The Influence Function of Semiparametric Estimators*

Hidehiko Ichimura Whitney K. Newey
University of Tokyo MIT

July 2016

Abstract

Often semiparametric estimators are asymptotically equivalent to a sample average. The
object being averaged is referred to as the influence function. The influence function is use-
ful in formulating primitive regularity conditions for asymptotic normality, in efficiency
comparions, for bias reduction, and for analyzing robustness. We show that the influence
function of a semiparametric estimator can be calculated as the limit of the Gateaux deriva-
tive of a parameter with respect to a smooth deviation as the deviation approaches a point
mass. We also consider high level and primitive regularity conditions for validity of the
influence function calculation. The conditions involve Frechet differentiability, nonparamet-
ric convergence rates, stochastic equicontinuity, and small bias conditions. We apply these
results to examples.
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1 Introduction

There are many economic parameters that depend on nonparametric first steps. Examples
include games, dynamic discrete choice, average consumer surplus, and treatment effects. Often
those estimators are asymptotically equivalent to a sample average. The thing being averaged is
referred to as the influence function. The influence function is useful for a number of purposes.
It can be used to construct estimators with improved properties, Chernozhukov, Escanciano,
Ichimura, and Newey (2016). Its variance is the asymptotic variance of the estimator and so it
can be used for asymptotic variance estimation and asymptotic efficiency comparisons. Also,
the form of remainder terms follow from the form of the influence function so knowing the
influence function is a good starting point in formulating regularity conditions. Furthermore,
the influence function approximately gives the influence of a single observation on the estimator,
and so can be used for robustness comparisons. Indeed this interpretation is where the influence
function gets its name in the robust estimation literature, see Hampel (1974).

BETTER We show how the influence function can be calculated as the limit of a derivative
of the object the estimator converges to. The derivative is taken with respect to a weight on a
general alternative to the true CDF. The limit is taken as the alternative approaches the CDF
of constant. We impose restrictions on the alternative so that the object being differentiated is
well defined. This calculation is similar to that of FIX Von Mises (1947) and Hampel (1974),
of a derivative with respect to a CDF of a constant, but we specify the alternative so that
it is smooth and also allow it to satisfy other restrictions. As a result the calculation given
here applies generally to semiparametric estimator including those where the first step is a
conditional expectation or density.

We also consider regularity conditions for validity of the influence function calculation. The
conditions involve Frechet differentiability as well as convergence rates for nonparametric esti-
mators. They also involve stochastic equicontinuity and small bias conditions. When estimators
depend on nonparametric objects like conditional expectations and pdf’s, the Frechet differen-
tiability condition is generally satisfied for intuitive norms, e.g. as is well known from Goldstein
and Messer (1992). The situation is different for functionals of the empirical distribution where
Frechet differentiability is only known to hold under special norms, Dudley (1994). The asymp-
totic theory here also differs from functionals of the empirical distribution in other ways as will
be discussed below.

Newey (1994) previously showed that the influence function of a semiparametric estimator
can be obtained by solving a functional equation involving pathwise derivatives and scores

of parametric models. That approach has proven useful in many settings but does require the
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solution to a functional equation. The approach of this paper is an explicit calculation that does
not require finding the solution to a functional equation. Here we simply calculate a derivative
and find its limit. This calculation is accomplished by specifying a parametric model, i.e. a
path, in the right way to obtain the influence function.

Regularity conditions for functionals of nonparametric estimators involving Frechet differen-
tiability have previously been formulated by Ait-Sahalia (1991), Goldstein and Messer (1992),
Newey and McFadden (1994), Newey (1994), Chen and Shen (??), Chen, Linton, and Keilegom
(2003), and Ichimura and Lee (2010), among others. Newey (1994) gave stochastic equiconti-
nuity and small bias conditions for functionals of series estimators. In this paper we update
those using Belloni, Chernozhukov, Chetverikov, and Kato (2015). Bickel and Ritov (2003)
formulated similar conditions for kernel estimators. Andrews (2004) gave stochastic equiconti-
nuity conditions for the more general setting of GMM estimators that depend on nonparametric
estimators.

In Section 2 we describe the estimators we consider. Section 3 presents the method for
calculating the influence function. In Section 4 we outline some conditions for validity of the
influence function calculation. Section 5 gives primitive conditions for linear functionals of
kernel density and series regression estimators. Section 6 outlines additional conditions for

semiparametric GMM estimators. Section 7 concludes.

2 Semiparametric Estimators

This paper is about estimators where parameters of interest depend on a first step nonpara-
metric estimator. We refer to these estimators as semiparametric. We could also refer to them
estimators where nonparametric first step estimators are “plugged in.” This terminology seems
awkward though, so we simply refer to them as semiparametric estimators. We denote such
an estimator by B, which is a function of the data zi, ..., z, where n is the number of observa-
tions. Throughout the paper we will assume that the data observations z; are i.i.d. We denote
the object that B estimates as [, the subscript referring to the parameter value under the
distribution that generated the data.

We adopt a general framework where the estimator of the parameter of interest is a gener-
alized method of moments estimator depending on a nonparametric first step. To describe the
type of estimator we consider let m(z, 3,~) denote a vector of functions of the data observation
z, parameters of interest 5 € R%, and a function ~ that may be vector valued. Here v repre-

sents some possible value of a nonparametric estimator. A GMM estimator can be based on a



moment condition where 3, is the unique parameter vector satisfying

E[m(ziaﬁ0770)] =0, (21)

and 7, is the true . Here it is assumed that this moment condition identifies 5. Let 4 denote
some nonparametric estimator of ,. Plugging in 4 to obtain m(z;, 5,%) and averaging over z;
gives the estimated sample moments m(8) = >, m(z;, 8,%)/n. For W a positive semi-definite

weighting matrix a semiparametric GMM estimator is

~ ~

B = argminm(8)" Win(6).

We note that this class of estimators includes an explicit functional p(F') of the distribution F
of a single observations, where m(z, 3,7) = u(F) — 8 and F' = ~y. Many other estimators are
also included as special cases.

Examples can help illustrate the results. We consider one example here and more below.
The first example is an estimator of a bound on average surplus of a price change when there
are bounds on income effects, as in Hausman and Newey (2016a,b). Let y denote quantity
consumed of some good, x = (x1,x2)" where z1 is price, zo is income, wq(z2) be a weight
function for income (such as an indicator for some interval), and «,(x) a possible conditional
expectation function E|y;|x; = x]. We assume that B is a uniform bound on the derivative of
demand with respect to income, i.e. the income effect. The object of interest is a bound on the
weighted average over income of equivalent variation for a price change from Iy to 1, given by
z1

80 = Elua(en) [

1

710(“»3521‘)673(”7%1”“] = Elwa(w;) /w1(u)710(u, T9;)dul,

where wq(z1) = 1(# < 21 < @1)6—3(11—@)

. If B is an upper (lower) bound on income effects
then f is a lower (upper) bound on average equivalent variation over income and individual
heterogenetiy of a price change from x; to Z1. This object is identified from the semiparametric

moment function.
(e 5,71) = walea) [ wr(w)y (s 22)du 5.

We will consider additional examples below.
The results of this paper apply generally to asymptotically linear estimators. An asymp-

totically linear estimator is one satisfying
V(B = Bo) = Y ¥(z) Vi + 0p(1), Bl ()] = 0, Elyp(zi) 9 (z:)] < oo. (2.2)
i=1

The function v(z) is referred to as the influence function, following terminology of Hampel

(1974). It gives the influence of a single observation in the leading term of the expansion in
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equation (2.2). It also quantifies the effect of a small change in the distribution on the limit of
3 as we further explain below.
A semiparametric GMM estimator will be asymptotically linear under regularity conditions

that are summarized below. Let

8E[m(zlw@a70)] T

M = , W = plim(W).
op f=h0

A standard expansion argument along with well understood properties of semiparametric esti-

mators leads to an influence function of the form
b(z) = —=(M"WM)" MTW[m(z, 80, 70) + ¢(2)]; (2.3)

where ¢(z) is an adjustment term for the estimator 4 of 7, as discussed in Newey (1994).
Here m(z, By, 7o) + ¢(z) will be the influence function of m(5,). This formula for the influence
function is valid under weak regularity conditions, that allow for m(z, 3, 7,) to not be smooth

in 3, e.g. as in Chen, Linton, et al. (77).

3 Calculating the Influence Function

In this Section we provide a method for calculating the influence function. The key object on
which the influence function depends is the limit of the estimator when z; has a CDF F that
is unrestricted except for regularity conditions. We denote this object by S(F'). One can think
of B(F) as the object that is estimated by B when misspecification is allowed. The idea is that
every estimator converges to something under some regularity conditions. The function S(F')
is that something. It describes how the limit of the estimator varies as the distribution of a

data observation varies. Formally, it is mapping from a set F of CDF’s into real vectors,
() : F— R
In the surplus bound example
B(F) = / wo(Fa)wi (1) Eplyi|zs = 31451 Fo(dis), (3.4)

where Erply;|x;] denotes the conditional expectation under distribution F' and Fh(x2) is the
marginal CDF of xo;.

