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Abstract

This paper considers dynamic resource allocation processes, called iterative

revelation mechanisms, with quasi-linear dichotomous utilities and complete in-

formation. The social planner gradually identifies the state of the world through

a sequence of binary questions, and monetary transfer is determined on a “pay-

as-bid” basis. Although incentive compatibility is not guaranteed, an allocation

rule is implemented in a subgame perfect Nash equilibrium if it satisfies the

strong monotonicity. In particular, the efficient allocation rule is implemented

regardless of details of a binary-question process. We also show that if a mech-

anism is ex post incentive compatible, it is an ascending-price mechanism. In

a single-object allocation problem, the English auction is a unique mechanism

satisfying efficiency, ex post incentive compatibility, and pay-as-bid transfer.
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1 Introduction

This paper considers dynamic indirect mechanisms that mimic real collective decision-

making processes and allocation rules in practical situations, such as public goods

and auctions. Although we often focus on direct revelation mechanisms by the Rev-

elation Principle for such problems, they are sometimes not practical or applicable;

however, various types of indirect mechanisms are only available or actually used. In

particular, typical mechanisms have small message spaces so that the social planner

can collect only partial information about agents’ types at once. In such a case,

a collective decision-making process may need multiple rounds to collect enough

information to determine the desirable outcome.

Suppose a public good provision problem in which the government is going to

determine whether or not to build a bridge. The government does not know the

valuations of the bridge for agents, so it needs to collect information about them.

However, the government often cannot ask each agent his value of the bridge directly

because such a resource allocation process is too costly. In a typical allocation

process, the government offers a construction plan along with an associated cost

sharing (or tax increase), and agents simply vote for or against it. Thus, agents’

message space is just binary. In addition, when the current plan is rejected by

agents, the government sometimes modifies the plan and proposes again. A final

decision may be made after several rounds of votes.

More specifically, let us consider the following example of a discrete public good

problem with two agents.

Example 1 The government determines whether or not to build a bridge, which

costs 20. There are two agents, A and B, and their values of the bridge are vA = 15

and vB = 9. To find the efficient outcome along with monetary transfer, the govern-

ment determines an allocation and payments in the following process, similar to a

“tatonnement.” The government offers a construction with a cost sharing (pA, pB)

with pA + pB = 20 to agents. If both agents agree with the current plan, it is im-
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plemented. If one agent, say A, agrees but the other does not, then the government

modifies the cost sharing and proposes again; the government increases A’s share

by 1 and decreases B’s share by 1. The government continues modifying and re-

proposing a plan as long as only one agent agrees. If both agents are against a plan,

then the government determines to not build.

Suppose that both agents respond truthfully and sincerely and that the gov-

ernment starts the collective decision-making process from the equal cost sharing

(pA, pB) = (10, 10). Agent A agrees with the initial plan, whereas agent B does not.

The government proposes (11, 9) in the second round, then both agents agree with

it. The bridge is built with payments 11 by A and 9 by B.

Indirect mechanism design using such binary questions is investigated in the

growing literature of mechanism design with communication complexity, such as

Van Zandt (2007), Fadel and Segal (2009), and Mookherjee and Tsumagari (2014).

Among them, Fadel and Segal (2009) clarify the difference between communication

cost for determining an allocation rule and for implementing it. That is, they show

that additional cost exists for computing incentive-compatible monetary transfers

other than the communication cost of finding the desirable allocation. This implies

that the social planner may have to ask questions that do not influence the allocation

but determine monetary transfer. However, with communication complexity, the

planner may not afford to ask such questions that do not affect allocation decisions.

In Example 1, the government successfully identifies the efficient outcome under

truthful behavior, but the monetary transfer rule does not induce incentive compati-

bility. Agent B clearly has an incentive to disagree with the payment of 9. However,

the government does not have information from the observed responses enough to im-

pose (ex post) incentive compatibility. In addition, when the government deals with

budget constraints, it may employ a decision-making process like above, knowing it

is not incentive compatible.

Motivated by the above example, we consider a class of dynamic resource alloca-

tion processes comprising threshold binary questions and a simple monetary transfer
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rule on the pay-as-bid basis, called iterative revelation mechanisms (IRMs). We con-

sider an allocation problem in which state of the world is characterized by a vector

of values for agents. Discrete public good problem such as Example 1 and an auction

problem are included. In each round of a process, the social planner offers prices to

some agents. Agents make a binary response of yes (to accept paying the offered

price) or no (to reject the offered price). The planner iteratively identifies agents’

values through price questions and determines an outcome according to the infor-

mation elicited. Agents pay the maximum price for which they responded yes in the

process.

We show that under complete information, an allocation rule is implemented in

a subgame perfect Nash equilibrium (SPNE) if it satisfies the strong monotonicity.

An allocation rule is said to be strongly monotone if, when an allocation under a

state is desirable for agent i, the allocation does not change by increasing his value.

Because of the fixed monetary transfer rule, incentive compatibility is not guaranteed.

Although agents strategically misreport their valuations, the equilibrium allocation

rule coincides with that obtained by truthful behavior. In particular, the efficient

allocation rule is strongly monotone. The efficient outcome is implemented in SPNE

regardless of offer-price principles. In addition, in whatever manner the social planner

offers prices to agents, there exists the same threshold strategy that constitutes an

SPNE.

We then turn to a mechanism design question and consider ex post incentive

compatibility of IRMs. Under the specified equilibrium, agents strategically tell lies

to the social planner, using the values and observed actions by the others. Our

equilibrium analysis critically relies on complete information. We show that if we

impose ex post incentive compatibility on an IRM while keeping the pay-as-bid

transfers, then the IRM must be an ascending-price mechanism. In a single-object

auction environment with two buyers, the unique efficient and ex post incentive-

compatible IRM is an English auction.

Although an ascending-price mechanism is necessary for ex post incentive com-
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patibility, it is not sufficient. We can borrow knowledge from the literature of

ascending-price auctions, and an ascending-price mechanism is efficient and ex post

incentive compatible only in a limited environment such as a single-object auction.

1.1 Contribution of the Paper

The contribution of this paper is twofold. First, we provide an equilibrium for dy-

namic binary question mechanisms that mimic real resource allocation processes.

From the mechanism design point of view, Fadel and Segal (2009) show that even

if an IRM identifies the desirable outcome under truth telling, the social planner

may not be able to calculate proper monetary transfer that induces ex post incentive

compatibility. Our first result complements Fadel and Segal (2009), and shows that

even if an IRM cannot calculate ex post incentive compatible transfer, the desir-

able allocation rule is implemented in SPNE with a simple pay-as-bid transfer rule.

When communication is limited and the social planner can ask only a limited num-

ber of questions, the communication cost for imposing incentive compatibility is a

constraint to increase the social welfare. Our result indicates that an allocation rule

designed without incentive compatibility is implemented in SPNE as long as it is

strongly monotone. Hence, we are able to investigate the welfare-maximizing algo-

rithm under limited communication, ignoring the incentive compatibility constraint,

which is an algorithmic issue and beyond this research.

