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Abstract. The core is a solution concept for coalitional games that re-
quire no coalition to break away from the grand coalition and take a joint
action that makes all of them better off. In other words, no player has an
incentive to split from the grand coalition under core allocations; more
specifically, under core allocations, the grand coalition is maintained and
stable. In this study, we propose and discuss a new solution concept (i.e.,
set of allocations) under which each player has some incentive to form
the grand coalition. We answer whether there is any relation between
the core and the solution concept proposed in this study, i.e., between
the notions of maintaining and forming the grand coalition. Further, we
describe the situations in which these two actions coincide.
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1 Introduction

The core is a solution concept for coalitional games that require no coalition
(i.e., group of players) to break away and take a joint action that makes all
participants better off. In other words, no player has an incentive to split from
the grand coalition under core allocations. Note that this does not imply that each
player has an incentive to form the grand coalition under core allocations. More
specifically, some players may have no incentive to form the grand coalition even
though core allocations are proposed. Consider the following coalitional game
and its core allocations. Let N = {1, 2, 3, 4} and

v(S) =


2 if |S| = 2,

3 if |S| = 3,

6 if S = N ,

0 otherwise.

Here, we can see that both payoff vectors x = (1.5, 1.5, 1.5, 1.5) and y =
(0, 2, 2, 2) are in the core of (N, v). Under the core allocation x = (1.5, 1.5, 1.5, 1.5),
the grand coalition N could be formed via the following coalition formation
process. For the one-person subgame ({i}, v{i}), i ∈ N , the unique allocation

(i.e., imputation) for player i is x
{i}
i = 0 since v({i}) = 0. Further, for the

two-person subgame ({i, j}, v{i,j}), allocation x{i,j} = (1, 1) is acceptable for
each i, j ∈ N since v({i, j}) = 2 and the allocation improves both smaller (i.e.,

one player) subgames ({i}, v{i}) and ({j}, v{j}) (i.e., x
{i,j}
k = 1 > 0 = x

{k}
i ,

k ∈ {i, j}). Therefore, each player has an incentive to form the larger coalition
{i, j} in seeking an increase or non-decrease, in a weak sense, in its allocation.
Similarly, x{i,j,k} = (1, 1, 1) is acceptable for each i, j, k ∈ N and each player
has an incentive (in a weak sense) to form the larger coalition {i, j, k}. Finally,
x = (1.5, 1.5, 1.5, 1.5) is also acceptable for each player in N because x improves

all allocations x
{i}
i = 0, x{i,j} = (1, 1), and x{i,j,k} = (1, 1, 1) for each player. In

other words, the payoff vector x = (1.5, 1.5, 1.5, 1.5) can be considered a target
in any coalition formation process (e.g., {1} → {1, 2} → {1, 2, 3} → N) toward
the grand coalition in the game (N, v).

Meanwhile, under the core allocation y = (0, 2, 2, 2), it might be impossi-
ble for the grand coalition N to be formed or reached because the allocation y
would be unacceptable to some players in some coalition formation processes.
As an example, in a three-person subgame ({i, j, k}, v{i,j,k}), an imputation

z{i,j,k} := (z
{i,j,k}
i , z

{i,j,k}
j , z

{i,j,k}
k ) such as z

{i,j,k}
i < z

{i,j,k}
j ≤ z

{i,j,k}
k is un-

acceptable to player i. Indeed, since v({i, j, k}) = 3, it follows that z
{i,j,k}
i < 1