How B(F) varies as F' varies near the true distribution Fj can be used to calculate the
influence function. An important feature of (F) is that it may only be well defined when F
is restricted in some way. In the average surplus example S(F') will only be well defined when

the uniform distribution on (&1, z;) is absolutely continuous with respect to the distribution of
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x1;. In formal terms this feature means that the domain F of 3(-) is restricted. To allow for a
restricted domain we consider only variations in F' that are contained in F. The specific kind of
variation we consider is a convex combination F; = (1 —7)Fy+ G2 of the true distribution F
with some other distribution G]; where F; € F. The superscript j and subscript z designate G];
as a member of sequence of CDF’s approaching the CDF of the constant z. Under conditions
given below the influence function can be calculated as

¥(z) = lim iﬁ((l —7)-Fo+7-Gl)|, (3.5)

j—o0 T

where all derivatives with respect to 7 are right derivatives at 7 = 0. The derivative in this
expression is the Gateaux derivative of the functional S(F) with respect to a deviation 7[GL —
Fy(z)] from the true distribution Fy. This formula says that the influence function is the limit
of this Gateaux derivative as G approaches the CDF of the constant z.

Equation (3.5) can be thought of as a generalization of the influence function calculation of
Von Mises (1947) and Hampel (1974). That calculation is based on G4 = A, where ), is the
CDF of the constant z. If (1 —7)-Fy+7- X\, is in F then the influence function is given by the

Gateaux derivative
d
P(z) = %B((l —7)-Fo+7-X,)

The problem with this formula is that F; = (1 —7)- Fy + 7 - A, will not be in the domain F for
many semiparametric estimators. In many cases F' € F (i.e. B(F) being well defined) reqiures
that certain marginal distributions of F' are continuous. The CDF (1 — 7) - Fy + 7 - A, does
not satisfy that restriction. Equation (3.5) circumvents this problem by restricting F; to be in
JF. The influence function is then obtained as the limit of a Gateaux derivative as Gg — A,
rather than the Gateaux derivative with respect to the CDF of a point. This generalization
applies to most semiparametric estimators.

We can relate equation (3.5) to the pathwise derivative characterization of the influence
function in Newey (1994). Denote one of a class of parametric models as Fy, where 6 denotes
a vector of parameters, with Fy € F equal to the true distribution Fy at # = 0. Restrict each
parametric model in the class to be regular in the sense used in the semiparametric efficiency
bounds literature, so that Fp has a score S(z) (derivative of the log-likelihood in many cases,
e.g. see Van der Vaart, 1998, p. 362) at § = 0 and possibly other conditions are satisfied.
We assume that the set of scores over all regular parametric families has mean square closure
that includes all functions with mean zero and finite variance. This assumption is the precise
meaning of the statment that we are not restricting F' except for regularity conditions. As

shown by Newey (1994) the influence function ¢ (z) is then the unique solution to the derivative
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equation of Van der Vaart (1991),

0B (Fy)
00

= E[p(2i)5(zi)], ElY(z:)] = 0, (3.6)

as the score S(z) varies over those for regular parametric models.

The advantage of equation (3.5) is that it is a direct calculation while the outer product
formula (3.6) is a functional equation that must be solved to find the influence function. It
is true that Newey (1994), Hahn (1998), Hirano, Imbens, and Ridder (2003), Bajari, Hong,
Krainer, and Nekipelov (2010), Bajari, Chernozhukov, Hong, and Nekipelov (2009), Hahn
and Ridder (2013, 2016), and Ackerberg, Chen, Hahn, and Liao (2015) have solved equation
(3.6) for important models. Generally though, these results have required the solution to a
functional equation, such as a Riesz representation in Propositions 4 and 5 of Newey (1994)
and in Ackerberg et. al. (2015). No such solution is required to apply equation (3.5). Instead,
all that is required is an expression for 93(F;)/0t and for its limit. This advantage of equation
(3.5) is highlighted in examples to follow. MOVE.

To use the derivative formula to calculate the influence function we need to specify Go.
Various kinds of restrictions on GZ may be needed to insure that F, € F. In the surplus
bound example the Lebesgue measure on [#1,Z1] must be absolutely continuous with respect
to the distribution of the price variable z1; for 5(F') to be well defined. In other examples an
identification condition may need to be satisfied. We are free to choose G in whatever way is

convenient for imposing these restrictions and ensuring that equation (3.5) holds. Here we use
GI(2) = El1( < 2)d(=)), (3.7)

where d(z;) is a bounded nonnegative function with E[d(z;)] = 1. The variable Z represents
a possible value of the random variable z;, and we supress a j superscript and z subscript
on §(z;) for notational convenience. We will assume that z € R” and that Fj is absolutely
continuous with respect to a product measure p on R”. This assumption allows for components
of z; to be continuously or discretely distributed, or some mixture of the two. The distribution

F,=(1—-71)Fy+ G2 will have a pdf with respect to u given by
fr(2) = fo(R)[L =7+ 16(2)] = fo()[1 +7S(2)], S(2) = 0(2) — 1.

Also, for any measureable function y; and components x; of z; the marginal pdf f;(Z) of z;,

conditional expectation F.[y;|z;] of y; given x;, and its derivative are

@) = fo@{1+7E[S(z)|zi = 7]}, (3.8)
Elyi|xi] + TE[y:S(2:)|wi] OB [yi|z]
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as shown in Lemma A1l of the Appendix. These formulae will be useful for calculating the
influence function in many cases.

The characterization of the influence function in equation (3.6) justifies the influence func-
tion formula (3.5) for this choice of GZ . Consider F, = (1 —7) - Fy 4+ 7 - GL as a model with
parameter 7 passing through the truth at 7 = 0. This model is regular, as shown in the proof
of Theorem 1 below. Also, the score is given by d1ln f-(2)/01 = S(2). Then equation (3.6) and
E[S(z;)] = 0 gives

P — Blteste) = [ w25 folo)d

At any point z where v (Z) is continuous, equation (3.5) will follow by taking the limit as

0(2) fo(2) approaches a spike at z, which corresponds to GJ approaching the CDF of a constant
at z.

A particular choice of §(z) will be useful in the calculations. Let K(u) be a pdf that is
symmetric around zero, has bounded support, and is continuously differentiable of all orders

with bounded derivatives. The smoothness of K is useful for some of the examples. Also let
iy = 5" [ K((z¢ = Z0)/§)dpe(Z0), and

9(2) = Wy w](20), W)(Z) = (3d) K (20— 20)/3). (3.9)
We take §(Z) to be the function
3(2) = g(2)1(fo(2) = 1/5)fo(2) " (3.10)

For this choice of §(Z) equation (3.5) will hold when 1(Z2) is continuous at z and fo(2) is bounded
away from zero on a set of Z that has full g measure locally to z, as shown and further discussed
below.

We can calculate the influence function for the surplus bound using this §(z). We assume
that the joint pdf fo(7,Z) of (y;,x;) is bounded away from zero on a neighborhood of z so that
0(z) = g(2)/fo(2) where g(z) is positive for large enough j. Now assume j is large enough so
that holds. Then for any a(y,x) we have Ela(y;, x;)S(zi)|z: = 7] = [a(y,%)g(2)dy/ fo(Z). Let

A = / wa(E2)wn () E[{y: — vio(ai)} S (ai) | = Fldi fo(E2)dp,

= /{w2(i'2)w1(i°1)[17 —Y10(@)] f2(%2)/ fo(Z) }g(2)dp = /06(56)[@ —71(2)]g(2)dp,
() = waZ2)wi(T1)f2(Z2)/ fo(T),

where p,, is the dominating measure for x9; and fo(Z2) the pdf of xo; with respect to this

measure. Then plugging F: in equation (3.4) and applying the chain rule gives

0P = Bluaten) { [ wn@nmalinadin| Sl + A = [ mz, 5y 1m0)g()d + A
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where the second equality follows by iterated expecations, the definition of m(z, 3,7;) above,
and by E[S(z;)] = 0. Assume that v,¢(Z), wi(Z1), wa(Z2), and fo(Z1|T2) = fo0(T2)/fo(Z) are
continuous at x, so that a(Z)[g — v,0(Z)] is continuous at z. Also assume that v(Z;,Z2) is
continuous at (Z1,x2) for all Z1 € (£1,71), so that [ wi(Z1)y,0(Z1,Z2)dZ; is continuous at zs.
Then m(Z,v19, Bp) is continuous at z. By the construction of g (Z) we have [ a(2)g(Z)dp —

a(z) for any a(Z) function that is continuous at z. Therefore as j — oo we have

L B(E) — m(z, S 110) + 0(@)ly — T10@)] (3.11)

We can also characterize the influence function in this example using Proposition 4 of Newey
(1994). To do so we need to find the solution ot the Riesz representation in equation (4.4) of

Newey (1994). Multiplying and dividing by fo(Z1|Z2) gives

Bluwa(oai){ [ w (@) (31,22)d52}] = Ela(wi) o)

Here we see that a(x;) is the Riesz representor in Proposition 4 of Newey (1994), so the
conclusion of that result implies that the influence function of the surplus bound is the expression
on the right of equation (3.11).