Second, we give a fundamental support for focusing on ascending-price mecha-

nisms among various dynamic indirect mechanisms. The so-called Vickrey–Clarke–

Groves (VCG) mechanism is known as a unique direct mechanism that is efficient,

dominant strategy incentive compatible, and individually rational. In a single-object

auction, the VCG mechanism is a second-price auction, and an English auction is

known as a strategically equivalent dynamic mechanism in a private value setting.

Although many studies investigate ascending-price auctions for multiple objects cor-

responding to the VCG mechanism (Ausubel, 2004; Ausubel and Milgrom, 2002; de

Vries et al., 2007), there has been no clear argument for considering an ascending-
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price format only. We provide an axiomatic characterization of an English auction.

1.2 Related Literature

This study is related to a growing literature on mechanism design with commu-

nication complexity. Static single-object auction design under restricted message

space is studied by Blumrosen et al. (2007) and Kos (2012). Blumrosen and Feld-

man (2013) consider implementability of information-theoretically optimal allocation

rules in several settings. Dynamic mechanisms reduce communication. Mookherjee

and Tsumagari (2014) provide a necessary and sufficient condition for Bayesian in-

centive compatibility. Kos (2014) considers an IRM design in a single-object auction

with limited communication.

For the characterization of an English auction, Li (2015) introduces a notion of

obvious strategy-proofness to explain the superiority of an English auction over a

second-price auction in experimental studies.

In this paper, we consider the environment in which agents have quasi-linear util-

ities and one-dimensional type. Each agent has dichotomous preferences, in which

outcomes are classified into just two categories: good or bad outcomes. Each agent

makes the same value for every outcome in the same category. Hence, each agent’s

type is represented by a single value for a good outcome, by normalizing zero-value

for a bad outcome (Babaioff et al., 2005; Mishra and Roy, 2013). Our model in-

cludes discrete public good, single-object auctions, and double auctions with single-

unit demand and supply. In addition, even a multiple-object auction problem is

also included if bidders are “single-minded,” and interested in particular packages of

goods. Auctions with single-minded bidders are studied by Lehmann et al. (2002),

Sano (2011), and Milgrom and Segal (2013) among others. A companion paper of

mine (Sano, 2015) examines ascending-price package auctions with single-minded

bidders, but allows a flexible pricing rule. It shows that efficient allocation is achiev-

able in an SPNE for single-minded bidders, but that the efficient allocation may not

be achievable when a bidder is not single-minded.
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In multiple-object auctions, preference elicitation is an issue because bidders

have a complex valuation function that evaluates each package of goods. Ascending

auctions are typical mechanisms that reduce the amount of communication com-

pared with direct revelation mechanisms. Ausubel (2004, 2006) provides incentive-

compatible ascending or dynamic auctions for multiple homogeneous or heteroge-

neous goods. Ausubel and Milgrom (2002) and Bikhchandani and Ostroy (2002)

provide relationships between the VCG outcome and core of the auction game. The

VCG outcome is in the core if goods are substitutes and they propose ascending

auction mechanisms that converge to the VCG outcome. These mechanisms are ex

post incentive compatible. Nisan and Segal (2006), however, show that the com-

munication required for finding the efficient allocation is exponential in number of

goods.

In a discrete public good game, the efficient provision of a public good is achiev-

able in a complete information Nash equilibrium (Palfrey and Rosenthal, 1984).

Admati and Perry (1991) study dynamic or sequential contribution mechanisms to

public good or joint project. They show that the efficient outcome is achieved in an

SPNE when past contributions are refundable.

Bernheim and Whinston (1986) formulate a generalized first price auction, called

a “menu auction,” and show that the efficient (and core) outcome is achieved in

a Nash equilibrium. Bergemann and Valimaki (2003), in a framework of common

agency, extend Bernheim and Whinston to a different type of a dynamic allocation

process, called “agenda game.” A set of admissible outcomes is chosen by an auction

in the first round and the final outcome is auctioned from the selected admissible

outcomes in the second round.

2 Model

Let N ≡ {0, 1, 2, . . . , n} be the set of all individuals. The benevolent social planner

is denoted by 0 and I = {1, . . . , n} is the set of agents. The social planner chooses

an outcome x from a finite set of alternatives X along with monetary transfer.
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Each agent has a quasi-linear utility function with integer-valued valuation function

ui : X → Z.1 Agent i ’s utility is denoted by πi = ui(x) − pi, where pi denotes the

monetary transfer to the planner. Each agent has dichotomous preferences; i.e., he

has a non-empty set of interests and has the same value for each outcome of his

interest. Let Xi ⊂ X be the set of i ’s interests. Agent i ’s valuation function takes

the form of

ui(x) =


vi if x ∈ Xi

0 if x 6∈ Xi

. (1)

For simplicity of notation, a set of consecutive integers from a to b is denoted by [a, b].

Domain of values is bounded and denoted by Vi ≡ {vi, vi + 1, . . . , v̄i} = [vi, v̄i]. It is

possible for agents to have a negative value or cost vi < 0 for outcomes of interest.

The social planner’s personal utility function is given by π0 = u0(x) +
∑

I pi, where

u0 is the planner’s personal valuation function, which represents a cost function in a

public good environment or valuation of the seller in an auction environment. We do

not assume that u0 is dichotomous, however, u0 is commonly known to each other.

We assume that each agent’s interests Xi and domain of values Vi are all com-

monly known to each other including the planner. This is natural in such problems

as public goods and auctions. The state of the world is simply the vector of val-

ues, v = (v1, . . . , vn) ∈ V ≡ ×i∈IVi ⊂ Zn. Moreover, we assume that a state v is

commonly known to each agent but only the social planner does not know the state.

2.1 Iterative Revelation Mechanisms

We consider an environment in which the planner is not able to directly ask each

agent his value. The social planner gradually collects information about the state of

the world by a sequence of threshold binary questions to find the efficient outcome.

The planner offers prices (or subsidies) for achieving an outcome of their interests at

once. When the planner offers pi to agent i and he is willing to pay pi (or receive −pi

1Integer valuation is not crucial in our analysis. It guarantees that a game has finite horizon,

especially in case where the social planner finds the efficient outcome.
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when pi < 0) for x ∈ Xi, it implies vi ≥ pi. Conversely, when agent i responds that

he is not willing to pay pi, it implies vi < pi.2 By offering multiple different prices,

the planner iteratively identifies vi. For example, if agent i accepts a payment pi = 5

and rejects pi = 12, then the social planner considers i ’s value to be between 5 and

11.

Formally, from the responses by agents up to round t of a resource allocation

process, the planner identifies i ’s value as in a set Vi(ht), where ht indicates a history

at the end of t. Any value ṽi ∈ Vi(ht) is consistent with all the responses from agent

i. We call Vi(ht) the revealed value set of i at round t. Note that Vi(ht) should have

the form of Vi(ht) = [vi(ht), v̄i(ht)] and Vi(∅) = Vi, where ht = ∅ is a null history3.

Let V (ht) ≡ ×i∈IVi(ht), called the revealed state set at t, which indicates the set of

possible states consistent with a history up to t. Notice that Vi(ht) ⊆ Vi(hs) and

V (ht) ⊆ V (hs) for all t > s and that V (ht) 6= ∅ as long as any irrational behavior is

ruled out. As the social planner makes a question to an agent, his revealed value set

shrinks and, accordingly, the revealed state set also does.