and z
{i,j,k}
j ≤ (3 − z

{i,j,k}
i )/2; therefore, z

{i,j,k}
i + z

{i,j,k}
j < 2. Further, any

imputation z{i,j} of ({i, j}, v{i,j}) is not (Pareto-)improved by z{i,j,k} since

z
{i,j}
i + z

{i,j}
j = 2 > z

{i,j,k}
i + z

{i,j,k}
j . And at least one of the players i and j

has no incentive to form larger coalition {i, j, k} to obtain payoff z{i,j,k}. Given
that game (N, v) is symmetric and the discussion above, z{i,j,k} = (1, 1, 1) is the
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unique acceptable allocation in subgame ({i, j, k}, v{i,j,k}). When three-person
coalitions containing player 1 (e.g., {1, 2, 3}) have been formed under allocation
(1, 1, 1), it is trivial that player 1 never forms a grand coalition if allocation
y = (0, 2, 2, 2) is proposed. When coalition {2, 3, 4} has been formed under al-
location (1, 1, 1), if player 1 does not participate in the grand coalition (i.e.,
subgame ({2, 3, 4}, v{2,3,4}) is played), then the payoff for each player 2, 3, and 4
remains as one. Therefore, all players in coalition {1, 2, 3} would have incentive to
accept any payoff greater than one. In other words, if y = (0, 2, 2, 2) is proposed
to player 1, he will refuse this proposal and submit an appropriate re-proposal:
e.g., , (0.3, 1.9, 1.9, 1.9) or (2.7, 1.1, 1.1, 1.1). Note that under core allocations, no
coalition can improve its payoff by itself; however, also under core allocations,
there is no rule that states that a coalition can make others worse off. Indeed, in
this case, player 1 can use such a threat, though this is rather incredible threat.
Hence, in both cases, player 1 has no incentive to form the grand coalition if
unacceptable allocation y = (0, 2, 2, 2) is proposed.

From the above discussion, the payoff vector x = (1.5, 1.5, 1.5, 1.5) has the
potential to be a target or goal in a coalition formation process toward the grand
coalition N , but y = (0, 2, 2, 2) can never be a goal. In this paper, we propose and
investigate allocation set A(N, v) whose elements have the potential to be targets
in some coalition formation process toward the grand coalition N . Note that
A(N, v) will be defined mathematically in Definition 4 in Section 2. If A(N, v) =
∅, then some players have no incentive to form the grand coalition agreement in
the game (N, v) under any allocations. Therefore, the grand coalition would not
be formed at all. Conversely, if A(N, v) ̸= ∅, there are some coalition formation
paths toward a potential target x ∈ A(N, v); therefore, it is possible for the
grand coalition to be formed or reached.

In addition to this introductory section, our paper is organized as follows.
In Section 2, we provide some necessary preliminaries. Next in Section 3, we
show several relations between the allocation set A(N, v) and the core C(N, v) of
games. In Section 4, we present several properties of A(N, v) of convex games.
In Section 5, through numerical examples, we describe several relations among
A(N, v), the core, the kernel, and the nucleolus. Finally, in Section 6, we present
our conclusions and describe avenues for future work.

2 Preliminaries

Let N := {1, . . . , n} (n > 0) be a set of players. A coalition is a subset of N .
An n-person cooperative game with side-payments or transferable utility game
(i.e., a coalitional game or simply game for short) is a pair (N, v), where v is a
function v : 2N → R from the set of coalitions to the set of real numbers R with
v(∅) = 0, which is called a characteristic function. The value v(S) for a coalition
S ⊆ N may be thought of as the worth won by S if all members in S agree to
cooperate, and the other ones do not. A game (N, v) is said to be super additive
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if v(S) + v(T ) ≤ v(S ∪ T ) for all S, T ⊆ N with S ∩ T = ∅, and to be convex if

v(S) + v(T ) ≤ v(S ∪ T )− v(S ∩ T )

for any S, T ⊆ N . Given a game (N, v) and a coalition S ⊆ N , the subgame
(S, vS) is obtained by restricting v to 2S , i.e., vS(T ) = v(T ) ∀T ⊆ S. We use
shorthand notation here and write i for {i}, S ∪ i for S ∪ {i}, S \ i for S \ {i},
ij for {i, j}, and so on.

In a game (N, v), a payoff vector x ∈ RN is called efficient if the total worth
v(N) is allocated to all the members in N , i.e.,

∑
i∈N xi = v(N), where xi is

the i-th component of x (i.e., xi is the allocation to the player i). The set of
all efficient payoff vectors of a game (N, v) is called the pre-imputation set of
(N, v) and is denoted by I∗(N, v). The imputation set I(N, v) of a game (N, v)
is defined by

I(N, v) = {x ∈ I∗(N, v) | xi ≥ v(i) ∀i ∈ N}.