This example shows the advantage of the derivative formula in equation (3.5) over solving the
functional equation (3.6). In the example the influence function was derived by a straighforward
calculation of a limit. At no point in that calculation did we need to solve for the function
a(z). Instead the expression for a(z) emerged from the derivative calculation. Thus this new
example demonstrates how the influence function can be obtained from a derivative without
solving a functional equation. We will show this approach is similarly useful in an even more
challenging and original example in the next Section.

We give a precise theoretical justification for the formula in equation (3.5) by assuming that
an estimator is asymptotically linear and then showing that equation (3.5) is satisfied under a
few mild regularity conditions. One of the regularity conditions we use is local regularity of B
along the path F;. This property is that for any 7,, = O(1/y/n), when 21, ..., 2, are i.i.d. with
distribution F- ,

VilB = B(E:,)] -5 N(0,V),V = El(z)9(2:)7)-

That is, under a sequence of local alternatives, when B is centered at 5(F;), then B has the same
limit in distribution as for Fy. This is a very mild regularity condition. Many semiparametric
estimators could be shown to be uniformly asymptotically normal for 7 in a neighborhood of
0, which would imply this condition. Furthermore, it turns out that asymptotic linearity of B

and Gateaux differentiability of S(F;) at 7 = 0 with the correct derivative are sufficient for

8]



local regularity. For these reasons we view local regularity as a mild condition for the influence
function calculation.

We will prove that (3.5) is valid for G as specified in equation (3.7). It would be straight-
forward to extend this validity result to more general classes of GZ but the result we give should

suffice for most cases.

THEOREM 1: Suppose that [3 is asymptotically linear with influence function ¥ (z) and there
is an open set N containing z such that a) there is N C N such that u(N) = p(N) and (%)

is continuous at z for Z € N'; b) there is € > 0 such that

NNz < fo(z) = €}) =p(N).

If B is locally regular for the parametric model (1 — 7)Fy + e for T in a neighborhood of
zero then dB(Fr)/0T exists and satisfies equation (3.5).

PROOF

This result shows that if an estimator is asymptotically linear and locally regular then the
influence function satisfies equation (3.5), justifying that calculation. This result is like Van
der Vaart (1991) in having differentiability of 3(F;) as a conclusion. It differs in restricting
the paths to have the form (1 — 7)Fp + 7G4 Such a restriction on the paths actually weakens
the local regularity hypothesis because B only has to be locally regular for a particular kind of
path rather than the general class of paths in Van der Vaart (1991). We view locally regularity
for such paths as a very weak condition because the deviations are bounded smooth densities.
We expect that these deviations are regular enough so that F, will generally satisfy whateever
regularity conditions are needed for asymptotic linearity uniformly in 7 near zero, so B will
be locally regular. The conditions of Theorem 1 are stronger than Van der Vaart (1991) in
assuming that the influence function is continuous at z and that the pdf of z; is bounded away
from zero on a neighborhood of z. We view this as a weak restriction that will be satisfied
almost everywhere with respect to the dominating measure p in many cases. We also note
that this result allows for distributions to have a discrete component because the dominating
measure p may have atoms.

The weak nature of the local regularity condition highlights the strength of the asymptotic
linearity as hypothesis. Primitive conditions for asymptotic linearity can be quite strong and
complicated. For example, it is known that asymptotic linearity of estimators with a nonpara-
metric first step generally requires some degree of smoothness in the functions being estimated,
see Bickel and Ritov (1988). Our purpose here is to bypass those conditions in order to calculate

the influence function, which result can then be used in all the important ways outlined in the
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introduction, including as a starting point for formulating regularity conditions for asymptotic
linearity.

It is interesting to note that the scores for the parametric families (1 — 7)Fy + 7G with GZ
as given in equation (3.7) all satisfy S(z) > —1. Thus to calculate the influence function we do
not require a family of parametric models where the set of scores can approximate any random
variable with zero mean and finite variance, as is required in Newey (1994). Also, apparently
this restriction means that Theorem 1 is not a special case of the results of Van der Vaart
(1998), where it is assumed that the set of scores is a cone. The proof of Theorem 1 does use
some of Van der Vaart’s (1991) reasoning to show differentiability of G(F;) but otherwise is
very straightforward.

We want to emphasize that the purpose of Theorem 1 is quite different than Van der Vaart
(1991, 1998) and other important contributions to the semiparametric efficiency literature.
Here 8 (F') is not a parameter of interest for some semiparametric model. Instead [(F') is
associated with an estimator B , being the limit of that estimator when F' is a distribution that
is unrestricted except for regularity conditions, as formulated in Newey (1994). Our goal is to
use 3(F') to calculate the influence function of 3 under the assumption that /3 is asymptotically
linear. The purpose of Theorem 1 is to justify this calculation via equation (3.5). In contrast,
the goal of the semiparametric efficiency literature is to find the efficient influence function for

a parameter of interest when F' belongs to a family of distributions.

4 Nonparametric Instrumental Variables

In this Section we derive the influence function for a semiparametric GMM estimator where the
first step v, is the nonparametric two stage least squares estimator (NP2SLS) of Newey and
Powell (1989, 2003) and Newey (1991), abbreivated NP henceforth. As with consumer surplus,
the form of the influence function emerges from the calculation of the derivative. Also, the
limit of the NP2SLS estimator exists and is unique under deviations similar to those specified
above as is essential for calculation of the influence function. The uniqueness and existence
result is made possible by the specification F; = (1 — 7)Fy + 7GY of deviations from the true
distribution. In this way the approach of this paper provides the key intermediate step of
existence and uniqueness of the limit of the NP2SLS estimator.

The first step will be based on a linear, nonparametric, instrumental variables model in NP
where

vi = Yo(w;) + &;, Elei|x;] = 0, (4.12)

where w; are right hand side variables that may be correlated with the disturbance ¢; and x; are

[10]



instrumental variables. We begin with the case where w; and z; have the same dimension and
are continuously distributed with rectangular supports. The identification condition for ~y,(w;)
in this model is completeness of the conditional expectation given x;, meaning E[A(w;)|z;] =0
implies A(w;) = 0. Under our conditions on w; and x; completeness holds generically, as shown
by Andrews (2011) and Chen, Chernozhukov, Lee, and Newey (2014). Genericity justifies our
assumption of completness, although as with other important generic conditions (e.g. existence
of moments), completeness cannot be be tested (see Canay, Santos, Shaik, 2013).

The NP2SLS estimator minimizes the objective function Q(y) = Y, {vi — E[y(-)|z:]}?/n
over v € T, where E[-|z;] is a conditional expectation estimator and T',, imposes restrictions on
the function, such as it being a linear combination of known functions. We first consider the
case where I',, leaves v unrestricted in the limit, except for having finite second moment. For
fixed v the limit of the objective function will be Q(v, F) = Er[{y; — Er[y(w;)|7;]}?] where F
denotes the distribution of a single observation. The objective function will also be the limit
of other regularized objective functions such as Darolles, Fan, Florens, and Renault (2011),
so we expect that the corresponding estimators converge to the same object. As usual for
an extremum estimator the limit of the minimizer will be the minimizer of the limit under

appropriate regularity conditions. Therefore the limit v(F') of the NP2SLS estimator will be

V(F) = argmin Q(y, F) = arg min Bp({y; - Eply(w;)|z:]}?].

A problem with this calculation is that v(F') need not exist nor be unique. This problem
occurs because v appears inside a conditional expectation. Our framework helps. Under our
conditions ~(F,) does exist and is unique for F, = (1 — 7)Fy + 7G4 when 7 is small enough.
The use of deviations from the truth of the form we have considered allows us to specify G in
such a way that v(F;) exists and is unique.

We modify slightly our choice of 4(z) in order to allow for weak conditions on the marginal
pdf fo(Z) of x; as outlined below. Let g,(y), gw(w), and g,(x) be as specified in equation (3.9)
except that for g,(z) (and gy(y), gw(w)) the product is only taken over components of z (y, w).
For example we let il, = i1 [ K((z¢ — &¢)/5)dfig,

0u(%) = Wy} (50), w)(30) = (i) K ((we = 0)/3). (4.13)

We then choose d (z) to be

-1
5(2) = gy (4) g0 ()ga(2) {fo@,wm / fo(i‘)gx(i‘)duz] 1(f (gl > 1/7).

With this §(z) we can make a key assumption that we use to show existence and uniqueness of
V(Er).
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ASSUMPTION 1: a) w; and x; have the same dimension, b) E[A(w;)|z;] is complete, and c)
for each j there is AJ(w;) such that E [A(wy)|z;| = go(2:)/ [ 92(Z) fo(Z)dE.

