more complicated. Needless to say, characterizing an optimal disclosure policy is even

more difficult. However, we conjecture that there must be a similar externality as what

we have shown in this paper, and a similar technique can improve the welfare in more

general environments.

The second and third assumptions are not difficult to relax. Regarding the second

assumption, note that each agent only cares about whether or not the residual capacity

is non-zero. Therefore, even if object 0 has multiple capacities, the only difference in each

agent’s problem is the formulation of the posterior beliefs after observing signals, which

can be computed straightforwardly. Hence, the second assumption is just for simplicity.

The third assumption can also be relaxed significantly. In our model, due to the com-

mon preference over alternatives, investigation increases the probability that the better

object is preserved for the next dictator, and this is the role of the assumption of common

preferences over alternatives. Even if we do not assume the perfect correlation in prefer-

ence over alternatives, as long as the current dictator’s ex ante preferred object is more

likely to be preferred by the later dictators, investigation has a similar positive externality.

Hence, as long as agents’ preferences over alternatives are positively correlated, relaxation

of the third assumption would not change qualitative results.

26



6.2 Simultaneous Disclosure Policies and Large Market Approx-

imation

The full disclosure policy and the optimal disclosure policy need a long running time be-

cause we need to allow sequential information acquisition. To implement these disclosure

policies, the planner needs to endow enough time to each agent for acquiring information

after observing signals. Hence, their running time increases linearly in the number of

agents, K. Linear running time is not bad in the context of computational complexity.

However, with large K, sequential disclosure policies may be intractable in this situation,

because human beings cannot complete information acquisition within a millisecond.

Practically, some clearing houses want to reduce the running time, and in such cases,

they may want to use simultaneous disclosure policies, which does not allow agents to

move sequentially. When sequential moves are not allowed, the only thing the planner

can disclose is each agent’s realized lottery number. In that case, the maximum achievable

social welfare is inevitably decreased, because we cannot eliminate wasteful information

acquisition (i.e., investigate the box while either the box is not available or it is the only

available object).9

However, if the market is large, i.e., there are many copies of objects (including the

box) and agents, by the law of large numbers, one can accurately predict choice sets of a

large fraction of agents from the lottery numbers. Given that choice sets are predictable,

the planner can use an approximation of sequential disclosure policies by using predicted

choice sets as substitutes of the actual choice sets. Hence, even when the planner must

use a simultaneous disclosure policy, she can achieve an approximate optimum in a large

market.

6.3 Performance of No Disclosure Policy

In real-world house allocation problems, no disclosure policies, which do not disclose any

information about choice sets, are also commonly used. Mathematically, (S, π) is a no

disclosure policy if |S| = 1. No disclosure policy is typically suboptimal. Since it obscures
9Partially sequential disclosure policies are also practically used — for example, in Example 1, agents

are divided to two groups (third to sixth-year students and second-year students), and the second group
can make information acquisition contingent on the choice of the first group.
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not only the best available alternatives, but also the availability of the box, it always

induces wasteful investigation with some probability. On the other hand, no disclosure

policy sometimes outperforms the full disclosure policy, because just like the optimal

disclosure policy, it sometimes induces some more valuable information acquisition than

the full disclosure policy.

It is trivial that there exists an environment where full disclosure strictly outperforms

no disclosure. We will show the converse, i.e., there exists an environment where no

disclosure outperforms. Suppose that vi0 = 90 with probability 0.1 and vi0 = −10 with

probability 0.9. Then, µ = 0, ρ = 80 and β = −80/9 = −8.88.... Suppose also that

K = 2, v1 = 81 and v2 = 10.

In this environment, under full disclosure, only the second dictator, who faces the

choice between object 0 and 2, investigates, and the social welfare is

1

10
· 90 +

9

10
· 0− 1 = 9.

On the other hand, if all the three agents investigate, the social welfare is

19

100
· 90 +

81

100
· 0− 3 = 14.1,

because at least one of the first two dictators finds vi0 = 90, the box is consumed by a

good-fit agent. This is strictly larger than the social welfare from the full disclosure policy.