Further, an imputation x ∈ I(N, v) is said to be dominated by another imputa-
tion y ∈ I(N, v) if there exists a coalition S ⊆ N such that each player i ∈ S
prefers y to x (i.e., yi ≥ xi for any i ∈ S and yj > xj for some j ∈ S) and S
can enforce y (i.e.,

∑
i∈S yi ≤ v(S)). The core C(N, v) of a game (N, v) is the

set of all imputations that are not dominated by any other imputations (i.e.,
∀x ∈ C(N, v),¬∃ [y ∈ I(N, v) and S ⊆ N ] s.t. yi > xi ∀i ∈ S and y(S) ≤ v(S),
where y(S) :=

∑
i∈S yi). The constraints imposed on the core C(N, v) ensure

that no coalition would have an incentive to split from the grand coalition N
and do better on its own. Then, the core C(N, v) of a game (N, v) is represented
by

C(N, v) := {x ∈ I(V,N) | x(S) ≥ v(S) ∀S ⊆ N}. (1)

For a game (N, v), the excess of S ⊆ N at a payoff vector x ∈ RN is defined as

e(S,x, v) := v(S)− x(S).

Note here that positive excess e(S,x, v) may be interpreted as the dissatisfaction
of the coalition S when faced with the proposal x, because, e(S,x, v) represents
the total gain that members of S will have if they depart from x and form their
own coalition S.

Definition 1 (ϵ-core [12], least-core [7]). Let ϵ be a real number. The ϵ-core
of a game (N, v), denoted Cϵ(N, v), is defined by

Cϵ(N, v) := {x ∈ I∗(N, v) | e(S,x, v) ≤ ϵ ∀S ⊆ N(S ̸= ∅)}. (2)

Clearly, C0(N, v) = C(N, v). Also, Cϵ(N, v) ̸= ∅ if ϵ is large enough. Further,
Cϵ′(N, v) ⊊ Cϵ(N, v) whenever Cϵ(N, v) ̸= ∅ and ϵ′ < ϵ. The ϵ-core ttherefore
has the following interpretation: it is the set of efficient payoff vectors that cannot
be improved upon by any coalition if coalition formation entails a cost of ϵ or a
bonus of −ϵ if ϵ is negative. In order to be an acceptable substitute for the core,
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Cϵ(N, v) must be non-empty and ϵ should be small. The least-core of a game
(N, v), denoted LC(N, v), is the intersection of all non-empty ϵ-cores of (N, v),
i.e.,

LC(N, v) = Cϵ0(N, v), where ϵ0 := min
x∈I∗(N,v)

max
∅̸=S⊆N

e(S,x, v).

If a payoff vector x has been proposed in a game (N, v), player i ∈ N can
compare his position with that of player j ∈ N(i ̸= j) by considering maximum
surplus svij(x) of i against j with respect to x, which is defined as

svij(x) := max
S:S∋i,S ̸∋j

e(S,x, v).

Here, the maximum surplus of i against j with respect to x can be regarded as
the highest payoff that player i can gain (or the maximum amount that i can
lose if svij(x) is negative) without the cooperation of player j. Player i can do
this by forming a coalition without j, assuming that the other members of the
coalition are satisfied with x. Therefore, svij(x) can be regarded as a measure of
the possible threat of i against j (i.e., the strength of i against j at x). Further,
if x is an imputation, then player j cannot be threatened by i or any other
player when xj = v(j) since j can obtain or win the amount xj by going it
alone. If svij(x) > svji(x) and xj > v(j) (i.e., at x, the strength of i against j
is greater than that of j against i and the player j cannot obtain the amount
xj by going it alone), then we say that player i outweighs j at x. From this,
the kernel, introduced in [3], consists of those imputations for which no player
outweighs another one.