Recall that K (u) is continuously differentiable of all orders with bounded support so that
92(Z) is also continuously differentiable with bounded derivatives of all orders. Assumption 1
c) is then satisfied if E [A(w;)|z;] is a compact operator with singular values that do not decline
too fast and other technical conditions hold, as discussed in the Appendix. If we had used
the 6(z) from earlier we would need to replace Assumption 1 ¢) with existence of AJ(w;) with
E [AV(wy)|2;] = g2(;)/ fo(;), which would only hold if f,(Z) were very smooth near . The
choice of §(z) allows us to avoid these smoothness conditions for fy(Z).

The following result shows that v(F;) exists for small enough 7 and gives a useful formula

LEMMA 2: If Assumption 1 is satisfied then for each j and 7 small enough, v(F;) =

arg min, Q(v, Fr) exists and is unique and there is c(1) with ¢(0) =0 and

s, Fr) = 7o) + ()8, 22 = 15— )y @) )y

With this result in place we can derive the influence function for a variety of different
estimators with NP2SLS first step. We begin with a plug in estimator of the form
R n
=" v(w)i(w;)/n, (4.14)
i=1
where v(w) is a known function. This 3 is an estimator of 8y = E[v(w;)vo(wi)]. The limit of
3 will be
B(F) = Erlv(wi)y(wi, F)].
As shown by Severini and Tripathi (2012), a necessary condition for root-n consistent estima-

bility here is that (3, there exists a(z;) such that
v(w;) = Ela(x;)|w;]. (4.15)

We will assume that «(z) is unique, which is equivalent to completeness of E|a(z;)|w;], as holds
generically like discussed above.

To calculate the influence 3 note that by equation (4.15) and Assumption 1,

Elv(wi) A (w)] = E[Bla(z:)|wi] A (wy)] = Bla(z) A (wi)] = Ela(w:) BIA (w;)]a]]
= Ela(@i)ge(zi)); §u(2i) = 9o (wz‘)//gx (%) fo(Z)d.

[12]



By the chain rule and Lemma 2

0B(Fr) _ OEp,[v(wi)y(wi, Fy)] (4.16)

or or
= Bl S()] + 257 B () A )

= El{v(wi)volwi) — Bo}5(z)
+ 5= 20(@)9y D)9 )itz Ela(e)ga 2:)
= Blp(z)6()], $(z) = v(whro(w) — By + a(@)ly — 1o(w)].

As j — oo we will have [[§— o (@)]gy(9)gw(@)dugdug — y—o(w) for vo(w) continuous at
w and Ela(z;)g: (x;)] — a(z) fo(x)/fo(z) = a(x) for a(z) and fo(Z) continuous at x, so we

have

THEOREM 3: If Assumption 1 is satisfied, there exists a unique solution a(x;) to v(w;) =
Ela(z;)|w;], each of a(x), fo(z),v(w), and ~vo(w) are continuous at (w,x), the conditional pdf
f(g,w|z) is bounded away from zero in a neighborhood of (y,w,x), and fo(x) > 0,then for
NP2SLS

tim P — ) = wwp(w) — By + ale)ly - 20w

Here we find that the influence function of 3 of equation (4.14) is (z) of Theorem 3.
Like the consumer surplus example a nonparametric residual y — 7,(w) residual emerges in the
calculation of 9 (z). Unlike the surplus example the residual is from the structural equation
(4.12) rather than a nonparametric regression. The function a(z) of the instrumental variables
is also a key component of the influence function. Here a(x) is defined implicitly rather than
having an explicit form. This implicit form seems inherent to the NP2SLS first step, with
existence of a(x) solving equation (4.15) being required for root-n consistency of B.

Note that a(z) is the solution of a ”reverse” structural equation involving an expectation
conditional on the endogenous variable w; rather than the instrument x;. An analogous "re-
verse” structural equation also appears in a linear instrumental variables (IV) setting. Let d=
R, XiWw )7 | Xiy; be the linear IV estimator having limit dg = (E[X;W]]) " E[X,y;].

A linear IV analog of the structural function v,(w) is w?dy and of parameter 3, is
bo = Elv(Wi)(w do)].

A corresponding estimator of by is b = Py (W)W d/n. Tt is straightforward to show that

the influence function of b is
v(w)(w!dy) — by + a(x)[y — wldo], a(z) = =T (E[fwia:T})_l Elw;v(w;)].

[13]



Here a(x) is the function obtained from ”"reverse” IV where x is the right hand side variable
and w the instrumental variable. The functional «(z) is a nonparametric analog of a(z) where
linear IV is replaced by the solution to a conditional expectation equation.

A solution a(z) to equation (4.15) will only exist when v(w) satisfies certain conditions.
When E[v(w;)?] < co a function a(z) can only exist when v(w;) has Fourier coefficients, with
respect to the singular value basis corresponding to the (assumed to be compact) operator
E[-|w;], that decline fast enough relative to the inverse of the singular values. This condition
requires some ”smoothness” of v(w;) and will rule out some functions, such as v(w) that that
have jumps (e.g. indicator functions).

The influence function of Theorem 3 is consistent with the semiparametric efficiency bound
given in Severini and Tripathi (2012). WHAT ABOUT AI AND CHEN 2007.

There is a different way of estimating (3, that is analogous to Santos (2014). By equation

(4.15), the conditional moment restriction (4.12), and iterated expectations,
Bo = ElE[a(zi)|wilyo(wi)] = Ela(zi)yo(wi)] = Ela(zi)yi. (4.17)

Based on the last equality an estimator for 3, could be constructed as B = Yoy a(z)yi/n
where & is an estimator of the solution of equation (4.15). The influence function for this
estimator is the same as in Theorem 3. This equality of influence functions occurs because
equation (4.17) is satisfied for any F where equation (4.15) holds and equation (4.15) will hold
for the F, we are considering using arguments like those of Lemma 2. Thus 3 will have the
same limit as B for a general distribution and thus the same influence function.

This influence function calculation can be extended beyond the estimator of (4.14) to other
semiparametric GMM estimators. This extension requires a corresponding extension of equation

(4.15). The following condition provides such an extension:

ASSUMPTION 2: There exists a(x;) with E[a(x;)?] < oo such that for all F;

OE[m(zi, By, V(Fr))] OBy (wi, Fr)|zi]
or or

= Ela(z;)

] (4.18)

For m(z,3,7v) = v(w)y(w) — B Assumption 2 is equivalent to equation (4.15). If equation
(4.15) is satisfied then
OE[m(zi, By, 7(F7))] Oy (wi, 7) 3Eh(wz’,Fr)|$i]]
or or or ’

where the last equality follows by iterated expectations and interchanging the order of differ-

= Fla(z;) | = Ela(z;)

entiation and integration. Also, if Assumption 2 is satisfied for all A, (w;) = Ovy(w;, Fy)/0T we
have
Elv(wi)Ar(wy)] = Ela(zi)Ar(w;)] = E[E[a(z;)|wi] Ar (w;)],

[14]



by iterated expectations. The only way this equation can hold over all A-(w;) is if equation
(4.15) is satisfied.

The existence of a(x;) satisfying Assumption 2 will follow from other conditions. If the
OE[m(zi, Bo,v(Fr))]/OT is a continuous linear functional of OE[y(w;, Fr)|xz;] /07 which is con-
tained in a closed linear set L and that functional can be extended to be continuous on all of
L then existence of a(x) satisfying Assumtpion 2 follows by the Riesz represenation theorem.
Similar uses of the Riesz representation theorem are given in Newey (1994), Ai and Chen (2007),
and Ackerberg, Chen, Hahn, and Liao (2014).

We can use Assumption 2 and Lemma 2 to calculate the influence function of a semipara-
metric GMM estimator with a NP2SLS first step. Recall from the discussion of equation (2.3)
that the influence function of semiparametric GMM is determined by the correction term ¢(z)
for the first step and that ¢(z)is the influence function of E[m(z;, 8,v(F))]. When Assumption
2 is satisfied it follows exactly as in equation (4.16) that

OEm(z, By, v(Fr))]
or

= E[a(:vi)acéy)E[Aj (wi)|as]]

= FElo(2)d(2)], 0(2) = a(z)[y — vo(w)],

giving the following result:

THEOREM 4: If Assumptions 1 and 2 are satisfied then for the NP2SLS first step

aE[m(Zivaé_()? V(FT))] — ¢(z) = a(x)[y - Vo(w)]

lim
Jj—ro0

An interesting example of this result is the average derivative estimator of Ai and Chen
(2007), where m(z, 8,7) = v(w)dvy(w)/dw— 4 for some known v(w). Let v(w) = — fo(w) ~L0[v(w) fo(w)]/Ow.
Assume that equation (4.15) is satisfied for this v(w), so that there exist a(x;) with

— fo(wi) 1 O[v(wi) fo(wi)] /0w = Ela(x;)|w]. (4.19)

Then integration by parts and iterated expectations gives

OE[m(zi, Bo,v(Fr))] _ OE[0(wi)0y(wi, Fr)/0w] _ OE[v(wi)y(wi, Fr)]
or or or

or
so Assumption 2 is satisfied. It then follows by m(z, 8,7) = v(w)9vy(w)/0w — B and Theorem

4 that the influence function for the weighted average derivative is

0z) = 5() 22 54 afa)ly — ().

