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1 Introduction

Recent empirical studies have underlined the existence of large flows of productive re-
sources across firms and their important role for aggregate productivity. Production
inputs are constantly being reallocated as firms adjust to changing market environments
and new products and techniques are developed. As documented recently by Micco and
Pagés (2007) and Haltiwanger et al. (2014), labor market regulations may dampen this
reallocation of resources. Using cross-country industry-level data, these studies show
that restrictions on hiring and firing reduce the pace of job creation and job destruction.
In a similar vein, Davis and Haltiwanger (2014) find that the introduction of common-law
exceptions that limit firms’ ability to fire their employees at will has a negative impact
on job reallocation in the United States.

The objective of this paper is to study the implications of firing regulations for ag-
gregate productivity growth. By reducing job reallocation across firms, firing costs may
affect not only the level of aggregate productivity but they are also likely to modify the
incentives of firms to innovate. We investigate the consequences of firing costs on job re-
allocation and productivity growth using a model of innovation-based economic growth.
We extend Hopenhayn and Rogerson’s (1993) model of firm dynamics by introducing an
innovation decision. Firms can invest in research and development (R&D) and improve
the quality of products. Hence, in contrast to Hopenhayn and Rogerson’s (1993) model
(and the Hopenhayn (1992) model that it is based on) where the productivity process is
entirely exogenous, job creation and job destruction in our model are the result of both
idiosyncratic exogenous productivity shocks and endogenous innovation.

Following the seminal work of Grossman and Helpman (1991) and Aghion and Howitt
(1992), we model innovation as a process of creative destruction: entrants displace the
incumbent producers when they successfully innovate on an existing product. In addition
to this Schumpeterian feature, we incorporate the innovations developed by incumbent
firms. We allow incumbent firms to invest in R&D to improve the quality of their own
product. The model is parsimonious and can be characterized analytically in the absence
of firing costs. In particular, we show how the innovation rate of entrants and incumbents
shape the growth rate of the economy and the firm size distribution. The frictionless
model highlights the crucial role of reallocation for economic growth. As products of
higher quality are introduced into the market, labor is reallocated towards these high-

quality firms.! By limiting the reallocation of labor across firms, firing costs change the

! Aghion and Howitt (1994) is an earlier study that highlight this aspect of the Schumpeterian growth
models in their analysis of unemployment.



firms’ incentives to innovate and hence the growth rate of the economy.

We model employment protection as a firing tax and study its effect on innovation and
growth. We find that the effects of the firing tax on aggregate productivity growth depend
on the interaction between the innovation of entrants and incumbents. In fact, the firing
tax can have opposite effects on entrants’ and incumbents’ innovation: while the firing tax
tends to reduce entrants’ innovation, it may raise the innovation incentives of incumbent
firms. The firing tax reduces the entrants’ innovation because the tax itself represents
an additional cost that reduces expected future profits (direct effect). In addition, the
misallocation of labor further reduces expected future profits (misallocation effect). For
incumbents, the consequences of the firing tax are less clear-cut. In particular, the firing
tax has an ambiguous impact on the incumbents’ incentive to innovate. Firms that
are larger than their optimal size have additional incentives to invest in R&D in the
presence of the firing tax. For those firms, innovation has the added benefit of allowing
them to avoid paying the firing tax as they would no longer need to downsize if the
quality of their product is higher (tax-escaping effect). By contrast, for firms that are
smaller than their optimal size, the direct effect and the misallocation effect tend to
discourage innovation. In addition, the incumbents’ incentive to innovate is affected
by the rate at which entrants innovate. By reducing the entry rate, firing costs lower
the incumbent’s probability of being taken over by an entrant. This decline in the rate
of creative destruction raises the expected return of R&D investments and therefore
tends to raise the incumbents’ innovation (creative-destruction effect). In our baseline
calibration, the entrants’ innovation rate falls and the incumbents’ innovation rate rises

2 Overall, the negative effect on entrants dominates, and

as a result of the firing tax.
the firing tax leads to a fall in the rate of growth of aggregate productivity. Our results
illustrate the importance of including the incumbents’ innovation in the analysis: the
fall in the growth rate is dampened by the response of the incumbents’ innovation, and
ignoring this dimension would have led to overestimate the decline in the growth rate.
This result has implications beyond the study of firing costs. Regulations or market
imperfections that reduce the entry rate are likely to have a weaker impact on growth
once the incumbents’ innovation is accounted for.

The negative effect of the firing tax on growth suggested by the baseline calibration

is in line with recent empirical evidence on the topic. Firing regulations have been

2Saint-Paul (2002) makes a related argument that countries with a rigid labor market tend to produce
relatively secure goods at a late stage of their product life cycle, so that these countries tend to specialize
in ‘secondary’ innovations. A country with a more flexible labor market tends to specialize in ‘primary’
innovations. Thus increasing firing costs may encourage ‘secondary’ innovations, and the effect on
aggregate growth depends on which type of innovation is more important.



shown to have a negative effect on the level but also on the growth rate of aggregate
productivity.> Bassanini et al. (2009) find that firing costs tend to reduce total factor
productivity growth in industries where firing costs are more likely to be binding. Using
an empirical strategy similar to Bassanini et al. (2009), we complement our theoretical
results by empirically investigating the effects of firing costs on R&D spending. We find,
in line with the predictions of our baseline model, that firing costs tend to reduce R&D
spending.

Our paper is related to several theoretical studies that study the consequences of
firing costs on aggregate productivity. The existing literature, however, has mainly
focused on the effects of firing costs on the level of aggregate productivity. Using a
general equilibrium model of firm dynamics, Hopenhayn and Rogerson (1993) and more
recently Moscoso Boedo and Mukoyama (2012) and Da-Rocha et al. (2016) have shown
that firing costs hinder job reallocation and reduce allocative efficiency and aggregate
productivity.* In line with these papers, we find that the level of employment and labor
productivity falls. We show that in addition to the level effects, employment protection
also affects the growth rate of aggregate productivity.

In focusing on the consequences of barriers to labor reallocation on aggregate produc-
tivity growth, our analysis goes one step beyond the recent literature on misallocation
that focuses on the level effects, following the seminal work of Restuccia and Rogerson
(2008) and Hsieh and Klenow (2009). Empirical studies that evaluate the contribution of
reallocation to productivity changes, such as Foster et al. (2001) and Osotimehin (2016),
are designed to analyze the sources of productivity growth, rather than the level; in that
sense, our analysis is more comparable to that literature. We highlight the fact that
barriers to reallocation affect not only the allocation of resources across firms with dif-
ferent productivity levels, but also the productivity process itself as it modifies the firms’
incentives to innovate. The additional effect of barriers to reallocation when productivity
is endogenous is also the focus of Gabler and Poschke (2013) and Bento and Restuccia

(forthcoming).” In contrast to our study, their focus is, as in the studies cited above,

3See Autor et al. (2007) for an estimate of how common-law restriction that limits firms’ ability to
fire (the “good faith exception”) in the US had a detrimental effect on state total factor productivity in
manufacturing.

4Hopenhayn and Rogerson (1993) find that a firing cost that amounts to one year of wages reduces
aggregate total factor productivity by 2%. Moscoso Boedo and Mukoyama (2012) consider a wider
range of countries, and show that firing costs calibrated to match the level observed in low income
countries can reduce aggregate total factor productivity by 7%. Da-Rocha et al. (2016) analyzes a
stylized continuous-time model where firm-level employment can only take two different values, and also
find that the firing cost reduces aggregate productivity.

5In Gabler and Poschke (2013), firms grow by engaging in risky experimentation, and firing costs lead
to a small increase in experimentation. Bento and Restuccia (forthcoming) show that policy distortions



exclusively on the level of aggregate productivity. Samaniego (2006b) highlights the ef-
fects of firing costs in a model with productivity growth. However, he considers only
exogenous productivity growth and studies how the effects of firing costs differ across
industries.® Poschke (2009) is one of the few exceptions that studies the effects of firing
costs on aggregate productivity growth. In Poschke (2009), firing costs act as an exit
tax which lowers the exit rate of low productivity firms. We focus on a different channel
and show that firing costs may also affect aggregate productivity growth through their
effects on R&D and innovation.”

Our paper is also related to the growing literature on innovation and firm-dynamics
that followed the contribution by Klette and Kortum (2004). In particular, our paper
is related to Acemoglu et al. (2013) that study the consequences of R&D subsidies and
the allocation of R&D workers across firms. By contrast, our paper studies the effect
of the allocation of production workers across firms. Also related are models by Akcigit
and Kerr (2015), Acemoglu and Cao (2015), and Peters (2016) that consider quality-
ladder firm dynamics models where incumbents are allowed to innovate on their own
products.® Our model also exhibits this feature but focuses on a distinct question.
Compared to these models, one important difference of our approach is that we use
labor market data to discipline the model parameters, consistently with our focus on
labor market reallocation and labor market policy.® Methodologically, these models are
typically written in continuous time, while we use a discrete-time framework.!® This
modeling strategy allows us to solve the model with firing taxes using a similar method
to those used for standard heterogeneous-agent models (such as Huggett (1993) and
Aiyagari (1994)) and standard firm-dynamics models (such as Hopenhayn and Rogerson
(1993) and Lee and Mukoyama (2008)). This is particularly important for our model,
since firing taxes introduce a kink in the return function and makes it difficult to fully
characterize the model analytically. The solution method also allows us to easily extend

the model and to introduce several features that improve the fit of the model.

that are positively correlated to establishment-level productivity imply larger reductions in aggregate
productivity when productivity is endogenous.

6He finds that firing costs have a stronger negative impact in industries where the rate of technical
change is rapid. In a related paper, Samaniego (2008) finds that the increase in aggregate employment
induced by embodied technical change is smaller in the presence of firing costs.

"Bertola (1991) is an earlier paper that analyzes the growth effect of firing costs. His analysis is
mostly qualitative.

8Farlier papers that analyze incumbents’ innovations in the quality-ladder framework include
Segerstrom and Zolnierek (1999), Aghion et al. (2001), and Mukoyama (2003).

9Garcia-Macia et al. (2015) also utilizes labor market data to quantify their model, innovation is
however exogenous in their model.

10Ates and Saffie (2016) is another recent contribution based on a discrete-time formulation of the
Klette-Kortum model.



The paper is organized as follows. Section 2 sets up the model. Section 3 provides
analytical characterizations of the model. Section 4 describes the quantitative analysis.
Section 5 analyzes two extensions of the baseline model. Section 6 presents some empir-

ical evidence on the relationship between firing costs and R&D. Section 7 concludes.

2 Model

We build a model of firm dynamics in the spirit of Hopenhayn and Rogerson (1993).
We extend their framework to allow for endogenous productivity at the firm level. The
innovation process is built on the classic quality-ladder models of Grossman and Helpman
(1991) and Aghion and Howitt (1992), and also on the recent models of Acemoglu and
Cao (2015) and Akcigit and Kerr (2015).

There is a continuum of differentiated intermediate goods on the unit interval [0, 1]
and firms, both entrants and incumbents, innovate by improving the quality of these
intermediate goods. Final goods are produced from the intermediate goods in a com-
petitive final good sector. We first describe the optimal aggregate consumption choice.
We then describe the final good sector and the demand for each intermediate good. We
then turn to the decisions of the intermediate goods firms which constitute the core of

the model. Finally, we present the balanced growth equilibrium.

2.1 Consumers

The utility function of the representative consumer has the following form:
U=> pBlog(Ch) — L),
t=0

where C} is consumption at time ¢, L, is labor supply at time ¢, 8 € (0, 1) is the discount
factor, and £ > 0 is the parameter of the disutility of labor. Similarly to Hopenhayn and
Rogerson (1993), we adopt the indivisible-labor formulation of Rogerson (1988) and L,
represents the fraction of individuals who are employed at time ¢.

The consumer’s budget constraint is

A1 +C = (1 + 1) Ay +w Ly + T4,

A = / Vidj
Nt

where



is the asset holding. The representative consumer owns all the firms, hence th indicates
the value of a firm that produces product j at time ¢, and N is the set of products that
are actively produced at time ¢.!* In the budget constraint, r; is the net return of the
asset, w; is the wage rate, and 7T; is a lump-sum transfer (that will be used to transfer
the income from the firing tax to the consumer).

The consumer’s optimization results in two first-order conditions. The first is the

Euler equation:

L 84 rp) (1)

C Cis1’

and the second is the optimal labor-leisure choice:

Wt o
Bt )
2.2 Final good firms

The final good Y; is produced by the technology

1
5
Y, = </ qjtwyjtl_wdj) .
N

The price of Y; is normalized to one, y;; is the amount of intermediate product j used
at time ¢ and qy; is the realized quality of intermediate product j.'* The realized quality
is the combination of the potential quality gj;, which depends on the innovation decision

of intermediate-good firms, and an exogenous transitory shock a;y:
Qjt = Oeqjt-

We assume that aj; is i.i.d. across time and products.’®> We also assume that the tran-
sitory shock is a product-specific shock rather than a firm-specific shock, so that the
value of aj; does not alter the ranking of the realized quality compared to the potential

quality.t

HWe do not distinguish firms and establishments in this paper. Later we use establishment-level data
in our calibration. Using firm-level data yields similar results.

2Gimilar formulations are used by Luttmer (2007), Acemoglu and Cao (2015), and Akcigit and Kerr
(2015), among others.

13The i.i.d. assumption across time is relaxed in Section 5.1.

141f the shock is at the firm level, it is possible that the incumbent firm 4’s realized quality cv;q;; is
larger than the new firm j’s realized quality a;q;; even if g;; > gy



Let the average potential quality of intermediate goods be

_ 1 .
@ = N, (/qutdj),

where N, is the number of actively produced products, and the quality index Q); be

Note that the quality index grows at the same rate as aggregate output Y; along the
balanced-growth path.