Definition 2 (kernel, pre-kernel [3]). The kernel K(N, v) of a game (N, v)
is defined by

K(N, v) := {x ∈ I(N, v) | svij(x) ≤ svji(x) or xj = v(j) ∀i, j ∈ N}, (3)

and the pre-kernel PK(N, v) of a game (N, v) is defined by

PK(N, v) := {x ∈ I∗(N, v) | svij(x) = svji(x) ∀i, j ∈ N}. (4)

Here, the kernel and the pre-kernel are always non-empty andK(N, v)∩C(N, v) =
PK(N, v) ∩ C(N, v) if C(N, v) ̸= ∅.

Since e(S,x, v) can be regarded as a measure of the dissatisfaction of S at x, we
next attempt to identify a payoff vector that minimizes the maximum excess.
We construct a vector θ(x) := (θ1(x), . . . , θ2n−1(x)) by arranging the excesses
of the 2n − 1 non-empty subsets (i.e., all non-empty subsets) of N in decreasing
order; more specifically, we arrange the non-empty subsets Si ⊆ N in an order
such that θi(x) := e(Si,x, v) and θi(x) ≥ θj(x) whenever 1 ≤ i ≤ j ≤ 2n − 1.
We say that θ(x) is lexicographically smaller than θ(y) if there exists a positive
integer k ≤ 2n − 1 such that θi(x) = θi(y) whenever i < k and θk(x) < θk(y).
We denote θ(x) <L θ(y), while θ(x) ≤L θ(y) will be used to indicate that
either θ(x) <L θ(y) or θ(x) = θ(y).
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Definition 3 (nucleolus [8]). The nucleolus N (N, v) of a game (N, v) is de-
fined by

N (N, v) := {x ∈ I(N, v) | θ(x) ≤L θ(y) ∀y ∈ I(N, v)}, (5)

and the pre-nucleolus of a game (N, v) is defined by

PN (N, v) := {x ∈ I∗(N, v) | θ(x) ≤L θ(y) ∀y ∈ I∗(N, v)}.

Here, the nucleolus always consists of one point that is an element of the kernel
and is in the core whenever the core is non-empty, i.e., |N (N, v)| = 1 and
N (N, v) ⊆ K(N, v) ∩ C(N, v) if C(N, v) ̸= ∅. For any convex game (N, v), we
have PK(N, v) = K(N, v) = N (N, v) = PN (N, v).

Next, we introduce a new solution concept of a game (N, v), the allocation
set A(N, v), from the viewpoint of coalition formation and Pareto improvement.
To do so, consider the following scenario in a game (N, v). For each one-person
subgame (i, vi), the unique imputation xi for the player i ∈ N of the subgame
(i, vi) is xi = (v(i)). If there exists an imputation x{i,j} of a subgame (ij, vij)
that improves both the allocations xi and xj (i.e., xij

i ≥ xi
i and xij

j ≥ xj
j), then

the player i and j form the coalition ij and play the game (ij, vij) to seek an
increase in their allocations, i.e., in order to obtain an imputation xij . Such an
imputation xij seems to have the potential to be a target in a coalition formation
process toward the coalition ij or a short-term goal of a coalition formation
process toward the grand coalition N . Further, if there are no allocations of
(ij, vij) that improve both the allocations xi and xj but there is an imputation
xijk of (ijk, vijk) that improves both the allocations xi and xj , then players i
and j would like to form the coalition ijk and play the game (ijk, vijk) to obtain
imputation xijk; however, if the imputation xijk cannot improve any allocations
for the player k of subgame (T, vT ) for some T (∋ k) ⊊ {ijk} (i.e., there is

no imputation zT of (T, vT ) for some T (∋ k) ⊊ {ijk} such that xijk
k ≥ zT

k ),
then, the player k has no incentive to form the coalition ijk and obtain the
allocation xijk