[15]



Comparison with Ai and Chen 77.

ESTIMATOR,; NP2SLS estimator of 77.

We can also calculate the influence function for NP2SLS for a nonlinear, possibly misspeci-
fied residual p(z,7) where the NP2SLS estimatori is based on orthogonality of p(z,,) with a
set A of functions of instrumental variables x. We will assume that there is a fixed countable
basis (a1(z),az(z),...) that spans A in mean square for each F; for 7 small enough. NP2SLS

is here based on the orthogonality condition
Elaj(x;)p(zi,v9)] = 0 for all j.

For example, if A is all functions of x; with finite second moment this restriction is equivalent
to E[p(zi,v0)|zi] = 0. Here a;(x) could be power series in a bounded one-to-one function of x
or could be regression splines. More generally a;(x) could be functions of only a subvector of
or could be restricted to be additive in subvectors of .

The NP2SLS estimator is like that given in NP. It minimizes over v € I';, the sample second
moment of the predicted values from the ordinary least squares regression of the residual p(z;, )
on p&(x;) = (prr(2:), ..., prcxc ()T, where each function prr(z) is one of the basis functions
a;(z) for some j. We assume that as K — oo any element of .A may be approximated in mean
square by a linear combination of p®(z;). Let b(z;) denote any random variable with finite
variance and 7. (p(7), z;) and 7, (b, ;) denote the population orthogonal projection of p(z;, )
and b(z;) on A when the true distribution is F;. Also let E.[-] denote the expectation under
F-. The limit of the 2SLS objective function will be

Qr(v) = Er[mr(p(v), xz)z]

We will assume that v(w) is restricted to belong to a linear set I' and that I, C T" for all n. For
example, v(w) might be restricted to be additive in subvectors of w. It then follows as usual

for extemum estimators that the limit of the NP2SLS estimator will be

V7 = argmin Qr (7).

Here we will just assume that v, exists and is unique. We do this, rather than prove exis-
tence and uniqueness, because it is difficult to show uniqueness of a minimum when p(z, )
is nonlinear in v and when there are more instrumental variables than endogenous variables.
Given the previous results of this Section and Chen, Chernozhukov, Lee, and Newey (2014) we
conjecture that conditions for local existence and uniquenss could be formulated, but we leave

that formulation to future work.

[16]



To find the form of the adjustment term in this setting we need an extended version of

Assumption 2. The following condition provides that extension.

ASSUMPTION 3: There exists a(z;) € A with Ela(z;)?] < oo such that for all F;

OE[m(zi, By, v(Fr))]
or

omo(p(v,), i)
N (4.20)

= —Ela(z;)

To derive the adjustment term for NP2SLS it is helpful to consider first order conditions
for .. Let ¢ denote a scalar and A(w) some function of the endogenous variables w such that
A(w;) € T. Then we have v (w;) + (A(w;) € T for any ¢ by I' linear. We will impose the

following condition:

ASsuMPTION 4: For all T small enough 7 (p(7y, +CA), x;) is differentiable in at ( =0 and
there is d.(z;) such that

Orr(p(vr + CA), i)

= Tr TA7 i)
o mr(d: A, ;)

(=0

To illustrate consider the endogenous quantile model of Chernozhukov and Hansen (2004)
and Chernozhukov, Imbens, and Newey (2007) where p(z,7v) = 1(y < v(w)) — n for a scalar 7
with 0 < n < 1. Suppose that for 7 small enough the distribution of y; conditional on x; and
wj is continuous in a neighborhood of . (w;) with conditional pdf f;(y|w,x). Let derivatives
with respect to ¢ be evaluated at ( = 0. Then

OE:[p(zi, 7, + CA)|w;, ]
¢

= —fr(vr(wi)|wi, z;) A(w;) = —dr(wi, x) A(w;),  (4.21)
de(wisxi) = fr(v-(wi)lwi, x;).

Assuming that the order of differentiation and projection can be interchanged, it follows by

iterated projections that

Onclpre £C2) _ (9Blplante - COune]
¢ T ¢

5 xz) = TrT(dTA7 xi)’

so that Assumption 3 is satisfied. More generally Assumption 3 will hold if p(z,~v) = p(z,v(w))
with d(w,x) = OE[p(zi, v, (w) + {)|wi, ;] /IC.

By calculus of variations and Assumption 3 the first order conditions for «y, are that for any
A(w;) €T,

O (p(yr + CA), i)
o¢

0= Er[mr(p(V7), @) | = Er[mr(p(v7), mi)mr (dr A, )]

[17]



This is an identity in 7. Differentiating this identity in 7 at 7 = 0 and applying the chain rule

gives
0 = E[ﬂo(doA,xi)W]+E[wo(ﬂ(Vo),fci)wo(dOA,:ci)S(zi)] (4.22)
+Bro(dod, 2) IV iy (o), ) T 0 )
+E[®(P(70):%)W}

The following result helps us evaluate the third and fourth terms in this equation.

LEMMA 5: For any a(z;) € A and b(z;) with finite variance

OFE[a(z;)mr(b|x;)]

o = Ela(xi){b(2i) — mo(blz:) }S(2:)]-

Proof of Lemma 5: Note that for each j the definition of the projection implies that
Erlaj(zi)b(z:)] = Erla;(ai)mr(bla:)]

identically in 7. Differentiating both sides at 7 = 0 and applying the chain rule and 77 gives

OB a;(w;)m,(bx;)]
or .

Elaj(2i)b(2)5(2:)] = Elaj(wi)mo(blzi)S(2:)] +

Solving it follows that for each 7,

OFE[a(x;)m,(b|zi)]
or

— Blay(a:){b(zs) — mo(bl2:)}S(20)]

Consider A\ = (A1, ..., A)T such that (ai(z;),...,as(z;))A — a(x;) in mean square. The con-
clusion then follows by S(z) bounded. Q.E.D..

We can apply Lemma 5 to the third and fourth terms of equation (4.22) and solve for the

first term to obtain

OTPIe]2))  — plg ()5 )] — ~Elmo(ptre), ) TG

E[ﬂ'g(doA,xi) or TL

oalz) = molp(70), x)[do(w, 2)A(w) — mo(dA, )] + mo(dA, z)[p(2,79) — To(p(70): )]
+7mo(p(70), 2)mo(dA, x) — Elmo(p(v0), zi)mo(dA, 24)].

This result can be combined with Assumption 3 to obtain the adjustment term when the first

step has is the NP2SLS estimator. We state this result as a Proposition, similarly to Newey

[18]



(1994), because its derivation uses formal caclulations without specifying a sufficient set of

regularity conditions.

PROPOSITION 6: If the model is correctly specified, so mo(p(7g),xi) = 0, and there is a

sequence Aj(w) such that mo(doAj, x;) — ax;) in mean square then the adjustment term is

¢(2) = a(z)p(z,7o)-
If the model is misspecified with wo(p(7vg),x:i) # 0, Omo(d.A, x;)/0T = 0, and there exists A(w)
such that a(z;) = mo(dA, ;) then the adjustment term is ¢(z) = Ppa(z).

Note here that the result with misspecification assumes that dmo(d;A, z;)/07 = 0. We do
not know if an influence function exists when this condition does not hold. The problem is
that d, may be a nonparametric object evaluated at a point and hence the derivative of the
projection of d;A on A may not have a representation as an expected product with the score.
For example, for quantile IV d (w;,z;) = fr(7,(w;)|w;, z;) which is nonparametric conditional
density evaluated at a point. In such cases it may be the case that the influence function does
not exist.

The existence of A (w) with a(z;) = mo(dA, z;) in the misspecified case is restrictive. This
condition requires a(x) be smooth in a way similar to v(w) being smooth because of v(w;) =
Ela(z;)|w;]. Because these conditions are similar that the one for v(w) is necessary for root-
n consistent estimability under correct specification it may be that existence of A (w) with
a(z;) = mo(dA, x;) is necessary for root-n consistent estimability under misspecification. The
condition under correct specification, that there is a sequence A;(w) such that mo(doA;, ;) —
a(z;), is a much weaker condition. For example, for a model where dj is constant, A is the set
of all functions of x; with finite variance, and the dimension of w; is equal to the dimension of
z; this condition automatically holds.