An iterative revelation mechanism (IRM) is defined by Γ = ({J t, pt}t, g, p) as

follows. For each round t = 1, 2, . . . , J t : Ht−1 → 2I determines a set of agents

whom the planner offers a price, where ht ∈ Ht indicates a history at the end of

round t with H0 = {∅}. The price the planner offers to agent i ∈ J t(ht−1) is

determined by pt
i : Ht−1 → Z. Without loss of generality, we assume that for every

t, every ht−1 ∈ Ht−1, and every i ∈ J t(ht−1), pt
i ∈ Vi(ht−1) \ {vi(ht−1)}.4 Each

agent i ∈ J t(ht−1) at t makes a report at
i ∈ {yes, no}. The mechanism terminates

at T when JT+1(hT ) = ∅.5 An entire history is denoted by h ∈ H, where H is

2We assume that a negative response against a payment of pi implies a strict preference in order

that the social planner certainly identifies vi.
3Formally, vi(h

t) = maxτ≤t{pτ
i |aτ

i = yes} and v̄i(h
t) = minτ≤t{pτ

i |aτ
i = no} − 1, where aτ

i

indicates a response at round τ .
4By revealed preferences, agent i must accept any pi ≤ vi(h

t−1) and reject any pi > v̄i(h
t−1).

Any irrational behavior is ruled out and Vi(h
t) 6= ∅.

5We do not impose a specific termination condition. By definition and assumption, the process

terminates in finitely many rounds.
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a set of all entire histories. For each entire history h ∈ H, an outcome g(h) ∈ X

and monetary transfers to the planner p(h) ∈ Zn are determined. In other words, a

process {J t, pt}t describes a game tree in which each node has two successive nodes.

A history ht is an information set, and an entire history h is a terminal node of the

game tree. Functions g and p are a mapping from each terminal node to an outcome

and monetary transfer. A decision rule g along with an offer-price scheme {J t, pt}t

is sometimes called a protocol.

We do not impose any specification on an offer-price process {J t, pt}t. The social

planner can employ various offer-price principles such as ascending-price, descending-

price, and others. For example, in an ascending-price principle, the planner starts

with offering a sufficiently low price. The planner gradually increases the price as

long as an agent responds yes. Another principle is bisection method, in which

the planner offers the median value in an agent’s revealed value set in each round.

Bisection method can minimize the number of questions for uniquely specifying i ’s

value.

Although we allow an arbitrary offer-price principle, we focus on a particular

monetary transfer rule, called the pay-as-bid rule.

Assumption 1 (Pay-as-bid transfer) The payment rule is determined by

pi(h) =


vi(h) if g(h) ∈ Xi

0 if g(h) 6∈ Xi

.

If the final outcome is of i ’s interest, then he needs to pay the minimum value in his

revealed set. Equivalently, each agent pays the maximum amount that he said yes

to in the mechanism. Thus, this payment rule is a dynamic version of a “pay-as-bid”

mechanism and can be viewed as an extension of Bernheim and Whinston’s (1986)

menu auction.

Assumption 1 is restrictive from the mechanism design point of view, which con-

siders payment schemes that incentivize agents. A justification for this assumption is

that the social planner has to minimize communication to find the efficient outcome.
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Fadel and Segal (2009) show that there exists additional communication to calculate

ex post incentive-compatible transfer. If the communication cost may be large, then

the social planner might give up collecting additional information after the efficient

outcome is identified.

Agents observe all the past information. A (pure) strategy σi ∈ Σi of agent i in

an IRM Γ is a profile of actions ai(z) ∈ {yes, no} at every decision node z = (ht−1, pt
i)

such that i ∈ J t(ht−1). An agent i behaves sincerely when his strategy is such that

for every i ’s decision node z = (ht−1, pt
i), ai(z) = yes if and only if pt

i ≤ vi. The

equilibrium concept is a subgame perfect Nash equilibrium (SPNE).

2.2 Direct Allocation Rule

For a protocol ({J t, pt}, g), let φ : V → H be a mapping from a state to the associated

history, assuming sincere reporting by agents. In other words, φ is an inverse mapping

of V (h). We define a direct allocation rule f : V → X associated with ({J t, pt}, g)

as f = g ◦ φ. A direct allocation rule is a mapping from each state v ∈ V to a

corresponding allocation x ∈ X via history generated by sincere behavior.

The efficient allocation rule (with respect to reports) is denoted by f∗ and

f∗(v) ∈ arg max
X

∑
i∈N

ui(x). (2)

A direct allocation rule f is said to be monotone if for all i ∈ I, all v ∈ V , and all

ṽi > vi,

f(v) ∈ Xi ⇒ f(ṽi, v−i) ∈ Xi.

Moreover, a direct allocation rule f is said to be strongly monotone if for all i ∈ I,

all v ∈ V , and all ṽi > vi,

f(v) ∈ Xi ⇒ f(ṽi, v−i) = f(v). (3)

Strong monotonicity is clearly equivalent to monotonicity if each agent’s interests set

is singleton as in the case of a discrete public good problem. Notice that the efficient

allocation rule f∗ is also strongly monotone.
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Definition 1 An IRM Γ is said to be (strongly) monotone if the associated direct

allocation rule f is (strongly) monotone. An IRM Γ is said to be efficient if the

associated direct allocation rule is efficient and f∗.

Given a (strongly) monotone allocation rule f , the critical value cf
i (v−i) is defined

by

cf
i (v−i) =


min{ṽi ∈ Vi|f(ṽi, v−i) ∈ Xi} if exists

∞ otherwise
. (4)

Given the other agents’ values, a critical value of agent i is the minimum value that

the associated allocation is of i ’s interest.

2.3 Examples

2.3.1 Discrete Public Good

The discrete public good problem illustrated in Example 1 is restated using the

formal notations as follows. The government determines whether to build a bridge

(x = 1) or not (x = 0); X = {0, 1}. There are two agents, A and B, whose interests

are XA = XB = {1}. Agents’ values take an integer from V = [0, 20], and their

values are assumed to be vA = 15 and vB = 9. The government’s cost function is

given by u0(0) = 0 and u0(1) = −20.

In an IRM, the government offers a cost sharing (pt
A, pt

B) simultaneously or se-

quentially, keeping pt
A + pt

B = 20. If both agents agree with a plan, it implies vi ≥ pt
i

for i = A,B, which means the bridge is built. If an agent is against the plan, it

implies vi < pt
i, so that the government modifies the cost sharing. If both agents

disagree with a plan, it implies vA + vB < 20 and the bridge is not built.

2.3.2 Single-Object Auctions

Another example is an auction problem. In a single-object auction, the social planner

allocates a single unit of an object to potential buyers. The winner of an auction

earns a value vi.
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A typical efficient IRM is an English auction. The planner as the auctioneer

offers all agents an initial price p that is sufficiently low. The planneer gradually

increases the price as long as two or more agents are active and respond yes for the

current price. Once only one agent responds yes for a price, then the auction ends

with that price.