k . More specifically, the allocation xijk cannot be a target for the
player k in any coalition formation processes toward the coalition ijk via T .
For the imputation xijk of (ijk, vijk) to be acceptable to all the players i, j,
and k (i.e., the imputation xijk is a potential target in some coalition formation
process toward the coalition ijk,) for each T (̸= ∅) ⊊ ijk, there should exist an
imputation xT whenever there are acceptable allocations of the game (T, vT ),

such that xijk
l ≥ xT

l ∀l ∈ T . Given this, we define the allocation set A(ijk, vijk)
as the set of all imputations that are potential targets in some coalition formation
processes toward the coalition ijk. We can extend A(S, vS), 0 < |S| ≤ 3, to the
case in which |S| ≥ 4 in the same manner discussed above using the definition
that follows:

Definition 4. Given a game (N, v), the allocation set A(N, v) of a game (N, v)
is a set of imputations, i.e., A(N, v) ⊆ I(N, v), defined recursively as follows:

A(i, vi) := (v(i)) ∀i ∈ N ,
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A(S, vS) :=
∩

T∈A (S,vS)

∪
yT∈A(T,vT )

{x ∈ I(S, vS) | xi ≥ yT
i ∀i ∈ T}

for any S ⊆ N (|S| ≥ 2), where A (S, vS) := {T ⊊ S | A(T, vT ) ̸= ∅, T ̸= ∅}.

We observe here that from the above definition, A(S, vS) = C(S, vS) if 1 ≤
|S| ≤ 2. Indeed, A(i, vi) = {v(i)} = C(i, vi) and

A(ij, vij) =
∩

T∈A (ij,vij)

∪
yT∈A(T,vT )

{x ∈ I(S, vS) | xi ≥ yT
i ∀i ∈ T}

=
∩

T∈{{i},{j}}

∪
yT∈C(T,vT )

{x ∈ I(S, vS) | xi ≥ yT
i ∀i ∈ T}

= {(xi, xj) | xi + xj = v(ij), xi ≥ v(i)}
∩ {(xi, xj) | xi + xj = v(ij), xj ≥ v(j)}

= {(xi, xj) | xi + xj = v(ij), xi ≥ v(i), xj ≥ v(j)} = C(ij, vij).

Here, the allocation set A(N, v) is the set of all imputations x ∈ I(N, v) for which
there exists an allocation yT ∈ A(T, vT ) of each subgame (T, vT ), T ∈ A (N, v)
such that xi ≥ yT

i ∀i ∈ T (i.e., x is a Pareto improvement of some allocation
yT in every subgame (T, vT ), T ∈ A (N, v)). Therefore, such an allocation is ac-
ceptable for all players in the grand coalition N . For an imputation z ̸∈ A(N, v),
the imputation cannot improve any imputations for some players in a subgame
(T, vT ), T ∈ A (N, v) (i.e., ∀xT ∈ A(T, vT ) ∃i ∈ T s.t. zi < xi, for some
T ∈ A (N, v) ). Given this, players in T never want to participate in the coali-
tion N if the allocation z is proposed. Therefore, if A(N, v) = ∅, then the grand
coalition would not be formed even though the core C(N, v) is non-empty (see
Proposition 5).

3 Relations between C(N, v) and A(N, v)

Recall that the core is a set of imputations under which no group of players
would break away and take any joint action that would improve all of them.
Here, the allocation set A(N, v) is the set of all imputations that are potential
targets in some coalition formation process toward the grand coalition. In this
section, we focus on investigating the relations between the core C(N, v) and
A(N, v) (i.e., between the two notions of having no incentive to split off from
the grand coalition and having the incentive to form the grand coalition).

Proposition 1 (lemma for Theorem 1). For any two non-empty coalitions
T ⊊ S, if A(T, vT ) = ∅ and A(S, vS) ̸= ∅, then

x(T ) > v(T ) ∀x ∈ A(S, vS),

where x(T ) :=
∑

i∈T xi.
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Corollary 1. If A(S, vS) ̸= ∅, then, for any non-empty coalition T ⊆ S,

x(T ) ≥ v(T ) ∀x ∈ A(S, vS),

i.e., x satisfies coalitional rationality.

