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Abstract

Existing explanations of Zipf’s law (Pareto exponent approximately
equal to 1) in size distributions require strong assumptions on growth
rates or the minimum size. I show that Zipf’s law naturally arises in
general equilibrium when individual units solve a homogeneous problem
(e.g., homothetic preferences, constant-returns-to-scale technology), the
units enter/exit the economy at a small constant rate, and at least one
production factor is in limited supply. My model explains why Zipf’s law
is empirically observed in the size distributions of cities and firms, which
consist of people, but not in other quantities such as wealth, income, or
consumption, which all have Pareto exponents well above 1.

Keywords: Gibrat’s law, homogeneous problem, power law
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1 Introduction

Zipf’s law is an empirical regularity that holds in the size distributions of cities
and firms, stating that the frequency of observing a unit larger than the cutoff
x is approximately inversely proportional to x:

P (X > x) ∼ x−ζ ,

where the Pareto (power law) exponent ζ is slightly above 1. This relationship
holds regardless of the choice of countries or time periods.1 To get a sense of
how the empirical size distribution looks like, Figure 1 shows a log-log plot of
employment cutoffs and the number of firms larger than the cutoffs (essentially

∗Department of Economics, University of California San Diego. Email: atoda@ucsd.edu.
I thank Eli Berman, Narayana Kocherlakota, Jim Rauch, and seminar participants at Fudan,
Keio, Kobe University Research Institute for Economics and Business Administration, Osaka,
and UCSD for comments and feedback. Miles Berg and Xuan Fang have provided excellent
research assistance.

1Although Zipf’s law is named after Zipf (1949), its discovery dates back at least to Auer-
bach (1913). For empirical studies documenting Zipf’s law, see Rosen and Resnick (1980),
Ioannides and Overman (2003), and Soo (2005) for cities (see Gabaix and Ioannides (2004)
for a review and Nitsch (2005) for a meta analysis) and Axtell (2001), Fujiwara et al. (2004),
di Giovanni et al. (2011), di Giovanni and Levchenko (2013), and Garicano et al. (2016) for
firms, among many others. While most studies on cities use agglomerations and show that
Zipf’s law holds for the largest a few hundred agglomerations, Rozenfeld et al. (2011) define a
“city” as a maximally connected cluster of populated sites (two adjacent sites are connected
if the population densities exceed a cutoff value) and show that Zipf’s law for population and
area holds for a large range.
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the ranks) using the 2011 U.S. Census Small Business Administration (SBA)
data. Consistent with a power law, the figure shows a straight-line pattern up
to small firms with as few as 10 employees. The Pareto exponent estimated by
maximum likelihood is ζ̂ = 1.0967 with a standard error of 0.0020. We obtain
similar patterns for all years from 1992 to 2011 for which data is available.
Figure 2 shows the estimated Pareto exponent over the period 1992–2011, which
is slightly above 1 in all years. As Krugman (1996) puts it, “there must be a
compelling explanation of the astonishing empirical regularity.”
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Figure 1: Log-log plot of firm size distribution.

Note: The figure plots employment cutoffs and the number of firms larger than the cutoffs
(ranks). dPlN stands for double Pareto-lognormal, which is a distribution arising from the
theoretical model in the paper. The straight-line pattern is consistent with a power law, with
estimated exponent ζ̂ = 1.0967 and standard error 0.0020 using maximum likelihood with
binned data (sample size N = 5,684,424; see Appendix D for details). Source: 2011 U.S.
Census Small Business Administration data.
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Figure 2: Time series of estimated Pareto exponent.

Note: The figure plots the estimated Pareto exponent ζ̂ from 1992 to 2011. The two dashed
curves indicate the 95% confidence interval. Source: U.S. Census Small Business Administra-
tion data.

In addition to its empirical regularity, Zipf’s law is important because it
may explain aggregate fluctuations from a micro level (Gabaix, 2011) and has
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distinct welfare implications of entry cost and trade barriers (di Giovanni and
Levchenko, 2013). In a seminal paper, Gabaix (1999) has shown that Zipf’s law
arises when individual units follow Gibrat (1931)’s law of proportional growth
and there is some small minimum size that the units must meet. His work has
generated a large subsequent literature on power laws in economics and finance
as well as models that attempt to explain Zipf’s law. Despite the considerable
advances in the theory of power laws in size distributions achieved during the
past decade or so, the explanation of Zipf’s law (Pareto exponent very close
to 1) remains incomplete: one of the conditions for Zipf’s law—that there is a
small minimum size, or equivalently the expected growth rate of existing units
is small in absolute value relative to the variance—has often been assumed
without proper justifications. In this paper, I show that in a certain class of
dynamic general equilibrium models, Zipf’s law holds without introducing ad
hoc assumptions, and hence provide a microfoundation for Zipf’s law.

My theory is surprisingly simple, and essentially relies on the following three
elements: (i) Gibrat’s law of proportional growth, (ii) individual units enter-
ing/exiting the economy with small probability, and (iii) existence of a produc-
tion factor in limited supply. Conditions (i) and (ii) have already been known
to be sufficient for generating Pareto tails (Reed, 2001), but Zipf’s law (Pareto
exponent close to 1) holds only in the knife-edge case in which the expected
growth rate of units is small in absolute value. My contribution is thus in show-
ing that condition (iii)—the existence of a production factor in limited supply—
limits aggregate growth, which in equilibrium also limits individual growth and
delivers Zipf’s law. The intuition is as follows. If individual units solve a
homogeneous problem (e.g., homothetic preferences, constant-returns-to-scale
technology), the size of these units obeys Gibrat’s law of proportional growth.
But if one of the production factors is in limited supply, the aggregate economy
exhibits decreasing returns to scale. Since the economy converges to the steady
state (zero aggregate growth), the individual growth rate endogenously becomes
small. My theory explains why Zipf’s law is empirically observed only for cities
and firms, but not for other quantities such as wealth, income, or consumption,
which all obey power laws but with exponents well above 1.2 Cities and firms
consist of people, which can be thought of as a production factor that is in lim-
ited supply. On the other hand, wealth, income, or consumption can be created
or destroyed.

To illustrate these points in the simplest possible way, I first construct a
stylized model of the population dynamics of cities (villages). In the model,
there are a continuum of villages and households. The village authorities pro-
duce a single good (“potato”) using a constant-returns-to-scale technology and
hiring labor. Households migrate across villages freely without any cost. Vil-
lages are hit by two types of idiosyncratic shocks—technological shocks and
rare disasters (“famine”). When a famine occurs, the potatoes in the village are
wiped out, but the village authority receives deliveries of potatoes from other
villages because they have a mutual insurance. This simple model has all the
ingredients sufficient for generating Zipf’s law: (i) with multiplicative techno-
logical shocks and constant-returns-to-scale technology, we obtain Gibrat’s law
for individual villages, (ii) famines are reset events and generate a stationary

2Reed (2003) and Toda (2012) find that the Pareto exponent for income is around 2. Toda
and Walsh (2015) and Toda (2016) document a power law in consumption with an exponent
around 4.
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distribution with Pareto tails, and (iii) the inelastic labor supply endogenously
forces the expected population growth rate in individual villages to be small in
equilibrium, generating Zipf’s law.

The intuition for this simple model carries over to more general models. Con-
sider a dynamic general equilibrium model which consists of several agent types,
and suppose that we are interested in the size distribution of an economic vari-
able of a particular type (e.g., firm size distribution measured by the number of
employees). The main result of this paper, Theorem 3.5, shows that if agents of
this type solve a homogeneous problem (e.g., homothetic preferences, constant-
returns-to-scale technology, proportional constraints), the agents enter/exit the
economy at a constant rate η > 0, and at least one factor of production is in
limited supply, then Zipf’s law holds in the stationary equilibrium as η → 0.
This result holds in a wide variety of models, including those with elastic labor
supply, balanced growth, random initial size, multiple types, and discrete time
with non-Gaussian shocks.

Because the main theorem is an asymptotic result, the Pareto exponent need
not be close to 1 for particular models or parameter configurations. To address
the quantitative validity of my theory, I construct a model of entrepreneurship
and firm size distribution. The economy is populated by entrepreneur-CEOs and
household-workers. Each entrepreneur operates a firm using a constant-returns-
to-scale technology and hiring labor, and makes consumption-saving-portfolio-
hiring decisions optimally. Entrepreneurs are subject to idiosyncratic investment
risk and bankruptcy. Workers supply labor inelastically but make consumption-
saving decisions optimally. In this setting under mild conditions I prove that a
unique stationary equilibrium exists and characterize the equilibrium in closed-
form. I prove that the stationary firm size distribution obeys Zipf’s law when
the bankruptcy rate is small. I calibrate the model to the U.S. economy and find
that the Pareto exponent is close to 1, consistent with Zipf’s law. To show its
robustness, I generate random parameter configurations drawn from a uniform
distribution with a large support, and for each case I compute the equilibrium
Pareto exponent. For this particular model I find that the 95 percentile of
the Pareto exponent is 1.13, so Zipf’s law holds even for quite extreme (and
unrealistic) parameter configurations, confirming its robustness.

1.1 Related literature

Pareto (1896) discovered that the size distribution of income obeys a power
law. The idea of using random growth models3 to explain power law distri-
butions dates back to Yule (1925), Champernowne (1953), Simon (1955), and
Kesten (1973), among others. Because random proportional growth (Gibrat’s
law) alone does not lead to a stationary distribution (one would get a lognor-
mal distribution, whose log variance increases linearly over time), one needs to
introduce additional assumptions. Champernowne (1953) introduces a mean-
reverting force and obtains the double Pareto distribution; Wold and Whittle

3In this paper I focus on the random growth model because (i) it is the earliest model
to explain power laws, and (ii) almost all existing explanations of Zipf’s law rely on this
mechanism one way or another. An exception is Geerolf (2016), who studies the production
decision within an organization in a static setting. The Pareto exponent is exactly equal to
2 when there are two layers in the organization (e.g., managers and workers). He also shows
that Zipf’s law obtains as the number of layers tends to infinity.
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(1957) consider random birth and death; Kesten (1973) considers both multi-
plicative and additive shocks. For reviews of generative mechanisms of the power
law, see Mitzenmacher (2004), Gabaix (2009, 2016), Jones (2015), and Benhabib
and Bisin (2017). Although this early literature on power law used mechanical
models (i.e., they lacked optimizing behavior or general equilibrium analysis),
more micro-founded models have been explored during the past decade.4

Since Zipf’s law is a special case of power law (with Pareto exponent close
to 1), one needs to introduce further assumptions to explain it. Gabaix (1999)
considers the normalized size distribution of cities (“normalized” means dividing
the size by the average size) and shows that we obtain Zipf’s law if we assume
that there is a small minimum size. As discussed in Section 2, this condition is
equivalent to small expected growth relative to the variance, or |g| � v2. (A
similar condition is necessary in models with entry/exit, which Malevergne et al.
(2013) call “balance condition.”) In general, all existing explanations of Zipf’s
law require such a fine-tuning of parameters. For example, Simon and Bonini
(1958) and Luttmer (2011) consider random growth models of firm size similar to
Simon (1955) and show that Zipf’s law obtains when the net growth attributed
to new firms relative to that of existing firms approaches zero. Córdoba (2008)
studies a model of city size distribution and shows that Zipf’s law holds when
the elasticity of substitution between goods is exactly 1.