Indeed, under no disclosure, there exists an equilibrium in which all the agents inves-

tigate. Given that the other two agents investigate, if an agent does not investigate, his

expected payoff is

1

3
· 81 +

1

3
·
(

1

10
· 81 +

9

10
· 10

)
+

1

3
·
(

19

100
· 10 +

81

100
· 0
)

= 33.33... .
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On the other hand, if this agent investigates, his expected payoff is

1

10
·
{

1

3
· 90 +

1

3
·
(

1

10
· 81 +

9

10
· 90

)
+

1

3
·
(

19

100
· 10 +

81

100
· 90

)}
+

1

10
·
{

1

3
· 81 +

1

3
·
(

1

10
· 81 +

9

10
· 10

)
+

1

3
·
(

19

100
· 10 +

81

100
· (−10)

)}
−1

=35.04,

which is strictly larger than the payoff from no investigation. Hence, there exists an

equilibrium in which all the three agents investigate.

6.4 Strategic Experimentation with Other Matching Mechanisms

If we extend the idea of “choice sets” as the set of objects an agent can obtain by changing

his report, the information about choice sets affect agents’ information acquisition not only

with RSD, but also with more general mechanisms, e.g., the Boston mechanism (BOS),

the deferred acceptance algorithm (DA, Gale and Shapley (1962)), the top trading cycle

algorithm (TTC, Shapley and Scarf (1974)), and the probabilistic serial mechanism (PS,

Bogomolnaia and Moulin (2001)). If we can nicely control the information about the other

agents’ choices (or preference reports) and induce more efficient information acquisition,

we may also improve the social welfare in more general problems.

However, it is more difficult to control the information about choice sets with these

mechanisms than with RSD. Importantly, under SD and RSD, the current dictator’s

choice set is solely determined by the preference reports of the earlier dictators. In other

words, for all j > i, agent j’s preference report does not change agent i’s choice set.

Accordingly, if the planner hears the preference reports sequentially, she can identify the

current dictator’s choice set before the current dictator acquires any information. This

property is very peculiar to SD and RSD, and indeed, BOS, DA, TTC and PS do not

satisfy this property. Therefore, it is more difficult to introduce a sophisticated disclosure

policy to the mechanisms other than RSD.

The comparison with PS is particularly important because the aim of the RSD and
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PS are the same — they are designed to resolve one-sided matching problems without

property rights, but with fairness concerns. The literature shows that PS is ex ante more

ordinally efficient than RSD (Bogomolnaia and Moulin (2001), Manea (2009)). While PS

is not strategy-proof, with some assumptions, it becomes strategy-proof in a large market

(Kojima and Manea (2010)). However, with RSD, it is easier than with PS to control the

information about choice sets to induce more information acquisition. The comparison of

the overall performance of RSD and PS is interesting, but beyond the scope of this paper.

We leave it for future research.

7 Concluding Remarks

In this paper, we study the optimal choice set disclosure policy. When preferences are

endogenous and the mechanism is fixed to RSD, investigation of a dictator increases

the expected payoff of the successive dictators. As a result, the full disclosure policy is

typically inefficient because it fails to internalize the positive externality of investigation.

To induce more efficient information acquisition, we can use the technique of Bayesian

persuasion. The gain from using the optimal disclosure policy is large in the worst case.

Practically, it is difficult to construct an optimal disclosure policy because agents face

more complex search problems in the real world. However, still, we may be able to extend

the insights from this paper to make some policy suggestions:

1. This paper articulates the importance of the “outside option” (the value of the

best remaining alternative) for agents’ investigation, and shows that by controlling

the information about the value of the outside options, we can improve the social

welfare. If there exists a situation where the control of the information about the

outside option is easier, Bayesian persuasion might be easier to implement.

2. While constructing an optimal disclosure policy in general environments is difficult,

marginal improvement of the social welfare should be easier. Indeed, the value for

the marginal improvement seems large — as we can see in Figure 1, when an agent

is “almost indifferent” between investigate or not (i.e., vk ≈ β or vk ≈ ρ), if we can

make the agent to investigate the box, the welfare gain is significantly large.

30



Both are interesting research questions, but we leave them for the future research.

Appendix

A Proofs

A.1 Proof of Proposition 2

G(vk)− C(vk)

=

{∫ ∞
vk

vi0dF (vi0)− 1− µ+ F (vk)µ

}
−
{∫ ∞

vk

vi0dF (vi0)− 1−max{µ, vk}+ F (vk)vk

}
= max{µ, vk} − µ+ F (vk) · (µ− vk)

= max {F (vk)(µ− vk),−(1− F (vk))(µ− vk)}

≥0.