The final good sector is perfectly competitive, and the problem for the representative

1

1=
max (/ qjt¢yjt1_¢d]> —/ PitYjedj.
Yjt N; N

The first-order condition leads to the inverse demand function for y:

final good firm is

Djt = qjtd}yjt_wytw- (3)

Final-good firms are introduced for ease of exposition; as in the standard R&D-based
growth models, one can easily transform this formulation into a model without final
goods, assuming that the consumers and firms engaging in R&D activities combine the
intermediate goods on their own.!®> In this sense, the final-good sector is a veil in the
model, and we will ignore the final-good firms when we map the model to the firm

dynamics data.

2.3 Intermediate good firms

The core of the model is the dynamics of the heterogeneous intermediate-good firms.
Each intermediate-good firm produces one differentiated product and is the monopolist
producer of that product. Intermediate-good firms enter the market, hire workers, and
produce. Depending on the changes in the quality of their products, they expand or
contract over time, and they may be forced to exit. Compared to standard firm dynamics
models, the novelty of our model is that these dynamics are largely driven by endogenous
innovations.

The intermediate firms conduct R&D activities to innovate. We consider two sources

of innovations. One is the innovation by incumbents: an incumbent can invest in R&D

15Gee, for example, Barro and Sala-i-Martin (2004).



in order to improve the potential quality of its own product. The other is the innovation
by entrants: an entrant can invest in R&D to innovate on a product that is either (i) not
currently produced, or (ii) currently produced by another firm. If the entrant is successful
at innovating, the entrant becomes the monopolist for that product and displaces the
incumbent monopolist whenever the product is currently produced by another firm. The

previous producer is, as a result, forced to exit.'6

2.3.1 Production of intermediate goods

Each product j is produced by the leading-edge monopolist who produces the highest

quality for that particular product. The firm’s production follows a linear technology
Yjt = gjta

where ¢;; is the labor input. Our main policy experiment is to impose a firing tax on
intermediate-good firms. We assume that the firm has to pay the tax 7w, for each worker

fired,'” including when it exits.'8

2.3.2 Innovation by incumbents

The incumbent producer can innovate on its own product. The probability that an
incumbent innovates on its product at time ¢ is denoted x;j. A successful innovation
increases the potential quality of the product from g¢;; to (1 4+ A;)g;:, where A\; > 0, in

the following period. The cost of innovation, ryj;, is assumed to be
q;
Irje = Qth,ithjtﬂ@
4

where v > 1 and ; are parameters.'?

16Instead of assuming that the lower-quality producer automatically exits, we can resort to a market
participation game with price competition as in Akcigit and Kerr (2015).

"Following the literature (e.g. Hopenhayn and Rogerson (1993)), we assume that the firing costs are
incurred only when the firm contracts or exits (that is, only when job destruction occurs). As is well
documented (see, for example, Burgess et al. (2000)), worker flows are typically larger than job flows.
The implicit assumption here is that all worker separations that are not counted as job destruction are
voluntary quits that are not subject to the firing tax.

18 An alternative specification is to assume that the firm does not need to incur firing costs when it
exits. See Samaniego (2006a) and Moscoso Boedo and Mukoyama (2012) for discussions.

9The assumption that the innovation cost increases with productivity is frequently used in endogenous
growth literature. See, for example, Segerstrom (1998), Howitt (2000), and Akcigit and Kerr (2015).
Kortum (1997) provides empirical support for this assumption in a time-series context.



2.3.3 Innovation by entrants

A potential entrant enters after having successfully innovated on an intermediate good
that is either currently produced by an incumbent or not currently produced. In order

to innovate, a potential entrant has to spend a fixed cost ¢Q); and a variable cost

g = QEthEjﬂ

to innovate with probability zg;;.2° Here, ¢, v and 0 are parameters. A successful
innovation increases the quality of product j from gj; to (14+Ag)g;: in the following period.
The innovation step for the entrants, \g, is allowed to be different from the incumbents’
innovation step A\;. We assume that the entrants’ innovation is not targeted: each entrant
innovates on a product that is randomly selected. The entrants choose their innovation
probability before learning the quality of the product they will innovate upon. An entrant
innovates on an existing product with probability N;, and on an inactive product with
probability 1 — N;. We assume that innovating over a vacant line improves the quality
of the product over a quality drawn from a given distribution h(g). We denote by m;

the mass of potential entrants.

2.3.4 Exit

Firms can exit for two reasons: (i) the product line is taken over by an entrant with
a better quality; (ii) the firm is hit by an exogenous, one-hoss-shay depreciation shock
(exit shock). While exit is an exogenous shock from the viewpoint of the incumbent firm
in both cases, the first type of exit is endogenously determined in equilibrium.?!

The probability that an incumbent is taken over by an entrant is denoted pu;. As
we will see, this probability, which we also call the rate of creative destruction, depends
on the mass of potential entrants and on the innovation intensity of each entrant. The
probability of the depreciation shock, assumed to be constant across firms, is denoted by
6 € (0,1). After this shock, the product becomes inactive until a new entrant picks up
that product. From a technical viewpoint, the depreciation shock enables the economy

to have a stationary distribution of (relative) firm productivity.?

20Bollard et al. (2016) provide empirical support for the assumption that entry costs increase with
productivity.

2INote that, under the assumptions above, a firm never find it optimal to voluntarily exit. Even when
the firing tax exists, the strategy of operating in a small scale today and exiting tomorrow dominates
exiting immediately.

22Gee, for example, Gabaix (2009).

10



2.4 Timing of events and value functions

The timing of events in the model is the following. Below, we omit the firm subscript j
when there is no risk of confusion.

At the beginning of period ¢, all innovations from last period’s R&D spending realize.
Incumbent firms have to exit if an entrant has innovated on their product line, including
when the incumbent and the entrant innovate at the same time. Then the transitory
productivity shock realizes. The firms (including new entrants) receive the depreciation
shock with probability §. Exiting firms pay the firing cost. Potential entrants and
incumbents decide on their innovation rate, at the same time incumbents also choose
their employment level and pay the firing costs whenever they contract. The labor
market clears and production takes place. The consumer decides on consumption and
saving.

We now express the firm’s optimization problem as a dynamic programming problem.
The expected value for the firm at the beginning of the period (after receiving the

transitory shock and before receiving the depreciation shock) is
Zi(qs, oy eq) = (1 = )V (a1, v,y be1) + 6V (L)

The first term on the right-hand side is the value from surviving and the second term is
the value from exiting due to the exogenous exit shock. When exiting, the firm has to

pay a firing tax on all the workers fired. The value of exiting is then
Vi2(li1) = —Twily 1.

The value of survival is

VtS(Qt, Oétagtq)
= max {Ht(%, ap, b1, o) +

L,z

1 +—7"t+1 (1 = pe)Sea (e, @ b)) — utthH&)} .

Here, Siy1(zr, qi, 0r) is the value of not being displaced by an entrant and g, is the
probability of being displaced by an entrant. The value of not being displaced by an

entrant is

St+1($lt7 qt, gt) = (1 - $It)Eat+1 [Zt+1(Qt7 i1, Et)] + IItEozt+1 [Zt+1((1 + )\I)Qta i1, gt)],

11



where E,, ,[-] is the expected value with respect to a;41 and the period profit is
1 by by ) = (a6 — wi)ly — 0,Qu Xy — 0,61 — 1
t(QmOét, t—15 tyxlt) ([OétQt] t t wt) t Ith_ Trt TWy max< y -1 t>7
¢

where the inverse demand function is obtained from equation (3).
We assume free entry, that is, anyone can become a potential entrant by spending

these costs. The free entry condition for potential entrants is

max {—QEQﬂEjt7 — 9Q: +

IEt

TEiV =0, 4
1+, Bt E,t+1} (4)
where VE,t—l—l is the expected value of an entrant at time t+1. Because the entrant decides
on its innovation probability before learning its quality draw, the expected value Vg 4y
is constant across potential entrants and so is the innovation probability. The optimal

value of the innovation probability, x7,, is determined by

1
1+7’t

VE,t+1 - ’YGEth*EtW_l =0 (5)

Note that z7}; is not affected by the firing tax. The response of the entry rate to changes

in firing tax occurs through variation in the mass of potential entrants m;.%?

2.5 Balanced growth equilibrium

Because the economy exhibits perpetual growth, we first need to transform the problem
into a stationary one before applying the usual dynamic programming techniques. From
this section, we focus on the balanced-growth path of the economy, where wy, C}, Y;, Q¢
grow at a common rate g. Note that the average quality g, grows at rate g, = (1+ g)% -1
along this path. Let us normalize all variables except ¢, by dividing by @;. For ¢;, we
normalize with ¢. All normalized variables are denoted with a hat ("): for example,

}A/t =Y,/Q, CA’t = Cy/Q:, ¢ = ¢:/qr, and so on.

ZFrom (4) and (5), %, satisfies

—Opay, — ¢ +0pxy, =0

and thus 7, is a constant number z7; that can easily be solved as a function of parameters. The solution

12



2.5.1 Normalized Bellman equations

From the consumer’s Euler equation (1),

Bl +ri41) = ngl =1l+g
holds. Therefore (1 + ¢)/(1 +r) = B holds along the stationary growth path. This can
be used to rewrite the firm’s value functions as the following. We use the hat notation
for the stationary value functions, in order to distinguish from the previous section. The
time subscripts are dropped, and we denote by ¢ the previous period employment and

by ¢’ the current period employment. The value at the beginning of the period is

Z(g,a,0) = (1 = V(G ar, 0) + 6V°(0), (7)

where

~

Vo) = —rwl.

The value of survival is

V*(g,,f) = max {ﬂ(@a,f,ﬁﬂxz) +8 ((1 - S (xn ! J’) —u7w5’>}7 (8)

0>0,21 1+ g4

where

~ A ~ -~ R 1 A~
S (x], d ,6’) =(1—z1)Ey [Z( g ,o/,f’)} + By {Z (m,a’,ﬂ)} .
1+ g, 1+ g, 1+ g,

The period profit can be rewritten as

(g, o, 0,0, z7) = ([0g)* 0"V — @) — 0;G2;” — 7 max{0, — £'). (9)

Note that the Bellman equation (8) can be solved for given Y, w, g, and .

For the entrants, the free entry condition can be rewritten as:
max {—QEIE’Y — gb + ﬁxEVE} =0.
TE

2.5.2 General equilibrium under balanced growth

Let the decision rule for x; be Xj(q,«,¥), and the decision rule for ¢ be L'(G,«,l).
Denote the stationary measure of the (normalized) individual state variables as f(q, a, ¢)

before the innovation and hiring decisions. Innovating over a vacant line improves the

13



quality of the product over a quality drawn from a given distribution h(g). Let Q denote
the cumulative distribution function of o and let w denote the corresponding density
function. Given these functions, we can solve for the stationary measure as the fixed

point of the mapping f — T f, where T is given in Appendix A. The total mass of active

Nz///ﬂmMWMM

From the steady-state condition, the mass of active product lines can be computed easily

aS24

product lines is

(1 =9)
04 (1 =9

The aggregate innovation by incumbents is

(10)

Xi= [ [ [ ti.00f6.0.0ddd0d
and the aggregate innovation by entrants is
Xg =mzy.

The probability that an incumbent is displaced by an entrant, y, is equal to the aggregate
innovation by entrants:

p=Xg

Let us denote f the marginal “density” (measure) of relative productivity:

ﬂ@z//}@m@mw

Then the normalized value of entry in the stationary equilibrium can be calculated as:

vi= | [ / Z(“*—W,a,o) (@) + (1 — N)h(@))dd| w(a)da.

1+ g,

In the goods market, the final goods are used for consumption and R&D, and therefore

~

Y =C+R,

holds, where R is the normalized R&D spending which includes the potential entrants’

fixed cost and C' is given by the labor-leisure decision (2).

24The equation is derived from the equality of inflows and outflows: 6N = u(1 —§)(1 — N).

14



3 Characterization of the model

The case without the firing tax can be characterized analytically. It provides a useful
benchmark and gives some intuition for the determinants of innovation and growth in the
model. Also, the economy without firing costs is later used to calibrate the model in the
quantitative analysis. The case with the firing tax is less straightforward to characterize.
We provide a partial characterization of the model with the firing tax that facilitates the

numerical computation of the equilibrium.

3.1 Analytical characterization of the frictionless economy

The solution of the economy without the firing tax boils down to a system of nonlinear
equations. The full characterization is in Appendix B. Here, we present several key
results.

The first proposition characterizes the value function and the innovation probability

of incumbents.

Proposition 1 Given Y, i, and gq, the value function for the incumbents is of the form

A

Z(q, a) = Aaq + Bq,

and the optimal decision for xy is

L (6(1 - u>A1<A+B>)f—1
! (1+ gq)v0r

where

~

Y
A={1-0)v+

and B solves

v—1 A+ B
=(1- 1-— 1 .
B= (1080 — ) (14 1) 77

Proof. See Appendix B. =

This result shows that x; is constant across firms regardless of the values of a and
G. This is implies that the expected growth of a firm is independent of its size, which is

consistent with Gibrat’s law.?® This property implies that the endogenous productivity

ZVarious studies have found that Gibrat’s law holds for large firms, while many document important
deviations for young and small firms (e.g. Evans (1987) and Hall (1987)). See Sutton (1997) for a
survey.
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process is a stochastic multiplicative process with reset events.? This process allows us

to characterize the right tail of the firm productivity distribution as follows.

Proposition 2 Suppose that the distribution of the relative productivity of vacant lines,
h(q), is bounded. Then the right tail of the relative firm productivity q follows a Pareto
distribution with the shape parameter k (that is, the density has a form of Fg~*+V)

which solves
L= (1-0)[(1—mzrf+py+ (1 —p—(1—pzr)y].

where v = (1 + A1) /(1 +94), % = (1 + Ap) /(1 +gq), and v, = 1/(1 + gg).

Proof. See Appendix B. =

Because the firm size (in terms of employment) is log-linear in ¢ for a given «, the
right-tail of the firm size also follows the Pareto distribution with the same shape pa-
rameter k.

Finally, we are able to characterize the growth rate of average productivity

Proposition 3 The growth rate of average productivity is given by
9o = (1= )+ Arzr)(1 = ) + (1+ Ap)pl +0(1+ Ap)g" — 1,

where qp, 1s the average relative productivity of inactive product lines.