Luttmer (2007, 2012) studies general equilibrium models of firms with en-
try/exit, where the entrant can pay an entry cost to sample at random from
the population of incumbent firms. He shows that Zipf’s law holds when the
entry cost diverges to infinity. The mechanism is similar since a large entry cost
must be compensated by large profits, which imply a large average firm size
that arises under small growth relative to the balanced growth path.5

Nirei and Aoki (2016) construct a heterogeneous-agent neoclassical growth
model that accounts for the Pareto distributions of income and wealth in the up-
per tail. Because their model features constant-returns-to-scale at the individual
level but decreasing returns at the aggregate level (due to the boundedness of
labor), according to my theory their model should generate Zipf’s law. However,
they do not discuss Zipf’s law. Aoki and Nirei (2016) construct a neoclassical
growth model that can simultaneously explain Zipf’s law for the firm size dis-
tribution and the evolution of the Pareto exponent in the income distribution.
However, as in the existing literature they obtain Zipf’s law by assuming a small
minimum size.

4See, for example, Luttmer (2007), Nirei and Souma (2007), Benhabib et al. (2011, 2015,
2016), Toda (2014), Toda and Walsh (2015), Arkolakis (2016), Gabaix et al. (2016), Nirei and
Aoki (2016), Aoki and Nirei (2016), Eisfeldt et al. (2017), and Jones and Kim (2017), among
others.

5In Luttmer (2007), the equation that determines the Pareto exponent ζ is

λE

λF
=

∫ ∞
b

V (s)f(s+ δ) ds =

∫ ∞
0

1

r − κ

ξ

1 + ξ

(
ex − 1 −

1 − e−ξx

ξ

)
ζ2xe−ζ(x+δ) dx,

which is equivalent to Equation (30) and can be derived by combining (11), (25), and (26).
Since r−κ and ξ are bounded away from 0 and the dominant term in the integrand is e−(ζ−1)x,
making the ratio between entry and fixed costs λE/λF large forces ζ to be close to 1.
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2 Existing explanations and difficulties

In this section I review the existing explanations of Zipf’s law based on random
growth models and point out their difficulties.

2.1 Geometric Brownian motion with minimum size

Suppose that the size of individual units (e.g., population of cities, number of
employees in firms, etc.) satisfies Gibrat (1931)’s law of proportional growth:
the growth rate of units is independent of their sizes.6 The simplest of all such
processes is the geometric Brownian motion (GBM)

dXt = gXt dt+ vXt dBt, (2.1)

where Xt is the size of a typical unit,7 g is the expected growth rate, v > 0 is
the volatility, and Bt is a standard Brownian motion that is independent across
units. As is well known, the geometric Brownian motion leads to the lognormal
distribution whose log variance increases linearly over time, and hence does not
admit a stationary distribution.

In order to obtain a stationary distribution, a common practice in the lit-
erature is to introduce a minimum size xmin > 0 below which individual units
cannot operate.8 Mathematically, we are considering the geometric Brownian
motion with a reflective barrier at xmin. Assuming that the growth rate is neg-
ative (g < 0), it is well known (see Gabaix (1999) or Appendix A) that the
system converges to the unique stationary distribution

P (X > x) =

(
x

xmin

)−ζ
, (2.2)

which is a Pareto distribution with minimum size xmin and Pareto exponent

ζ = 1− 2g

v2
> 1. (2.3)

Thus we obtain Zipf’s law (ζ ≈ 1) when the growth rate is small in absolute
value relative to the variance: |g| � v2. Another way to formulate the condition
for Zipf’s law is to compare the minimum size xmin to the average size x̄. Using
the distribution function (2.2), the average size is

x̄ =

∫ ∞
xmin

xζxζminx
−ζ−1 dx =

ζ

ζ − 1
xmin ⇐⇒ ζ =

1

1− xmin/x̄
. (2.4)

Hence Zipf’s law is also equivalent to xmin � x̄: the minimum size is small
relative to the average. The intuition is that the minimum size is small relative
to the average when the latter is large, which occurs precisely when the expected
growth rate g is large, or when it is close to zero since it must be negative.

6See Sutton (1997) for an early review of the empirical literature on Gibrat’s law. More re-
cent works include Ioannides and Overman (2003), Eeckhout (2004), and Giesen and Südekum
(2011), among others.

7Xt is sometimes interpreted as the size of a typical unit relative to the cross-sectional
average. In that case, g and v are the expected growth rate and volatility relative to the
average, and xmin below is the minimum relative size.

8Such assumptions are made in Levy and Solomon (1996), Gabaix (1999), Malcai et al.
(1999), Luttmer (2007), Córdoba (2008), and Aoki and Nirei (2016), among others.
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2.2 Geometric Brownian motion with entry/exit

Next, consider the same the geometric Brownian motion (2.1) but introduce
entry and exit. Unlike in the previous example, there is no minimum size but
new units constantly enter the economy at rate η > 0, with initial size x0, and
existing units exit at the same rate η as in the Yaari (1965)-Blanchard (1985)
perpetual youth model.9 It is well known (see Reed (2001) or Appendix A) that
regardless of the parameter values, the size distribution of units always has a
unique stationary distribution, with a density of the form

f(x) =

{
αβ
α+βx

α
0x
−α−1, (x ≥ x0)

αβ
α+βx

−β
0 xβ−1, (0 < x < x0)

(2.5)

which is known as double Pareto. The parameters α, β > 0 are called Pareto (or
power law) exponents. Given the parameters g, v, η of the stochastic process,
the exponents ζ = α,−β are the solutions to the quadratic equation

v2

2
ζ2 +

(
g − v2

2

)
ζ − η = 0. (2.6)

Solving (2.6), we obtain the Pareto exponents

α, β =
1

2

√(1− 2g

v2

)2

+
8η

v2
±
(

1− 2g

v2

) . (2.7)

As is clear from this formula, Zipf’s law (α ≈ 1) arises when |g| , η � v2, i.e.,
when the growth and entry/exit rates are small compared to the variance.

2.3 Difficulties

Although the above models are purely mechanical, they underly the mechanism
of generating Zipf’s law in virtually all papers. Of course, in order to make it an
economic model, one needs to provide mechanisms that generate Gibrat’s law
of proportional growth. However, this is not difficult if we assume that individ-
ual units solve a homogeneous problem (e.g., homothetic preferences, constant-
returns-to-scale production, proportional constraints).10 The more difficult part
is to explain why there is a minimum size, and why the growth rate is small.
These are the difficulties in existing explanations.

First, in many models a minimum size is often introduced as an ad hoc as-
sumption. While a minimum size may be justified in some cases (e.g., positive

9Wold and Whittle (1957) is one of the earliest examples that shows that random en-
try/exit (birth/death) can generate Pareto tails. Working in continuous-time is convenient
for tractability, though similar results hold in discrete time and in a Markov setting (Beare
and Toda, 2016). For cities it may be unreasonable to assume that they exit at a constant
rate. However, this assumption is not important because we obtain the exact same result if
cities are infinitely lived, new cities are created at rate η, and the total population also grows
at rate η. Also it is not important that the average size of cities is constant over time. If
there is population growth, we obtain the same conclusion by considering the balanced growth
path. See the discussion in Reed (2001) for details.

10See, for example, Saito (1998), Krebs (2003), Angeletos (2007), Benhabib et al. (2011,
2016), Toda (2014), and Toda and Walsh (2015), among others.
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integer constraint, fixed cost of operation, borrowing constraints), in the pres-
ence of a minimum size, fully optimizing agents will typically behave differently
depending on whether they are close to the lower boundary or not. Since Zipf’s
law is a statement about the upper tail, and large agents are likely not affected
much by the lower boundary, it is reasonable to expect that the upper tail of
the size distribution is similar in models where (i) agents behave rationally in
the presence of an ex ante minimum size,11 and (ii) agents ignore the minimum
size but it is imposed ex post. Therefore the assumption of a minimum size
is not really an issue, although characterizing the stationary distribution with
fully optimizing agents in the presence of a minimum size is more challenging.

The second issue, which is more problematic, is the condition that the growth
rate or the minimum size must be small in absolute value in order to obtain
Zipf’s law, which is a knife-edge case. Since the growth rate g is an endogenous
variable in any fully specified economic model, there is no obvious reason why
we should expect it to be close to zero. In order to obtain this condition, one
usually needs to pick very particular parameter values.

To summarize, the explanation of Zipf’s law remains incomplete until we pro-
vide a fully specified economic model with optimizing agents in which (i) there
is no ad hoc minimum size, and (ii) the small growth condition emerges en-
dogenously as an equilibrium outcome. I provide such models in the following
sections.

3 Homogeneity and limited factor yield Zipf

In this section I show that whenever (i) individual units solve a dynamic op-
timization problem that is homogeneous in the state variable (size) as well as
all control variables, (ii) individual units enter/exit the economy at a constant
Poisson rate η > 0, and (iii) at least one production factor is in limited sup-
ply, we obtain Zipf’s law in the limit η → 0. This result does not depend on
the details of the model and is thus robust. To illustrate the general result,
as an example I provide a minimal model of population dynamics and city size
distribution.

3.1 Example: a simple model of city size distribution

In this section I present a minimal model of population dynamics and city size
distribution in order to illustrate the main mechanism that generates Zipf’s law.
The general case is treated in Section 3.2.

Environment Consider an economy consisting of a continuum of villages and
households. The mass of villages and households is normalized to 1 and N , re-
spectively. There is a single consumption good, potato. Each household supplies
1 unit of labor inelastically and consumes the entire wage (“hand-to-mouth”
behavior). Households migrate across villages freely without any moving costs;
therefore in equilibrium, all villages must offer the same competitive wage. Each

11For example, Benhabib et al. (2015) consider a Bewley model with capital income risk
and show that the optimal consumption rule is asymptotically linear (i.e., the lower boundary
does not matter) as agents become rich. As a result, they show that the stationary wealth
distribution exhibits a Pareto upper tail.
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village authority uses its stock of potatoes and hires labor to produce new pota-
toes with a constant-returns-to-scale technology.

Each village is subject to two types of idiosyncratic shocks. First, the stock
of potatoes is subject to a productivity shock coming from a Brownian motion.
Second, each village is occasionally hit by a rare disaster—famine—which arrives
at a (small) Poisson rate η > 0. When a famine hits a village, the entire stock
of potatoes perishes. However, there is a mutual insurance agreement across
villages: a village hit by a famine receives a delivery of potatoes from other
villages and starts over at size κ > 0 times the aggregate stock of potatoes; this
delivery is financed by contributions from other villages proportional to their
stock of potatoes.

A stationary equilibrium is defined by a wage ω and size distributions of
village population and stock of potatoes such that (i) profit maximization:
given the wage and stock of potatoes, each village authority demands labor
to maximize profits,12 (ii) market clearing: for each village, population equals
labor demand, and (iii) stationarity: the size distributions are invariant over
time.

Population dynamics of individual villages Let ω be the equilibrium
wage and xt be the stock of potatoes in a typical village. Then the resource
constraint when there is no famine is

dxt = (F (xt, nt)− ωnt) dt− ηκxt dt+ vxt dBt, (3.1)

where nt is the labor input (population of the village in equilibrium), F is
the production function (which is homogeneous of degree 1 since it exhibits
constant-returns-to-scale), v is volatility, and Bt is a standard Brownian motion.
F (xt, nt) − ωnt is the amount of potatoes the village authority retains after
paying the wage. The term −ηκxt reflects the delivery of potatoes to a village
hit by a famine (in a short period of time ∆t, there are η∆t such villages, and
each village gets κxt, where κ > 0 is the constant of proportionality). The
term vxt dBt is the technological shock to the stock of potatoes. The village
authority maximizes the profit, so chooses nt such that

nt = arg max
n

(F (xt, n)− ωn).