Proposition 2 (lemma for Theorem 1). Given a game (N, v), if A(S, vS) ̸=
∅, then A(S, vS) ∩ C(S, vS) ̸= ∅.

Corollary 2. Given a game (N, v), if C(S, vS) = ∅, then A(S, vS) = ∅.

Theorem 1. Given a game (N, v), A(S, vS) ⊆ C(S, vS) ∀S ⊆ N.

More specifically, the allocation set A(N, v) is a more stringent solution concept
than the core C(N, v) of coalitional games, i.e., the allocation set A(N, v) can be
thought of as a refinement of the cocept to core C(N, v).

Proposition 3 (lemma for Proposition 4). Given a game (N, v), if |S| = 3,

A(S, vS) ⊇ C(S, vS).

Proposition 4. Given a game (N, v), A(S, vS) = C(S, vS) if 1 ≤ |S| ≤ 3.

More specifically, at most three-person games, the allocation set A(N, v) coin-
cides with the core C(N, v) of a game (N, v). This coincidence of A(N, v) and
C(N, v) does not, in general, extend to games with |N | ≥ 4. Note that in [3],
the kernel K(N, v) is a singleton for a game (N, v) with |N | ≤ 3; however, this
property does not, in general, extend to games with |N | ≥ 4.

Proposition 5. For any non-empty set N (|N | ≥ 4), there exists a game (N, v)
such that ∅ = A(N, v) ⊊ C(N, v).

Note that we present such a game (N, v) in Example 2 of section 5 below.

Proposition 6. For any non-empty set N (|N | ≥ 4), there exists a game (N, v)
such that ∅ ̸= A(N, v) ⊊ C(N, v).

We present such a game (N, v) in Example 3 of section 5) below.

The above propositions show that there is, in general, some imputation x ∈
C(N, v) \ A(N, v). Such an x is an interesting and/or strange allocation in the
following sense. If a core allocation x ∈ C(N, v) \ A(N, v) is imposed on the
players in N , no coalition (i.e., no group of players) would have any incentive to
split off from the grand coalition; however, such an x cannot be a target in some
coalition formation processes toward the grand coalition N since x ̸∈ A(N, v).
More specifically, in the coalition formation processes, if such an allocation x ∈
C(N, v) \A(N, v) is proposed to the players, then the grand coalition would not
be formed.
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4 Properties on A(N, v) for convex games

Recall that for any convex game (N, v), the bargaining set [3] and the core of
the game coincide, as so do the kernel and nucleolus [7]. Further, the kernel is
a subset of the core for any convex game [7]. In this section, we show several
properties on the allocation set A(N, v) for convex games.

As a corollary of Shapley [11] and Ichiishi [5], we start with the following result.

Proposition 7 (lemma for Theorem 2). Let N := {1, . . . , n} and (N, v) be
a game. For a given permutation σ on N , consider the corresponding marginal
vector mσ(N, v) ∈ RN defined as

mσ(N, v)σ(k) := v(Sσ
k)− v(Sσ

k−1)

for each k ∈ N , where Sσ
k is defined as

Sσ
k :=

{
{σ(j) | j ≤ k} if k ̸= 0,

∅ if k = 0

for each k ∈ N . Then, (N, v) is convex if and only if its core C(N, v) is the
convex hull of all marginal vectors {mσ(N, v)}σ∈Π(N), where Π(N) is the set of
all permutations on N .

Proposition 8 (lemma for Theorem 2). If (N, v) is convex, then mσ(N, v) ∈
A(N, v) for any σ ∈ Π(N).

Proposition 9 (lemma for Theorem 2). Let (N, v) be a game with A(N, v) ̸=
∅. Then, for any x,y ∈ A(N, v),

λx+ (1− λ)y ∈ A(N, v) ∀λ ∈ [0, 1].

That is, A(N, v) is convex as with the core C(N, v).

Theorem 2. If (N, v) is convex, then A(N, v) = C(N, v).