Proof. See Appendix B. =

Once the firing tax is introduced, x; is no longer constant across firms, and therefore
this formula is not valid. However, it is still useful to think of the effect of the policy
on growth through these three components: the incumbents’ innovation, the entrants’

innovation on active products, and the entrants’ innovation on inactive products.

3.2 A characterization of the economy with the firing tax

With the firing tax, the employment decision of the firm is no longer static, and there-
fore the characterization is not as straightforward as in the case without the firing tax.
However, we can derive a partial characterization that greatly eases the computational

burden of the numerical solution method. The main idea is to formulate the model in

26See, for example, Manrubia and Zanette (1999).
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terms of the deviations from the frictionless outcome. The details of the derivation are
in Appendix B.
First, define the frictionless level of employment without temporary shock, with o = 1,

as27

(G, Y) = arg mﬁx([Q]W*W — )l

A~

Let us denote by ¢ = ¢ /0 (q;w, Y) the deviation of past employment from the current
frictionless level and by ¢ = ¢/ /0*(G;w,Y") the deviation of current employment from the
current frictionless level.
We can show that the period profit in (9) is linear in ¢ and can be written as
cjfl(a,g, Z’,xl), where
P
0=YY — i | Qa, Y)Y =02 —7Q(, Y )b max (0, (—0'),

«

Q,Y)

H(a,g, ~’,x1) = [

with Q(d,Y) = *(¢; 0, Y) /4.
All value functions are also linear in ¢. We use the tilde notation to denote the value
functions normalized by §¢. For example Z(a,f) is defined from Z(§,a,t) = ¢Z(a, 0),

and equation (7) can be rewritten as

Z(a, ) = (1 =8 V3(a, 0) + 6V°(0),

Vs(a,g) = max {ﬁ(a,g, (7’,371) +5 ((1 — )= p

0>0,z;

The linearity of the value functions implies that

5‘(331,[7,) ~ / Vi ~ / (1+QQ)E, 1+)\I
_— 1— E/ Z ]- El Z

1+g, L) o |2 (@ 0+ 00)0)) Al R T v | s
also holds.

The optimization problem in (11) has two choice variables, ¢ and x;. The first-order

27The frictionless level of employment is £*(g;w,Y) = [(1 — z/;)/zi)ﬁzjff
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condition for z; is

76133[71 =17

and thus z; can be computed from

I, 1/(v=1)
Ty = — ,
! (7@)

where Iy = 81— p) B [Z2(0/. (1 4+ g7 /(L + M) (L+ Ar) = Z(a's (14 g)P)] /(1 +g,).
From here, it is easy to see that x; is uniquely determined once we know ¢, Let the
decision rule for ¢ in the right-hand side of (11) be £'(a, £). Then the optimal z; can

be expressed as 7 = Xj(a, £). This implies that z; is independent of §.

4 Quantitative analysis

In this section, we conduct the main experiment of the paper. We calibrate the model
without firing taxes to the US economy, and analyze the effects of firing taxes on job

flows, employment and output levels, and productivity growth.

4.1 Computation and calibration

The details of the computational methods are described in Appendix C. Our method
involves similar steps to solving the standard general-equilibrium firm dynamics model.
As in Hopenhayn and Rogerson (1993) and Lee and Mukoyama (2008), we first make a
guess on relevant aggregate variables (in our case w, u, g, and Y), solve the optimization
problems given these variables, and then update the guess using the equilibrium con-
ditions. This procedure is also similar to how the Bewley-Huggett-Aiyagari models of
heterogeneous consumers are typically computed (see, for example, Huggett (1993) and
Aiyagari (1994)). This separates our work from recent models of innovation and growth,
such as Klette and Kortum (2004), Acemoglu et al. (2013), and Akcigit and Kerr (2015),
as these models heavily rely on analytical characterization in a continuous-time set-
ting. Being able to use a standardized numerical method to compute the equilibrium is
particularly useful in our experiment, as the firing tax introduces a kink in the firm’s
objective function, which makes it difficult to obtain analytical characterizations to the
maximization problem.

Following a strategy similar to Hopenhayn and Rogerson (1993), we calibrate the

parameters of the model under the assumption that firing costs are equal to zero and
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use US data to compute our targets. In addition to the standard targets that are widely
used in the macroeconomic literature, we use establishment-level labor market data to
pin down the parameters that relate to the establishment dynamics.?

The first set of targets are relatively standard. The model period is one year. The
discount factor f is set to 0.947 in line with Cooley and Prescott (1995). Similarly to
Hopenhayn and Rogerson (1993), we set the value of the disutility of labor £ so that the
employment to population ratio is equal to its average value in the US. The value of
is set to 0.2 which implies an elasticity of substitution across goods of 5. This value is in
the range of Broda and Weinstein’s (2006) estimates. Our value of 0.2 implies a markup
of 25%. We set the curvature of the innovation cost v to 2. As noted by Acemoglu et al.
(2013), 1/~ can be related to the elasticity of patents to R&D spending, which has been
found to be between 0.3 and 0.6.2° These estimates imply that v is between 1.66 and
3.33.

Next, we turn to the size of the innovations by entrants and incumbents, \g and ;.
As underlined by Acemoglu and Cao (2015), various studies suggest that the innovations
developed by entrants are more radical than those developed by incumbents, that is
Mg > A3 We set A\g = 1.5 and A\; = 0.25, based on the recent estimates of Bena et al.
(2015). These numbers are also similar to the ones used by Acemoglu and Cao (2015).
The implied innovation advantage of entrants, (1+Ag)/(14+A;) is equal to 2, which is also
in line with estimates suggested by patent data when we interpret the number of citations
of a patent as indicative of the size of the innovation embedded in the patent.?! To set
the innovation costs parameters, we assume that the cost of innovation is proportional
to its size, that is 0g/0; = Ag/Ar, and thus radical innovations are more costly than
incremental innovations. We then set the level of #; to match the average growth rate of
output per worker. When 6; is smaller, the probability to innovate is higher, and thus
the output growth rate is higher. Finally, we set ¢ to match the average job creation
rate by entrants in the data. When ¢ is small, there is more entry, and therefore the job
creation rate by entrants is larger. We assume that the transitory shock « is uniformly
distributed, and can take three values {1—¢, 1, 1+¢}, with probability 1/3 for each value.

280ur model does not distinguish between firms and establishments. As 95 percent of US firms
are single-establishment firms, the results would be similar if we had instead calibrated the model on
firm-level labor market data.

29Gee for example Griliches (1990).

300me recent example is Akcigit and Kerr (2015).

31To approximate the innovation advantage of entrants, we look at the relative number of patent
citations for entrants and incumbents. Using data on patents of Compustat firms, Balasubramanian
and Lee (2008) compute the number of patent citations by firm age and find that the mean patent
citation is equal to 15.7 at age 1 and equal to 8.2 at age 25, which implies a ratio of the citations at age
1 over the citations at age 25 equal to 1.9. We thank the authors for making these data available to us.
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Table 1: Calibration

‘ Parameter ‘ Calibrated values

Discount rate 15} 0.947
Disutility of labor ¢ 1.475
Demand elasticity Y 0.2
Innovation step: entrants AE 1.50
Innovation step: incumbents AT 0.25
Innovation cost curvature ¥ 2.0
Innovation cost level: entrants O 7.998
Innovation cost level: incumbents 0r 1.333
Entry cost 10} 0.1643
Exogenous exit (depreciation) rate ) 0.001
Transitory shock € 0.267
Avg productivity from inactive lines | h mean 0.976
Firing tax T 0.0

The value of ¢ is set to replicate the aggregate job creation rate. The job flows are larger
when ¢ is larger. The overall job creation rate and the job creation rate by entrants,
used as targets for ¢ and e, are computed from the Business Dynamics Statistics (BDS)
published by the Census Bureau.?? The data on the employment-to-population ratio and
the growth rate of output per worker are computed from the Bureau of Labor Statistics
(BLS) and the Bureau of Economic Analysis (BEA) data. All averages are computed
over 1977-2012.

When an entrant innovates on an inactive product line, the entrant draws the (nor-
malized) productivity upon which it innovates from a uniform distribution over [0, 2¢"].
We set the mean ¢" = 1, so that the inclusion of new product lines does not alter the
value of average ¢.>> The exogenous exit (depreciation) probability ¢ is set so that the
tail index « of the productivity distribution matches the value of 1.06 estimated by Axtell
(2001) on the US Census data.?* A large § implies a larger tail index, which indicates a
thinner tail.3® The parameter values are summarized in Table 1.

Table 2 compares the baseline outcome and the targets. We also report the R&D
expenditures as a share of aggregate output though we do not use it as a target in the
calibration. The R&D ratio, at about 12%, is larger than what we typically see from

conventional measures of R&D spending. However, because our model intends to capture

32The job creation rates data are publicly available at http://www.census.gov/ces/dataproducts/bds/.

33Note that the approximation over discrete states creates a slight deviation from the target value of
1.

34 Axtell reports a value of 1.059. He also reports values ranging from 0.994 to 1.098 depending on
the dataset used. Luttmer (2011) reports the value of 1.05 for the US firms. Ramsden and Kiss-Haypal
(2000) reports the U.S. estimate of 1.25, along with estimates from other countries.

35See Section 3.1 for the expression of the tail index.
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Table 2: Comparison between the US data and the model outcome

’ ‘ Data ‘ Model ‘
Growth rate of output g (%) 1.48 1.48
Employment L 0.613 | 0.613
Tail index & 1.06 1.06
Job creation rate (%) 17.0 17.0
Job creation rate from entry (%) 6.4 6.4
Job destruction rate (%) 15.0 17.0
Job destruction rate from exit (%) 5.3 2.8
R&D spending ratio (R/Y) (%) 11.5

Note: The growth rate and employment targets are computed
using BEA and BLS data; The tail index is from Axtell’s (2001)
estimate; the job flows data are computed from the Census Bu-
reau BDS dataset. The job destruction rate, job destruction
rate from exit and R&D spending are not targeted in the cal-
ibration.

innovation in a broad sense, which includes productivity improvements that come from
non-R&D activities such as improvements in the production process or from learning by
doing, it is more appropriate the compare the model R&D spending to a broader statistic
than the conventional measure of R&D. Here, the output share of R&D spending is in
line with Corrado et al.’s (2009) estimate of the US intangible investments in the 1990s.

The baseline model can also be used to assess the contribution of incumbents and
entrants to aggregate productivity growth.?® Using Proposition 3, we can decompose
the growth rate of output into the contribution of the incumbents’ innovation and that
of the entrants. The contribution of incumbents is computed as [(1 — 0) Az (1 — p)]/g,
and that of entrants is [(1 — §)Agp + 0((1 + Ag)g" — 1)]/g,. In the baseline calibration,

we find that incumbents account for 33% of the growth rate of aggregate productivity.

4.2 Quantitative results

We now turn to our main experiment in which we evaluate the effects of firing costs.
We study the effects of a firing tax 7 = 0.3; that is, the cost of dismissal per worker
amounts to 3.6 months of wages. The choice of this level of tax is partly motivated
by data from the World Bank Doing Business Dataset.3” The Doing Business dataset
reports the mandatory severance payments due by firms upon firing a worker. To ensure

comparability across countries, precise assumptions are made about the firm and the

36See, for example, Garcia-Macia et al. (2015) who use a similar approach to decompose the growth
rate of aggregate productivity growth in the US.

3"The data are constructed from a questionnaire on employment regulations that is completed by
local lawyers and public officials as well as from the reading of employment laws and regulations.
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Table 3: The effects of firing costs

Baseline | Experiment Fixed entry

7=20.0 T=0.3 7=0.3

Growth rate of output g (%) 1.48 1.40 1.49
Average innovation probability by incumbents xf 0.084 0.090 0.086
Innovation probability by entrants xg 0.143 0.143 0.143
Creative destruction rate u (%) 2.65 2.34 2.65
Employment L 100 98.7 99.7
Normalized output Y 100 98.1 99.1
Normalized average productivity Y /L 100 99.3 99.4
Number of active products N 0.964 0.959 0.964
Job creation rate (%) 17.0 4.9 5.4
Job creation rate from entry (%) 6.4 4.5 5.0
Job destruction rate (%) 17.0 4.9 5.4
Job destruction rate from exit (%) 2.8 2.4 2.8
R&D ratio R/Y (%) 11.5 10.7 11.7

Note: L, Y, and Y/L are set at 100 in the baseline simulation.

worker. The worker is assumed to be a cashier in a supermarket and the firm is assumed
to have 60 workers. Figure 1 displays the distribution of severance payments across
countries for this typical firm and for a typical worker with ten years of tenure. We
choose to set the firing tax to 0.3 which corresponds to the median severance payments
indicated by the vertical line in Figure 1.3® Note that this is a conservative estimate of
the median firing costs. Firing costs include not only severance payments but also the
cost related to the length and the complexity of the dismissal procedure.?”

The columns of Table 3 compare the baseline result with the model outcome when
7 = 0.3. To facilitate the comparison, the variables L, Y, and Y /L are normalized to 100
in the baseline. Similarly to Hopenhayn and Rogerson (1993), employment L declines
when the firing tax is imposed. The firing tax has two effects on employment. On the

one hand, it reduces the firm’s incentive to contract when a bad shock arrives. On the

38This is also close to the level of firing costs in France, estimated by Kramarz and Michaud (2010) to
be 25 percent of a worker’s annual wages. This a somewhat milder level of firing tax compared to what
has been examined in the literature. Hopenhayn and Rogerson (1993) consider 7 = 0.5 and 7 = 1.0
(one period in their model lasts five years, therefore a firing tax of 10% in their model is equal to 50%
of the annual wage). Moscoso Boedo and Mukoyama (2012) consider numbers ranging between 7 = 0.7
(average of high income countries) and 7 = 1.2 (average of low income countries). Moscoso Boedo and
Mukoyama (2012) also use the Doing Business Data, but they consider a broader concept of firing tax
than only severance payments.