To illustrate we can apply Proposition 6 to obtain the adjustment term when the first step
is quantile IV, so that p(z,v) = 1(y < v(w)) — 7, and the model is correctly specified. Similar

to the above discussion of equation (4.21) assume that

Omo(p(v,) i) _ _Wo(doﬁw(-)’xi)'

or or
Suppose also that there is some v(w;) such that
OE[m(zi, By, v(Fr))] Oy (wi)
= Efv(w; .
or [vws) or ]

Then by a(x;) € A and Ela(x;)mo(b,x;)] = Ela(z;)b(z)] for any b(z;) with finite variance
Assumption 3 becomes

E[v(wi)w] = E[a(%)do(wi,xi)(%é(:%)].
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This equation will hold if
v(w;) = Ela(zi)do(wi, z;)|w].

Applying Proposition 6 then gives

PROPOSITION 7: If p(z,7) = 1(y < v(w)) —n, mo(p(79),zi) = 0, and i) there there exists
a(z;) such that v(w;) = Eldo(w;, z;)o(z;)|w;] and ii) there exists a sequence Aj(w)mo(dolj, x;) —

a(x;) in mean square then the adjustment term is

¢(2) = a(@)p(z,70)-

For example consider the average derivative for quantile IV where 5, = E[v(w;)0vq(w;)/0w]

for known o(w). Here condition i) of Proposition 7 is existence of a(x) such that
v(w;) = = fo(wi) " Ofo(w;) fo(ws)]/Ow = Ela(w:)do(wi, x:) wi].

This is a weighted (by do(w;,x;)) modification of equation (4.19) that will only hold when the
function on the left satisfies certain restrictions, similar to the above discussion. Condition ii)
may place some additional restrictions on v(w;). These restrictions will be weaker the richer is
the instrumental variable set A. Consider the case where A is the set of all functions of x; so that
mo(dolj, z;) = Eldo(wi, ;) Aj(w;)|z;). If the operator E[do(w;,z;)Aj(w;)|z;] is compact then
condition ii) will hold by standard arguments as in 77. More generally if .4 were restricted that
would impose corresponding restrictions on a(z), and hence on v(w). When both conditions i)
and ii) are satisfied the conclusion of Proposition 7 implies that the influence function of the

weighted average derivative for quantile IV is

9(2) = 2) 22 5 1 a (@) 10y < 7o)~

5 Sufficient Conditions for Asymptotic Linearity

One of the important uses of the influence function is to help specify regularity conditions for
asymptotic linearity. The idea is that an formula for (z) determines the remainder terms that
can then be analyzed in order to formulate primitive regularity conditions. In this Section we
formulate such regularity conditions using a functional expansion approach that applies quite
broadly. It may be possible to formulate regularity conditions for particular estimators that
are weaker than we consider.

In this section we consider estimators that are functionals of a nonparametric estimator

taking the form
B =B(F),

[20]



where E is some nonparametric estimator of the distribution of z;. Both the integrated squared
density and the average consumer surplus estimators have this form, as discussed below. We
consider a more general class of estimators in Section 7.

Since 8, = B(Fp), adding and subtracting the term [ ¢(2)F(dz) gives

V(B = By) — szz = VnRi(F) +/nRy(F),

(5.23)

Ra(F) = [@F() ~ S v/, RaF) = B(F) - 8(F) — [0 F(:
=1

If \/nR;(F) and /nRy(F) both converge in probability to zero then 3 will be asymptotically
linear. To the best of our knowledge little is gained in terms of clarity or relaxing conditions
by considering Ri(F) + Ry(F) rather than R;(F) and Ry(F) separately, so we focus on the
individual remainders.

The form of the remainders R;(F) and Ry(F) are motivated by ¢ (z) being a derivative of
B(F) with respect to F'. The derivative interpretation of ¢)(z) suggests a linear approximation

of the form

B(F) ~ B(Fo) /1/1 )(F — Fo)(dz) = B(Fo) /1/1

where the equality follows by E[1(z;)] = 0. Plugging in F in this approximation gives i @D(Z)F (dz)
as a linear approximation to 3 — 8y. The term Ry(F) is then the remainder from linearizing
3 = 5(13’ ) around Fy. The term R;(F) is the difference between the linear approximation
f Y(2)F(dz) evaluated at the nonparametric estimator F and at the empirical distribution F
with fw 2)F(dz) =Y (=) /n.

It is easy to fit the kernel estimator of the integrated squared density into this framework. We
let £ be the CDF corresponding to a kernel density estimator f (). Then for B(F) = [ f(2)%dz,
the fact that f2 — f2 = (f — )2+ 2f(f — f) gives an expansion as in equation (5.23) with

R(F) = [w)f dZ—Z¢Zz/nR2() J1i@ ~ o).

Applying this framework to a series regression estimator requires formulating that as an esti-
mator of a distribution F. One way to do that is to specify a conditional expectation operator
conditional on x and a marginal distribution for x, since a conditional expectation operator
implies a conditional distribution. For a series estimator we can take F' to have a conditional
expectation operator such that

n

Bgla(g,2)ls] = > alas o)p" ()15 ().

=1
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Then it will be the case such that

/W q|mdm-/W = 3,

which only depends on the conditional expectation operator, leaving us free to specify any
marginal distribution for x that is convenient. Taking F to have a marginal distribution which

is the true distribution of the data we see that

F)~ 60 = [ Bl W) e - do(o))lalds = [ Bglo(@)lalfola)do = [ o)

In this case Ro(F) = 0 and

Ri(F) = /E 2)|z] fo( )dw—%ZdJ(zi).
i=1

Next we consider conditions for both of the remainder terms Rl( A) and RQ( ) to be small
enough so that 3 is asymptotically linear. The remainder term R1 = [(z — F)(dz) is
the difference between a linear functional of the nonparametric estimator F and the same linear
functional of the empirical distribution F. It will shrink with the sample size due to F and
F being nonparametric estimators of the distribution of z;, meaning that they both converge
to Fp as the sample size grows. This remainder will be the only one when §(F) is a linear
functional of F'.

This remainder often has an important expectation component that is related to the bias of
B . Often F' can be thought of as a result of some smoothing operation applied to the empirical
distribution. The F corresponding to a kernel density estimator is of course an example of
this. An expectation of R; (F ) can then be thought of as a smoothing bias for 3, or more
precisely a smoothing bias in the linear approximation term for B Consequently, requiring that
VR (F) 5 0 will include a requirement that /7 times this smoothing bias in 3 goes to zero.

Also \/n times the deviation of R (F) from an expectation will need to go zero in order for
VnRi(F) -2 0. Subtracting an expectation from y/nR; (F) will generally result in a stochastic
equicontinuity remainder, which is bounded in probability for fixed F' and converges to zero as
F approaches the empirical distribution. In the examples the resulting remainder goes to zero
under quite weak conditions.

To formulate a high level condition we will consider an expectation conditional on some
sigma algebra y,, that can depend on all of the observations. This set up gives flexibility in the

specification of the stochastic equicontinuity condition.

~

ASSUMPTION 1: B[Ry (F)|x,] = 0p(n"Y/?) and Ri(F) — E[R(F)|x,] = op(n"1/?).
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We illustrate this condition with the examples. For the integrated square density let x,, be a
constant so that the conditional expectation in Assumption 1 is the unconditional expectation.

Let 1/1 z, h = [4(z+ hu) K (u)du and note that by a change of variables u = (z — z;) /h we have
[ () f(2)dz =n"th" Y0, [(2)K((z — 2)/h)dz = Y " ¥(zi,h)/n. Then

ERy(F)] = E[(zih)] = / [ / Bz + h) fo(2)dA K (w)du,  (5.24)
Ra(B) = BIR(F)] = -3 (9l ) — Bl (ais )] — (1)}
=1

Here E[R;(F)] is the kernel bias for the convolution p(t) = [4(z + t)fo(2)dz of the influence
function and the true pdf. It will be o(n~'/2) under smoothness, kernel, and bandwidth con-
ditions that are further discussed below. The term Ry(F) — E[R;(F)] is evidently a stochastic
equicontinuity term that is o,(n"'/2) as long as lim;,__ E[{w(zi, ) —(z)}?] = 0.

For the series estimator for consumer surplus let o(z = [[ W (x)p" (x)dz]"~"1pK () and

note that 3 = > 6(xi)qi/n. Here we take x,, = {z1, ,xn} Then we have
ElR(F)lx,] = = Z 6(@i)do(xi) — Bo, (5.25)
Ri(F) = B[R(F)|x,] = - Z[g(fﬁi) — 6(xi)]lgi — do(ws)]-

Here E[R;(F)|x,] is a series bias term that will be 0,(n~'/2) under conditions discussed below.
The term R;(F) — E[Ry(F)|x,] is a stochastic equicontinuity term that will be o,(n~'/?) as
5 (x) gets close to §(z). In particular, since 5 () depends only on zy, ..., z,, the expected square
of this term conditional on y,, will be n=2 3% [§(x;) — 8(x:)]2V ar(g;|x;), which is o,(n~!) when
Var(q;|x;) is bounded and n~! Zi:l[ (z;) — 6(x4)]? = op(1).