Let f(x) = F (x, 1).13 Since by assumption F is homogeneous of degree 1, we
have F (x, n) = nf(x/n). By the first-order condition, we obtain

ω = f(y)− yf ′(y), (3.2)

where y = xt/n is the potato per capita. Hence given the wage ω and the stock
of potatoes xt, the labor demand is nt = xt/y, where y is determined by (3.2).
The profit rate per unit of potato is then

µ =
F (xt, n)− ωn

x
=

1

y
(f(y)− (f(y)− yf ′(y))) = f ′(y). (3.3)

12To keep the analysis as simple as possible, in this model I assume that the village author-
ity maximizes profits point-by-point, without specifying fundamentals on the behavior (e.g.,
utility function). One way to justify this behavior is to assume that the village authority (dic-
tator) has an additive CRRA utility in the stock of potatoes (i.e., gets utility from looking at
potatoes) and the dictator gets replaced whenever a famine occurs.

13A typical example is the Cobb-Douglas production function F (x, n) = Axαn1−α − δx, so
f(x) = Axα − δx, where δ is the depreciation rate.

9



Substituting the profit (3.3) into the resource constraint (3.1), we obtain

dxt = (µ− ηκ)xt dt+ vxt dBt. (3.4)

Therefore the stock of potatoes in each village evolves according to a geometric
Brownian motion until a famine hits. Since nt = xt/y is proportional to xt, the
village population nt also obeys the same geometric Brownian motion (3.4).

Equilibrium To compute the equilibrium, we need to derive the dynamics of
the aggregate stock of potatoes, Xt (which is constant in steady state). Consider
what happens to the stock of potatoes in each village during a short period
of time ∆t. If the village does not experience a famine (which occurs with
probability 1−η∆t), then by (3.4) the stock of potatoes grows at rate µ−ηκ on
average. If the village is hit by a famine (which occurs with probability η∆t),
the potatoes are wiped out, and the village receives a delivery of κXt from
other villages according to the mutual agreement. Hence aggregating the stock
of potatoes across villages and using the law of large numbers for the continuum
(Uhlig, 1996; Sun, 2006), we obtain

X + ∆X = (1− η∆t)(1 + (µ− ηκ)∆t)X︸ ︷︷ ︸
Aggregate potatoes of non-famine villages

+ (η∆t)(κX)︸ ︷︷ ︸
Aggregate potatoes of famine villages

= (1 + (µ− η)∆t)X + higher order terms.

Subtracting X from both sides and letting ∆t→ 0, we obtain

dX = (µ− η)X dt. (3.5)

In steady state, since by definition the aggregate stock of potatoes is constant,
we must have dX = 0 and hence

µ = η. (3.6)

Combining (3.3) and (3.6), the equilibrium potato per capita y is determined
by f ′(y) = η. The equilibrium wage is then determined by (3.2). Substituting
(3.6) into the equation of motion (3.4) of potatoes in each village (and hence
the population), we obtain

dxt = η(1− κ)xt dt+ vxt dBt. (3.7)

The equation of motion (3.7) is identical to (2.1) with g = η(1− κ). Since η is
small, we have |g| , η � v2, so according to the formula for the Pareto exponent
(2.7), we can expect that the upper tail exponent ζ is close to 1. In fact, as a
special case of Theorem 3.5 below, we can show the bound (see (3.11))

1 < ζ < 1 +
2ηκ

v2
,

so we obtain Zipf’s law ζ → 1 as η → 0.

3.2 General theory

Next I consider the general setting.
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3.2.1 Individual problem

Consider a dynamic optimization problem with one positive state variable (called
“size”) denoted by x > 0, finitely many control variables denoted by y ∈ Rdy ,
and finitely many parameters denoted by θ ∈ Θ ⊂ Rdθ . Some parameters may
be exogenous (e.g., preference and technology parameters), while others are en-
dogenous (e.g., prices). Furthermore, the parameters may vary over time. Let
Γ(x; θ) ⊂ Rdy be the constraint set of the control y given the state variable x
and parameter θ, and V ({xt, yt; θt}) be the objective function to be maximized.
In this paper I introduce the following definition.

Definition 3.1 (Homogeneous problem). The dynamic optimization problem
is homogeneous if the followings hold:

1. for each parameter θ ∈ Θ, the constraint function Γ(·; θ) : R+ ⇒ Rdy is
homogeneous of degree 1, so for all λ > 0 we have

y ∈ Γ(x; θ) =⇒ λy ∈ Γ(λx; θ),

2. the equation of motion for the state variable is a diffusion with homoge-
neous coefficients, so

dxt = g(xt, yt; θt) dt+ v(xt, yt; θt) dBt, (3.8)

where Bt is a standard Brownian motion and g, v are drift and volatility,
which are homogeneous of degree 1 in (x, y),

3. the objective function is homothetic, so for all λ > 0 and feasible {xt, yt}t≥0

and {x′t, y′t}t≥0, we have

V ({xt, yt; θt}) ≥ V ({x′t, y′t; θt}) =⇒ V ({λxt, λyt; θt}) ≥ V ({λx′t, λy′t; θt}).

Example 1. A typical example of a homogeneous problem is a Merton (1969)-
type optimal consumption-portfolio problem. In this problem the investors max-
imize the expected utility

E0

∫ ∞
0

e−ρt
c1−γt

1− γ
dt

subject to the budget constraint

dxt = (rxt + (µ− r)st − ct) dt+ σst dBt,

where xt is total wealth, st is the amount of wealth invested in the risky asset
(stock), ct is consumption, r is the risk-free rate, µ is the expected return on
stocks, and σ is volatility. In this case the control variable is y = (c, s) and the
parameter is θ = (ρ, γ, r, µ, σ). Since consumption is nonnegative, the constraint
set is y = (c, s) ∈ R+ ×R = Γ(x, θ), which is homogeneous of degree 1. Clearly
the objective function is homogeneous of degree 1− γ in {ct}, and the drift and
volatility

g(x, y; θ) = rx+ (µ− r)s− c, v(x, y; θ) = σs

are homogeneous of degree 1 (in fact, linear) in (x, y).
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As is well known, the solution to a homogeneous problem scales with the
state variable.

Lemma 3.2. If {yt} solves a homogeneous problem, then there exists a function
αt : Θ→ Rdy such that yt = αt(θt)xt.

Proof. By homogeneity, if y is the optimal control given the state x > 0 and
parameter θ, λy is the optimal control given the state λx and parameter θ.
Letting λ = 1/x, y/x is the optimal control given the state 1 and parameter θ,
which we can denote by αt(θ) ∈ Rdy . Therefore y = αt(θt)x.

Next I study the general equilibrium in which at least one agent type solves
a homogeneous problem.

3.2.2 Size distribution in general equilibrium

Consider the class of dynamic general equilibrium models that consist of one or
several types of agents and feature only idiosyncratic risks. I define two notions
of equilibria.

Definition 3.3. An aggregate steady state consists of endogenous parameters
and decision rules of all agent types such that (i) agents optimize, (ii) mar-
kets clear, and (iii) all endogenous parameters and decision rules are time-
invariant. If in addition the cross-sectional distributions of all agent types are
time-invariant, the aggregate steady state is called a stationary equilibrium.

Suppose that in a dynamic general equilibrium model, a particular agent
type solves a homogeneous problem. Since there is only idiosyncratic risks, the
Brownian motion in (3.8) is i.i.d. across all agents.

The following lemma shows that if the aggregate supply of at least one
positive control variable is bounded, then in a steady state the cross-sectional
size distribution has a finite mean.

Lemma 3.4. Suppose that a dynamic general equilibrium model has an aggre-
gate steady state, and that one agent type solves a homogeneous problem. If the
aggregate supply of at least one positive control variable is bounded, then the
cross-sectional size distribution of that type has a finite mean. Furthermore, the
size of individual units obeys some geometric Brownian motion

dxt = g(θ)xt dt+ v(θ)xt dBt. (3.9)

Using Lemmas 3.2 and 3.4, we can prove the main result: homogeneity,
limited supply, and a (small) constant rate of Poisson entry/exit yield Zipf’s
law.

Theorem 3.5 (Zipf’s law). Let everything be as in Lemma 3.4 and suppose
that individual units of that particular type enter/exit the economy at a constant
Poisson rate η > 0, and new units are drawn from some initial size distribution
x0 ∼ F (x; θ, η) with finite mean. Assume that a stationary equilibrium exists
and let θ(η) ∈ Θ be all exogenous and endogenous parameters in stationary
equilibrium given η > 0,

κ(η) =

∫∞
0
xF (dx; θ(η), η)

E[xt]
> 0

12



be the average initial size relative to the cross-sectional mean, and v(η) :=
v(θ(η)) > 0 be the volatility. Then the followings hold in equilibrium.

1. the size of individual units obeys the geometric Brownian motion

dxt = η(1− κ(η))xt dt+ v(η)xt dBt, (3.10)

so g(θ(η)) = η(1− κ(η)) in (3.9),

2. the cross-sectional size distribution has a Pareto upper tail with exponent
ζ that satisfies

1 < ζ < 1 +
2ηκ(η)

v(η)2
. (3.11)

In particular, if

lim
η→0

ηκ(η)

v(η)2
= 0, (3.12)

then ζ → 1 as η → 0, so we obtain Zipf’s law.

Theorem 3.5 is quite powerful since we obtain Zipf’s law regardless of the
details of the model (“detail-free”). All we need are that (i) individual units
solve a homogeneous problem,14 so the size variable obeys the geometric Brow-
nian motion, (ii) individual units enter/exit at a constant Poisson rate, so the
cross-sectional distribution is double Pareto, and (iii) there is a factor in the
economy that is in limited supply, so in equilibrium all aggregate variables re-
main bounded, which forces the growth rate of GBM to be small in absolute
value and makes the Pareto exponent close to 1.

Of course, Theorem 3.5 assumes that a stationary equilibrium exists and the
technical condition (3.12) holds. In general, for a given model we need to verify
these conditions on a case-by-case basis.

3.3 Robustness

In this section I show that the assumptions of Theorem 3.5 are satisfied in a
wide variety of models and that the assumptions can be weakened further.

3.3.1 Elastic labor supply

In the city size example in Section 3.1, households supply labor inelastically.
This assumption is inessential, since village authorities still solve a homogeneous
problem regardless of whether labor supply is inelastic or not, and therefore the
assumptions of Theorem 3.5 hold. Even if households make some labor-leisure
choice, the conclusion of Theorem 3.5 remains valid because the total population
is bounded and hence so is the total labor supply.

In other models, such as Angeletos and Panousi (2009, 2011), there is a single
type of agents (entrepreneur-workers) that operates a constant-returns-to-scale
technology while choosing labor supply and demand. In this case the individual
problem is not homogeneous (according to Definition 3.1) because labor-leisure
choice is bounded. However, after computing the present value of wage and

14Clearly, it is not necessary that all agent types solve homogeneous problems. All we need
is that individual units of a particular type (whose distribution we are interested in) solve a
homogeneous problem.
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fixing the labor-leisure choice at the optimum, the remaining problem (opti-
mal consumption-portfolio choice) becomes a homogeneous problem. Therefore
Zipf’s law still holds in this case.

3.3.2 Balanced growth equilibrium

In the city size example in Section 3.1, I assumed that the total population is
constant at N , and hence bounded. Boundedness of some factor is sufficient for
Zipf’s law, but not necessary. Suppose, for example, that population grows (or
shrink) at a constant rate ν, so Nt = N0eνt. Since the equation of motion for
the aggregate stock (3.5) still holds, we have a balanced growth equilibrium if
and only if

µ− η = ν.

In this case the growth rate of individual cities relative to the mean is

g − ν = (µ− ηκ)− ν = η(1− κ),

which is exactly the same as in the case with no population growth. Therefore
in the balanced growth equilibrium, the mean of the cross-sectional distribution
will grow at rate ν, but the upper tail Pareto exponent will still satisfy the
bound (3.11). Hence we obtain Zipf’s law as η → 0.