39Lazear (1990) argues that mandatory severance payments can potentially be undone by contractual
arrangements between a firm and a worker. However, his empirical analysis shows that severance pay
requirements do have real effects. Our notion of firing costs is also broader and can contain many
elements other than mandatory severance payments.
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Figure 1: Severance payments across the world
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Notes: This figure shows the distribution of severance
payments for a worker with ten years of tenure in the
retail industry. The vertical line indicates the median.
Source: Doing Business dataset (2015), World Bank.

Figure 2: Misallocation of labor
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Notes: This figure shows the distribution of the marginal
productivity of labor in the model for the baseline exper-
iment where the firing tax is equal to 0.3. The marginal
productivity is normalized by the wage rate w. Without
the firing tax, the marginal productivity of labor would
be equalized across establishments and the normalized

marginal productivity would be equal to 1.

23



Figure 3: Labor and innovation decision function, constant entry rate

(a) Labor decision (b) Innovation probability
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Notes: This figure displays the firm’s labor decision in deviation from the current frictionless level ¢/
as a function of the previous labor level { when 1 is kept constant to its baseline value. The transitory
shock is set to one.

other hand, knowing this, the firm also becomes more reluctant to hire when there is
a good shock. Here, as in Hopenhayn and Rogerson (1993) and Moscoso Boedo and
Mukoyama (2012), the latter effect dominates.

The output level Y declines more than employment does. This is mainly because of
misallocation: the allocation of labor across firms is not aligned with the firms’ produc-
tivity when the firms face firing costs. Firms do not adjust their labor as much as they
would in the frictionless economy. This can most vividly be seen by the large decline
in job flows. The reduction in labor reallocation is consistent with the recent empirical
evidence by Micco and Pagés (2007) and Haltiwanger et al. (2014). While the marginal
product of labor is equalized across firms in the frictionless equilibrium, there is, by con-
trast, a notable dispersion in the marginal product of labor in the economy with a firing
tax as shown in Figure 2. The marginal product of labor deviates by more than 5 per-
cent from the equilibrium wage for about 35 percent of firms. Entry also decreases with
the firing tax. As shown in the Table, this reduces the number of active intermediate
products N, which further reduces the aggregate productivity level.

In addition to these level effects that have already been studied in the literature,
our model features growth effects. First, firing costs reduce the entrants’ incentives

to innovate. The total innovation rate by entrants, represented by u, falls by about

40Tn a recent empirical study, Autor et al. (2006) document that, during the 1970s and 1980s, many
US states have adopted common-law restrictions (wrongful-discharge laws) that limits firms’ ability to
fire. They show that these restrictions resulted in a reduction in state employment.

24



0.3 percentage points.*! The entrants’ incentive to innovate is reduced because of two
factors. First, the firing tax has a direct effect on expected profits as it raises the cost
of operating a firm. Second, firing costs prevent firms from reaching their optimal scale
and this misallocation reduces the entrants’ expected profits.

By contrast, the incumbents’ innovation probability increases by about 0.6 percentage
point as a result of the firing tax. The consequences of the firing tax on the incumbents’
incentive to innovate are theoretically ambiguous. On the one hand, the firing tax makes
it more costly to operate the firm which reduces the profits from innovation (direct
effect). In addition, the misallocation of labor is costly because the firm will not operate
at its optimal size after innovating (misallocation effect). On the other hand, the firms
that are larger than their optimal size, either because of a negative transitory shock
or because they have been unsuccessful at innovating, now have stronger incentives to
invest in R&D. A successful innovation allows these firms to avoid paying the firing tax
as they no longer have to reduce their employment (taz-escaping effect).*?

In addition, the incumbents’ incentives to innovate further depend on the entrants’
innovation (creative destruction). A lower entry rate reduces the risk for incumbents
of being taken over by an entrant, which raises the return of the firm’s R&D invest-
ment (creative-destruction effect). In effect, a lower creative destruction rate raises the
planning horizon of incumbents.

To assess the importance of the creative-destruction effect, we conduct an additional
experiment. There, we hold the value of i fixed to the value in the baseline economy
by not imposing the free-entry condition (5). The experiment also allows us to illustrate
the ambiguous effect of the firing tax on the incumbents’ innovation. Figure 3 shows the
labor decision and the innovation probability of firms when entry is held constant. As is
usual, the firing tax creates an inaction zone in the labor decision of the firm. We find
that the shape of the innovation decision follows closely that of the labor decision. More
importantly, the figure shows that the firing tax leads firms that are below their optimal
size to reduce their innovation probability. As explained above, this negative effect comes
from the direct tax effect and the misallocation effect. For firms that are larger than
their optimal size, on the contrary, the tax-escaping effect leads to a higher innovation
probability since innovating provides the added benefit of avoiding paying the firing
tax.*3 Overall, the results displayed in the last column of Table 3 indicate that those

4INote that the equilibrium value of zf is not affected by the tax (see equation (6)), and thus the
change in p is all due to the change in the number of potential entrants, m.

42Koeniger (2005) makes a related point, in the context of firm exit. In his model, one firm hires only
one worker, and thus it cannot analyze the dependence on size that we emphasize.

43From the viewpoint of misallocation in the level, these opposite effects tend to reduce the static mis-
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two effects on growth largely offset each other. When the entry rate is held constant, the
incumbents’ innovation increases by only 0.2 percentage point vs 0.6 percentage point in
the baseline. Hence, the decline in entry accounts for two-thirds of the increase in the
incumbents’ innovation. This result suggests that the decline in the entry rate is the key
to understanding the increase in the incumbents’ innovation.

With the increase in the incumbents’ innovation and the decline in the entrants’
innovation, the aggregate growth rate could, in principle, increase or decrease after the
introduction of the firing tax. In our baseline experiment, the negative effect on entrants
dominates, and results in the reduction in the growth rate. The growth rate of output is
1.40% in the economy with the firing tax and 1.48% without the firing tax. Our results
illustrate the importance of including the incumbents’ innovation in the analysis. We
find that firing costs can affect the innovation of entrants and incumbents in opposite
directions. The overall effect depends on the details of the innovation process of entrants
and incumbents. For example, ignoring the innovation by incumbents would have led us
to overestimate the consequences of the firing tax on growth.

We investigate the robustness of our results to alternative calibration strategies in
Appendix D. We consider calibrations with a smaller innovative advantage of entrants
and with smaller innovation steps. We find that the results are qualitatively robust to
these alternative calibration strategies. As in the baseline calibration, the firing tax
leads to an increase in the innovation of incumbents and to a reduction in the innovation
of entrants. However, it is also shown that the overall quantitative effect on aggregate

growth can depend on this particular part of calibration.

5 Extensions

Our baseline model is intentionally kept simple to deliver sharp insights. While this
simplicity allows us to characterize the model analytically in the absence of firing costs,
it limits the ability of the model to fit the data. In this section, we relax some of the
simplifying assumptions to improve the fit of the model and show that these extensions
do not alter the main results of the paper. In particular, the results that the firing tax
has contrasting effects on the innovations of incumbents and entrants and that it has a
detrimental effect on overall growth are robust to these extensions.

In the baseline model, we assume that the exogenous productivity shock, «, is purely

allocation. Since firms that are larger than their optimal size tend to have a lower than average marginal
productivity, a higher innovation probability for those firms contributes to reducing the dispersion in
marginal productivity and thus this can reduce the level of misallocation.
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transitory: « is assumed to be i.i.d. over time. This contrasts with the process of the
endogenous productivity ¢, for which the upgrading is permanent. We eliminate this
stark contrast in the first extension of the model and allow the process of the transitory
shock a to be persistent.

In the second extension, we modify the assumptions on the entry process and on
the innovation of incumbents in order to improve the predictions of the model regarding
firm dynamics. A shortcoming of the baseline model is that it generates entrants that
are very large. Also, existing empirical evidence suggests that Gibrat’s law does not
hold for small firms; small firms grow faster than large firms (see, for example, Evans
(1987) and Hall (1987)). We show that these two modifications help the model better
fit the microeconomic facts on firm dynamics. The resulting firm size distribution is

substantially closer to the data.

5.1 Extension 1: persistent exogenous shocks

In the baseline model, the exogenous productivity shocks are assumed to be purely tran-
sitory. This simplifying assumption may affect the quantitative evaluation of the effects
of the firing tax on aggregate productivity. Because the persistence of the shocks affects
by how much firms adjust their employment in response to the shocks, the persistence
may matter for the cost of operating a firm, and hence for the innovation decision of
entrants and incumbents, as well as for the level of misallocation. In this section, we
introduce persistence in the exogenous productivity shock and study the implications for
the effects of the firing tax on the level and growth rate of aggregate productivity. We
find that the negative effects of the firing tax are reinforced when the persistence of the
exogenous productivity shock is accounted for. The persistence of the exogenous pro-
ductivity shocks turns out to be more important for the level effect than for the growth
effect of the firing tax.

We assume that the exogenous productivity shock «y is persistent. As in the baseline
case, oy can take three values oy = 1 —¢, oy = 1 and a3 = 1 + ¢. Here, instead of
assuming that «; is randomly drawn in an i.i.d. manner, we now assume that «; follows

a Markov chain, with transition probabilities given by

P ifi=j
(L-p)/2 ifi],

Prlogyr = ayfar = o] =

where p is the parameter that governs the persistence of the process. To identify p

and e, we use the variance and the autocovariance of establishment-level employment
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Table 4: Persistent exogenous shock

Baseline Persistent «

7=00 7=03|7=00 7=0.3
Growth rate of output g (%) 1.48 1.40 1.48 1.39
Innovation probability: incumbents Zy 0.084 0.090 0.084 0.089
Innovation probability: entrants xg 0.143 0.143 0.143 0.143
Creative destruction rate u (%) 2.65 2.34 2.66 2.33
Employment L 100 98.7 100 98.0
Normalized output ¥ 100 98.1 100 96.8
Normalized average productivity Y /L 100 99.3 100 98.8
Number of active products N 0.964 0.959 0.964 0.959
Job creation rate (%) 17.0 4.9 17.0 7.0
Job creation rate from entry (%) 6.4 4.5 6.4 4.4
Job destruction rate (%) 17.0 4.9 17.0 7.0
Job destruction rate from exit (%) 2.8 24 2.8 24
R&D ratio R/Y (%) 11.5 10.7 11.5 10.8

Note: L, Y, and Y//L are set at 100 in the baseline simulation.

growth. As shown in Appendix E, the variance of employment growth is determined
by the variance of changes in the endogenous productivity ¢ and that of changes in the
exogenous productivity a while the autocovariance of employment growth is a function
of the variance of o and the persistence parameter. Given the parameters of the endoge-
nous productivity process, we can then infer the size of the shock £ and the persistence
parameter p from these two statistics. We estimate the variance and the autocovariance
of establishment-level employment growth in the US using census microdata from the
Longitudinal Business Database (LBD). More details on the data are given in Appendix
E. We estimate the variance and autocovariance to be equal to 0.24 and —0.05, which
leads us to set p at 0.718 and ¢ at 0.564. Note that this calibration implies not only
more persistent shocks but also larger shocks than in the baseline. The other parameters
B, ¥, A1, Ag, v, and 0 are set to the same values as in the baseline case, while the
parameters ¢, & and 6; are re-calibrated to match the job creation rate by entrants, the
average employment rate and the average growth rate of output per worker in the US.
The parameters values are reported in Table 9 and the targets are reported in Table 10,
both in Appendix E.4

We report the results of the model with persistent exogenous shocks in Table 4. We
find that when persistence is introduced, the firing tax leads to a larger decline both in

the level and the growth rate of productivity.

44Though the overall job creation rate is not a target in this calibration, the job creation rate is equal
to 17.02 which is virtually identical to the value in the baseline.
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The larger decline in average productivity may be surprising as firms would adjust
more of their labor in response to persistent shocks, and hence the level of misallocation
should be lower when shocks are persistent. In fact, the stronger effect of the firing tax
is not due to an increase in the persistence in itself. As explained above, in the new
calibration, the exogenous shocks are not only persistent but also more dispersed, which
raises the level of misallocation. The effects of larger shocks dominate that of higher
persistence, resulting in a lower average productivity than in the baseline.

Also for the growth effect, the fact that the exogenous shocks are larger is more
important than the higher persistence itself. In particular, in the new calibration the
firms more frequently face situations where a large downsizing is necessary. Overall, the
negative growth effect is only slightly stronger with this specification compared to the

baseline case.

5.2 Extension 2: small entrants and heterogeneous growth

In this section, we maintain the assumption that « is i.i.d. as in the baseline case and
extend the model in two different directions. First, we assume that entrants are more
likely to innovate over lower-quality products. This is likely to be more reasonable than
the assumption of random innovation, considering that innovations tend to be cumulative
(see, for example, Aghion et al. (2001) and Mukoyama (2003)) and it is difficult to
improve upon a very advanced product. Second, we also assume that the firms with
lower (relative) quality have a lower innovation cost. Previous literature on R&D and
innovation emphasizes positive spillovers across firms, and it is more likely that a lower-
quality product benefits more from these spillovers. These assumptions help the model
match several empirical regularities the baseline model is not able to match. First, since
entrants tend to innovate over low-quality products, entrants tend to be less productive
and therefore smaller compared to the baseline case. Second, since lower-quality firms,
who are small, innovate more frequently, small (and young) firms tend to grow faster.
This allows the model to deviate from Gibrat’s law. Below, we find that the main results
of the paper are robust to these modifications.

First, we modify the probability that an incumbent is taken over by an entrant so
that it depends on the product’s relative quality. Let u(q) be the probability that an
incumbent with adjusted-quality ¢ is taken over by an entrant. We assume that u(q)
takes the form R

u(@) = 49,
w

where 1 = ma g is the aggregate creative destruction rate and w(q) is the weight function
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that determines the displacement probability of product §. We assume that w'(§) <
0. Given the density function of ¢, f(§)/N, the average weight @ is defined as w =
Jw(q)f(§)/Ndg. Note that u/(§) < 0 holds. One interpretation of this specification
is that a more advanced technology is harder to be imitated. This embeds the idea
of cumulative innovation (or “step-by-step innovation”) of Aghion et al. (2001) and
Mukoyama (2003) into our model in a parsimonious manner. The aggregate probability
that an active production line is taken over is [u(q)f(§)dg = Np which is the same as
the baseline model. The rest of the entrants’ innovation, (1 — N)u, is directed to the
inactive production lines.