The inequality follows from the fact that the sign of F (vk)(µ−vk) and −(1−F (vk))(µ−vk)

are different if they are not zero. Furthermore, the inequality is satisfied with equality if

and only if µ = vk. �

A.2 Proof of Proposition 3

1. vk < β∗ implies G(vl) < 0 for l ≥ k. Accordingly,

W FB
k+1 =

K∑
l=k+1

[
l−1∏

m=k+1

(
1− pFBm (1− F (vm))

)]
pFBl G(vl)

≤ 0.

Clearly, W FB
k+1 = 0 is achievable by pFBk+1 = pFBk+2 = · · · = 0. Therefore, for this case, (3) is

equivalent to G(vk) ≥ 0. Hence, pFBk = 0 is optimal. �
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2. Towards a contradiction, suppose that there exists k such that vk > ρ∗ but pFBk > 0.

Among such k, take the largest one, i.e., l = k + 1, k + 2, · · · , vl > ρ∗ implies pFBl = 0.

Then,

W FB
k+1 =

K∑
l=k+1

[
l−1∏

m=k+1

(
1− pFBm (1− F (vFBm ))

)]
pFBl G(vl)

≥ 0.

The inequality follows from (i) part 1 (pFBl > 0 only if vl ≥ β∗) and (ii) by the choice of

k, for l > k, pFBl > 0 only if vl < ρ∗. Then, vk > ρ∗ implies G(vk) < 0, and this implies

1

1− F (vk)
G(vk) < 0 ≤ W FB

k+1.

Hence, pFBk > 0 is not optimal. �

3. Suppose that vk ∈ (β∗, ρ). First, we show that

W FB
l ≤ 1

1− F (vk)
G(vk) (10)

for l = k + 1, · · · , K,K + 1.

We verify (10) by mathematical induction. Clearly,

1

1− F (vk)
G(vk) ≥ 0 , W FB

K+1

because vk ∈ [β∗, ρ∗] implies G(vk) ≥ 0, and W FB
K+1 , 0 always holds.

Given that (10) holds for l = m+ 1, then,

W FB
m = max

{
W FB
m+1, G(vm) + F (vm)W FB

m+1

}
.

If W FB
m = W FB

m+1, (10) for l = m is immediate from the induction hypothesis. Suppose

W FB
m = G(vm) + F (vm)W FB

m+1. Then,

1

1− F (vm)
G(vm) ≥ W FB

m+1,
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and therefore,

W FB
m = G(vm) + F (vm)W FB

m+1

≤ G(vm) +
F (vm)

1− F (vm)
G(vm)

=
1

1− F (vm)
G(vm).

Furthermore,

W FB
m ≤ 1

1− F (vm)
G(vm) ≤ 1

1− F (vk)
G(vk)

is immediate from Fact 1. Hence, (10) holds for l = k + 1, · · · , K,K + 1.

In particular, we have

W FB
k+1 ≤

1

1− F (vk)
G(vk).

Then, by (3), pFBk = 1.

A.3 Proof of Fact 1

First, we show that 1
1−F (v)

G(v) is increasing for v < ρ. Using the fact that

d

dv

{∫ ∞
v

(vi0 − v)dF (vi0)− 1

}
= −(1− F (v)) < 0 for F (v) 6= 1 (11)

and

C(ρ) = 0 and ρ ≥ µ

⇔
∫ ∞
ρ

vi0dF (vi0)− 1− ρ+ F (ρ)ρ = 0 (12)

⇔
∫ ∞
ρ

(vi0 − ρ)dF (vi0)− 1 = 0, (13)

it follows from
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d

dv

(
1

1− F (v)
·G(v)

)
=

f(v)

(1− F (v))2
G(v) +

1

1− F (v)
G′(v)

=
f(v)

(1− F (v))2
·
{∫ ∞

v

vi0dF (vi0)− 1− µ+ F (v)µ+ (1− F (v))(µ− v)

}
=

f(v)

(1− F (v))2
·
{∫ ∞

v

(vi0 − v)dF (vi0)− 1

}
>

f(v)

(1− F (v))2

[∫ ∞
ρ

(vi0 − ρ)dF (vi0)− 1

]
for v < ρ

=0

that 1
1−F (v)

G(v) is actually increasing in for v < ρ as desired.