A Dutch auction is also a typical IRM. Grigorieva et al. (2007) propose another

iterative auction named the “bisection auction,” in which the planner offers the

median value of the revealed value set of a potential winner in each round6.

2.3.3 Package Auction with Single-Minded Bidders

Even in a multiple-object auction problem, so-called single-minded bidders are an

example of dichotomous preferences. Consider a hypothetical spectrum license auc-

tion with two goods and three bidders. There are two spectrum licenses. One of the

two, denoted by E, is a license covering the eastern area, whereas the other, denoted

by W, covers the western area. Bidders 1 and 2 are local telecommunications firms.

Bidder 1 operates in the eastern area and wants license E only. Bidder 2 operates in

the western area and wants license W only. Bidder 3 is a global firm that operates

in both areas and wants both E and W.

An ascending-price auction, called the combinatorial clock auction, proceeds as

follows (Porter et al., 2003). The initial price vector for licenses are set (p1
E , p1

W ) =

(0, 0). Bidders report their demand under the current price vector. Each price

increases as long as there is an excess demand. The combinatorial clock auction

is interpreted as an IRM. In each round of the auction, bidders are simultaneously

offered a price (pt
1, p

t
2, p

t
3) = (pt

E , pt
W , pt

E + pt
W ). The combinatorial clock auction

terminates when the efficient allocation is identified. Winners pay the terminal price

of the good(s) that they demand.

6Grigorieva et al. (2007) do not impose the pay-as-bid transfer rule but design an ex post incentive

compatible payment rule.
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3 Main Result

To simplify the analysis, we mainly focus on a special case of perfect information

IRMs, in which for all t and all ht−1, |J t(ht−1)| = 1. It is easy to arrange the result

to the case of imperfect information, which is described later.

To state the result, we introduce a notion of target values.

Definition 2 The target value vt
i of i at round t is defined by

vt
i ≡


vi if vi ∈ Vi(ht)

v̄i(ht) if vi > v̄i(ht)

vi(ht) if vi < vi(ht)

. (5)

Since agents observe all the past actions, they know the target value of each other.

Notice that vt
i ∈ Vi(ht).

Using target values, we specify an SPNE for every strongly monotone IRM. The

following theorem is the first main result, which states that every strongly monotone

IRM has an SPNE that implements the associated allocation rule f .

Theorem 1 Suppose an IRM is perfect information and strongly monotone. Then

there exists an SPNE in which each agent i takes the following strategy:

ai(ht−1, pt
i) =


yes if pt

i ≤ min{vi, c
f
i (vt−1

−i )}

no otherwise
, (6)

where f is the associated direct allocation rule. The SPNE implements f .

Proofs are given in the Appendix.

An intuition of Theorem 1 is given as follows. By definition of target values, each

agent j is willing to pay at most vt−1
j given the observed actions. It is clear that

every agent responds no sincerely for any price pt
i > vi and a non-negative payoff is

guaranteed. Suppose that agents foresee that the equilibrium outcome is f(vt−1),

and that agent i makes an action at round t. Suppose f(vt−1) ∈ Xi and pt
i < vi.

If f(vt) ∈ Xi after i ’s response and his forecast is true, f(vt) would be the final
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outcome and he would obtain a non-negative payoff. If f(vt) 6∈ Xi after i ’s response

and his forecast is true, the final outcome would be given by f(vt) and i ’s payoff

would be zero. Therefore, each agent should keep f(vt) ∈ Xi to maximize his payoff.

By definition of the critical value, each agent responds yes for any price below the

critical value to keep f(vt) = f(vt−1). He responds no for any price above the critical

value to reduce his payment.

Agents tell lies in equilibrium. They respond no for a price above cf
i (vt−1

−i ) to

reduce their payments.

Because the efficient allocation rule is strongly monotone, every efficient IRM

achieves the efficient allocation in equilibrium.

Corollary 1 For every efficient IRM, there exists an SPNE that implements the

efficient allocation.

In efficient IRMs, the critical value is defined by the famous “Vickrey-Clarke-Groves”

price:

cf∗

i (vt−1
−i ) = vi − max

X

∑
j∈N

ut−1
j (x) + max

X

∑
j 6=i

ut−1
j (x),

where

ut−1
j (x) = vt−1

j 1{x∈Xj}.

Remark 1 Multiple equilibria generally exist in the sense that every agent such

that f(vt−1) 6∈ Xi is indifferent to responses as long as f(vt) 6∈ Xi holds. However,

the equilibrium strategy (6) is unique for agents such that f(v) ∈ Xi if we assume

that agents strictly prefer an outcome x ∈ Xi with paying the true value vi to an

outcome x′ 6∈ Xi with no transfer. This is straightforward from the incentive to min-

imize payments. Multiple equilibria would be eliminated by additionally imposing

trembling-hand perfection, but we do not formally confirm it. The uniqueness of

SPNE depends on perfect information and is not a robust property.
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3.1 Illustrations

In this subsection, we describe illustrations of SPNE of Theorem 1 for some efficient

IRMs.

3.1.1 Discrete Public Good

An illustration of the equilibrium path is given for Example 1 in the Introduction.

The values of the bridge for agents A and B are supposed to be vA = 15 and vB = 9,

respectively. The construction cost is u0(1) = −20. The marginal contribution of

each agent is MA = MB = 4. Hence, the threshold prices of agents in the specified

equilibrium are vA − MA = 11 and vB − MB = 5 in the initial round.

In the example, the government first offers the equal cost sharing (p1
A, p1

B) =

(10, 10). The equilibrium action is yes for agent A and no for agent B. In the second

round, the government offers (11, 9). Then, in the equilibrium, agent B responds no,

whereas agent A responds yes. B’s action in the second round decreases his target

value to v2
B = 8, which makes A’s marginal contribution M2

A = 3. The government

offers (12, 8) in the third round. Because the change in B’s target value increases A’s

threshold price vA−M2
A = 12, agent A responds yes and agent B responds no. Then,

B’s target value decreases again and v3
B = 7, which makes A’s marginal contribution

M3
A = 2 and increases his threshold price vA − M3

A = 13, and so on. Eventually,

the government offers (15, 5), and both agents respond yes. The bridge is built with

payments pA = 15 and pB = 5, which achieves the efficient outcome.

3.1.2 Single-Object Auctions

To see the independence of offer-price principles for the equilibrium strategy, let us

consider a single-object auction next. Suppose that there are two bidders A and B,

who have a value vA = 10 and vB = 13, respectively. Hence, bidder B wins the

object in the efficient outcome. The marginal contribution of bidder B is 3, whereas

that of A is zero. Hence, under the equilibrium strategy, both A and B have the

same threshold price of 10. Assume VA = VB = [0, 15] and that the planner always
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chooses bidder B in tie cases.

In an English auction, the planner gradually increases a price from p1 = 1. In

the SPNE, both A and B continue to respond yes until p10 = 10, and they respond

no at p11 = 11. By assumption, bidder B wins with the payment of 10, which is the

same as the truthfully-bidding equilibrium of an English auction.