From the viewpoint of the entrants, once they successfully innovate, the probability
that they innovate upon an active line is N and the probability that they innovate upon

an inactive line is (1 — N). Conditional on innovating upon an active line, the density

function of ¢ that they improve upon is denoted p(§), where

wo = 2210 _ 4070

Conditional on innovating upon an inactive line, the density function of ¢ is assumed to
be h(§), which is the same as the baseline model. Note that when w(§) is constant across
g, the specification becomes identical to the baseline model and u(§) = p for all § and
p(@) = F(@)/N.

The second modification is that we allow the incumbents’ innovation cost to depend
on the firm’s relative quality. We keep the same notation for the innovation cost ;, but
instead of being a parameter, 07 is now a function of ¢, denoted 6;(q).

The model structure is the same as the baseline model, except for u(q), p(¢), and 6;(q).
The description of the rest of the model is relegated to Appendix E. The computation
of this version of the model is more complex than the baseline model because the value
functions are not linear in ¢, even after the transformation on ¢. Nevertheless, we can,
once again, simplify the computation of the model by rewriting the choice of labor relative
to the frictionless level.%®

To compute the model, we must specify the weight function and the innovation cost

function. We assume that the weight function takes the form
w(@) = 1+ e, (12)

where x; > 0 and x5 > 0. The parameter y; controls the relative displacement proba-

45The details of the computation method are described in Appendix E.
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Table 5: Smaller entrants and the deviation from Gibrat’s law

Baseline Extension

7=00 7=03|7=00 7=0.3
Growth rate of output g (%) 1.48 1.40 1.48 1.45
Innovation probability: incumbents Zy 0.084 0.090 0.055 0.057
Innovation probability: entrants xg 0.143 0.143 0.042 0.042
Creative destruction rate u (%) 2.65 2.34 6.29 5.81
Employment L 100 98.7 100 98.8
Normalized output ¥ 100 98.1 100 98.3
Normalized average productivity Y /L 100 99.3 100 99.4
Number of active products N 0.964 0.959 0.984 0.983
Job creation rate (%) 17.0 4.9 17.2 5.8
Job creation rate from entry (%) 6.4 4.5 7.5 5.5
Job destruction rate (%) 17.0 4.9 17.2 5.9
Job destruction rate from exit (%) 2.8 24 3.2 3.1
Entry rate(%) 2.8 2.4 6.4 6.2
R&D ratio R/Y (%) 11.5 10.7 11.9 11.3

Note: L, Y, and Y/L are set at 100 in the baseline simulation.

bility of high- and low-productivity firms whereas x» controls the slope of the decline in
the displacement probability.*6

The innovation cost is assumed to take the form
91(@) = é](l - (1 - X3)€_X4q)a (13)

where ; > 0, x3 € [0,1], and x4 > 0. The parameter ys represents the relative

" The value of y4 influences how fast

ease of innovation for low-productivity firms.*
the cost increases with ¢. The details of the calibration, including the values of the new
parameters (x; and yo in equation (12) and x3 and x4 in equation (13)), are presented
in Appendix E. As shown in Appendix E, this model better fits the data in terms of the
firm size distribution.

As in Section 4, we consider an experiment of setting 7 = 0.3. Table 5 shows the
results.®® The baseline results are also presented for the purpose of comparison. The
qualitative results are identical to those obtained with the baseline model. In particular,

the contrast between the response of the incumbents’ innovation and that of the entrants’

46Note that limg_seo u(q)/u(0) = limg_ 0o w(q)/w(0) = 1/(1 + x1).

4"Note that lim@_mo 9[((?) = 9_[ and 9[(0) = X39_1.

48Tt is still the case that the job creation rate by entry is larger than the entry rate in the extended
model, indicating that the size of entrants is still larger than the size of incumbents. However, in
comparison to the baseline case, the relative size of entrants is substantially smaller. With our functional
forms, this turns out to be the lower bound of the entrants’ size in the parameterizations that we can

compute.
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innovation is also present. The incumbents’ innovation increases and the entrants’ inno-
vation decreases; the overall effect on growth is negative.

In this extended model, there is an extra incentive for incumbents to innovate. Be-
cause a firm with a larger ¢ faces a lower probability of being replaced, an incumbent firm
can avoid paying the firing tax that accompanies exit when ¢ is large. This encourages
innovation when the firing tax is imposed; the mechanism is similar to the tax-escaping
effect in the previous section, but works through the incentive to avoid exit instead of
expansion. Another effect is through the productivity composition of firms. Because
the incumbents’ innovation cost varies with ¢, a change in the stationary composition
of ¢ has an effect on overall innovation by incumbents. The overall impact of these new
additional effects on the final outcome turns out to be quantitatively small. The results
of the previous section are robust to the modifications that bring the model outcome

closer to the data.

6 Some evidence: the negative effects of firing costs

on innovation

The quantitative results with the baseline calibration suggest that firing costs reduce the
growth rate of the economy. However, as explained in Section 4.2, the overall effect on
growth is the result of two opposing effects. Firing costs may increase the incumbents’
innovation while discouraging the innovation by entrants. The overall effect could be
positive or negative depending on which of these two effects dominate. To gain further
insights on this question, in this section we conduct an empirical analysis of the effect of
firing costs on innovation. Several studies have shown the effects of firing costs on job
reallocation (Micco and Pagés, 2007; Haltiwanger et al., 2014; Davis and Haltiwanger,
2014) but only a few studies have investigated the consequences of firing costs for ag-
gregate productivity. Using differences across the US states in the adoption of more
stringent labor laws, Autor et al. (2007) find evidence suggesting that firing costs reduce
total factor productivity. More closely related to our objective, Bassanini et al. (2009)
investigate the effects of firing costs on total factor productivity growth. They find that
more stringent dismissal regulations tend to reduce total factor productivity growth in
industries where dismissal regulations are more likely to be binding. In this section, we

complement their study by focusing on innovation spending.
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6.1 Empirical specification

We analyze the effects of dismissal regulations on R&D spending following the approach
used by Bassanini et al. (2009). We exploit cross-country industry level data and use
a difference-in-difference strategy to asses the impact of dismissal regulations. We test
whether industries that have a higher propensity to lay off workers have relatively lower
R&D spending in countries where firing costs are high. Cross-industry variation is used
to identify the effect of the regulation, with the underlying assumption that industries
with a higher layoff propensity are more sensitive to firing costs. This strategy greatly
reduces the concerns about omitted variable bias, as it allows us to control for both
country and industry fixed effects. Hence, our results cannot be driven by other cross-
country differences in regulations or policies as long as they do not affect industries with
different layoff propensities differently.

We estimate the following equation
R&cht = BO + 51 EPLCt X Iayoffj + Vi + )‘ct + Ejets (14)

where 7; and Ay are the industry and country-time fixed effects. R&Dj. is the R&D
spending of industry j in country ¢ and year ¢, computed as the share of the industry’s
output. We measure firing costs using an indicator of employment protection EPL.. A
high value of EPL,; indicates that the dismissal regulation is strict and it is thus more
costly to fire workers. The indicator of the industry’s propensity to lay off workers layoff;
corresponds to the industry’s layoff rate in the absence of any dismissal regulations.
The parameter of interest is that of the interaction between the level of employment
protection and the industry’s propensity to lay off workers 5;. When ; < 0, countries
with stricter dismissal regulation have relatively lower R&D spending in industries with
a higher propensity to lay off workers. Conversely, 5; > 0 would indicate that countries
with stricter dismissal regulation have relatively higher R&D spending in industries with
a higher propensity to lay off workers.

We use OECD data for both the measure of R&D spending and the indictor of the
strictness of dismissal regulations. The measure of R&D spending (R&D,) is computed
as the industry’s business R&D expenditures as a share of the industry’s gross output
at the 2-digit industry level. Business R&D expenditures are obtained from the AN-
BERD dataset and gross output data from STAN. For the indicator of the strictness of
dismissal regulation (EPL.), we use two alternative employment protection indicators
constructed by the OECD: EPL1 which measures the strictness of the regulation for in-

dividual dismissal and EPL2, which measures the strictness of the regulation for both
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Table 6: Regression results, R&D ratio

Individual dismissal Individual and collective dismissal
EPL1 EPL2
i) 2] 3] i) 2] 3]
EPL.: x layoff; | —0.0393"  —0.0380*** —0.0335 | —0.0703" —0.0648"*  —0.0416
(0.0135) (0.0106) (0.0352) | (0.0281) (0.0175) (0.0461)
R-squared 0.352 0.588 0.598 0.309 0.588 0.598
N 5993 3201 359 3944 2328 359

Notes: The columns refer to different samples: [1] non-balanced panel [2] balanced panel [3]
year=2005. The balanced panel contains data on 18 countries and 19 industries from 1995
to 2005. The non-balanced and balanced panel regressions include industry and country-time
fixed effects. The 2005 regression incudes industry and country fixed effects. Robust standard
errors in parentheses. * p < 0.05; ** p < 0.01; *** p < 0.001.

individual and collective dismissals. Both indicators are compiled using scores between
0 and 6 with higher scores representing stricter regulation. Following Bassanini et al.
(2009), we use the industry layoff rates in the US as a proxy for the propensity of each
industry to layoff workers (layoff;) since the United States is the country in our sample
with the least strict dismissal regulation. We measure the US layoff rates from the 2004
“Displaced workers, Employee, Tenure and Occupational Mobility” supplement of the
Current Population Survey (CPS).* The merged dataset contains data on 27 OECD
countries and 19 industries between 1987 and 2009, with breaks and gaps in the series.
A more detailed description of the data sources and the construction of the variables is

provided in Appendix F.

6.2 Empirical Results

The results of the OLS estimation of equation (14) are displayed in Table 6 for the
two measures of employment protection EPL1 and EPL2. The first column reports the
results for the full sample. Because the data have missing observations for some industries
and some countries, we also run the regression on the balanced panel (column [2]) and
for a given year (column [3]) to make sure that the missing observations do not bias
the results. We find evidence that stricter dismissal regulations tend to reduce R&D
spending in industries where the layoff intensity is higher. Using the estimates on the full

sample (column [1]), we find that a one standard deviation increase in the employment

490ur layoff propensity measure slightly differs from the one used in Bassanini et al. (2009), we report
in Appendix F the results of the regressions when using the layoff rates reported in Bassanini et al.
(2009).
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protection indicator for individual dismissal (EPL1) reduces the R&D to output ratio by
0.22 percentage point more in an industry at the 90th percentile of the layoff intensity
compared to an industry at the 10th percentile. A one standard deviation increase in the
indicator for individual and collective dismissal (EPL2) leads to a 0.32 percentage point
difference.®® These are economically significant estimates as they represent about 15 and
20 percent of the standard deviation of the R&D ratio. In Appendix F, we evaluate the
robustness of the results and report the regression results using the raw OECD R&D

data and an alternative measure of the industry layoff intensity.

7 Conclusion

In this paper, we construct a general equilibrium model of firm dynamics with endogenous
innovation. In contrast to standard firm dynamics models, firms decide not only on entry,
production and employment, but also on investments that enhance their productivity.
We use this framework to show that a policy that modifies the reallocation of inputs
across firms influence not only the level but also the growth rate of aggregate productivity.

We examine a particular type of barriers: firing costs. We find that firing costs can
have opposite effects on entrants’ innovation and incumbents’ innovation. Firing taxes
reduces entrants’ innovation, while it may enhance incumbents’ innovation. As a result,
firing costs change the composition of innovation, and to the extent that the effects on
incumbents and the effects on entrants do not offset with each other, there are aggregate
consequences. Our quantitative result shows that the overall effect on growth is negative,
and we find some empirical support for that result.

Our model is flexible and can easily accommodate various extensions. We believe
that our model will be useful for the future study of how other barriers to reallocation

affect aggregate productivity growth.

%0To compute the magnitudes we use the cross-country standard deviation of EPL1 and EPL2 in 2005,
which are equal to 0.848 and 0.696, and the US layoff rates at the 10th and 90th percentiles, which are
equal to 0.081 and 0.146.
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Appendix (not for publication)

A Stationary distribution

The stationary measure is the fixed point of the mapping f — Tf, where T f gives the
probability for the next period state given that the current state is drawn according to
the probability measure f. The mass of firms in the set [0, ¢'] x [0, &/] x [0, '] next period

is given by

a/ Z/ (j/
/ / / Tf(q,a,0)djdadl = (1 —0)[(1 — u)M(J', o/, 0") + M(q', ', 0')].
o Jo Jo

The first term M, is the mass of non-displaced firms.

Mg, o/ ) = /0 ///(1 | /L( » ga () (1 = X1(d, ., ) £(d, v, 0)dddedade’
aJq +9q <q’ (@ a,0) <L’
+A / /(1 A1)d/(1+gq) /L (g,,0)<L ga(a/)/’v[(d’ @, E)f(da Q, E)qudngzdo/
o +A1)q/(1+g4 (G, ,0) <L’

The second term M, is the mass of entering firms, which includes firms entering on

inactive products and firms entering on existing products:

M@ o 0) = p(l-N) / / / h(@)g(a’)dda’
0 a J (14+Ag)d/(1+g4)<d’

W/ / / / 9o(&) f(q, @, 0)dGdldadd’,
0 JaJ(1+2p)i/(1+g4)<d

where g(o’) is the invariant distribution of the transitory shock.

The expression of the stationary distribution is simpler when the model is rewritten
in deviation to the frictionless values (see Section 3.2) and when the transitory shock «
is i.i.d. as assumed in the baseline calibration. In that case, the stationary distribution
can then be rewritten as a function of the deviation of labor from its frictionless value
¢ instead of ¢ and the next period transitory shock draw becomes independent of next

period productivity and labor states.
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With these two modifications, M, becomes

// / (1= Xy (a, 0) £(d, o, )dgdadl
o Jq/(1+99)<q J L (a, )<l

+ / / / Xy, 0)f(G, v, O)dgdadl | .
o J(14ADd/(14gg) J £/ (0, D)<E

The mass of entrants M, can be rewritten as

M(q o/, 0') = G(o) [u(l—N)// h(§)dg
o J(1+AR)a/(14g,)<d’

1 / / / / f(G, o, O)dgdlde | .
o J (14AR)a/ (1+99) <@’

B Analytical characterizations

M(q, o', ) = G(o)

This section characterizes the model without the firing tax and boils it down to a system

of nonlinear equations. The derivations also serve as proofs for the Propositions.