3.3.3 Coexistence of Zipf and non-Zipf distributions

The simple model in Section 3.1 explains why Zipf’s law for the city size distri-
bution is possible. Is this theory consistent with the fact that empirically Zipf
and non-Zipf distributions coexist? For example, while Zipf’s law empirically
holds for cities and firms, the Pareto exponent for household income is around
1.5–3 (Reed, 2003; Toda, 2012) and 4 for consumption (Toda and Walsh, 2015;
Toda, 2016).

By slightly modifying the model, we can explain why Zipf’s law holds for
some size distributions but not for others. Instead of assuming that households
are infinitely lived as in the above example, suppose that they enter/exit the
labor market at a constant Poisson rate δ > 0. Assume that new households
have labor productivity normalized to 1, but the productivity evolves according
to a geometric Brownian motion with growth rate µ < δ15 and volatility σ > 0
over the life cycle. Letting H be the cross-sectional average labor productivity
in steady state, by accounting we have

0 =
dH

dt
= (µ− δ)H + δN ⇐⇒ H =

δ

δ − µ
N > 0.

Suppose that a household with labor productivity h supplies h units of labor
services inelastically. Since average productivity H is bounded, assuming that
migration occurs independent of household income, by Theorem 3.5 the cross-
sectional city size distribution obeys Zipf’s law as η → 0. Since the household
labor productivity also satisfies a geometric Brownian motion (but with growth
rate µ and volatility σ), the cross-sectional household income and consumption

15If µ ≥ δ, the aggregate human capital grows indefinitely, and we need to consider the
balanced growth equilibrium.
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distributions will be double Pareto. By the discussion in Section 2.2, the upper
tail exponent α > 0 satisfies

σ2

2
α2 +

(
µ− σ2

2

)
α− δ = 0, (3.13)

which corresponds to (2.6). However, since α is solely determined by household
characteristics (µ, σ, δ), it need not be close to 1. To see this, substituting α ≈ 1
into (3.13), a necessary condition for Zipf’s law is µ ≈ δ. However, there is no
reason to expect that the growth rate of individual labor productivity (µ) is
close to the exit rate from the labor market (δ).

As a numerical illustration, Deaton and Paxson (1994, Table 1) report that
within cohorts, the cross-sectional variance of household log consumption in-
creases linearly over time (which is consistent with a geometric Brownian mo-
tion for consumption), and at a rate 0.0069 per annum in U.S. Toda and Walsh
(2015) find that the entire cross-sectional distribution of household consump-
tion has a Pareto exponent around 3–4. Hence setting µ = 0 (cohort effects
are controlled), σ2 = 0.0069, and α = 3, 4 in (3.13), the implied Poisson rate
is δ = 0.0207, 0.0414 (average 1/δ = 48.3, 24.1 years in the labor force), which
is reasonable since typical households participate in the labor market for about
30–40 years. Thus a Zipf’s law for firm size is entirely consistent with non-Zipf
(but power law) distributions in income and consumption.

3.3.4 Random initial size

When the initial size of new units is constant, by the discussion in Section
2.2 and Theorem 3.5, the cross-sectional distribution is exactly double Pareto.
Since the double Pareto distribution has a kink at the mode, it is unlikely to
be observed in the data. Reed (2002) and Giesen et al. (2010) suggest that the
entire size distribution of cities is closer to the double Pareto-lognormal (dPlN)
distribution, which has two Pareto tails with a lognormal body (Reed, 2003).
It is straightforward to obtain dPlN in my model: instead of assuming that
the initial size after the reset event is constant, if the initial size distribution
is lognormal, we obtain dPlN. Therefore my model can explain simultaneously
why the size distribution of cities is close to dPlN and obeys Zipf’s law. More
generally, as long as the initial size distribution is thin-tailed, the initial size
does not affect the upper tail of the cross-sectional distribution since the latter
is governed by the distribution of relative size (i.e., size divided by initial size),
which is fat-tailed.

3.3.5 Multiple types

In the empirical literature on firm sizes, it is well known that Gibrat’s law of
proportional growth does not quite hold: small firms tend to grow faster but
also exit at a higher rate (Mansfield, 1962; Evans, 1987a,b; Hall, 1987; Hart and
Oulton, 1996). My theory is not necessarily inconsistent with these empirical
facts. Suppose, for instance, that firms consist of several types, indexed by
j = 1, . . . , J . Suppose that all firm types solve (type-specific) homogeneous
problems, and hence by Lemma 3.2, in a stationary equilibrium the size of type
j firms evolve according to a geometric Brownian motion with growth rate gj
and volatility vj > 0. Suppose also that type j firms either go bankrupt (exit

15



from the economy) or transition to a different type at rate ηj > 0. Letting
κj > 0 be the average initial size of new type j firms relative to the average
existing type j firms, it follows from Theorem 3.5 that the cross-sectional size
distribution of type j firms has a Pareto exponent ζj that satisfies

1 < ζj < 1 +
2ηjκj
v2
j

.

The entire cross-sectional distribution is some mixture of each component. Since
tails are fatter the smaller the Pareto exponent is, the mixture of several dis-
tributions with Pareto upper tails has a Pareto tail with exponent equal to the
minimum among its mixture components. Therefore the entire cross-sectional
firm size distribution has a Pareto exponent ζ that satisfies

1 < ζ = min
j
ζj < 1 + min

j

2ηjκj
v2
j

.

Hence Zipf’s law holds if ηjκj/v
2
j is small for at least one type j.

Note that in this model the cross-sectional distributions are distinct across
types. Hence if the firm type is imperfectly observed to the econometrician,
the probability that a firm is of a particular type conditional on its size will
generally depend on the size. The empirical fact that small firms tend to grow
and exit faster need not be a violation of Gibrat’s law but simply because firm
types are imperfectly observed: a firm type that grows and exits fast may just
happen to have a small average size.

3.3.6 Discrete-time model

So far I have considered a continuous-time model for tractability, but similar
results obtain in a discrete-time model. As in Section 3.2, consider a dynamic
general equilibrium model consisting of several agent types and featuring only
idiosyncratic risk. We can define a homogeneous problem in a similar way to
Definition 3.1: the only difference is that the equation of motion (3.8) is replaced
by

xt+1 = Gt+1(xt, yt; θt), (3.14)

where xt > 0 is the state variable, yt is the control variable, θt is the parameter,
and Gt+1(x, y; θ) is a positive random variable that is homogeneous of degree 1
in (x, y) and i.i.d. across agents and time, fixing x, y, θ.

By the same argument as in Lemma 3.4, in an aggregate steady state the
equation of motion (3.14) becomes

xt+1 = Gt+1(θ)xt,

so the size of individual units grows at gross growth rate Gt := Gt(θ) between
time t − 1 and t. To obtain a stationary distribution, assume that individual
units enter/exit the economy with probability 0 < p < 1 per period. The
following theorem shows that under weak assumptions, the cross-sectional size
distribution has Pareto upper tails.

Theorem 3.6 (Beare and Toda, 2016). Suppose that (i) P (G > 1) > 0, so
existing units grow with positive probability, and (ii) there exists s̄ > 0 such that

1

1− p
< E[Gs̄] <∞.
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Then there exists a unique ζ ∈ (0, s̄) such that

(1− p) E[Gζ ] = 1. (3.15)

In this case, the cross-sectional size distribution has a Pareto upper tail with
exponent ζ.

Note that when G is lognormal, the condition (3.15) becomes equivalent to
(2.6). To see this, let logG ∼ N(g − v2/2, v2) and p = 1 − e−η, where g is
expected growth rate, v is volatility, and η is the Poisson entry/exit rate per
unit of time. Then (3.15) becomes

1 = (1− p) E[Gζ ] = e−ηe(g−v2/2)ζ+v2ζ2/2 ⇐⇒ v2

2
ζ2 +

(
g − v2

2

)
ζ − η = 0,

which is exactly (2.6).
In a general equilibrium model, the distribution of the growth rate G de-

pends on exogenous parameters, and so does the Pareto exponent. Hence let
G(p), ζ(p) be growth rate and the Pareto exponent given the entry/exit rate p,
fixing all other parameters. The following theorem shows that under additional
assumptions, we obtain Zipf’s law as p→ 0. Define the function φ : R+ → R by

φ(x) =

{
0, (0 ≤ x < 1)

x log x− x+ 1. (x ≥ 1)

Since φ(1) = 0 and for x > 1 we have φ′(x) = log x > 0 and φ′′(x) = 1/x > 0,
φ is continuous (in fact, differentiable), increasing, convex, and φ(x) > 0 for
x > 1.

Theorem 3.7. Let everything be as in Theorem 3.6. Suppose that E[G(p)] <
1

1−p , so the cross-sectional distribution has a finite mean.16 Let ζ(p) be the

Pareto exponent determined by (3.15). Then

1 < ζ(p) < 1 +

1
1−p − E[G(p)]

E[φ(G(p))]
. (3.16)

In particular, if

lim sup
p→0

1
1−p − E[G(p)]

E[φ(G(p))]
= 0,

( e.g., limp→0 E[G(p)] = 1 and lim infp→0 E[φ(G(p))] > 0) then limp→0 ζ
(p) = 1,

so Zipf ’s law holds as p→ 0.

4 A model of firm size distribution

Because Theorem 3.5 is an asymptotic result, the Pareto exponent need not be
close to 1 for particular models or parameter configurations. To address the
quantitative validity of my theory, in this section I construct a model of en-
trepreneurship and firm size distribution. The model builds on the continuous-
time version of Angeletos (2007).

16Since existing units grow at rate E[G(p)] on average and they remain in the economy with
probability 1 − p, the growth rate of the economy is at least (1 − p) E[G(p)] (ignoring entry).
Therefore E[G(p)] < 1

1−p is necessary for the cross-sectional distribution to have a finite mean.
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4.1 Environment

Consider an economy populated by two types of agents, household-workers and
entrepreneur-CEOs. There are a continuum of both types, and entrepreneurs
and workers have mass 1 and N , respectively. There is a single consumption
good produced by the firms operated by the entrepreneurs, which can also be
used as capital.

Households are infinitely lived and supply 1 unit of labor inelastically in a
perfectly competitive labor market. They are infinitely risk averse, so they only
borrow or lend at the market risk-free rate up to the natural borrowing limit
and make consumption-saving decisions optimally.

Entrepreneurs enter the economy and exit (go bankrupt) at Poisson rate
η > 0. When an entrepreneur goes bust, her capital is wiped out and the
firm disappears. Each new entrepreneur enters the economy with one “idea”.
Upon entry, she converts her “idea” to physical capital one-for-one17 and starts
to operate a constant-returns-to-scale technology with idiosyncratic investment
risk. Entrepreneurs use their own physical capital and hire labor in a competitive
market to carry out production. Markets are incomplete, so entrepreneurs may
only invest in their own firms but can borrow or lend at the market risk-free
rate.

A stationary equilibrium is defined by a wage ω, risk-free rate r, aggregate
capital stock K, households’ risk-free asset position X, households’ consumption
choice, entrepreneur’s consumption-saving-portfolio-hiring choice, and size dis-
tributions of firms’ capital and employment such that (i) households make opti-
mal consumption-saving choice and entrepreneurs make optimal consumption-
portfolio-saving-hiring choice, (ii) markets for labor and risk-free asset clear,
and (iii) all aggregate variables and size distributions are invariant over time.

4.2 Individual decisions

Workers The utility function of a worker is

Ut =

∫ ∞
0

e−ρs
c
1−1/ε
t+s

1− 1/ε
ds,

where ρ > 0 is the discount rate and ε > 0 is the elasticity of intertemporal
substitution. Since workers hold only the risk-free asset, the budget constraint
is

dxt = (rxt + ωt − ct) dt,

where xt is the financial wealth (which is entirely invested in the risk-free asset)
and ωt = ω is the (constant) wage. Letting

ht =

∫ ∞
0

e−rsωt+s ds =
ω

r

be the human wealth (present discounted value of future wages) and wt = xt+ht
be the effective total wealth, we have

dwt = (rwt − ct) dt. (4.1)

17Since capital is wiped out when an entrepreneur goes bankrupt and entrepreneurs enter
with one unit of capital, it is more appropriate to interpret capital as organization capital.