In a Dutch auction, the planner gradually decreases a price from p1 = 15. In the

SPNE both A and B continue to respond no until p5 = 11, and they respond yes at

p6 = 10. Similarly by assumption, bidder B wins with the payment of 10 as in the

English auction.

In the bisection auction of Grigorieva et al. (2007), the planner offers the median

value of a revealed value set. At the initial round, the planner offers p1 = 8, which is

median of [0, 15] to both bidders. Because they respond yes for 8, the planner next

offers p2 = 12. Because they respond no for 12, the planner next offers p3 = 10,

where both bidders respond yes. Finally, the planner offers p4 = 11, both bidders

respond no, and the auction ends. Bidder B wins with the payment of 10 as in the

English and Dutch auction.

Thus, in every offer-price principle, the proposed threshold strategy forms an

SPNE and results in the same outcome and monetary transfer. However, in general,

the resulting monetary transfer depends on offer-price principle.

3.2 Efficient IRMs and Core

In the above example of public good, the government successfully achieves the effi-

cient provision of the bridge along with budget balance. To be precise, the equilib-

rium outcome of an efficient IRM is in the core with respect to the true state of the

world. To consider the core of the allocation problem, we formulate the coalition

value function. We assume that a coalition value generated by agents only is zero.

This is justified if we impose the excludability on the feasible outcomes X.

For example, let X(J) ⊂ X be a set of feasible outcomes achievable for a coalition

J ∪ {0}. A coalition J ∪ {0} selects an outcome from X(J). A set X of alternatives
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satisfies the excludability if for each i 6∈ J , Xi ∩ X(J) = ∅. The excludability

holds for various environment such as an auction problem. Although pure public

good problems do not necessarily satisfy the excludability, it is often assumed in

similar problems. The excludability implies that any coalition including the social

planner can exclude agents outside the coalition. The coalition value of J is defined

as the maximum social welfare generated by J . The coalition value function (or

characteristic function) ω : 2N × V → R is defined by

ω(J ; v) =


maxX(J−0)

∑
j∈J uj(x) if 0 ∈ J

0 if 0 6∈ J

. (7)

A payoff profile is in the core if it is efficient, individually rational, and not blocked

by any coalition. The core given a state of the world is denoted by

C(ω, v) = {π ∈ Rn+1|(∀i ∈ N)πi ≥ 0, (∀J ⊆ N)
∑
j∈J

πj ≥ ω(J, v)}.

The following theorem states that the payoff profile in every efficient IRM is in the

core. In the above definition of core, the social planner is also included as a player.

This implies that in a public good problem, for example, the government’s revenue

from agents covers the provision cost. Similarly, in a double auction with single-unit

demand and supply, a Walrasian auctioneer has no budget deficit in equilibrium.

Theorem 2 Suppose that the coalition value function ω is defined as equation (7).

The equilibrium payoff profile of every efficient IRM, denoted by π∗, is in the core

with respect to the true state of the world: π∗ ∈ C(ω, v).

3.3 When |J t| ≥ 2

The above result is easily arranged to the case where the social planner can simul-

taneously offer prices to many agents. The equilibrium strategy for such cases is

basically the same as Theorem 1, but some coordination of responses is necessary to

avoid a tragedy, in which many agents simultaneously say no and their contributions
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fall short to the desirable outcome. Thus, a coordination problem should be solved

in each round.

Corollary 2 Suppose |J t| ≥ 1. In every strongly monotone IRM, there exists a

following SPNE: for any history ht−1 and (J t, pt), find a maximal set J t
n ⊆ J̄ t ≡

{i ∈ J t|cf
i (vt−1

−i ) < pt
i ≤ vi} satisfying the following conditions:

1. Agent i says no if i ∈ J t
n or if pt

i > vi,

2. Agent i says yes if i ∈ J̄ t \ J t
n or if pt

i ≤ cf
i (vt−1

−i ), and

3. f(vt) = f(vt−1).

It is obvious that our result is not affected even when the social planner can offer

multiple prices to an agent. For example, we have the same equilibrium when the

planner offer a set of prices {pt
i1, . . . , p

t
ik} to agent i in a round. Agent i responds with

the maximum price that he accepts (or says yes) among the offered prices. Note that

a direct revelation of a value is equivalent to offering a set of prices {vi, vi+1, . . . , v̄i}.

Then, Corollary 2 shows a direct revelation pay-as-bid mechanism implements every

strongly monotone allocation rule in a Nash equilibrium. Bernheim and Whinston

(1986) show the special case for the efficient IRM.

Corollary 3 In a direct mechanism with a strongly monotone allocation rule f and

pay-as-bid transfers, there exists a Nash equilibrium, in which each agent submits a

bid of bi = cf
i (b−i) and f(b) = f(v) holds.

3.4 Limited Communication

Although we do not explicitly consider, our analysis so far incorporates a nature of

limited communication. For example, the planner may be able to ask only a limited

number of questions of each agent, or in total. Alternatively, it may take a cost to

ask an agent a question. In the presence of communication constraints, the planner

may not or cannot specify the efficient outcome, but carefully designs a protocol

that finds an approximately efficient outcome. In a single-object auction problem,
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Blumrosen et al. (2007) and Kos (2012, 2014) examine an informationally efficient

protocol that maximizes the social welfare given a limited number of actions. It is

challenging to answer the question as to how we can maximize social welfare in a

more general allocation problem with limited communication.

Consider a public good problem of Example 1 again. Suppose that the govern-

ment is able to ask each agent at most one question because it is costly to offer a

price. Under a heuristic resource allocation rule, the government offers a price p to

each agent simultaneously or sequentially. The government builds the bridge if an

agent or both agree and report yes. Even in the simple example above, it is not ob-

vious whether the informationally efficient resource allocation rule is implementable

or even the definition of such a rule7.

As Fadel and Segal (2009) show, under limited communication, the ex post in-

centive compatibility constraint generates efficiency loss because the social planner

needs to ask questions just for determining proper transfers. Theorem 1 implies that

under complete information, an allocation rule is implemented in SPNE even without

incentive compatibility as long as it is strongly monotone. Hence, we can investi-

gate an informationally efficient protocol ignoring the incentive constraint, which is

beyond this research.

4 Incentive Compatibility

Theorem 1 show that every strongly monotone IRM achieves the desired allocation

rule in an SPNE but each agent strategically misreports his type. Moreover, the

specified strategy needs the others’ true values and observed information. The anal-

ysis critically relies on complete information. Hence, we are naturally interested in

an incentive-compatible mechanism.

Definition 3 An IRM is ex post incentive compatible if for any state v, sincere

reporting is an ex post equilibrium.
7See Blumrosen and Feldman (2013) for the informationally efficient allocation rule for this

environment.
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We show that an IRM is ex post incentive compatible if it employs an ascending-

price principle. In addition to the ex post incentive compatibility, we also impose a

weak condition called weak tightness.

Definition 4 An IRM is weakly tight if i ∈ J t(ht−1) implies that there exists a state

ṽ ∈ V (ht−1) and f(ṽ) ∈ Xi.