B.1 Model solution

Note first that for a given u, the number of actively produced product, N, is calculated
by (10). Recall that p is an endogenous variable and is determined by the entrants’
innovation:

w=mzg".

As we have seen, xg* is given by

and thus p (and also N) is a function of m. In particular, note that N is an increasing
function of m.

Because there are no firing taxes, the previous period employment, ¢, is not a state
variable anymore. The measure of individual states can be written as f(§, «), and because
G and « are independent, we can write f(§,a) = 2(¢)g(«). In particular, note that
[ G2(q)dg = N, because § is the value of ¢; normalized by its average. We also assume
that g(«) is such that [ ag(a)da = 1.

Without firing costs, labor can be adjusted freely. Thus the intermediate-good firm’s
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decision for ¢ is static:

max = ([ag)?e~y" — )l (15)

From the first-order condition,
1—o\? .
0= (—Aw) aqY (16)
w

holds. Because y = ¢, we can plug this into the definition of Y

¥ = ( I/ [aq]¢y1—¢é<4>w<a>dada) -

1
N ~ — P
Y:Y(l ¢> NT%

This yields

N

w

and therefore

W= (1 —)NTw. (17)

Recall that N is a function of the endogenous variable m. Thus @ is also a function of
m.

Combining the equations (16) and (17), we get
0 = aGV N~ T, (18)
Integrating this across all active firms yields
L=NTWY.

One way of looking at this equation is that Y can be pinned down once we know L and
N (and thus L and m). Plugging (17) and (18) into (15) yields

) Y
s :w&qﬁ.

Now, let us characterize the innovation decision of a intermediate-good firm. Recall

that the value functions are
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where

~

N AY R ~ R
VG, o) = max @Daqﬁ —Orgz” + B(1 — p)S(xr, ¢/(1+ g4)) (19)

and
S(ar i/ (14g0) = (1—a1) / 2(4/(144y), o' Yol o+ / Z((14 A3/ (14g,), o o(a')da'

We start from making a guess that Z (G, ) takes the form

A

Z(q, a) = Aaq + Bq,

where A and B are constants. With this guess, the first-order condition in (19) for z; is

B U /&)if(g;‘l +B)q
Thus )
(BA = A (A+B)\ T
= (M PR ) (20)

and x; is constant across ¢ and «. Substituting for x;, the value function can be written

Y 14z

Z(ﬁ,a) =(1-9) <¢a(jﬁ —01qz;” 4+ B(1 — ) 11g (A"‘B)fj) .

Thus, the guess is verified with

~

Y
A:(l—é)@bﬁ
and B solves
= (1-9) | —0;x;” 1—p)———— = (1-9)B(1— 1 A
B=(1-3) (~uar + 50— 5244 8) = (-5)80-0 (142 ) 258

where z; is given by (20). Therefore, we found that z; (and the coefficients of the
function Z(g, ) is a function of the endogenous aggregate variables Ggs Y, and N.
We have already seen that we can pin down p and N if we know m, and Y can be pinned
down if we know m and L.

We now turn to the growth rate of productivity g,. As we have seen above, the
transitory shock a does not affect the innovation decision and can therefore be ignored
when calculating the transition function of ¢;. Consider the measure of productivity

(without the normalization) ¢; for active products, z(¢;). A fraction (1 — p)x;(1 —0) of
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active lines are products that have been innovated upon by incumbents and the fraction
(1—p—(1—p)zr)(1—9) is owned by the incumbents but the innovation was unsuccessful.
The fraction p(1 — &) of active products is innovated upon by entrants. The fraction
1(1—0) of inactive products is innovated upon by entrants. The productivity distribution

of inactive product lines is h(g;/q;) rather than z(g;)/N. Thus g, can be calculated from

1-NG"

T+g, =1 =08 |(14+ Azp)(1—p) + (1+AE)M+(1+AE)MTE ,

where ¢" and @ are averages of g, with respect to the distributions h and z. Thus

h/q = th (9:/a:) th/f% z(q)/Nldg: = fqh dQ/fq q)/N]dg. The first term is
the productivity increase of the surviving incumbents, the second term is the entry into
active products, and the last is the entry into inactive products. Using the expression
for N in (10) and the fact that ¢* = 1,

gg= 1 =01+ ) (1 — p) + (1 + Ag)p] +6(1 + Ap)g" — 1.

Thus, g, can be written as a function of y and 7, and therefore m and L.

Hence, we can determine all endogenous variables in the economy once we pin down
m and L. The values of m and L can be pinned down by two additional conditions:
the labor-market equilibrium condition and the free-entry condition. To see this, let us
first be explicit about each variable’s (and each coefficient’s) dependence on m and L:
w(m), N(m), Y(m,L), xr(m, L), g,(m,L), A(m, L), and B(m, L). Also note that the
total R&D, R, can be written as

R= /Qldxl(ma L)"2(q)dg +m(¢ + 0pxg”) = 0, N(m)z(m, L) +m(¢ + 0pxg”)

and therefore we can write R(m, L).

The labor-market equilibrium condition is

and the free-entry condition is
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where

e = [ [ 2004201+ 0,000 + (1= MR(@)da] wla)d
- [ AR 1 niCe(a) + (1 - M)
A(m, L)+ B(m, L)

B.2 Productivity distribution

The invariant distribution z(q) can be easily computed. The next-period mass at relative
quality ¢ is the sum of four components: (i) the incumbents’ innovation: (1 — §)(1 —
wxrz((14+g4)q/(1+A1))dq, (ii) the entrants’ innovation: (1—9)p2((1+g,)¢/(1+Ag))dq,
(iii) the downgrade from products that were not innovated upon: ((1 —9)(1 —p — (1 —
wzr)Z((1+ g4)4)dq, and (iv) the entry from inactive products, (1 —d0)u(l — N)h(¢/(1+
Agr))dg. The sum of these four components has to be equal to 2(§)dq along the stationary
growth path.

We can characterize the right tail of the distribution analytically, when the dis-
tribution h(q) is bounded. Let the density function of the stationary distribution be
s(q) = 2(¢)/N. Because h(q) is bounded, there is no direct inflow from the inactive
product lines at the right tail.

Consider the point ¢ and the interval A around that point. The outflow from that
interval is s(¢)A, as all the firms will either move up, move down, or exit.

The inflow comes from two sources. The first source is the mass of firms who inno-
vated. Innovation is either done by incumbents or entrants. Let v; = (14+X;)/(1+g,) > 1
be the (adjusted) improvement of ¢ after innovation by an incumbent. The probability
of innovation by an incumbent is (1 — §)(1 — u)x; and the corresponding mass of this
inflow is (1 — 0)(1 — p)zrs(¢/vi)A/7;. Similarly, letting 7. = (1 + Ag)/(1 +g,) > 1
be the improvement of ¢ after innovation by an entrant, the mass of the inflow due
to the entrants’ innovation is (1 — &)us(G/ve)A/ve. The second source of inflow is the
surviving firms that did not innovate. With probability (1 —0)(1 — u)(1 — z;), incum-
bents firms are not successful at innovating. Let v, = 1/(1 + g,) < 1 be the (adjusted)
quality ratio when there is no innovation. The corresponding mass of this inflow is
(1=0)(A = p)(X = z1)s(q/m)A/n-

In the stationary distribution, the inflows are equal to the outflows, and therefore

@2 = (0-0) [0 mars (1) S (L) 24 i - mans (L) 2]

i Vi Ve Ve Tn Tn
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or

R g\ 1 g\ 1 g\ 1
() = (1=0) [ = pors (L) T s (1) 2o o (0= pans () 2],
% Ve Tn Tn
Guess that the right-tail of the density function is Pareto and has the form s(x) =
Fx=(:+1) The parameter £ > is the shape parameter and the expected value of z exists

only if k > 1. Plugging this guess into the expression above yields

F(j—(mrl) —
A\ — (k1) N\ —(r+1)
1 1
<1—&<1—mmF(i) —+uF(ﬁ> L
7 Yi Ye ’76
CE— >>F(é)_w1
—n= (= pan)F (- —|.
Tn Yn

1=(1-0)[(1—paryf+py+1—p—1—par)l.

The parameter « is the solution of this equation.

B.3 Growth rate

The growth rate of aggregate productivity is given by
g0 = (1= 0)[(1+ Arzr)(1 — ) + (L+ Ap)u] + 0(1+ Ap)d" — 1,

where g, is the average relative productivity of inactive product lines. This can be shown
by a simple accounting relation. Let the measure of ¢, (without normalization) for active
products be z(g;).5! Innovation by incumbents occurs on a fraction (1 — u)z;(1 — §) of
active product lines, no innovation occurs on a fraction (1 — p — (1 — p)xr)(1 — 0) of
active lines. There is innovation by entrants on a fraction p(1 — J) of active products.
Among the inactive products, the fraction p(1 — §) becomes active from the innovation
by entrants, but it is an upgrade from the distribution h(g /) rather than z(g)/N.
Thus g, can be calculated from
1-Ng"

I4+g9,=1=6) [T+ Xz) (I —p) + X+ Ag)p+ (1 + )\E)MT?

5Hn relation to the general model, z(g;) corresponds to f(g:/@;) in terms of f in Section 2.5.2. The
normalized version Z(§) exactly corresponds to f(§).
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Here, ¢" and @ are averages of ¢ with respect to the distributions h and z. Thus

"7 = fqt (q:/q) dqt/fqt 2(q;)/Nldq, = fqh dq/fq G)/N]dq. Combining this
with the expression for NV in (10) and the fact that g* = 1 yields the above result.

B.4 Details of Section 3.2

Under the notations of Section 3.2, the period profit (9) can be rewritten as

A~ ~

=YY — b | GQ, V) — gz, — T max(0, G, V) — GQ (b, Y)I').

Thus this is linear in ¢, and can be rewritten as cjl:[(a, 0,0, x;), where

(U
0=V — b | Q, V)0 =02, —7Q(b, Y )i max(0, (—').

~ ~ «
(e, 0,0, x;) = _
it [mw,m

Because the period return function is linear in ¢, it is straightforward to show that
all value functions are linear in ¢. Defining Z(«, f) from Z(§, a,t) = §Z (e, 0), (7) can
be rewritten as

Z(a,0) = (1= 6)V*(ar, 0) + 6V°(0),

where V°(0) is from V°(¢) = GV°({) and thus
Vo(l) = —riQ(w, )l

and V(o {) is from V*(§, a, €) = GV*(a, £) with

7(a,0) = max {ﬁ(a,é, /er)+ B ((1 _ )2 (‘”“;/) - Y)Z’) }

>0,z

Here, the expression S(z, £')/(1+g,) comes from S(x7,G/(1+4g,), ') = ¢S(z1,€)/(14g,).

The linearity of the value functions implies that

g(m;,g’)
1+ g,

= (1—a)Ew [Z <O/7 (1+ gq)é’)] 1 i
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also holds. Here we used that

ZA(A/ a/ El) _ A/Z a/ 4 _ A/Z O/ g*(@ﬁ)7§>> 4
Qa I - q ,f qA/ ’ Y/,) - q

(@, Y (G, YY)
with @' =, Y = V; and that £*(¢; @, Y)/0*(¢; 0, Y") = §/¢ yields

Aol ) = 7 (af, g@)

for ¢ = (j/(l + gq) and ¢’ = (1 + AI)Q/(l + gq)'

C Details of computation

The computation solution consists of first guessing the values of the relevant aggregate
variables, solving for the value function and the stationary distribution of firms, and

then updating the guess. The procedure is as follows.

1. Construct a grid for productivity ¢ and labor /. We use a log grid for ¢ with 100

points between 0 and 10°. For Z, we use a linear grid with 20 points.

2. Compute the innovation from entrants and the value from entry consistent with

- 7
Vi = V_Ewa—l_

p

the free entry condition

3. Guess Y, @, m, and ¢g. Given m, we can calculate the value of by p = Xp = mi.

4. Solve for the value function by iterating on the value function and using linear

interpolation between grid points.

5. Using the optimal decision rules, solve for the stationary distribution f(q, «, ) by

iterating over the density.

6. Then check if the equilibrium conditions are verified. The four conditions are the

following
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(a) Aggregate output

1

V- (/ ot vieei | @f(d,a,f)dddadg)w

(b) Resource constraint
Y =C+R,
with C' = /& and R = 0, / / X[(Oz,g)’Y/qu(cj, o, O)dgdadl + m(¢ + Opx,)

(¢) Consistency condition for productivity

%///@f(é,a,f)dadgdq:l

(d) Free-entry condition

where™
Ve = /Z(a,o)w(a)da [N +(1- N)/h((j)dq] (1+2p)/(1+ gq)-

We use condition (a) to update the value for w. When w is too high, aggregate
output implied by the firms decision is too low. We use condition (b) to update
the value for Y. If Y is too high then the resource constraint is not satisfied. We
update g, using condition (c). Intuitively, when g, is too small, the stationary
density f(q, a, [7) implies the values of ¢ that are too large. To update the value of
m we use condition (d). Because a large m implies a large p, which in turn lowers

Z. Thus the value of m affects the computed value of f/E, through Z.

7. Go back to Step 3, until convergence.

52Computed from

1>

s = [/ Z((l+AE>Q/<1+gq>,a,O><f<q>+<1N)h(@))dq]ww)da
= [ [ 200+ 35)/0+ @)@ + (1= W hi@)da) wte)ia
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D Robustness checks

D.1 Smaller innovation advantage of entrants

We assess the robustness of the results to a smaller innovative advantage of entrants.
In the baseline, we set (1 4+ Ag)/(1 + A;) = 2 in line with the ratio of the number of
patent citations of entrants over that of incumbents. Given the value of A7, the baseline
calibration implies Ag/A; = 6. An alternative interpretation of the relative citation rate
of entrants is to set Ag/\; = 2. We therefore solve the model for Ay = 2);, where \; is
kept at the same value as in the baseline calibration. As an additional robustness check,
we also report the results for the case where the entrants and the incumbents have the
same innovative step, that is Az = A;. The other parameters, reported in Table 9, are set
as described in Section 4.1.5% We find that the consequences of the firing tax for entrants
and incumbents are qualitatively robust to these changes in the calibration. As in the
baseline calibration, the firing tax leads to higher innovation rates for incumbents and
lower innovation from entrants. The overall effect of the firing tax on growth is however
sensitive to the exact calibration.