Similarly,

d

dv

(
1

1− F (v)
·G(v)

)
=

f(v)

(1− F (v))2
·
{∫ ∞

v

(vi0 − v)dF (vi0)− 1

}
<

f(v)

(1− F (v))2

[∫ ∞
ρ

(vi0 − ρ)dF (vi0)− 1

]
for v > ρ

=0

implies that 1
1−F (v)

G(v) is decreasing for v > ρ.

Finally,

1

1− F (ρ)
G(ρ) =

1

1− F (ρ)
[C(ρ) + (1− F (ρ))(ρ− µ)]

= ρ− µ. �

A.4 Proof of Lemma 1

We only show part 1. The proof for part 2 is similar. Towards a contradiction, suppose

that If vm > vn > ρ and pm > 0, but pn < 1. If there exist such m and n, there exists k

such that vk > vk+1 > ρ, pk > 0 but pk+1 < 1. Clearly, if F (vk) = 1, pk > 0 is not optimal
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(the agent never takes the box after any investigation); thus, F (vk) < 1. We will show

that decreasing pk in compensation for increasing pk+1, we can improve the value of the

objective function, keeping the incentive constraint satisfied. Change pk and pk+1 keeping

(1− pk + pkF (vk)) (1− pk+1 + pk+1F (vk+1))

constant. Then, by the implicit function theorem,

dpk+1

dpk
= −(1− F (vk)) (1− pk+1 + pk+1F (vk+1))

(1− F (vk+1)) (1− pk + pkF (vk))
.

Hence, the total derivative of the objective function w.r.t. pk is

k−1∏
l=1

(1− pl + plF (vl))G(vk)

−
k−1∏
l=1

(1− pl + plF (vl)) (1− F (vk)) pk+1G(vk+1)

+
k∏
l=1

(1− pl + plF (vl))
dpk+1

dpk
G(vk+1)

=
k−1∏
l=1

(1− pl + plF (vl)) (1− F (vk))

{
G(vk)

1− F (vk)
− G(vk+1)

1− F (vk+1)

}
<0

The last inequality follows from vk > vk+1 > ρ and Fact 1. Hence, decreasing pk slightly

in compensation for increasing pk+1, the value of the objective function is improved.
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Similarly, the total derivative of the right hand side of the constraint w.r.t. pk is

k−1∏
l=1

(1− pl + plF (vl))C(vk)

−
k−1∏
l=1

(1− pl + plF (vl)) (1− F (vk)) pk+1C(vk+1)

+
k∏
l=1

(1− pl + plF (vl))
dpk+1

dpk
C(vk+1)

=
k−1∏
l=1

(1− pl + plF (vl)) (1− F (vk))

{
C(vk)

1− F (vk)
− C(vk+1)

1− F (vk+1)

}
<0

The last inequality follows from the fact that vk > vk+1 > ρ and

d

dv

{
C(v)

1− F (v)

}
=
d

dv

{
1

1− F (v)
·
[∫ ∞

v

vi0dF (vi0)− 1− (1− F (v))v

]}
=

f(v)

(1− F (v))2

{∫ ∞
v

(vi0 − v)dF (vi0)− 1

}
− 1

<
f(v)

(1− F (v))2

{∫ ∞
ρ

(vi0 − ρ)dF (vi0)− 1

}
− 1

=− 1

for v > ρ and F (v) 6= 1. Hence, decreasing pk slightly in compensation for increasing

pk+1, the incentive constraint is also satisfied. �

A.5 Proof of Lemma 4

We only prove the part 1. The proofs for parts 2, 3, 4, and 5 are similar. For the

optimality, the value of the social welfare should not be improved by such manipulation,

i.e., the total derivative of the social welfare should be non-negative. By assumption,
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pOptu+1 = · · · = pOptd−1 = 1. Therefore, applying the implicit function theorem,

dpd/dpu

=−


C(vu) + (F (vu)− 1)

∑d−1
k=u+1

∏k−1
l=u+1 F (vl)C(vk)

+ (F (vu)− 1)
∏d−1

l=u+1 F (vl) · pd · C(vd)


(1− pu + puF (vu)) ·

∏d−1
l=u+1 F (vl)C(vd)

The total derivative of the social welfare is

G(vu) + (F (vu)− 1)
d−1∑

k=u+1

k−1∏
l=u+1

F (vl)G(vk)

+ (F (vu)− 1)
d−1∏
l=u+1

F (vl)pdG(vd) (14)

+ (1− pu + puF (vu)) ·
d−1∏
l=u+1

F (vl) ·
dpd
dpu
·G(vd).