Weak tightness requires that if agent i is a mover of a node, then there is a path

such that an outcome of i ’s interest is realized in that subgame. If it does not hold,

then i never realizes any outcome of his interest, regardless of the current and future

responses. Thus, agent i may be redundant to make a serious response. If the social

planner wants to reduce communication, then the weak tightness would be required.8

Now we state the second main result. When we consider an ex post incentive-

compatible IRM, we need to limit attention to ascending-price IRMs. This result

crucially relies on Assumption 1.

Theorem 3 If an IRM is monotone, ex post incentive compatible, and weakly tight,

then it is an ascending-price mechanism: ps
i < pt

i for all i and all s < t.

4.1 Characterizing an English Auction

As a corollary of Theorem 3, an English auction is essentially a unique iterative

mechanism that is efficient and ex post incentive compatible in a single-object auc-

tion. In this subsection, we focus on a single-object auction environment with two

bidders, 1 and 2. A value of each bidder is drawn from V = [0, v̄]. Formally, an

English auction is defined as follows. For notation, we denote pt
i = pt−1

i if agent i is

not a mover at round t.

Definition 5 An IRM for two agents is an English auction if it is ascending-price

starting from p1
i ≥ p0

i ≡ 0, it holds |pt
1 − pt

2| ≤ 1 for all t ≥ 1, and if the agent who

first responds no is always the loser. The winner pays the price at the termination.
8One might consider a stronger notion of tightness: An IRM is tight if for all t and all ht, it holds

that i 6∈ Jt+1(ht) if ∀ṽ ∈ V (ht), f(ṽ) ∈ Xi or if ∀ṽ ∈ V (ht), f(ṽ) 6∈ Xi. Notice that if ∀ṽ ∈ V (ht),

f(ṽ) ∈ Xi or f(ṽ) 6∈ Xi, a question to agent i is meaningless to determine an allocation.
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The above definition includes two standard forms of English auctions. A model

of an English auction is a so-called clock auction, in which the auctioneer announces

a price in each round and raises it until only a single bidder remains. Hence, the

prices of bidders increase with keeping pt
1 = pt

2.
9 In another model, each bidder

places a new bid in each round. A bidder needs to submit a strictly higher bid than

the tentatively highest bid, which means pt
i = pt−1

j + 1 in each round.

In the following theorem, we employ a predetermined tie-breaking rule, which is

denoted by Âv
0. In the efficient allocation rule f∗, bidder 1 (bidder 2, respectively)

always wins if v1 > v2 (v2 > v1, respectively). In a tie case with v1 = v2 = v,

it is broken by the preference order Âv
0 over bidders. Thus, bidder 1 (bidder 2,

respectively) is chosen if v1 = v2 = v and 1 Âv
0 2 (2 Âv

0 1, respectively). That means

preferences over bidders in tie cases can depend on their value.

Theorem 4 Consider a single-object auction environment with two bidders and per-

fect information IRMs. An IRM is efficient, ex post incentive compatible, weakly

tight, and has the pay-as-bid monetary transfer if and only if it is an English auc-

tion.

In a single-object auction with n ≥ 3 bidders, there exists another IRM that is

efficient and ex post incentive compatible and pay-as-bid in the sense that |pt
i−pt

j | ≥ 2

for some bidders i and j, and some round t. Such a mechanism is constructed as a

“tournament auction”; an English auction is conducted among n− 1 bidders and its

winner and the remaining bidder participate in an English auction again.

4.2 Corollary from Literature of Ascending-Price Auctions

Theorem 3 provides several findings along with knowledge from ascending-price auc-

tions theory. When we focus on “ascending-price auctions,” the following result is

known.

9To be precise, pt
1 6= pt

2 even for a clock auction because we consider sequential move and perfect

information.
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Proposition 1 (Ausubel and Milgrom, 2002; de Vries et al., 2007) There ex-

ists an efficient and incentive-compatible ascending-price mechanism if for any state

v, the coalition value function is submodular: for any J ′ ⊆ J ,

ω(J ′ ∪ i; v) − ω(J ′; v) ≥ ω(J ∪ i; v) − ω(J ; v).

It is easily verified that in many environments of dichotomous preferences, the

coalition value function is not submodular. Roughly speaking, the submodular con-

dition corresponds to a substitutes condition, whereas dichotomous preferences typ-

ically exhibit complementarity. In a public good problem, for example, each agent’s

marginal contribution to the economy ω(J)−ω(J−i) is non-decreasing in the size of

the economy J . When a bidder has a non-substitute valuation, there is no ascending-

price auction that terminates with the VCG outcome (de Vries et al., 2007). Thus,

there exists no incentive-compatible IRM, in general.

The negative result depends on both the pay-as-bid transfer rule and tightness.

Fadel and Segal (2009) show that even without Assumption 1, an efficient protocol

may not be implemented in ex post equilibrium. This is because an ex post incentive-

compatible transfer rule is equivalent to that of the VCG mechanism, whereas an

efficient protocol may not collect enough information to calculate the VCG outcome.

However, Fadel and Segal also show that every efficient allocation rule (protocol)

is implemented in Bayesian Nash equilibrium using a payment rule similar to the

“AGV mechanism.” In a multiple-object auction model, Mishra and Parkes (2007)

propose an ex post incentive-compatible ascending auction for general valuations,

which does not satisfy pay-as-bid transfer or tightness.

5 Conclusion

IRMs are a class of dynamic indirect mechanisms in which the social planner iter-

atively asks binary questions and identifies the state of the world after a sequence

of questions and responses. With complete information and dichotomous prefer-

ences, every strongly monotone allocation rule is implemented in an SPNE although
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the “pay-as-bid” monetary transfer does not guarantee incentive compatibility. In

particular, the efficient outcome is achievable in an SPNE in every efficient IRM, re-

gardless of offer-price principles. However, agents strategically misreport their values

contingent on the others’ past responses. To impose ex post incentive compatibility,

the planner has to employ an ascending-price principle. In a single-object alloca-

tion problem, the English auction is a unique mechanism satisfying efficiency, ex

post incentive compatibility, weak tightness, and pay-as-bid transfer. However, an

incentive-compatible IRM often fails to exist in general.

We have assumed that the planner has knowledge about agents’ interests. It is

an open question when the planner does not know agents’ interests and needs to

ask their interests too. Another extension is relaxing the assumption of dichotomous

preferences. Knowledge from package auctions tells us that there exist incentive-

compatible ascending package auctions when goods are substitutes. Unfortunately,

however, Sano (2015) shows that in the presence of complementarities, an ascending

package auction may not achieve the efficiency in SPNE.

A Proofs

We use the following notations in this appendix. The set of agents whose interests

include x is denoted by N(x) ≡ {i ∈ I|x ∈ Xi}. For each subgame starting from a

decision node z = (ht−1, pt
i), let I(z) be the set of all agents who make actions in the

subgame.

A.1 Proof of Theorem 1

Step 1. Suppose |I(z)| = 1. Agent i is a unique agent making actions at z and all

the subsequent nodes.