The results when entrants have a lower innovative advantage are reported in Table 7.
As in the baseline calibration, firing costs lead incumbents to increase their innovation
rate whereas the innovation by entrants is reduced. The overall negative effect of firing
costs on the growth rate is reduced when entrants have a lower innovative advantage. The
growth rate of output declines only by 0.01 percentage point when A\ = 2\, and it even
rises slightly relative to the frictionless benchmark when when A\g = A\;. When entrants
have a lower innovative advantage they also account for a smaller share of aggregate
productivity growth, which dampens the consequences of the decline in entry on growth.
This calibration shows that the contribution of entrants to aggregate productivity growth

is key for the consequences of the firing tax on aggregate productivity growth.

D.2 Smaller innovation steps

In the benchmark calibration, the size of the innovation step A; is set at 0.25 following
estimates by Bena et al. (2015). In this section we adopt an alternative strategy and use
data on the establishment-level employment dynamics to calibrate this parameter. We
set A; to match the relative proportion of establishments creating jobs and destroying

jobs. We measure the relative proportion of establishments creating and destroying jobs

53We reset 01, ¢, € and J to match the same targets as the baseline.
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from the BLS annual Business Employment Dynamics Data and find a ratio of 1.05.54
The innovation step of the incumbents is closely related to this statistic. For a given
growth rate g,, a smaller A\; implies a higher innovation probability z; and hence a larger
proportion of establishment creating jobs. In fact, the same growth rate can be reached
either with a high A\; and low x; or a low A; and high x;. To match the ratio of the
relative proportion of establishments creating jobs we set A\; at 0.0832, which is lower
than the baseline value. We continue to assume Ag = 67, hence \g is also lower than
in the baseline. The rest of the parameters are set following the same strategy as in the
baseline. The parameters and the targeted statistics are in Tables 9 and 10.

We report the results of this calibration in Table 8. As expected, with the lower
innovation step A7, the incumbents’ probability to innovate is higher than in the base-
line. On average, 48% of incumbents innovate in a given year compared with 8.4% in
the baseline calibration. Overall the results are qualitatively robust to this alternative
calibration strategy. The firing tax leads to a decline in average productivity, an in-
crease in the innovation of incumbents and to a reduction in the innovation of entrants.
Quantitatively, the results are also very similar to the baseline for average productivity.
The quantitative effects of the firing tax on the growth rate, however, differ from the
baseline. We find that the growth rate of aggregate productivity is virtually unaffected
by the firing tax. This smaller negative effect of the firing tax on the growth rate comes
here again from the smaller contribution of entrants to the growth rate. Despite the
higher innovation advantage of entrants (Ag = 6;), the contribution of entrants to the
growth rate is lower than in the baseline. The decline in the entry rate has therefore less
impact on aggregate productivity growth. The results of this calibration are very similar
to the case where A\g = 2)\;. Note that the two calibrations have very close values for
Ag. In the end, these calibrations suggest that the key parameter for the overall effect

of the firing tax on productivity growth is Ag rather than Ag/A;.

E Further details on the extensions of Section 5

E.1 Extension 1: persistent exogenous shocks

This section complements section 5.1 by giving more details on the calibration of the

extension with persistent transitory shocks.

5We compute the average share of expanding establishments over the average share of contracting
establishments over the available period (March 1994-March 2015). The data are publicly available at
https://www.bls.gov/bdm/bdmann.htm.
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Table 7: Robustness: innovative advantage of entrants

Baseline AE = 2)\1 AE = AT
7=00 7=03|7=00 7=03|7=00 7=03
Growth rate of output g (%) 1.48 1.40 1.48 1.47 1.48 1.51
Innovation probability: incumbents 0.084 0.09 0.162 0.174 0.202 0.216
Innovation probability: entrants xg 0.143 0.143 0.508 0.508 1.0 1.0
Creative destruction rate p (%) 2.65 2.34 4.46 3.79 5.35 4.58
Employment L 100 98.7 100 98.6 100 98.4
Normalized output ¥ 100 98.1 100 98.0 100 97.8
Normalized average productivity }7/ L 100 99.3 100 99.3 100 99.4
Number of active products N 0.964 0.956 0.98 0.977 0.982 0.979
Job creation rate (%) 17.0 4.9 17.0 5.2 17.0 5.7
Job creation rate from entry (%) 6.4 4.4 6.4 4.4 6.4 4.5
Job destruction rate (%) 17.0 4.9 17.0 5.2 17.0 5.7
Job destruction rate from exit (%) 2.8 2.4 4.6 3.9 5.5 4.7
R&D ratio R/Y (%) 11.5 10.7 12.0 11.2 12.2 11.6
Note: L, Y, and ?/L are set at 100 in the baseline simulation.
Table 8: Robustness: smaller innovation steps
Baseline Small A\;

7=00 7=03|7=00 7=0.3

Growth rate of output g (%) 1.48 1.40 1.480 1.477

Innovation probability: incumbents 0.084 0.09 0.483 0.534

Innovation probability: entrants zg 0.143 0.143 1.000 1.000

Creative destruction rate u (%) 2.65 2.34 4.50 3.62

Employment L 100 98.7 100 98.8

Normalized output V' 100 98.1 100 98.2

Normalized average productivity Y/L 100 99.3 100 99.4

Number of active products N 0.964 0.956 0.988 0.985

Job creation rate (%) 17.0 4.9 17.01 4.61

Job creation rate from entry (%) 6.4 44 6.40 4.13

Job destruction rate (%) 17.0 4.9 17.01 4.60

Job destruction rate from exit (%) 2.8 2.4 4.55 3.67

R&D ratio R/Y (%) 11.5 10.7 11.95 10.85

Note: L, Y, and )A//L are set at 100 in the baseline simulation.
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E.1.1 Calibration

We use the variance and autocovariance of establishment-level employment growth to
identify the size of the shock € and the persistence parameter p. To give the intuition
behind this strategy, let us assume that instead of following a discrete-valued Markov
process, the exogenous productivity a follows an AR(1) process (in logs), that is Ina; =
@ lIn a1 +u; where u, is i.i.d. with mean zero and variance (73. This assumption simplifies
the expression of the variance and covariance of log employment changes. In the absence
of firing costs, the employment of the firm is given by ¢ = (%)i ozcjf/, the variance of
log employment changes is then V(In¢; —In¢;, 1) = V(lnay —Inay_1 +1Ing — Ing,_1).
Abstracting from the correlation between xp;_; and a;_1, we can write the variance of
log employment changes as a function of the variance of the changes in the endogenous
productivity ¢, and that of changes in the exogenous productivity ;. Using the AR(1)
assumption, we get
V(ntl, —Infl,_,) = @ag +V(ng —Ing_y).

The covariance of log employment changes can be written as a function of the variance

of a and the persistence parameter:

Cov(lnf, —Int,_;,Inl_; —Int,_,) = —%05.
Given the variance of endogenous productivity V (In ¢, —In ¢;—1), we can infer the variance
of the innovation o2 and the persistence parameter ¢ from these two statistics. Similarly,
when «a follows a Markov chain, the variance and the covariance of log employment
changes can be used to infer the size of the shock ¢ and the persistence parameter p.
The full calibration is reported in Table 9 and the comparison with the models targets

are given in Table 10.

E.1.2 Data

We estimate the variance and covariance of annual log employment changes using US
census microdata from the Longitudinal Business Database (LBD). The LBD is an ex-
haustive establishment-level dataset which covers nearly all the non-farm private econ-
omy. The dataset provides longitudinally linked data on employment and payroll data for

21 million establishments over 1976-2000. The dataset is constructed using information

54



Table 9: Alternative calibrations

\ Parameter \ Persistent o | Ag =21 | Ag = A\ \ Small A\;

Discount rate 154 0.947 0.947 0.947 0.947
Disutility of labor & 1.475 1.483 1.487 1.482
Demand elasticity Y 0.200 0.2 0.2 0.2
Innovation step: entrants AE 1.500 0.50 0.25 0.49912
Innovation step: incumbents A1 0.250 0.25 0.25 0.08319
Innovation cost curvature % 2.000 2.0 2.0 2.0
Innovation cost: entrants Og 7.995 1.2560 0.4832 0.41725
Innovation cost: incumbents 0r 1.333 0.6280 0.4832 0.06954
Entry cost 10) 0.164 0.3243 0.5477 | 0.85018
Exogenous exit rate 0 0.001 0.00090 | 0.00097 | 0.00056
Transitory shock: size € 0.564 0.245 0.234 0.25947
Transitory shock: persistence p 0.718 N/A N/A N/A
Avg productivity from inactive lines | h mean 0.976 0.976 0.976 0.976
Firing tax T 0.000 0.0 0.0 0.0
Table 10: Comparison between model outcome and the targets
Data Model
Persistent « Ag =2A; Mg =A; Small )\

Growth rate of output g (%) 1.48 1.48 1.48 1.48 1.48

Employment L 0.613 0.613 0.613 0.613 0.613

Tail index k 1.06 1.06 1.06 1.06

Job creation rate (%) 17.0 17.0 17.0 17.0

Job creation rate from entry (%) 6.4 6.4 6.4 6.4 6.4

Variance of employment growth 0.24 0.24

Auto-cov. of employment growth | -0.05 -0.05

Positive employment growth 1.05 1. 04

Note: The growth rate and employment targets are computed using BEA and BLS data; for the tail
index, we use Axtell (2001)’s estimate; the job flows data are computed from the Census Bureau BDS
dataset and the variance and autocovariance of employment growth are measured from LBD micro
data. “Positive employment growth” refers to the ratio of expanding private sector establishments over
contracting establishments computed from the BLS BED dataset. Missing points indicate that the
statistic is not used as a target in the calibration.
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from the business register, economic censuses and surveys.”> We used the Synthetic LBD
(U.S. Census Bureau, 2011) which is accessible through the virtual RDC. The results
were then validated with the Census Bureau. We compute the variance and covariance of
annual log employment change over the period 1976-2000 after excluding the three-digit
SIC sectors 100 and 800 to 999. The estimated variance is 0.24 and the covariance is
—0.05.

E.2 Extension 2: smaller entrants and the deviation from Gibrat’s

law

This section provides the details on the analysis of Section 5.2.

E.2.1 Model setup

The (normalized) value of a firm at the beginning of period is
2(g,0,0) = (1 = 0)V*(q,0,0) + 6V°(0),
where
V() = —Tint
is the value of exit. The value of survival is

~

V*(4,a, ) = max {ﬂ(@,a,é, O, x)+ ((1 —u(q))S (xf, q ,e’) — u@)me’) } ,

0>0,21 1+ g,

where

A Cj / 5 (j ' 5 (1+)\]>(j o
S ) =0 —a2)Ey |Z ol By |z (22029 )|
(a:[,ng ) (1 =) { (nga Hﬂjl { ( Trg

The period profit is

(g, 0, 0,0, x;) = ([0g)] 0~ 'Y — @) — 0,(¢)Gz;” — 71 max(0, £ — ('),
For the entrants, the free entry condition is

H;:%X {—QExEV — ¢+ ﬁxE‘Q/E} =0,

5For a detailed description of the dataset, see https://www.census.gov/ces/dataproducts/datasets/Ibd.html.
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where xg satisfies the optimality condition

5‘7E =0prE’

The expected benefit of entry, XQ/E, is now calculated from

= { / Z(%ao) (Np(@) + (1 = N)h(@)dd| w()do.

E.2.2 Transformed model and computation
Define the frictionless level of employment without temporary shock as
0*(g;w,Y) = arg mﬁgx([acﬂ%’*w}}w —w)l

with e = 1; that is,

~ l
(= -
0 (q;w,Y)
Similarly, let
‘gl
/

(G, Y)
Then, the period profit can be rewritten as
ﬁ(é7 «, ga 6/7 Jf[) =

P
7YY — b

@ G, V) — 0,(4)dr” — T max(0, g, V) — G0, V).
Q(w, V)

Thus this is linear in ¢, and can be rewritten as GII(a, ¢, ¢, z;), where

¥
«Q

Q(w,Y)

0=4YY — i | Q(, V)0 =0;(§)x—7Q(, Y ) max(0, (—0').
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Although the value function is not linear in ¢, we still utilize the transformation on

¢ by defining the new value functions (abusing the ~notation on the value functions) as
Z(q,0.0) = (1= OV*(q,0,0) + 6V°(q, 1),

where

~ ~ A~

V(q,0) = —TwgQ(w, Y )l

V*(G,a,l) = max {@H(a,g, ~/,Z‘]) + 8 ( (1 —u( (

1) - wrainq )7) |

P (1+ AI)‘},O/, (14 g,)? |
1+gq 1+)\]

o q o ~ (j
Y= (1-xzpE, | Z 1 14 E,
S<xl71+9q’ > ( i’]) “ [ <1+9q ( +9Q) >}+$I

where the transformation of ¢ is similar to the baseline case.

For a given ¢, ; can be solved from the first-order condition

V01(d)gz] " =T,

where

I'r = p(1-u(q)) {Ea’

5 ((1 A0, (1 +gq>é'>

— E, [Z (1 qu,a’,(l +gq)2’)] }

The expected benefit of entry, ‘2;, is calculated with the same formula as above

b, — / { / 7 (—(111@)‘?, , 0) (Np(@) + (1 — N)h(d))dé} w(a)da,

Yq

because ¢ = 0 is equivalent to £ = 0.