Since ρ < vu implies

−


C(vu) + (F (vu)− 1)

∑d−1
k=u+1

∏k−1
l=u+1 F (vl)C(vk)

+ (F (vu)− 1)
∏d−1

l=u+1 F (vl) · pd · C(vd)

 > 0,

the sign of (14) is equal to the sign of

−


G(vu) + (F (vu)− 1)

∑d−1
k=u+1

∏k−1
l=u+1 F (vl)G(vk)

+ (F (vu)− 1)
∏d

l=u+1 F (vl)pdG(vd)


C(vu) + (F (vu)− 1)

∑d−1
k=u+1

∏k−1
l=u+1 F (vl)C(vk)

+ (F (vu)− 1)
∏d−1

l=u+1 F (vl) · pdC(vd)


−Dd.. (15)
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Note that (15) coincides Uu:d −Dd when pd = 0. Finally, the sign of (15) is independent

from the value of pd, because

Dd = −G(vd)

C(vd)
,

and

(F (vu)− 1)
d−1∏
l=u+1

F (vl)pdG(vd) · C(vd) = (F (vu)− 1)
d−1∏
l=u+1

F (vl) · pdC(vd) ·G(vd).

Hence, we can substitute pd = 0 to (15), in order to evaluate the sign of (14). Then,

we obtain that the sign of total derivative of the objective function with respect to pu is

equal to the sign of Uu:d −Dd. Hence, Uu:d −Dd ≥ 0 is necessary for optimality. �

A.6 Proof of Proposition 5

First, we show the following to lemmas.

Lemma 2. Uu:d −Dd is increasing in u.

Proof of Lemma 2 First, we show that the numerator of Uu:d is increasing in u as

follows:

G(vu) + (F (vu)− 1)
d−1∑

k=u+1

k−1∏
l=u+1

F (vl)G(vk)

−

{
G(vu+1) + (F (vu+1)− 1)

d−1∑
k=u+2

k−1∏
l=u+2

F (vl)G(vk)

}
=G(vu)−G(vu+1)

− (1− F (vu))

{
G(vu+1) + (F (vu+1)− 1)

d−1∑
k=u+2

k−1∏
l=u+2

F (vl)G(vk)

}
≤0.

The last inequality follows from G(vu) ≤ G(vu+1) and pFBu+1 = 1 implies

G(vu+1) + (F (vu+1)− 1)
d−1∑

k=u+2

k−1∏
l=u+2

F (vl)G(vk) ≥ 0.
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Similarly, we can show that the denominator of Uu:d is increasing in u. Recall that

Uu:d , −
G(vu) + (F (vu)− 1)

∑d−1
k=u+1

∏k−1
l=u+1 F (vl)G(vk)

C(vu) + (F (vu)− 1)
∑d−1

k=u+1

∏k−1
l=u+1 F (vl)C(vk)

.

Since G(vu) + (F (vu)− 1)
∑d−1

k=u+1

∏k−1
l=u+1 F (vl)G(vk) is non-negative and increasing in u,

and −C(vu)− (F (vu)− 1)
∑d−1

k=u+1

∏k−1
l=u+1 F (vl)C(vk) is positive and decreasing in u, Uu:d

is increasing in u. Accordingly, Uu:d −Dd is increasing in u. �

Lemma 3. Uu:d −Dd > 0 implies Uu:d+1 −Dd+1 > 0.

Proof of Lemma 3 Suppose that Uu:d −Dd > 0, or equivalently,

C(vd) ·

{
G(vu) + (F (vu)− 1)

d−1∑
k=u+1

k−1∏
l=u+1

F (vl)G(vk)

}

<G(vd) ·

{
C(vu) + (F (vu)− 1)

d−1∑
k=u+1

k−1∏
l=u+1

F (vl)C(vk)

}
.