Corollary 3. If (N, v) is convex, A(S, vS) ̸= ∅ ∀S(̸= ∅) ⊆ N .

More specifically, in any convex game (N, v), every player has the incentive to
form every coalition, and any core allocation x ∈ C(N, v) has the potential to
be a target in some coalition formation processes toward the grand coalition.

Corollary 4. If (N, v) is convex, then

N (N, v) = K(N, v) ⊆ LC(N, v) ⊆ A(N, v) = C(N, v).
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5 Numerical examples of N , K, LC, C, and A

In this section, we present several numerical examples involving the nucleolus
N , kernel K, least core LC, core C and allocation set A of games.

Example 1 (A = C = LC ⊋ K = N ). Let N = {1, 2, 3, 4} and

v(S) =



1 if S = 12 or 34,

2 if S = 13 or 24,

3 if S = 14 or 23,

4 if |S| = 3,

6 if S = N ,

0 otherwise.

Here, (N, v) is super additive (i.e., PN = N and PK = K) but not convex. In-
deed, v(123) < v(13)+v(23)−v(3). Here, the nucleolus N (N, v), kernel K(N, v),
least-core LC(N, v), core C(N, v), and allocation set A(N, v) are represented as

N (N, v) = K(N, v) = CH({(1.5, 1.5, 1.5, 1.5)}) = {(1.5, 1.5, 1.5, 1.5)},

A(N, v) = LC(N, v) = C(N, v) = CH({(1, 1, 2, 2), (2, 1, 2, 1), (2, 2, 1, 1), (1, 2, 1, 2)}),

where CH(S) is the convex hull of the set of payoff vectors S. These solutions
are represented by the form (α, β, 3− β, 3− α) as shown in Fig. 1.

α + β = 5

α + β = 1

α

β

5

5

1

o 1

1.5

α - β = 1

−α + β = 1

2

1.5

: A(N,v), least core, core

2

: kernel, nucleolus

Fig. 1. Illustrating how allocation set A(N, v) coincides with the core C(N, v)
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Example 2 (A = ∅, N ⊊ K ⊊ LC = C). Let N = {1, 2, 3, 4} and

v(S) =



1 if S = 12 or 34,

2 if S = 13 or 24,

3 if S = 14 or 23,

3 if |S| = 3,

6 if S = N ,

0 otherwise.

Here, (N, v) is super additive but not convex. The nucleolus N (N, v), kernel
K(N, v), least-core LC(N, v), and core C(N, v) are then represented as

N (N, v) = CH({(1.5, 1.5, 1.5, 1.5)}) = {(1.5, 1.5, 1.5, 1.5)},

K(N, v) = CH({(1, 1, 2, 2), (2, 2, 1, 1)}),

LC(N, v) = C(N, v) = CH({(1, 0, 3, 2), (3, 2, 1, 0), (2, 3, 0, 1), (0, 1, 2, 3)}),

where CH(S) is the convex hull of the set of payoff vectors S. These solutions are
represented by the form (α, β, 3− β, 3− α) as shown in Fig. 2. Here, A(N, v) =
∅. Indeed, it follows from Proposition 4 that A(123, v123) = C(123, v123) =
{(0, 1, 2)}, A(124, v124) = C(124, v124) = {(1, 0, 2)}, A(134, v134) = C(134, v134)
= {(2, 0, 1)}, and A(234, v234) = C(234, v234) = {(2, 1, 0)}. Therefore, if x ∈
A(N, v), then, from the definition of A(N, v), xi ≥ 2 for any i ∈ N . This contra-
dicts constraint 6 = v(N) = x(N).

α + β = 5

α + β = 1

α

β

5

5

1

o 1

1.5

α - β = 1

−α + β = 1

2

1.5

: least core, core

2

: kernel

: nucleolus

Fig. 2. A(N, v) = ∅, C(N, v) ̸= ∅
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Example 3 (v1 : A = N = K, A ⊊ LC ⊊ C, v2 : A = C ⊋ LC ⊋ K = N ). Let
N = {1, 2, 3, 4} and

v1(S) =



1 if S = 12 or 34,

2 if S = 13 or 24,

3 if S = 14 or 23,

3 if |S| = 3,

8 if S = N ,

0 otherwise.