The computational steps are similar to the baseline model. The only difference is
that we need to guess f(§) before performing the optimization. We update the guess
at the same time as we update the aggregate variables. (It can also be done within the

aggregate variables loop.) The following are the steps:

1. First, several variables can be computed from parameters. First, calculate z7, from
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2. Then XQ/E can be computed from

3. Start the iteration. Guess Y, w0, m, and g. Guess f(q).

Given m, we can calculate the value of p by u = Xg = ma%,. From f(§) and u,
we can obtain u(§) and p(¢). (The value of N can still be calculated by the same

formula as in the baseline case.)

Now we are ready to solve the Bellman equation for the incumbents. We have two

choice variables, ¢ and z 7. The first-order condition for z; is
¥0r(@)gay " =T,

and thus z; can be computed from

< T, ) 1/(v-1)
rr = — s
= \0r(0)d

~ (1+/\I)(j / <1+QQ>Z, |:~ ( (j / ~/):|
7 —E,|Z o, (1 / .
< 1+g, & 1+ \; 1+g, o, (1+ gq)

We can see that 2; is uniquely determined once we know . Let the decision rule

for ¢ be E’((j,a,g). Then z; = Xl((j,a,g).

where

;= p(01-u(q)) {Ea/

4. Once all decision rules are computed, we can find f(§, a,¢) by iterating over the

density.
5. Now, we check if the first guesses are consistent with the solution from the opti-
mization. First f(§) can be calculated from f(g, 04,57).

The values of w and

1

- ( / / / [a@1¢[€*<d;w,ff)ﬁ'(gﬁai)]“wf(q,a,é)dqczadg)

and




where

= / / / 0141 (q, o, 0)7 f(d, o, O)dqdadl + m(¢ + pay)

In order to check the value of g,, the condition + [ [ [¢f(q, o, O)dadldg = 1 is

used. Intuitively, when g, is too small, the stationary density f(q, c, () implies the

values of ¢ that are too large.

In order to set m, we look at the free-entry condition. Because a large m implies
a large yu, which in turn lowers Z. Thus the value of m affects the computed value
of Vi, through Z. Recall that

has to be satisfied, and this has to be equal to

Vo= [ [ 2("522 000) ota) + (1= M0 e

1+ g4

6. Go back to Step 3, until convergence.

E.2.3 Calibration

The overall calibration follows similar steps as the baseline case. The values of 3, ¥, Ar,
v, and § are the same as the baseline model. For &, we target L = 0.61 as in the baseline
case. The values ¢ and ¢ are set so that the model generates the amount of overall job
creation rate and the job creation rate by entrants close to the data. We assume that
Ag = 1.50. As in the baseline model, the level parameter of incumbent innovation cost,
now represented by #; in equation (13), is set so that the overall growth rate of output,
g, is 1.48%. We set 0 so that 0g/0; = Ap/\;.

The new parameters of this extended model are y; and y» in equation (12) and x3
and y4 in equation (13). The value of y; is set as a large number so that the size of
entrants becomes closer to the data. Given the job creation rate from entrants, the size
of entrants is reflected in the entry rate. A large value of x; makes the size of entrants
small, and thus increases the entry rate for a given job creation rate by entrants. The
value of x5 relates to the speed of growth by a small firm, and thus is reflected in the
size distribution of firms for small firms. The other two parameters, yo and x4, also have
effects on the size distribution of firms. Thus, these parameters are picked so that the

size distribution of firms is close to the data. The parameter values are summarized in
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Table 11: Calibration

‘ Parameter ‘ Extension

Discount rate I3 0.947
Disutility of labor 13 1.5
Demand elasticity P 0.2
Innovation step: entrants AE 1.50
Innovation step: incumbents A7 0.25
Innovation cost curvature ol 2.0
Innovation cost level: entrants Or 12.492
Innovation cost level: incumbents 0; 2.082
Entry cost ¢ 0.022
Exogenous exit (depreciation) rate J 0.001
Transitory shock € 0.258
Weight function parameter X1 10.0
Weight function parameter X2 10.0
07 function parameter X3 0.8
01 function parameter X4 1.0
Firing tax T 0.0

Table 11.

Table 12 compares the size distribution of firms in the data, the baseline model, and
the extended model. The extended model is very close to the data.

Table 13 describes the outcomes of the models for 7 = 0 in the baseline model and
the extended models. The discrepancy in the entry rate between the model and the data
is substantially smaller in the extended model. While it is not perfect, this seems to be
the closest we can achieve given the functional forms. What is important here is that
the results and their intuitions remain the same with these modifications that make the

model outcome closer to the data.

Table 12: Size distribution, Comparison between the US data and the model outcome

’ \ Data \ Baseline \ Extension ‘

0-4 0.495 0.917 0.467
5-9 0.223 0.017 0.265
10-19 0.138 0.020 0.142
20-49 0.089 0.025 0.090
50-99 0.030 0.009 0.019
100-249 | 0.017 0.006 0.012
250-499 | 0.004 0.002 0.003
500-999 | 0.002 0.001 0.001
1000+ | 0.001 0.001 0.001

Note: The establishment size distribution is computed from
the US Census BDS dataset (average over 1976-2012).
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Table 13: Comparison between the US data and the model outcome

’ ‘ Data ‘ Baseline ‘ Extension ‘

Growth rate of output g (%) 1.48 1.48 1.48
Employment L 0.61 0.60 0.61
Job creation rate (%) 17.0 17.0 17.2
Job creation rate from entry (%) 6.4 6.4 7.5
Job destruction rate (%) 15.0 17.0 17.2
Job destruction rate from exit (%) 5.3 2.8 3.2
Entry rate (%) 12.6 2.8 6.4
R&D spending ratio (R/Y)(%) 11.5 11.8

Note: The growth rate and employment targets are computed using BEA and BLS
data and the job flows data are computed from the Census Bureau BDS dataset.

F Empirical analysis

F.1 Data

This section describes the data and the sources used in the empirical analysis reported
in Section 6.

R&D spending (R&D): We use data on R&D business expenditures by industry and
by country from the OECD ANBERD database (Analytical Business Enterprise Research
and Development). The data are available at the two-digit ISIC Rev.3 level and are clas-
sified in industries according to the main activity of the enterprise carrying out the R&D.
We remove the financial intermediation sector from the dataset. The ANBERD dataset
includes statistical estimates which leads to fewer missing values and more extensive
time series than the raw data. The ANBERD dataset covers 32 OECD countries and
6 non-member countries between 1987 and 2011, with gaps and breaks in some of the
series. We compute R&D as R&D business expenditures divided by the gross output of
the industry. The gross output data, obtained from the OECD STAN database, is also
available at the two-digit ISIC Rev.3 level. As a robustness check we estimate the equa-
tion using the raw R&D data published in the BERD database. The BERD, ANBERD
and STAN databases are all publicly available at http://stats.oecd.org/.

Employment protection indicator (EPL): We use two indicators of the strictness of
employment protection constructed by the OECD. The indicator EPL1 measures the
strictness of dismissal regulation for individual dismissal and the indicator EPL2 also
includes measures of the strictness of the regulation on collective dismissal.®® The indi-
cators are constructed from the reading of statutory laws, collective bargaining agree-

ments and case law combined with advice from officials from OECD member coun-

56The OECD codes for EPL1 and EPL2 are EPRC_V1 and EPRC_V2.
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tries and country experts. The indicators are compiled from scores between 0 and 6
on the notification procedure, the severance pay and the difficulty of dismissal. The
indicator EPL1 is available between 1985 and 2013, and EPL2 is available between
1998 and 2013. The dataset covers 34 OECD countries and 38 non OECD countries
(for most non OECD countries the series is not available before 2008). The Employ-
ment protection indicators are publicly available at http://stats.oecd.org/ and a com-
prehensive description of the method used to construct the indicator can be found at
http://www.oecd.org/els/emp /oecdindicatorsofemploymentprotection.htm.

Layoff rate (layoff): To measure the sensitivity of each industry to firing costs, we
use the layoff rate by industry in the US. Dismissal regulation in the US is less strict
than in the rest of the countries considered. The US layoff rate can therefore be used
as a proxy for the propensity of each industry to lay off workers. Following Bassanini
et al. (2009), we estimate the US layoff rate by industry using data from from the 2004
“Displaced workers, Employee, Tenure and Occupational Mobility” supplement of the
Current Population Survey (CPS). We measure the layoff rate as the total number of
displaced workers in the three years preceding the survey (2001, 2002 and 2003) di-
vided by total employment in the industry in January 2004. A displaced worker is
a worker who has lost his job either because of the following reasons: “plant clos-
ing”, “insufficient work”, “position abolished”, “seasonal job ended” or “self-operated
business failed”. We use the Uniform Extract of CPS made available by the Center
for Economic and Policy Research (http://ceprdata.org/cps-uniform-data-extracts/cps-
displaced-worker-survey /cps-dws-data/). The data are organized according to the 2002
census industry classification. To be consistent with the R&D data, we convert the layoff
data into the two-digit ISIC Rev. 3 classification. The correspondence between the two
classification is reported in Table 14. Though the exact procedure used to estimate the
US layoff rate differs from Bassanini et al. (2009), the two measures are strongly corre-
lated (correlation coefficient of 0.71). We evaluate the robustness of the results to using
the US layoff rates computed by Bassanini et al. (2009), which are available in their Web
Appendix.

The merged dataset contains data on 27 OECD countries and 19 industries between
1987 and 2009, with breaks and gaps in the series. The 27 countries are: Austria, Bel-
gium, Canada, Czech Republic, Estonia, Finland, Germany, Greece, Hungary, Iceland,
Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New Zealand,
Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Switzerland, United States.
We excluded the primary sectors, the financial intermediation industry, as well as public

and personal services (education, health, etc). The 19 industries used are listed in Table
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14.

F.2 Additional regressions

We run two additional sets of regressions to check the robustness of our results. First, we
check that the results are similar when using the raw R&D data, available in the BERD
dataset, instead of the ANBERD dataset. The results are reported in Table 15. As in
the baseline regressions, all the regressions give a negative coefficient, though they are
not statistically significant.

We also evaluate the robustness of the results to using the layoff rates computed by
Bassanini et al. (2009). We report in Table 16. We find that the results are robust to

using their measure.
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Table 14: CPS-OECD industry classification correspondence

code CPS label code  OECD label

4 Construction F Construction

5 Nonmetallic mineral product manufacturing 26 Non-metallic mineral products

6 Primary metals and fabricated metal products 27-28 Basic metals and fabricated metal

7 Machinery manufacturing 29 Machinery n.e.c.

8 Computer and electronic product manufacturing 30-33 Electrical and optical equipment

9 Electrical equipment, appliance manufacturing 30-33 Electrical and optical equipment

10 Transportation equipment manufacturing 34-35 Transport equipment

11 Wood products 20 Wood and wood products

12 Furniture and fixtures manufacturing 36-37 Manufacturing, n.e.c.; recycling

13 Miscellaneous and not specified manufacturing 36-37 Manufacturing, n.e.c.; recycling

14 Food manufacturing 15-16  Food and beverages

15 Beverage and tobacco products 15-16  Food and beverages

16 Textile, apparel, and leather manufacturing 17-19  Textiles, wearing app. and leather

17 Paper and printing 21-22  Paper, printing and publ

18 Petroleum and coal products manufacturing 23 Coke, refined petroleum, nuclear fuel
19 Chemical manufacturing 24 Chemicals and chemical products

20 Plastics and rubber products 25 Rubber and plastics

21 Wholesale trade 50-52 Trade

22 Retail trade 50-52 Trade

23 Transportation and warehousing 60-64 Transport, storage and communications
24 Utilities E Electricity, gas and water supply

25 Publishing industries (except internet) 60-64 Transport, storage and communications
26 Motion picture and sound recording industries 60-64 Transport, storage and communications
27 Broadcasting (except internet) 60-64 Transport, storage and communications
28 Internet publishing and broadcasting 60-64 Transport, storage and communications
29 Telecommunications 60-64 Transport, storage and communications
30 Internet service providers and data processing services | 60-64 Transport, storage and communications
31 Other information services 60-64 Transport, storage and communications
34 Real estate 70-74 Real estate and business services

35 Rental and leasing services 70-74 Real estate and business services

36 Professional and technical services 70-74 Real estate and business services

37 Management of companies and enterprises 70-74 Real estate and business services

38 Administrative and support services 70-74 Real estate and business services

45 Accommodation H Hotels and Restaurants

46 Food services and drinking places H Hotels and Restaurants

Notes: The CPS classification is the 2002 Census Industry Classification and the OECD classification
is ISIC Rev.3.
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Table 15: Regression results (raw R&D data)

EPL1 EPL2
1] 2] [1] 2]
EPL. x layoff; | —0.0205 —0.0554 | —0.208 —0.0802
(0.103)  (0.0458) | (0.235) (0.0612)
R-squared 0.096 0582 | 0.098  0.582
N 6199 363 3946 363

Notes: The columns refer to different samples: [1] non-balanced
panel [2] year=2005. The balanced panel contains data on 18 coun-
tries and 19 industries from 1995 to 2005. The non-balanced re-
gression includes industry and country-time fixed effects. The 2005
regression incudes industry and country fixed effects. Robust stan-
dard errors in parentheses.

* p <0.05; ** p <0.01; *** p < 0.001.

Table 16: Regression results (Bassanini et al. (2009) layoff data)

EPL1 EPL2
[1] 2] [3] [1] [2]
EPL. x layoff; | —0.122"F  —0.0996"* —0.119 | —0.225" —0.174"
(0.0361)  (0.0264)  (0.0974) | (0.0773)  (0.0437)
R-squared 0.362 0.597 0.609 0.321 0.599
N 5410 2915 320 3514 2120 320

Notes: The columns refer to different samples: [1] non-balanced panel [2] balanced panel [3]
year=2005. The balanced panel contains data on 18 countries and 19 industries from 1995
to 2005. The non-balanced and balanced panel regressions include industry and country-time
fixed effects. The 2005 regression incudes industry and country fixed effects. Robust standard

errors in parentheses.

* p < 0.05; ** p < 0.01; *** p < 0.00L.
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