Turning now to the other remainder Ro(F'), we note that this remainder results from lin-
earizing around Fy. The size of this remainder is related to the smoothness properties of 5(F').
We previously used Gateaux differentiability of 8(F") along certain directions to calculate the in-
fluence function. We need a stronger smoothness condition to make the remainder Ra(F ) small.
Frechet differentiability is one helpful condition. If the functional 5(F') is Frechet differentiable
at Fp then we will have

Rao(F) = of|F - o),

for some norm ||-|| . Unfortunately Frechet differentiability is generally not enough for Ry(F) =
0p(n~1/2). This problem occurs because B(F) and hence ||F — Fy|| may depend on features of

F which cannot be estimated at a rate of 1/y/n. For the integrated squared error |F — Fp|| =
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{J1f(z) - fo(z)]de}l/2 is the root integrated squared error. Consequently v/n HF - FOH is not
bounded in probability and so \/ﬁRg(F ) does not converge in probability to zero.

This problem can be addressed by specifying that ‘ P FOH converges at some rate and
that B(F') satisfies a stronger condition than Frechet differentiability. One condition that is
commonly used is that Ro(F) = O(||F — Fy|*). This condition will be satisfied if S(F) is
twice continuously differentiable at Fy or if the first Frechet derivative is Lipschitz. If it is also

—1/4

assumed that F' converges faster than n then Assumption Al will be satisfied. A more

general condition that allows for larger Ro(F') is given in the following hypothesis.
ASSUMPTION 2: For some 1 < ¢ < 2, Ro(F) = O(||F — Fo|°) and HF - FOH = 0,(n~1/%).

This condition separates nicely into two parts, one about the properties of the functional and
another about a convergence rate for F. For the case ¢ = 2 Assumption 2 has been previously
been used to prove asymptotic linearity, e.g. by Ait-Sahalia (1991), Andrews (1994), Newey
(1994), Newey and McFadden (1994), Chen and Shen (1997), Chen, Linton, and Keilegom
(2003), and Ichimura and Lee (2010) among others.

In the example of the integrated squared density Ro(F) = [[f(2)—fo(2)]*dz = O(||F — Foll?)
for |[F — Fo| = {[[f(2) — fo(2)]?dz}'/2. Thus Assumption 2 will be satisfied with ¢ = 2 when

f converges to fo faster than n~1/4

in the integrated squared error norm.
The following result formalizes the observation that Assumption 1 and 2 are sufficient for

asymptotic linearity of B .

THEOREM 2: If Assumptions 1 and 2 are satisfied then B is asymptotically linear with

influence function (z).

An alternative set of conditions for asymptotic normality of \/E(B — Bo) was given by Ait-
Sahalia (1991). Instead of using Assumption 1 Ait-Sahalia used the condition that v/n(F — Fp)
converged weakly as a stochastic process to the same limit as the empirical process. Asymp-
totic normality of \/n [ ¥(2)F(dz) then follows immediately by the functional delta method.
This approach is a more direct way to obtain asymptotic normality of the linear term in the
expansion. However weak convergence of \/E(F — Fp) requires stronger conditions on the non-
parametric bias than does the approach adopted here. Also, Ait-Sahalia’s (1991) approach does
not deliver asymptotic linearity, though it does give asymptotic normality.

These conditions for asymptotic linearity of semiparametric estimators are more complicated
than the functional delta method outlined in Reeds (1976), Gill (1989), and Van der Vaart
and Wellner (1996). The functional delta method gives asymptotic normality of a functional

of the empirical distribution or other root-n consistent distribution estimator under just two
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conditions, Hadamard differentiability of the functional and weak convergence of the empirical
process. That approach is based on a nice separation of conditions into smoothness conditions
on the functional and statistical conditions on the estimated distribution. It does not appear
to be possible to have such simple conditions for semiparametric estimators. One reason is

that they are only differentiable in norms where \/n HF — Fpl| is not bounded in probability. In

addition the smoothing inherent in F introduces a bias that depends on the functional and so
the weakest conditions are only attainable by accounting for interactions between the functional

and the form of F. In the next Section we discuss this bias issue.

6 Linear Functionals

In this Section we consider primitive conditions for Assumption 1 to be satisfied for kernel
density and series estimators. We focus on Assumption 1 because it is substantially more
complicated than Assumption 2. Assumption 2 will generally be satisfied when S(F) is suffi-
ciently smooth and F converges at a fast enough rate in a norm. Such conditions are quite well
understood. Assumption 1 is more complicated because it involves both bias and stochastic
equicontinuity terms. The behavior of these terms seems to be less well understood than the
behavior of the nonlinear terms.

Assumption 1 being satisfied is equivalent to the linear functional 8(F) = [4(z)F(dz) being
an asymptotically linear estimator. Thus conditions for linear functlonals to be asymptotlcally

linear are also conditions for Assumption 1. For that reason it suffices to confine attention to

linear functionals in this Section. Also, for any linear functional of the form (F) = [ {(z
we can renormalize so that S(F) — 8y = [¢(z)F(dz) for w( )= ((z) — E[{(= )] Then w1th0ut
loss of generality we can restrict attention to functlonals B(F) = [(z)F(dz) with E[)(z;)] = 0.

6.1 Kernel Density Estimators

Conditions for a linear functional of a kernel density estimator to be asymptotically linear
were stated though (apparently) not proven in Bickel and Ritov (2003). Here we give a brief
exposition of those conditions and a result. Let z be an r x 1 vector and F' have pdf f (z) =
n~thT" 3. K((z — 2i)/h). As previously noted, for ¢(z,h) = [4(z + hu)K (u)du we have
B =nt Yo (2, h). To make sure that the stochastic equicontinuity condition holds we

assuie:

ASSUMPTION 3: K (u) is bounded with bounded support, [ K(u)du =1, ¥(z) is continuous

almost everywhere, and for some £ > 0, Elsupjy<. ¥ (zi + t)?] < oco.
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From Bickel and Ritov (2003, pp. 1035-1037) we know that the kernel bias for linear

functionals is that of a convolution. From equation (5.24) we see that

BB~ o = [ plhu)K (w)du ptt) = [ 66+ 0fo(e)dz = [ 0210z - )z,

Since p(0) = 0 the bias in 3 is the kernel bias for the convolution p(t). A convolution is smoother
than the individual functions involved. Under quite general conditions the number of derivatives
of p(t) that exist will equal the sum of the number of derivatives sy of fy(z) that exist and
the number of derivatives sy, of ¥(z) that exist. The idea is that we can differentiate the first
expression for p(t) with respect to ¢ up to sy times, do a change of variables Z = z + ¢, and
then differentiate sy more times with respect to ¢ to see that p(t) is sy + sy times differentiable.
Consequently, the kernel smoothing bias for B behaves like the kernel bias for a function that
is sy + sy times differentiable. If a kernel of order s; 4 s, is used the bias of B will be of
order h*T5f that is smaller than the bias order h*f for the density. Intuitively, the integration
inherent in a linear function is a smoothing operation and so leads to bias that is smaller order
than in estimation of the density.

Some papers have used asymptotics for kernel based semiparametric estimators based on
the supposition that the bias of the semiparametric estimator is the same order as the bias of
the nonparametric estimator. Instead the order of the bias of ﬁ is the product of the order
of kernel bias for fo(z) and v(z) when the kernel is high enough order. This observations is
made in Bickel and Ritov (2003). Newey, Hsieh, and Robins (2004) also showed this result for
a twicing kernel, but a twicing kernel is not needed, just any kernel of appropriate order.

As discussed in Bickel and Ritov (2003) a bandwidth that is optimal for estimation of fj
may also give asymptotic linearity. To see this note that the optimal bandwidth for estimation
of fo is n=V/(+251), Plugging in this bandwidth to a bias order of h*¢T5f gives a bias in 3
that goes to zero like n~(5wF7)/("+257) This bias will be smaller than n~'/2 for s, > r/2.
Thus, root-n consistency of B is possible with optimal bandwidth for f when the number of
derivatives of ¥(z) is more than half the dimension of z. Such a bandwidth will require use of
a sy + sy order kernel, which is higher order than is needed for optimal estimation of fj. Bickel
and Ritov (2003) refer to nonparametric estimators that both converge at optimal rates and
for which linear functionals are root-n consistent as plug in estimators, and stated sy > /2 as
a condition for existence of a kernel based plug in estimator.

We now give a precise smoothness condition appropriate for kernel estimators. Let A =
(A1, ..., \)T denote a vector of nonnegative integers and |\| = > i—1 Ay Let P f(z) = N f(z))0z

.- 0z} denote the A™ partial derivative of f(z) with respect to the components of z.

ASSUMPTION 4: fo(z) is continuously differentiable of order sy, 1(z) is continuously dif-
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ferentiable of order sy, K(u) is a kernel of order sg+ sy, /nh* ™ — 0, and there is € > 0
such that for all \, X', X" with |A| < sy, || = sy, and ‘)\" < sy

/ sup
[t|<e

Here is a result on asymptotic linearity of kernel estimators of linear functionals.