18



The problem thus reduces to a standard Merton (1969, 1971)-type optimal
consumption-saving problem. A solution exists if and only if ρε+ (1− ε)r > 0,
in which case the optimal consumption rule is

c = (ρε+ (1− ε)r)w = (ρε+ (1− ε)r)(x+ ω/r). (4.2)

Entrepreneurs Entrepreneurs have Epstein-Zin preferences with discount
rate ρ, relative risk aversion γ, and elasticity of intertemporal substitution ε.

Let kt be the physical capital, bt be the risk-free asset position, and xt =
kt+bt be the financial wealth (net worth) of a typical entrepreneur. The budget
constraint is

dxt = (F (kt, nt)− ωnt + (r + η)bt − ct) dt+ σkt dBt, (4.3)

where nt is the labor input, ct is consumption, F is a constant-returns-to-scale
production function net of capital depreciation, σ > 0 is the volatility of the
idiosyncratic shock, and Bt is a standard Brownian motion that is indepen-
dent across entrepreneurs. Note that the effective risk-free rate faced by en-
trepreneurs is not r, but r + η, reflecting the fact that they go bankrupt at
Poisson rate η > 0 and hence are charged an insurance premium η > 0 on their
borrowing (they get annuities at the same rate if they are lending). η can also
be interpreted as the spread of corporate bonds over the risk-free asset.

Because labor appears only in the budget constraint and can be chosen freely,
letting f(k) = F (k, 1), as in (3.2) the capital-labor ratio y = kt/nt satisfies
ω = f(y) − yf ′(y). The labor demand is nt = kt/y, and as in (3.3) the profit
rate per unit of capital is µ = f ′(y). Substituting into the budget constraint
(4.3), we obtain

dxt = (re + (µ− re)θ −m)xt dt+ σθxt dBt, (4.4)

where re = r+η is the effective risk-free rate faced by entrepreneurs, θ = kt/xt is
the leverage (the fraction of wealth invested in the physical capital, so kt = θxt
and bt = (1 − θ)xt), and m = ct/xt is the propensity to consume out of
wealth. Therefore this problem also becomes a Merton (1971)-type optimal
consumption-saving-portfolio problem. According to Svensson (1989), the solu-
tion for the case with Epstein-Zin utility is

θ =
µ− re
γσ2

, (4.5a)

m = (ρ+ η)ε+ (1− ε)
(
re + (µ− re)θ −

1

2
γσ2θ2

)
= (ρ+ η)ε+ (1− ε)

(
re +

(µ− re)2

2γσ2

)
, (4.5b)

provided that these θ,m are positive. Substituting these rules into the budget
constraint (4.4), we obtain

dxt = gxt dt+ vxt dBt, (4.6)

where the drift g and volatility v are given by

g = (r − ρ)ε+ (1 + ε)
(µ− re)2

2γσ2
, (4.7a)

v = σθ =
µ− re
γσ

. (4.7b)
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4.3 Equilibrium

Next I characterize the equilibrium. So far I have implicitly assumed that
the discount rate ρ and EIS ε are common across agent types, but this is not
necessary. Hence let ρW , εW be the parameter values for the workers, and let
the symbols without subscripts be those of the entrepreneurs. Throughout the
rest of the paper I assume that the production function f(x) = F (x, 1) satisfies
the usual conditions f(0) = 0, f ′ > 0, f ′′ < 0, f ′(0) =∞, and f ′(∞) ≤ 0.

Define 0 < y0 < y1 < y2 by

f ′(y0) = ρW + η + γσ2, f ′(y1) = ρW + η, f ′(y2) = η, (4.8)

which uniquely exist by the Inada condition.
Depending on the discount rate of workers, in equilibrium workers may con-

sume a positive amount or zero.18 The following theorem characterizes the
equilibrium.

Theorem 4.1. A stationary equilibrium exists if and only if(
1− 1

y2N

)
η > −ρε. (4.9)

The equilibrium falls into exactly one of the following two categories.

1. If (
1− 1

y1N

)
η > (ρW − ρ)ε, (4.10)

then the equilibrium is unique, the risk-free rate equals the discount rate
of workers: r = ρW , and the capital-labor ratio y = K/N is the unique
solution in (0, y1) to(

1− 1

yN

)
η = (r − ρ)ε+ (1 + ε)

(f ′(y)− r − η)2

2γσ2
. (4.11)

In equilibrium workers consume a positive amount.

2. If (4.10) fails, then the equilibrium capital-labor ratio y and risk-free rate
r satisfy (4.11) and

r

r + f(y)/y − f ′(y)
=
f ′(y)− r − η

γσ2
. (4.12)

In equilibrium workers consume zero. Furthermore, y0 < y < y2 and
0 < r < ρW .

18Some readers may find it disturbing that in equilibrium workers consume a positive
amount or zero depending on whether they are more or less patient than the entrepreneurs.
In particular, if we assume positive consumption (ρW < ρ) and EIS is the same for the two
types and is less than 1, then comparing the optimal consumption rules of workers (4.2) and
entrepreneurs (4.5b), it follows that entrepreneurs (the rich) have a lower propensity to save.
However, the empirical literature suggests that the rich save more (Lawrance, 1991; Dynan
et al., 2004; Hurst and Lusardi, 2004). This parameter dependency arises only because I as-
sume that workers are infinitely lived. If we consider a model in which workers also enter/exit
the labor market at a constant rate, in equilibrium they consume a positive amount regardless
of the parameter values. See Theorem C.2 in Appendix C for details.
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In either case, the net worth xt of individual entrepreneurs evolves according
to the geometric Brownian motion (3.10), where κ(η) = 1

K = 1
yN is the ratio

between the initial and the steady state capital and v(η) = f ′(y)−r−η
γσ > 0 is

volatility.

It immediately follows that an equilibrium exists if η is sufficiently small.

Corollary 4.2. An equilibrium exists if η is sufficiently small. If ρW < ρ
(ρW ≥ ρ), then in equilibrium workers consume a positive (zero) amount.

Proof. Since 0 < (f ′)−1(ρW + η) ≤ y1 < y2, it follows that y1, y2 are bounded
away from 0 as η → 0. Therefore the left-hand sides of (4.9) and (4.10) converge
to 0 as η → 0. Since ρε > 0, for small enough η > 0 (4.9) holds, so by Theorem
4.1 a stationary equilibrium exists. If ρW < ρ, then for small enough η > 0
(4.10) holds, so in equilibrium workers consume a positive amount. Otherwise
(ρW ≥ ρ), workers consume zero.

Since this model satisfies the assumptions of Theorem 3.5, the upper tail
Pareto exponent ζ satisfies the bound (3.11). However, since κ, v are endoge-
nous, it is not immediately clear whether Zipf’s law holds as η → 0. Neverthe-
less, we can show that the technical condition (3.12) holds, and so does Zipf’s
law.

Theorem 4.3 (Zipf’s law). As η → 0, we obtain Zipf ’s law ζ → 1.

Theorem 4.3 is an asymptotic result, and hence for any given parameters the
upper tail Pareto exponent need not be close to 1, although the bound (3.11) is
always true. Whether ζ is close to 1 or not is therefore a quantitative question,
which I address in the numerical example below.

4.4 Numerical example

In this section I compute a numerical example of the model of firm size distribu-
tion. For the production function, I assume the Cobb-Douglas form F (k, n) =
Akαn1−α − δk, where A is a constant (normalized to A = 1), α is the capital
share, and δ is the capital depreciation rate.

4.4.1 Calibration

The model is completely specified by the parameters (ρW , ρ, γ, ε, α, δ, σ, η,N).19

I calibrate the model at the annual frequency. Following Angeletos (2007), I
set ρ = 0.04, ε = 1, α = 0.36, δ = 0.08, and σ = 0.2, which are all relatively
standard values. Since in steady state the risk-free rate r equals the discount rate
of the workers ρW when they have positive consumption, I set ρW = 0.01 so that
the risk-free rate is 1%, which is about the historical value in U.S. For N , which
is the average number of workers per firm, according to 2011 U.S. Census Small
Business Administration (SBA) data,20 5,684,424 firms employed 113,425,965
workers, which implies an average of 19.95 employees per firm. Therefore I set
N = 20.

19Note that the elasticity of intertemporal substitution for the workers, εW , is irrelevant for
the steady state, so there is no need to specify it.

20https://www.sba.gov/advocacy/firm-size-data
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The parameters that may be controversial are the relative risk aversion γ
and the bankruptcy rate η. Based on SBA data for 1988–2006, Luttmer (2010)
reports that the average exit rate is 10.4% per annum for firms with fewer than
20 employees and 2.5% for firms with 500 or more employees. If we take the
model literally, η is also the spread of (defaultable) corporate bond over the
risk-free asset. Based on a monthly 1990–2008 sample of 899 publicly traded
non-financial firms (mostly large firms) covered by the Center for Research in
Security Prices (CRSP), Gilchrist et al. (2009) find that the mean spread of
corporate bonds is 192 basis points (1.92%), which is comparable to the exit
rate of large firms (2.5%). Since I am interested in the upper tail behavior
(large firms), I set η = 0.025 or 2.5% spread, which implies an average lifespan
of 1/η = 40 years. However, since by Theorem 4.3 Zipf’s law obtains when η is
small, it is interesting to know the Pareto exponent under larger values of η, for
which the bound (3.11) may not be so informative. Therefore I also consider
the cases η = 0.05 (5% spread or 20 years lifespan) and η = 0.1 (10% spread or
10 years lifespan). One can think of the case η = 0.025 as a CEO operating a
blue-chip firm, and the case η = 0.05, 0.1 as a young entrepreneur operating a
start-up company.

For the relative risk aversion, it is reasonable to assume that the rich CEOs
of large firms are not so risk averse, so I set γ = 1.21 As a robustness check, I
also consider the cases γ = 0.5, 2.

4.4.2 Results

By Theorem 4.1, computing the equilibrium with positive consumption reduces
to solving a single nonlinear equation (4.11). If the existence condition (4.10)
fails, we need to look for an equilibrium with zero consumption, in which case
we need to solve a system of two nonlinear equations (4.11) and (4.12). Table 1
shows the results, which are all equilibria with positive consumption. The pri-
vate equity premium, leverage (fraction of own physical capital to entrepreneur
net worth), and volatility are all reasonable numbers, roughly in line with U.S.
stock returns. In each case, the upper tail Pareto exponent ζ is close to 1, in
agreement with Zipf’s law.

As we make the environment riskier (larger γ or η), the private equity pre-
mium goes up, the capital-labor ratio goes down, which also suppresses the wage.
However, the mechanism is very different depending on whether we increase risk
aversion γ or the bankruptcy rate η. When γ increases, the entrepreneurs be-
come less willing to invest capital, so they leverage less (portfolio effect). Since
there is less investment in the high return capital, the aggregate capital goes
down. On the other hand, when η increases, aggregate capital goes down just
because there is more bankruptcy and hence destruction of capital (resource ef-
fect). Since capital is more scarce, the risk premium goes up, and entrepreneurs
leverage more to take advantage.

It is not surprising that the upper tail Pareto exponent ζ is close to 1 re-
gardless of the parameter specification. The reason is that, according to (3.11),
we always have the bound

1 < ζ < 1 +
2ηκ

v2
.

21Aoki and Nirei (2016) also assume γ = 1 (log utility), but the reason is for tractability
for solving the entire transitional dynamics.
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Table 1: Parameters and endogenous variables in steady state.