Adding (F (vu)− 1)
∏d−1

l=u+1 F (vl)G(vd)C(vd) to both sides, we have

C(vd) ·

{
G(vu) + (F (vu)− 1)

d∑
k=u+1

k−1∏
l=u+1

F (vl)G(vk)

}

<G(vd) ·

{
C(vu) + (F (vu)− 1)

d∑
k=u+1

k−1∏
l=u+1

F (vl)C(vk)

}
.

or equivalently, Uu:d+1−Dd > 0. Finally, it follows from Dd , G(vd)/(−C(vd)), G(vd) > 0,

G(vd) ≥ G(vd+1), −C(vd) > 0, and −C(vd) ≤ −C(vd+1) that Dd ≥ Dd+1. Therefore,

Uu:d+1 −Dd+1 > 0, as desired. �

Proof of Proposition 5 If the IC constraint is not binding, i.e., pFB = pOpt, the

optimality of the greedy algorithm is trivial.

Towards a contradiction, suppose that there exists a disclosure policy pOpt that achieves

a strictly larger social welfare than the disclosure policy generated by the greedy algorithm,

pG. By Lemma 1, if there exists k, l < r such that pOptk , pOptl ∈ (0, 1), vk = vl. Accordingly,
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without loss of generality, we can assume that pOpt has an interval structure, i.e., there

exists u∗ ≤ r and d∗ ≥ b such that pOptk = 0 for k ≤ u∗ − 2 and k ≥ d∗ + 2, pOptu∗−1 ∈ [0, 1),

pOptu∗ = pOptu∗+1 = · · · = pOptd∗ , and pOptd∗+1 ∈ [0, 1). On the other hand, by definition, pG has

at most one k ∈ K \ {0} such that pk ∈ (0, 1). Here, we prove for the case of pGk = 0 for

k ≤ u† − 2 and k ≥ d† + 1, pG
u†−1 ∈ [0, 1), and pG

u† = pG
u†+1

= · · · = pG
d† . The proof for the

case of pG
u† = 0 and pG

d†+1
∈ [0, 1) is similar.

First, suppose that u∗ = u†and d∗ = d†. If pOptd∗ = 0, then pOpt = pG, which is a

contradiction. If pGu∗−1 = 0, to satisfy the IC constraint, pOptu∗ = pOptd∗ = 0 must be the case,

and again we have pOpt = pG, contradiction. If Uu∗−1:d∗+1−Dd∗+1 = 0, pOpt and pG achieves

the same social welfare, which is also a contradiction. Suppose that pOptd∗ > 0, pGu∗−1 > 0,

and Uu∗−1:d∗+1 −Dd∗+1 6= 0. Since pGd∗+1 = 0, Uu∗−1:d∗+1 −Dd∗+1 > 0. Accordingly, pOpt

does not satisfy either part 2 or part 5 of Lemma 4, which contradicts the optimality of

pOpt.

Next, suppose u∗ < u†. Since both pOpt and pG satisfy the IC constraint with equality,

d∗ < d† must hold. It follows from pG
u†−1 < 1 and pGd∗+1 = 1 that Uu†−1:d∗+1 −Dd∗+1 ≤ 0.

Since Uu:d is increasing in u, if u∗ < u†−1, we have Uu∗:d∗+1−Dd∗+1 < 0, which contradicts

optimality of pOpt. If u∗ = u†−1, we have Uu∗−1:d∗+1−Dd∗+1 < 0 and Uu∗:d∗+1−Dd∗+1 ≤ 0,

and therefore, we must have pOptu∗−1 = 0, Uu∗:d∗+1 − Dd∗+1 = 0 for the optimality of pOpt.

However, in this case, it follows from (i) pOptk = pGk = 1 for k = u∗ + 1, · · · , d∗, (ii)

pOptk = pGk = 0 for k ∈ {1, · · · , u∗ − 1, d∗ + 2, · · · , K} and Uu∗:d∗+1 −Dd∗+1 = 0 that pOpt

and pG achieves the same social welfare, which is a contradiction.

When u∗ > u†, we can derive a contradiction in a similar manner. Accordingly, the

greedy algorithm finds an optimal disclosure policy. �
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