Step 1.1. Suppose f(vt−1) 6∈ Xi. If ∀ṽi ∈ Vi(ht−1), f(ṽi, v
t−1
−i ) 6∈ Xi, then agent

i earns zero payoff regardless of his responses, and any strategy is indifferent and

optimal. Hence, suppose ∃ṽi ∈ Vi(ht−1), f(ṽi, v
t−1
−i ) ∈ Xi. Because f(vt−1) 6∈ Xi,
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we have vt−1
i < cf

i (vt−1
−i ) and cf

i (vt−1
−i ) ∈ Vi(ht−1). Because vt−1

i 6= v̄i(ht−1), we

have vt−1
i = max{vi, vi(ht−1)} ≥ vi. Under the proposed strategy, agent i responses

sincerely regarding vi (equivalently vt−1
i ), so that the final allocation must be f(vt−1)

and agent i earns zero payoff. If agent i deviates and takes another strategy achieving

some x ∈ Xi, then the social planner identifies i ’s revealed value as ṽi ≥ cf
i (vt−1

−i ).

This indicates that agent i says yes for a price ps
i ≥ cf

i (vt−1
−i ) at some round s ≥ t,

and that i ’s payoff is negative: vi−pi(h) ≤ vi−ps
i < 0. Hence, the proposed strategy

is optimal.

Step 1.2. Suppose f(vt−1) ∈ Xi. If vt−1
i = vi(ht−1) ≥ vi, it implies for any ṽi ∈

Vi(ht−1), f(ṽi, v
t−1
−i ) ∈ Xi. For payment minimization, it is optimal to say no for all

prices, which is consistent with the proposed strategy because cf
i (vt−1

−i ) ≤ vi(ht−1).

Suppose vi > vi(ht−1) and vt−1
i = min{vi, v̄i(ht−1)}. If cf

i (vt−1
−i ) ≤ vi(ht−1),

then the proposed strategy is clearly optimal as in the previous paragraph. Hence,

suppose cf
i (vt−1

−i ) > vi(ht−1). By f(vt−1) ∈ Xi, it holds that cf
i (vt−1

−i ) ≤ vt−1
i ≤ vi.

If agent i reports as if his value is ṽi < cf
i (vt−1

−i ), then his resulting payoff is zero. If

agent i takes the proposed strategy, it holds that cf
i (vt−1

−i ) ∈ Vi(h) regardless of the

offer-price process. Hence, we have

g(h) = g
(
φ(cf

i (vt−1
−i ), vt−1

−i )
)

= f
(
cf
i (vt−1

−i ), vt−1
−i

)
= f(vt−1) ∈ Xi. (8)

The first equality is from vt−1
j ∈ Vj(h) for all j 6= i. The third equality is from

strong monotonicity. In addition, agent i says no for any ps
i > cf

i (vt−1
−i ) for all s ≥ t,

his payoff is at least vi − cf
i (vt−1

−i ) ≥ 0. It is clearly suboptimal for i to say yes for

ps
i > cf

i (vt−1
−i ) for some s ≥ t.

Therefore, we have shown that the proposed strategy constitutes an SPNE and

g(h) = f(vt−1) when |I(z)| = 1.

Step 2. Now we consider any decision node z of round t and the corresponding

mover i. We impose the following induction hypothesis; for every subsequent node

z′ of round t′ > t after z, the proposed strategy is an SPNE and f(vt′) = f(vt′−1)

for all t′ > t. Hence, f(vt) is chosen in the SPNE by the hypothesis.
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Step 2.1. Suppose f(vt−1) 6∈ Xi and pt
i ∈ Vi(ht−1)\{vi(ht−1)}. If cf

i (vt−1
−i ) > v̄i(ht−1),

we have f(vt) 6∈ Xi regardless of i ’s action.10 By the induction hypothesis, i ’s

resulting payoff is zero, and the proposed strategy is optimal.

Suppose cf
i (vt−1

−i ) ≤ v̄i(ht−1). Because vt−1
i < cf

i (vt−1
−i ) ≤ v̄i(ht−1), we have

vt−1
i = max{vi, vi(ht−1)}. If pt

i < cf
i (vt−1

−i ), then vt
i ∈ {vt−1

i , pt
i, p

t
i − 1} after i ’s

response. Hence, f(vt) 6∈ Xi regardless of i ’s response. Hence, the proposed strategy

is optimal. Under the strategy, we have vt
i = vt−1

i , which induces f(vt) = f(vt−1).

Suppose pt
i ≥ cf

i (vt−1
−i ). If agent i says no by following the proposed strategy,

then vt
i = vt−1

i and f(vt) = f(vt−1). If he deviates and says yes, then vt
i = pt

i and

f(vt) = f(pt
i, v

t−1
−i ) ∈ Xi. By induction hypothesis, the final allocation is f(vt) ∈ Xi.

Because i ’s payoff is at most vi − pt
i < 0, the deviation is not profitable.

Step 2.2. Suppose f(vt−1) ∈ Xi and pt
i ∈ Vi(ht−1)\{vi(ht−1)}. If cf

i (vt−1
−i ) < vi(ht−1),

we have f(vt) = f(vt−1) ∈ Xi regardless of i ’s action by strong monotonicity. Hence,

for payment minimization, the proposed strategy in which agent i says no for all

pt
i ∈ Vi(ht−1) is optimal.

Suppose cf
i (vt−1

−i ) > vi(ht−1). Because vt−1
i ≥ cf

i (vt−1
−i ), we have vt−1

i = min{vi, v̄i(ht−1)}.

If pt
i ≤ cf

i (vt−1
−i ), agent i says yes under the proposed strategy, and we have vt

i = vt−1
i

(because pt
i ≤ vt−1

i ). Hence, f(vt) = f(vt−1) ∈ Xi and by induction hypothesis,

g(h) = f(vt). Because agent i says no for any price ps
i > vi for any subsequent node,

his payoff must be nonnegative vi − pi(h) ≥ 0. If agent i deviates and says yes, then

vt
i = pt

i − 1 < cf
i (vt−1

−i ) and f(vt) 6∈ Xi. By induction hypothesis, i ’s payoff is zero,

so that the proposed strategy is optimal and f(vt) = f(vt−1) holds.

If pt
i > cf

i (vt−1
−i ), agent i says no under the proposed strategy, and we have

vt
i = min{vi, p

t
i − 1}.11 Because pt

i − 1 ≥ cf
i (vt−1

−i ), we have f(vt) = f(vt−1) ∈ Xi by

strong monotonicity. By induction hypothesis, g(h) = f(vt). Agent i ’s payment is at

most pt
i − 1, so that his resulting payoff is at least vi − pt

i +1. If agent i deviates and

says yes, then vt
i = max{vt−1

i , pt
i} ≥ vt−1

i and f(vt) = f(vt−1) ∈ Xi. By induction

10It is not guaranteed that f(vt) = f(vt−1).
11Remember that vt−1

i = min{vi, v̄i(h
t−1)} and pt

i ≤ v̄i(h
t−1).
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hypothesis, g(h) = f(vt). Agent i ’s payment is at least pt
i, so that his resulting payoff

is at most vi − pt
i. Therefore, the proposed strategy is optimal and f(vt) = f(vt−1)

holds.