Quantity Symbol Values

Risk aversion γ 1 0.5 2 1 1
Bankruptcy rate (%) η 2.5 2.5 2.5 5 10

Capital-labor ratio y 3.49 4.01 2.93 2.58 1.65
Wage ω 1.004 1.055 0.942 0.900 0.767
Private premium (%) µ− re 4.68 3.31 6.61 5.62 7.13
Equity premium (%) µ− r 7.18 5.81 9.11 10.62 17.13
Leverage θ 1.17 1.65 0.83 1.41 1.78
Volatility (%) v 23.4 33.1 16.5 28.1 35.6
Pareto exponent ζ 1.007 1.004 1.011 1.011 1.019

Note: the table shows the values of endogenous variables in steady state. The capital-labor
ratio is y = K/N , where K is the aggregate capital. The private premium is the expected
return on capital in excess of the effective risk-free rate faced by entrepreneurs, µ− re, where
µ = f ′(y) and re = r + η = ρW + η is the effective risk-free rate (true risk-free rate plus
spread). The equity premium is the expected return on capital in excess of the risk-free rate

r = ρW conditional on survival. The leverage θ = µ−re
γσ2 is the ratio between entrepreneur’s

own physical capital to net worth. v = σθ is the volatility of entrepreneur’s net worth (which
is also the market capitalization of the firm). ζ is the upper tail Pareto exponent computed
as in Theorem 3.5.

As a rough estimate, the bankruptcy rate η has order of magnitude about 10−1

or 10−2 and the volatility v has order of magnitude about 10−1. Hence the
upper bound of ζ is 1 + 2ηκ

v2 ≈ 1 + κ. Since κ is the ratio of the initial capital of
new firms to that of the average firm, it is reasonable to expect that κ is quite
small. Therefore ζ must be close to 1.

4.4.3 Sensitivity analysis

How robust is Zipf’s law? In this section, I conduct two robustness checks.
First, I fix the parameter values (ρW , ρ, γ, ε, α, δ, σ, η,N) at the baseline spec-

ification and vary one parameter at a time up to ten-fold increase or decrease.
(For the capital share α, I consider all values in (0, 1).) For example, since at
the baseline we have γ = 1, I consider γ ∈ [0.1, 10]. Figure 3 shows the results.
We can see that in all cases the Pareto exponent ζ is slightly above 1 regardless
of the parameter values (which can be quite extreme), and in most cases below
1.1, consistent with Zipf’s law.

In the second robustness check, I generate 10,000 random parameter con-
figurations and compute the Pareto exponent for each simulation. For this
experiment, I consider up to five-fold changes in the parameters, so in each
simulation a parameter is 5U times the baseline value, where U is uniformly
drawn from [−1, 1] independently across all parameters and simulations. (For
the capital share α, it is uniformly drawn from [0.1α, 1.9α].)

Figure 4 shows the histogram of the Pareto exponent ζ in the range [1, 1.1].
The mean, median, and the 95% percentile are 1.0312, 1.0089, and 1.1313,
respectively. Again Zipf’s law is quite robust.
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Figure 3: Sensitivity of Pareto exponent ζ with respect to model parameters.

Note: The figure plots the upper tail Pareto exponent ζ computed as in Theorem 3.5. The
dotted vertical lines indicate the baseline parameter values.

5 Concluding remarks

This paper shows that Zipf’s law (Pareto exponent slightly above 1) can be
explained by embedding the standard random growth model into a general
equilibrium model and introducing a factor of production that is mobile but
in limited supply. Unlike existing explanations of Zipf’s law, my theory does
not require a fine-tuning of parameters.

Although my paper is theoretical, there are several anecdotal evidences that
support my theory. First, Zipf’s law is known to empirically hold for cities and
firms, but not for other quantities such as wealth, income, and consumption,
which all obey power laws but with Pareto exponents well above 1. What is spe-
cial about cities and firms is that they consist of people, which can be thought of
a production factor that is mobile but in limited supply. Second, using historical
data, Dittmar (2011) documents that Zipf’s law for cities in Europe emerged
only after 1500. According to Dittmar, land entered city production as a quasi-
fixed factor until 1500, but developments in trade, agricultural productivity, and
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Figure 4: Histogram of Pareto exponent ζ with random parameter configura-
tions.

knowledge-based activities relaxed this constraint thereafter. Since my theory
requires that a factor of production is in limited supply but mobile, and land is
clearly immobile, the failure of Zipf’s law before 1500 is entirely consistent with
my theory.

A Fokker-Planck equation

In this appendix, I explain the Fokker-Planck equation, also known as the Kol-
mogorov forward equation, which is useful in characterizing the cross-sectional
distribution in general settings.

A.1 Fokker-Planck equation

Consider the diffusion

dXt = g(t,Xt) dt+ v(t,Xt) dBt, (A.1)

where Bt is standard Brownian motion. Let p(x, t) be the density of Xt at time
t. Then

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p), (A.2)

which is known as the Fokker-Planck (Kolmogorov forward) equation.
The Fokker-Planck equation (A.2) holds if the diffusion (A.1) holds at all

times. However, we can consider situations in which the process is occasionally
reset. For example, if Xt in (A.1) describe individual wealth, since the individual
will die eventually, we need to specify what happens when an individual dies.
If there is influx j+(x, t) and outflux j−(x, t) per unit of time at location x at
time t, then the Fokker-Planck equation (A.2) must be modified as

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p) + j+ − j−.
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For example, if the units exit at constant probability η per unit of time (Poisson
rate η) and enter at location x0, then the FPE becomes

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p) + ηδ(x− x0)− ηp,

where δ(x− x0) is the Dirac delta function located at x0.

A.2 Stationary density

If the diffusion has time-independent drift g(x) and variance v(x) and admits a
stationary distribution p(x), then we get

0 = − d

dx
(gp) +

1

2

d2

dx2
(v2p).

Integrating with respect to x and using the boundary condition p(x), p′(x)→ 0
as x→ ±∞, we get

0 = −g(x)p(x) +
1

2
(v(x)2p(x))′.

Letting q(x) = v(x)2p(x) and solving the ODE, we get

q′ =
2g

v2
q ⇐⇒ q′

q
=

2g

v2

⇐⇒ log q(x) =

∫
q′(x)

q(x)
dx =

∫
2g(x)

v(x)2
dx

⇐⇒ q(x) = exp

(∫
2g(x)

v(x)2
dx

)
.

Therefore the stationary density is

p(x) =
q(x)

v(x)2
=

1

v(x)2
exp

(∫
2g(x)

v(x)2
dx

)
, (A.3)

where the constant of integration is determined by the condition
∫∞
−∞ p(x) dx =

1 since p(x) is a density.
If there is a constant probability of death η, the stationary density is the

solution of the second-order ODE

0 = − d

dx
(gp) +

1

2

d2

dx2
(v2p)− ηp,

which holds at every point except x0.

A.2.1 Geometric Brownian motion with minimum size

As examples, consider the geometric Brownian motion with minimum size xmin

or constant Poisson rate η of birth/death with reset size x0. In the former case,
setting g(x) = gx (with g < 0) and v(x) = vx in (A.3), the stationary density is

p(x) =
1

(vx)2
exp

(∫
2gx

(vx)2
dx

)
= Cx

2g

v2
−2
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for some constant C > 0. Since the minimum size is xmin and the probability
must add up to 1, it follows that

1 = C

∫ ∞
xmin

x
2g

v2
−2 =

C

1− 2g
v2

x
−1+ 2g

v2

min .

Therefore
p(x) = ζxζminx

−ζ−1

for ζ = 1 − 2g/v2, which is the probability density function of the Pareto dis-
tribution (2.2) with exponent ζ > 1.

A.2.2 Geometric Brownian motion with Poisson entry/exit

Next, consider the geometric Brownian motion with entry/exit at Poisson rate
η > 0 and initial size x0. In this case, it is easier to solve in logs. Using Itô’s
lemma, Yt = logXt obeys the Brownian motion

dYt =

(
g − 1

2
v2

)
dt+ v dBt.

The Fokker-Planck equation in the steady state is

0 = −
(
g − 1

2
v2

)
p′(y) +

1

2
v2p′′(y)− ηp(y)

except at y0 := log x0, where I used the fact that g, v are constant. Since this
is a linear second-order ODE with constant coefficients, the general solution is

p(y) = C1e−λ1y + C2e−λ2y,

where λ1 > 0 > λ2 are solutions to the quadratic equation

1

2
v2ξ2 +

(
g − 1

2
v2

)
ξ − η = 0,

which is (2.6). Since the PDF must be continuous, p(y) → 0 as y → ±∞, and
integrate to 1, letting α = λ1 > 0 and β = −λ2 > 0, it follows that

p(y) =

{
αβ
α+β e−α|y−y0|, (y ≥ y0)
αβ
α+β e−β|y−y0|, (y ≤ y0)

which is the asymmetric Laplace distribution with mode y0 and exponents α, β.
Taking the exponential, we obtain the double Pareto distribution (2.5).

B Proofs

Proof of Lemma 3.4. Suppose that a positive control variable yl has a finite
aggregate supply 0 < el < ∞. By lemma 3.2, the demand of a unit (of a
particular type that solves a homogeneous problem) with size xt is ylt = αl(θ)xt.
Since other types may also demand that variable, taking the cross-sectional
expectation, by market clearing we have

∞ > el ≥ E[ylt] = E[αl(θ)xt] = αl(θ) E[xt] > 0.
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Since αl(θ) > 0, we have 0 < E[xt] <∞.
Substituting the optimal control yt = α(θ)xt into the equation of motion

(3.8), we obtain

dxt = g(xt, α(θ)xt; θ) dt+ v(xt, α(θ)xt; θ) dBt

= g(1, α(θ); θ)xt dt+ v(1, α(θ); θ)xt dBt

=: g(θ)xt dt+ v(θ)xt dBt,

where I have used the homogeneity of g, v.

Prof of Theorem 3.5. By Lemma 3.4, the size of individual units evolves ac-
cording to the geometric Brownian motion (3.9). Let X = E[xt] be the cross-
sectional average, which is positive and finite by Lemma 3.4 and constant over
time by stationarity. Since individual units grow at rate g(θ), exits at rate η,
and new units have average size κ(η)X, it follows that

0 =
dX

dt
= (g(θ)− η)X + ηκ(η)X ⇐⇒ g(θ) = η(1− κ(η))

at θ = θ(η). Substituting into (3.9), we obtain (3.10).
To show the bound (3.11), first assume that the initial size x0 is determin-

istic. Letting κ = κ(η) and v = v(η), by (3.10) the expected growth rate is

g = g(θ(η)) = η(1− κ).

Therefore by (2.6), letting c = 2ηκ/v2 > 0 and d = 2η/v2 > 0, the upper tail
Pareto exponent is the positive root of the quadratic function

q(ζ) = ζ2 − (1 + c− d)ζ − d. (B.1)

Since

q(1) = 1− (1 + c− d)− d = −c < 0,

q(1 + c) = (1 + c)2 − (1 + c)2 + d(1 + c)− d = cd > 0,

the positive root satisfies 1 < ζ < 1 + c = 1 + 2ηκ
v2 , which is (3.11).

By the results in Section 2.2, the cross-sectional size distribution relative to
initial size x0 is double Pareto with an upper tail exponent ζ that satisfies (3.11).
The upper tail exponent of the (unconditional) cross-sectional size distribution
also satisfies (3.11) since the initial size distribution F (·; θ, η) either does not
affect the tail (if F is thin-tailed) or makes the tail even fatter (if F is fat-tailed
with exponent smaller than ζ).

Proof of Theorem 3.7. For notational simplicity, let ζ = ζ(p) and G = G(p).

Step 1. ζ > 1.

The function s 7→ E[Gs] is convex since E[Gs] = E[es logG] and the exponen-
tial function is convex. Since by assumption E[G] < 1

1−p and E[G0] = 1 < 1
1−p ,

it follows that E[Gs] < 1
1−p for all 0 ≤ s ≤ 1. Therefore ζ > 1.