, v2(S) =



1 if S = 12 or 34,

2 if S = 13 or 24,

3 if S = 14 or 23,

4 if |S| = 3,

8 if S = N ,

0 otherwise.

Here, (N, v1) is super additive but not convex; futher (N, v2) is convex (i.e.,
A(N, v2) = C(N, v2) from Theorem 2). Nucleoli N (N, v1) and N (N, v2), kernels
K(N, v1) and K(N, v2), least-cores LC(N, v1) and LC(N, v2), and cores C(N, v1)
and C(N, v2) are represented as

N (N, v1) = N (N, v2) = K(N, v1) = K(N, v2) = CH({(2, 2, 2, 2)}) = {(2, 2, 2, 2)},

LC(N, v1) = LC(N, v2)

= CH({(1, 1, 3, 3), (2, 1, 3, 2), (3, 2, 2, 1), (3, 3, 1, 1), (2, 3, 1, 2), (1, 2, 2, 3)}),

C(N, vi) = CH({mσ(N, vi)}σ∈Π(N)), i = 1, 2,

where CH(S) is the convex hull of the set of payoff vectors S. Here, the least
core LC(N, vi), i = 1, 2 coincides with the ϵ-core Cϵ(N, vi) with ϵ = 1 (i.e.,
LC(N, vi) ⊊ C(N, vi), i = 1, 2). These solutions are represented by the form
(α, β, 3 − β, 3 − α) as shown in Fig. 3. Further, we have the allocation sets
A(N, v1) = N (N, v1) = K(N, v1) andA(N, v2) = C(N, v2). Interestingly,A(N, v1) ⊊
LC(N, v1) and A(N, v2) ⊋ LC(N, v2); i.e., the allocation set A(N, v) and the
least-core LC(N, v) are considered as two different types of refinements of the
core C(N, v).

6 Conclusions

In this paper, we proposed a new solution concept A(N, v) from the viewpoint of
coalition formation and Pareto improvement. More specifically, if x ∈ A(N, v),
then x is an improvement of some acceptable imputation yT for each subgame
(T, vT ), T ⊆ N . Then, all players in the coalition T have incentives to form the
grand coalition N in seeking increases to their allocations. Further, if A(N, v) =
∅, then there exists some coalition T ⊆ N such that every acceptable allocation of
(T, vT ) cannot be improved by any imputation of (N, v) (i.e., at least one player
in T has no incentive to form the grand coalition, thus the grand coalition will
not be formed). In our paper, we showed that the allocation set A(N, v) is a
subset of the core C(N, v) in any game (N, v). The existence or non-emptiness of
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α + β = 8

α + β = 2

α

β

8

8

3

1

o 1

α - β = 1

−α + β = 1

2

3

: least core

2

: kernel, nucleolus,

Fig. 3. Illustrating A(N, v1) ̸= A(N, v2) but other solution concepts of (N, v1) and
(N, v2) coincide

C(N, v) \A(N, v) suggests that “the notion having incentives to form the grand
coalition” is stronger than “the notion of having no incentive to split off from
the grand coalition”. When |N | ≤ 3 or (N, v) is convex, A(N, v) coincides with
C(N, v) (i.e., the above two notions regarding incentives coincide). Sometimes
the least core LC(N, v) contains the allocation set A(N, v), while at other times
the allocation set A(N, v) contains the least core LC(N, v), as shown in Example
3. More specifically, the allocation set A(N, v) and the least-core LC(N, v) are
considered to be two different refinements of the core C(N, v). As future work,
we put forth the following conjecture.

Conjecture 1. Let (N, v) be a game. If A(N, v) ̸= ∅ then A(N, v) ⊇ K(N, v)
Therefore, N (N, v) ⊆ A(N, v) whenever A(N, v) ̸= ∅.
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