Finally, every subgame or every decision node z preceding a terminal node is

such that |I(z)| = 1. From Step 1, the induction hypothesis is true for every final

round of the IRM, and we complete the proof. ¥

A.2 Proof of Theorem 2

Let π∗ be the equilibrium payoff profile in an efficient IRM. Because the equilibrium

allocation x∗ is efficient, for each feasible allocation x ∈ X, we have

u0(x∗) +
∑

N(x∗)

vj(h) ≥ u0(x) +
∑

N(x)∩N(x∗)

vj(h) +
∑

N(x)\N(x∗)

v̄j(h). (9)

Note that the social planner’s equilibrium payoff is

π∗
0 = u0(x∗) +

∑
N(x∗)

vj(h).

Consider any coalition J including the planner. Obviously, it suffices to consider the

case of J = N(x) ∪ {0} for any feasible outcome x ∈ X. Then,∑
J

π∗
j = u0(x∗) +

∑
N(x∗)

vj(h) +
∑
N(x)

π∗
j

≥ u0(x) +
∑

N(x∗)∩N(x)

vj(h) +
∑

N(x)\N(x∗)

v̄j(h) +
∑
N(x)

π∗
j

= u0(x) +
∑

N(x∗)∩N(x)

vj +
∑

N(x)\N(x∗)

v̄j(h)

≥ u0(x) +
∑

N(x∗)∩N(x)

vj +
∑

N(x)\N(x∗)

vj

= ω(J ; v).

(10)

The third line comes from the fact that π∗
j = vj − vj(h) for every j ∈ N(x∗) and

π∗
j = 0 for j 6∈ N(x∗). Note that in the SPNE, cf∗

i (vt
−i) ≥ vi for all i 6∈ N(x∗) and

all t. Hence, v̄j(h) ≥ vj for each i 6∈ N(x∗), which induces the fourth line. ¥
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A.3 Proof of Theorem 3

Suppose for contradiction there exists agent i and some rounds s and t with s < t,

and ps
i > pt

i. By definition of an IRM, as
i = no. Consider the revealed information at

round t−1. By weak tightness, there exists v ∈ V (ht−1) and f(v) ∈ Xi. In addition,

v ∈ V (hs−1) because Vj(ht−1) ⊆ Vj(hs−1) for each agent. Suppose that the true

state is (v̂i, v−i) with v̂i ∈ Vi(hs−1) and v̂i > ps
i . By monotonicity, f(v̂i, v−i) ∈ Xi.

Under the sincere reporting, agent i responds yes at round s with ps
i , and he earns

a payoff v̂i − pi ≤ v̂i − ps
i . If agent i responds no at ps

i and pretends to have vi, then

the final outcome is f(v) ∈ Xi and he earns a payoff v̂i − pi > v̂i − ps
i , which is a

contradiction. ¥

A.4 Proof of Theorem 4

Because if part is obvious, we will show only if part.

Suppose an IRM is efficient, ex post incentive compatible, weakly tight, and has

the pay-as-bid transfer rule. By Theorem 3, it is an ascending-price mechanism

because the efficient allocation rule is clearly monotone; we have ps
i ≤ pt

i for each

i = 1, 2 and all s < t. In what follows, we show that |pt
1 − pt

2| ≤ 1 for all t ≥ 1. Let

ai(pt
i) be an action by bidder i when the price is pt

i.
12 Notice that in any ascending-

price mechanism, any agent who has responded no does not become a mover in any

subsequent round because pt
i ∈ Vi(ht−1).

Suppose there exists some round t ≥ 1 and |pt
1 − pt

2| ≥ 2. Let t be the smallest

of such rounds (i.e., the earliest node). Without loss of generality, let pt
1 > pt

2 ≡ p.

Then, bidder 1 is the mover at round t. This is because if round t is bidder 2’s node,

it implies pt−1
2 < pt

2 and pt−1
1 = pt

1, so that pt−1
1 − pt−1

2 > 2, which is a contradiction.

Hence, pt−1
2 = pt

2 = p and pt−1
1 ∈ {p − 1, p, p + 1}.

Claim. The revealed value set of bidder 2 at t − 1 must be V2(ht−1) = [p, v̄]; i.e.,

a2(p) = yes.

12Remember that ai(p
t
i) does not mean an action of i at node t because pt

i may be offered at an

earlier node.
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Proof of Claim. Suppose not; a2(p) = no and v̄2(ht−1) = v̄2(ht) = p − 1. Because

pt−1
1 < pt

1, a1(pt−1
1 ) = yes and v1(ht−1) ≥ p − 1. When the tie-breaking rule de-

termines 1 Âp−1
0 2, bidder 1 should be the winner for any state in V (ht−1). Hence,

it is dominant strategy for bidder 1 to take a1(pt
1) = no at t, which contradicts ex

post incentive compatibility. If the tie-breaking rule determines 2 Âp−1
0 1, the social

planner cannot identify the allocation if a1(pt
1) = no. This is because the planner

cannot make any further question once both bidders respond no and V (ht) contains

both states such that bidders 1 and 2 win. This contradicts efficiency. ¤

Case 1. Suppose pt
1 ≥ p + 3.

Suppose a1(pt
1) = no, which implies the social planner no longer makes a question

to bidder 1. Then, the revealed value sets at t are such that V1(ht) ⊇ {p + 1, p + 2}

and V2(ht) = {p, p + 1, . . . , v̄}. If V1(ht) contains at least three elements, then the

planner cannot identify the winner regardless of tie-breaking rule, which contradicts

efficiency. Hence, suppose V1(ht) = {p + 1, p + 2}. If 2 Âp+1
0 1 and if v2 = p + 1,

then the planner cannot identify the winner. If 1 Âp+2
0 2 and if v2 = p + 2, then the

planner cannot identify the winner. Therefore, 1 Âp+1
0 2 and 2 Âp+2

0 1. Now suppose

v1 > pt
1 and v2 = p + 1. Under the sincere reporting, bidder 1 wins and his payoff is

at most v1 − pt
1. If bidder 1 deviates and a1(pt

1) = no, bidder 1 still wins13 and his

payoff is v1 − pt−1
1 > v1 − pt

1, which contradicts ex post incentive compatibility.

Case 2. Suppose pt
1 = p + 2.

Suppose a1(pt
1) = no, which implies the social planner no longer makes a question

to bidder 1. Consider the revealed value set of bidder 1. If V1(ht) contains at least

two elements (i.e., V1(ht) ⊇ {p, p + 1}), we have a contradiction by an argument

similar wtih Case 1. Hence, suppose V1(ht) = {p + 1}. Now suppose v1 > p + 2 and

v2 = p. By the same argument as Case 1, bidder 1 is better off by deviating at t and

taking a1(pt
1) = no. Therefore, we have shown pt

1 − pt
2 ≤ 1.

Finally, it is clear that the agent who first responds no is the loser. If not and

13This is because the social planner identifies the winner at the termination with V1(h) = {p +

1, p + 2}. Because v2 = p + 1, the planner must identify at least v̄2(h) = p + 1.
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a bidder, say bidder 1, first responds no but wins in a history h. Then, bidder 1 is

better off by deviating to h when v1 > v̄1(h) and v2 ∈ V2(h). ¥
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