Step 2. For any x > 0 we have

xζ ≥ 1 + ζ(x− 1) + ζ(ζ − 1)φ(x). (B.2)

28



For any C2 function, by Taylor’s theorem in integral form, we have

f(x) = f(a) + f ′(a)(x− a) +

∫ x

a

(x− t)f ′′(t) dt.

Letting f(x) = xζ and a = 1, we obtain

xζ = 1 + ζ(x− 1) + ζ(ζ − 1)

∫ x

1

(x− t)tζ−2 dt

=: 1 + ζ(x− 1) + ζ(ζ − 1)R(x; ζ).

Since ζ > 1, to show (B.2) it suffices to show R(x; ζ) ≥ φ(x).
If 0 < x ≤ 1, then

R(x; ζ) =

∫ x

1

(x− t)tζ−2 dt =

∫ 1

x

(t− x)tζ−2 dt ≥ 0 = φ(x).

If x > 1, since ζ > 1, we obtain

R(x; ζ) =

∫ x

1

(x− t)tζ−2 dt ≥
∫ x

1

(x− t)t−1 dt

=

∫ x

1

(x
t
− 1
)

dt = x log x− x+ 1 = φ(x).

Step 3. (3.16) holds.

Noting that E[G] < 1
1−p , 1 < 1

1−p , and E[φ(G)] > 0, define c, d > 0 by

c =

1
1−p − E[G]

E[φ(G)]
, d =

1
1−p − 1

E[φ(G)]
.

Letting x = G in (B.2), taking expectations, and using (3.15), we obtain

1

1− p
= E[Gζ ] ≥ 1 + ζ(E[G]− 1) + ζ(ζ − 1) E[φ(G)]

⇐⇒ ζ2 − (1 + c− d)ζ − d ≤ 0. (B.3)

Since the left-hand side of (B.3) is identical to (B.1), by the same argument as
in the proof of Theorem 3.5, we obtain ζ < 1 + c.

Proof of Theorem 4.1. Note that since firms solve a homogeneous problem,
if a stationary equilibrium exists, by Theorem 3.5 the firm size evolves according
to the geometric Brownian motion (3.10).

Since the proof is long and tedious, I break it down into several steps.

Step 1. If a stationary equilibrium exists, then r > 0. The propensity to consume
out of wealth, m in (4.5b), is positive. The volatility of entrepreneur’s wealth is

given by v = f ′(y)−r−η
γσ > 0.

If r ≤ 0, then the present value of a worker’s wage
∫∞

0
e−rtω dt is infinite,

so the utility maximization problem does not have a solution. Therefore if an
equilibrium exists, it must be r > 0.
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If an equilibrium exists, by (4.5a) the fraction of wealth invested in physical
capital is

0 < θ =
µ− re
γσ2

=
f ′(y)− r − η

γσ2
,

where µ = f ′(y) and re = r + η. By (4.7b), we have v = f ′(y)−r−η
γσ > 0. To

show that the propensity to consume is positive, note that by (4.4), (4.5a), and
(3.10), we have

g = re +
(µ− re)2

γσ2
−m = η(1− κ).

Since re = r + η, µ = f ′(y), and r, κ, η > 0, it follows that

m = r + ηκ+
(f ′(y)− r − η)2

γσ2
> 0.

Step 2. If a stationary equilibrium exists, the capital-labor ratio y = K/N and
risk-free rate r satisfy (4.11), and (4.9) must hold.

By (3.10) and (4.7a), we must have

g = η(1− κ) = (r − ρ)ε+ (1 + ε)
(µ− re)2

2γσ2
.

Substituting κ = 1
yN , µ = f ′(y), and re = r + η, the equilibrium capital-labor

ratio y must satisfy (4.11). To show (4.9), let

φ(y, r) =

(
1− 1

yN

)
η − (r − ρ)ε− (1 + ε)

(f ′(y)− r − η)2

2γσ2
(B.4)

be the left-hand side minus the right-hand side of (4.11). If an equilibrium
exists, since capital investment must be positive we have

θ > 0 ⇐⇒ f ′(y)− r − η > 0 ⇐⇒ y < (f ′)−1(r + η).

If y > 0 satisfies this inequality, then

∂φ

∂y
(y, r) =

η

y2N
− (1 + ε)

f ′(y)− r − η
γσ2

f ′′(y) > 0,

so φ is strictly increasing in y. Since φ(0, r) = −∞ and φ is continuous, there
exists y ∈ (0, (f ′)−1(r + η)) such that (4.11) holds if and only if

ψ(r) := φ((f ′)−1(r + η), r) =

(
1− 1

(f ′)−1(r + η)N

)
η − (r − ρ)ε > 0. (B.5)

Since f ′′ < 0 and η, ε > 0, clearly ψ(r) is strictly decreasing. Since ψ is contin-
uous, there exists r > 0 such that ψ(r) > 0 if and only if

ψ(0) > 0 ⇐⇒
(

1− 1

(f ′)−1(η)N

)
η + ρε > 0,

which is exactly (4.9).
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Step 3. A stationary equilibrium in which workers consume a positive amount
exists if and only if (4.10) holds. In this case the equilibrium is unique and
r = ρW .

In steady state with positive consumption of workers, their wealth must be
a positive constant. Setting dw/dt = 0 in (4.1), we have c = rw. Comparing
to the optimal consumption rule (4.2), we obtain

r = ρW εW + (1− εW )r ⇐⇒ r = ρW . (B.6)

In this case (f ′)−1(r + η) = (f ′)−1(ρW + η) = y1, so by Step 2 an equilibrium
exists if and only if

0 < ψ(ρW ) = φ(y1, ρW ) =

(
1− 1

y1N

)
η − (ρW − ρ)ε,

which is exactly (4.10). Since φ is strictly increasing in y, the capital-labor ratio
y = K/N is unique.

So far we have shown that (4.9) is necessary for equilibrium existence, and
that (4.10) is necessary and sufficient for the existence of a stationary equilib-
rium in which workers consume a positive amount. Therefore it remains to show
that if (4.9) holds but (4.10) fails, then there exists a stationary equilibrium in
which workers consume zero.

Step 4. A stationary equilibrium in which workers consume zero exists if and
only if there exist y, r > 0 such that (4.11) and (4.12) hold.

By Steps 1 and 2, r > 0 and (4.11) are necessary for equilibrium. Letting

y = K/N be the capital-labor ratio and θ = f ′(y)−r−η
γσ2 > 0 be entrepreneurs’

portfolio share of capital investment, their aggregate net worth is K/θ = yN
θ .

Since they invest fraction 1− θ in the risk-free asset, its market capitalization is
B = 1−θ

θ yN . If workers consume zero in equilibrium, since they have zero net
worth, all the wage must be used for interest payments on debt. Therefore the
equilibrium condition is

rB = ωN ⇐⇒ r
1− θ
θ

y = f(y)− yf ′(y),

which is equivalent to (4.12). Conversely, if y, r > 0 satisfy (4.11) and (4.12),
aggregate capital is constant and workers have zero net worth and consumption,
so it is an equilibrium.

Step 5. If (4.9) holds but (4.10) does not, then a stationary equilibrium in which
workers consume zero exists. The capital-labor ratio y > 0 and risk-free rate
r > 0 satisfy (4.11) and (4.12). Furthermore, y0 < y < y2 and 0 < r < ρW .

Since (4.9) holds but (4.10) fails, we have

ψ(0) =

(
1− 1

y2N

)
η + ρε > 0 ≥

(
1− 1

y1N

)
η + (ρW − ρ)ε = ψ(ρW ).

Since ψ is strictly decreasing, there exists a unique r̄ ∈ (0, ρW ] such that ψ(r̄) =
0. For any 0 < r ≤ r̄, we have ψ(r) ≥ 0, so by the above argument there exists
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a unique y ∈ (0, (f ′)−1(r + η)] such that (4.11) holds. Denote this y by y(r).
By the definition of ψ and r̄, we have 0 = ψ(r̄) = φ((f ′)−1(r̄ + η), r̄), so

y(r̄) = (f ′)−1(r̄ + η) ⇐⇒ f ′(y(r̄))− r̄ − η = 0. (B.7)

Let

ϕ(r) =
r

r + f(y)/y − f ′(y)
− f ′(y)− r − η

γσ2

be the left-hand side minus the right-hand side of (4.12), where y = y(r) > 0.
Note that ϕ is well-defined for all 0 ≤ r ≤ r̄. To see this, since f is strictly
concave and f(0) = 0, for y > 0 we have

f(0)− f(y) < f ′(y)(0− y) ⇐⇒ f(y)/y − f ′(y) > 0,

so the denominator of the first term of ϕ is always positive. Since f ′(y(r)) −
r − η > 0, we have

ϕ(0) = −f
′(y(0))− 0− η

γσ2
< 0.

Furthermore, by (B.7) we have

ϕ(r̄) =
r̄

r̄ + f(y)/y − f ′(y)
> 0,

where y = y(r̄). Since ϕ is continuous, by the intermediate value theorem there
exists r ∈ (0, r̄) such that ϕ(r) = 0. Since y = y(r) and r > 0 satisfy (4.11) and
(4.12), an equilibrium exists. In this equilibrium 0 < r < r̄ ≤ ρW .

It remains to show that y0 < y < y2. Since 0 < r < ρW , f(y)/y− f ′(y) > 0,
and (4.12) holds, it follows that

θ =
f ′(y)− r − η

γσ2
> 0

=⇒ y < (f ′)−1(r + η) < (f ′)−1(η) = y2,

θ =
f ′(y)− r − η

γσ2
=

r

r + f(y)/y − f ′(y)
< 1

=⇒ y > (f ′)−1(r + η + γσ2) > (f ′)−1(ρW + η + γσ2) = y0.

Proof of Theorem 4.3. Since by Theorem 3.5 the bound (3.11) holds, in or-
der to show ζ → 1 as η → 0, it suffices to show that κ > 0 is bounded above
and v > 0 is bounded away from 0.

Case 1: ρW < ρ. In this case (4.10) holds as η → 0, so in equilibrium workers
consume a positive amount and r = ρW .

Fix any y
¯
> 0 such that

−(ρW − ρ)ε− (1 + ε)
(f ′(y

¯
)− ρW )2

2γσ2
< 0,

which exists by the Inada condition f ′(0) = ∞. Let φ(y, ρW ; η) be φ(y, r) in
(B.4) with r = ρW , given η > 0. Then we have

lim
η→0

φ(y
¯
, ρW ; η) = −(ρW − ρ)ε− (1 + ε)

(f ′(y
¯
)− ρW )2

2γσ2
< 0.
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Since φ is strictly increasing in y and φ(y, ρW ; η) = 0 in equilibrium, it follows
that for sufficiently small η we have y > y

¯
. Therefore κ = 1

yN < 1
y
¯
N is bounded.

By Theorem 4.1, the equilibrium condition (4.11) is equivalent to

(1− κ)η = (ρW − ρ)ε+
1 + ε

2
γv2 ⇐⇒ v2 =

2ε(ρ− ρW ) + 2(1− κ)η

γ(1 + ε)
.

Since κ is bounded and ρW < ρ, v is bounded away from 0 as η → 0.

Case 2: ρW ≥ ρ. In this case (4.10) fails as η → 0, so in equilibrium workers
consume zero and r < ρW .

By Theorem 4.1, we have 0 < (f ′)−1(ρW + η + γσ2) = y0 < y. Therefore as
η → 0 we have

κ =
1

yN
<

1

(f ′)−1(ρW + η + γσ2)N
→ 1

(f ′)−1(ρW + γσ2)N
<∞,

so κ is bounded. To show that v is bounded away from 0, using (4.7b), (4.11),
and (4.12), we have(

1− 1

yN

)
η − (r − ρ)ε− 1 + ε

2
γv2 = 0, (B.8a)

r

r + f(y)/y − f ′(y)
=
v

σ
. (B.8b)

If v → 0 as η → 0, by (B.8b) we have r → 0 since y is bounded away from 0.
But letting η → 0 (and hence v, r → 0) in (B.8a), we obtain ρε = 0, which is a
contradiction. Therefore v is bounded away from 0 as η → 0.

C Firm size distribution when workers enter/exit

In the model of firm size distribution in Section 4, to simplify the analysis I
assumed that workers are infinitely lived. However, in such a model, in order for
a stationary equilibrium (in which workers consume positive amounts) to exist,
we need to assume that entrepreneurs are less patient than workers (ρ > ρW ),
which seems counterfactual (see Footnote 18). In this appendix I show that we
do not need to take a stance on the relative magnitude of ρ, ρW if workers also
enter/exit the economy.

Consider the same model as in Section 4, except that workers enter/exit the
economy at constant Poisson rate η. Then the optimal consumption rule (4.2)
remains true by replacing r, ρ with r + η, ρ + η. Substituting into the budget
constraint, the total wealth (financial wealth plus human capital) of a typical
worker evolves according to

dwt = ε(r − ρ)wt dt.

Letting W be the aggregate total wealth of workers, since there is a mass N of
workers and the newborn are endowed with human capital alone (zero financial
wealth), we obtain

W + ∆W = (1− η∆t)(W + ε(r − ρ)W∆t) + η∆t
ωN

r + η
.
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Subtracting W from both sides and letting ∆t→ 0, we obtain

dW

dt
= (ε(r − ρ)− η)W +

ηωN

r + η
.

In the stationary equilibrium, we have dW/dt = 0, so

W =
ηωN

(η − ε(r − ρ))(r + η)
.

Since consumption must be nonnegative, we need η > ε(r − ρ). The aggregate
financial wealth of workers is

X = W − ωN

r + η
=

ε(r − ρ)ωN

(η − ε(r − ρ))(r + η)
.

So far I have omitted the W subscript for the workers, but since the parameters
may differ from those of the entrepreneurs, ε, ρ, η should have W subscripts.
Putting all the pieces together, we obtain the following result.

Proposition C.1. Let everything be as above. Then the stationary equilibrium
is characterized by (4.11) and

1− θ
θ

y +
εW (r − ρW )(f(y)− yf ′(y))

(ηW − εW (r − ρW ))(r + ηW )
= 0, (C.1)

where θ = f ′(y)−r−η
γσ2 .

Proof. Since the equilibrium wage is ω = f(y)−yf ′(y), the second term in (C.1)
equals the risk-free asset holdings per worker. By Step 4 of the proof of Theorem
4.1, the first term in (C.1) equals the risk-free asset holdings of entrepreneurs
divided by the number of workers. Since the risk-free asset is in zero net supply,
by market clearing these two positions must cancel out in equilibrium.

In this case we can show that a stationary equilibrium always exists and
Zipf’s law holds.

Theorem C.2. Suppose that workers enter/exit the economy. Then a station-
ary equilibrium always exists. Furthermore, the Pareto exponent ζ of the firm
size distribution converges to 1 as η → 0, so Zipf ’s law holds.

Proof.

Step 1. A stationary equilibrium exists.
Let ψ(r) be as in (B.5), which is strictly decreasing. Since f ′(0) = ∞ and

f ′(∞) ≤ 0, we obtain ψ(∞) = −∞ and

ψ(−η) =

(
1− 1

(f ′)−1(0)N

)
η − (−η − ρ)ε ≥ η + (η + ρ)ε > 0,

so there exists a unique r̄ > −η such that ψ(r̄) = 0. For any −η < r ≤ r̄,
by the discussion in Step 5 of the proof of Theorem 4.1, there exists a unique
y ∈ (0, (f ′)−1(r + η)] such that (4.11) holds. Denote this y by y(r).

Letting r → −η, y(r) converges to a finite value. Since θ = f ′(y)−r−η
γσ2 , θ

also converges to a finite and positive value. Since r − ρW → −η − ρW < 0,
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f(y) − yf ′(y) > 0, and the denominator of the second term of (C.1) converges
to 0, the left-hand side of (C.1) diverges to −∞. Therefore in order to show
the existence of equilibrium, it suffices to show that the left-hand side of (C.1)
becomes positive for large r.

Case 1: r̄ < ρW + ηW

εW
. Letting r → r̄, by (B.7) and θ = f ′(y)−r−η

γσ2 we get

θ → 0. Since the first term of (C.1) diverges to ∞ but the second term remains
finite, the left-hand side of (C.1) diverges to ∞.

Case 2: r̄ ≥ ρW + ηW

εW
. Since ηW > εW (r − ρW ) ⇐⇒ r < ρW + ηW /εW is

necessary for workers to consume a positive amount, in equilibrium it must be
r < r̄. Letting r → ρW + ηW /εW , y(r) converges to a finite positive value, and

so does θ = f ′(y)−r−η
γσ2 . Therefore the first term of (C.1) remains finite. Since

r − ρW → ηW /εW > 0, f(y) − yf ′(y) > 0, and the denominator of the second
term of (C.1) converges to 0, the left-hand side of (C.1) diverges to ∞.

Step 2. Zipf ’s law holds.

As in the proof of Theorem 4.3, it suffices to show that κ = 1
yN is bounded

above and v = f ′(y)−r−η
γσ > 0 is bounded away from zero. By definition, r̄

satisfies

0 = ψ(r̄) =

(
1− 1

(f ′)−1(r̄ + η)N

)
η − (r̄ − ρ)ε.

Since ε > 0, letting η → 0 we obtain r̄ → ρ.
Let us first show that κ is bounded above. Fix any y

¯
> 0 such that f ′(y

¯
) > ρ

and

ρε− (1 + ε)
(f ′(y

¯
)− ρ)2

2γσ2
< 0,

which exists by the Inada condition f ′(0) = ∞. Let r(η) be the equilibrium
risk-free rate corresponding to η. Since −η < r(η) < r̄, using the definition of
φ in (B.4), we obtain

φ(y
¯
, r(η)) =

(
1− 1

y
¯
N

)
η − (r(η)− ρ)ε− (1 + ε)

(f ′(y
¯
)− r(η)− η)2

2γσ2

≤
(

1− 1

y
¯
N

)
η + (η − ρ)ε− (1 + ε)

(f ′(y
¯
)− r(η)− η)2

2γσ2
.

Letting η → 0, since lim sup r(η) ≤ ρ < f ′(y
¯
), it follows that

lim sup
η→0

φ(y
¯
, r(η)) ≤ ρε− (1 + ε)

(f ′(y
¯
)− ρ)2

2γσ2
< 0.

Since φ is strictly increasing in y and the equilibrium value y(η) satisfies (4.11),
or φ(y, r(η)) = 0, it follows that y(η) > y

¯
> 0 for sufficiently small η. Since y is

bounded away from zero, κ = 1
yN is bounded above.

Finally, let us show that v is bounded away from zero. Suppose that v → 0
as η → 0. Since v = σθ, then θ → 0. Since by the above discussion y(η) > y

¯
> 0

for small enough η, the first term in (C.1) diverges to∞, while the second term
remains finite, which is a contradiction. Therefore v is bounded away from
zero.
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D Estimating the firm size distribution

As discussed in Section 3.3.4, it is convenient to use the double Pareto-lognormal
(dPlN) distribution to estimate the firm size distribution because it is obtained
by introducing a random (lognormal) initial size to the random growth model
with entry/exit in Sections 2.2 and 4. For comprehensive discussions of dPlN,
see Reed (2003) and Reed and Jorgensen (2004). In this appendix I explain how
to estimate the parameters of dPlN from binned data.

The logarithm of dPlN is called normal-Laplace (Reed and Jorgensen, 2004),
which is the convolution of independent normal and asymmetric Laplace random
variables. It has four parameters, the mean µ and standard deviation σ of the
normal component and the exponents α, β of the Laplace component. The
cumulative distribution function of normal-Laplace is

F (x; θ) = Φ(z)− b

a+ b
ea

2/2−azΦc(a− z) +
a

a+ b
eb

2/2+bzΦc(b+ z), (D.1)

where z = x−µ
σ , a = ασ, b = βσ, and Φc(z) = 1−Φ(z) is the counter cumulative

distribution function of the standard normal distribution.22

If the data is binned, letting (xk−1, xk] be the k-th bin (k = 1, . . . ,K), the
cell probability is

Pk(θ) = F (xk; θ)− F (xk−1; θ).

Therefore if the k-th bin contains nk observations, the log likelihood function is

logL(θ; {nk}) =

K∑
k=1

nk logPk(θ).

The maximum likelihood estimate θ̂ can be obtained by maximizing logL over
(µ, σ, a, b) and using a = ασ, b = βσ. Letting θ0 be the true parameter value

and N =
∑K
k=1 nk the sample size, the asymptotic variance of

√
N(θ̂ − θ0) is

I(θ0)−1, where the Fisher information matrix I(θ0) can be estimated by

Î(θ̂) =
1

N

K∑
k=1

nk

Pk(θ̂)2
∇Pk(θ̂)(∇Pk(θ̂))′.

To calculate this quantity it suffices to compute ∇θF (x; θ). Let

F (x;µ, σ, α, β) = F̃ (x;µ, σ, a, b),

where a = ασ and b = βσ. Letting φ(z) = 1√
2π

e−z
2/2 be the standard normal

22The CDF in the published version of Reed and Jorgensen (2004) contains a typographical
error. The working paper version is correct.
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density, by simple algebra we obtain

F̃µ =− 1

σ

(
φ(z)− b

a+ b
ea

2/2−az(−aΦc(a− z) + φ(a− z))

+
a

a+ b
eb

2/2+bz(bΦc(b+ z)− φ(b+ z)

)
,

F̃σ =zF̃µ,

F̃a =
b

a+ b
ea

2/2−az
((

1

a+ b
− (a− z)

)
Φc(a− z) + φ(a− z)

)
+

b

(a+ b)2
eb

2/2+bzΦc(b+ z),

F̃b =− a

(a+ b)2
ea

2/2−azΦc(a− z)

− a

a+ b
eb

2/2+bz

((
1

a+ b
− (b+ z)

)
Φc(b+ z) + φ(b+ z)

)
.

Since a = ασ and b = βσ, by the chain rule we obtain

Fµ = F̃µ,

Fσ = F̃σ + αF̃a + βF̃b,

Fα = σF̃a,

Fβ = σF̃b.
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Jess Benhabib and Alberto Bisin. Skewed wealth distributions: Theory and
empirics. Journal of Economic Literature, 2017. Forthcoming.

Jess Benhabib, Alberto Bisin, and Shenghao Zhu. The distribution of wealth
and fiscal policy in economies with finitely lived agents. Econometrica, 79(1):
123–157, January 2011. doi:10.3982/ECTA8416.

Jess Benhabib, Alberto Bisin, and Shenghao Zhu. The wealth distribution in
Bewley economies with capital income risk. Journal of Economic Theory, 159
(A):489–515, September 2015. doi:10.1016/j.jet.2015.07.013.

Jess Benhabib, Alberto Bisin, and Shenghao Zhu. The distribution of wealth in
the Blanchard-Yaari model. Macroeconomic Dynamics, 20:466–481, March
2016. doi:10.1017/S1365100514000066.

Olivier J. Blanchard. Debt, deficits, and finite horizons. Journal of Political
Economy, 93(2):223–247, April 1985. doi:10.1086/261297.

David G. Champernowne. A model of income distribution. Economic Journal,
63(250):318–351, June 1953. doi:10.2307/2227127.
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