81/12+t’f0 dz<oo/’8)‘ sup

It <e

N f(z+ t)‘ dz < 00

THEOREM 3: If Assumptions 3 and 4 are satisfied then [(z) F(dz) = Sor Y(zi)/n+
op(n*1/2).

There are many previous results on asymptotic linearity of linear functionals of kernel density
estimators. Newey and McFadden (1994) survey some of these. Theorem 3 differs from many of
these previous results in Assumption 4 and the way the convolution form of the bias is handled.

We follow Bickel and Ritov (2003) in this.

6.2 Series Regression Estimators

Conditions for a linear functional of series regression estimator to be asymptotically linear were
given in Newey (1994). It was shown there that the bias of a linear functional of a series
estimator is of smaller order than the bias of the series estimator. Here we provide an update
to those previous conditions using Belloni, Chernozhukov, Chetverikov, and Kato (2015) on
asymptotic properties of series estimators. We give conditions for asymptotic linearity of a

linear functional of a series regression estimator of the form

B= / W (x)d(x)da

We give primitive conditions for the stochastic equicontinuity and bias terms from equation
(5.25) to be small.

Let 6(x = [[ W(2)p® (z)dz]"2p" (z) = E[6(x)p" (= T8 15 () and 6(z) = folz) ' W (z)
as descrlbed carlier. The stochastic equicontinuity term will be small if >~ 0(x)—6(x:)]? /n 2
0. Let ¥ = E[pX (x;)p™ (2;)T] and v = X~LE[p® (x;)do(w;)] be the coefficients of the population

regression of do(z;) on p®(z;). Then the bias term from equation (5.25) satisfies

1 n_ . n
- > " o(a)do(wy) =TTS™Y " pR (@) [do(xi) — p™ (2i)™]/n + B[S () {p" (x:)"y — do(x:)}],
i=1 =1
(6.26)
The first term following the equality is a stochastic bias term that will be op(n_l/ 2) under rela-
tively mild conditions from Belloni et. al. (2015). For the coefficients v; = S~ E[p™ (2;)d(x;)]

of the population projection of 6(x;) on p’ (x;) the second term satisfies
E[3(x){p" (z:)"y — do(:)}] = —E[{8(x:) — 7§ p™ (@) Hdo(xs) — ™ (2:)"}]
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where the equality holds by do(x;) — p™ (x;)Ty being orthogonal to p’ (x;) in the population.
As pointed out in Newey (1994), the size of this bias term is determined by the product of series
approximation errors to §(z;) and to do(z;). Thus, the bias of a series semiparametric estimator
will generally be smaller than the nonparametric bias for a series estimate of dy(z). For example,
for power series if dy(x) and §(x) are continuously differentiable of order s; and ss respectively,

x is r-dimensional, and the support of x is compact then by standard approximation theory ,
|E[{6(2) — 7§ p" (2) Hdo(x) — p" (2)T}]] < CKGatsallr

As discussed in Newey (1994) it may be possible to use a K that is optimal for estimation
of dp and also results in asymptotic linearity. If ss > r/2 and K is chosen to be optimal for
estimation of dy then /nK —(satss)/m 5 0. Thus, root-n consistency of B is possible with
optimal number of terms for dy when the number of derivatives of §(z) is more than half the
dimension of z.

Turning now to the regularity conditions for asymptotic linearity, we follow Belloni et. al.
(2015) and impose the following assumption that takes care of the stochastic equicontinuity

condition and the random bias term.:

ASSUMPTION 5: var(g;|x;) is bounded, E[6(z;)?] < oo, the eigenvalues of ¥ = E[p¥ (z;)p™ (z;)T]
are bounded and bounded away from zero uniformly in K, there is a set x with Pr(x; € x) =1

and cx and lx such that\/E[{do(z;) — pX (z;)T7}?] < ek, SUp,ey |do(2) — pf(2)Ty| < lgek,

, we have K/n+ /€% (InK) /n(1 + VEKlgcr) + {xcx — 0.

The next condition takes care of the nonrandom bias term.

and for £ = SUPycy HPK@”

ASSUMPTION 6: \/E[{6(x;) — pX (2:)T5}2] < %, ¢ — 0, and /nckcx — 0.

Belloni et. al. (2015) give an extensive discussion of the size of ¢k, ¢k, and &y for various
kinds of series approximations and distributions for z;. For power series Assumptions 5 and 6
are satisfied with cg = CK =54/ c‘;( =CK /" g =K, £ = K, and

VE?2 (I K) /n(1 4 K32K=sa/my 4 g1=6alm) 0 \/nK~Gatss)im ),

For tensor product splines of order o, Assumptions 5 and 6 are satisfied with cx = C I~ ™in{sa.0}/7
cg( = CK—min{ss:0}/r g = O, £ = VK, and

K (ln K) /n(l + \/?Kﬁ min{sd,o}/r) —0, \/ﬁKf(min{sd,o}+min{55,o})/r — 0.
THEOREM 4: If Assumptions 5 and 6 are satisfied then for 1 (z) = é(x)[q — do(x)] we have
JW(@)d(z) = 3, $(z) /n + 0p(n=2).
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Turning now to the consumer surplus bound example, note that in this case W(z) is not
even continuous so that 6(x) is not continuous. This generally means that one cannot assume
a rate at which cg( goes to zero. As long as p®(z) can provide arbitrarily good mean-square
approximation to any square integrable function, then c% — 0 as K grows. Then Assumption
6 will require that /ncx is bounded. Therefore for power series it suffices for asymptotic

linearity of the series estimator of the bound that

VE?2 (InK) /n(1 4 K32 K=3a/2) 4 g1=(a/2) 0 /nK /% < C.

For this condition to hold it suffices that dgo(z) is three times differentiable, K2 In(K)/n — 0,

and K3/n is bounded away from zero. For regression splines it suffices that

\/W(l + \/EK— min{sd,O}/Q) — 0, \/’I;K_ min{sg,0}/2 <C.

For this condition to hold it suffices that the splines are of order at least 2, dp(x) is twice
differentiable, K In(K)/n — 0 and K?/n is bounded away from zero. Here we find weaker
sufficient conditions for a spline based estimator to be asymptotically linear than for a power

series estimator.

7 Semiparametric GMM Estimators

A more general class of semiparametric estimators that has many applications is the class of
generalized method of moment (GMM) estimators that depend on nonparametric estimators.
Let m(z, B, F') denote a vector of functions of the data observation z, parameters of interest 3,
and a distribution . A GMM estimator can be based on a moment condition where f3 is the

unique parameter vector satisfying
E[m(z;, B, Fp)] = 0.

That is we assume that this moment condition identifies (.

Semiparametric single index estimation provides examples. For the conditional mean re-
striction, the model assumes the conditional mean function to only depend on the index, so
that E(y|z) = ¢(x70). With normalization imposed, first regressor coefficient is 1 so that
0o = (1,85)7. Let 6 = (1,87)7T. Ichimura (1993) showed that under some regularity condi-
tions,

min B{[y — E(yl="0)]*}
identifies 5. Thus in this case, z = (x,y) and

N[y — Er(ylz"0)]*}
op '

m(ZaB7F) =
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For the conditional median restriction, the model assumes the conditional median function
M (y|z) to only depend on the index, so that M (y|z) = ¢(x76). Ichimura and Lee (2010)

showed that under some regularity conditions,
min E{]y — M(yla"6)[}

identifies By. Thus in this case,

_ o7
m(z’ﬁ’F)za{!y A@Fﬂ(y! 2l

Let 2 = (x1,27)T. Note that at 3 = 3, the derivative of E(y|2T ) with respect to 3 equals

¢' (a7 00)[& — E(Z[z"0o)].
Thus the target parameter [, satisfies the first order condition
0= E{¢/(a"00)[z — E(z|2" b9)][y — Eylz"bo)]}-
Analogously, at 3 = 3, the derivative of M (Y|X7T#) with respect to 3 equals
¢ (" 00)[& — E(@lz" B)]/ fy1o (M (y|2"0)|).
Thus the target parameter 3, satisfies the first order condition
0= E{¢'(z"6o)[& — E(z|z"60)][2 - Ly < M(yla"60)} — 1]/ fy1 (M (yla" 60)|z)}.

Estimators of 3, can often be viewed as choosing B to minimize a quadratic form in sample
moments evaluated at some estimator F of Fy. For m(B8) = Y20 m(z;, 3, F)/n and W a

positive semi-definite weighting matrix the GMM estimator is given by

~

_ BN T137 4
B = argmin ()" Win(5).

In this Section we discuss conditions for asymptotic linearity of this estimator.

For this type of nonlinear estimator showing consistency generally precedes showing asymp-
totic linearity. Conditions for consistency are well understood. For differentiable 7 (/) asymp-
totic linearity of 3 will follow from an expansion of 7i(3) around 3, in the first order conditions.
This gives

V(B = Bo) = — (MW M)~ MW /i 5),
with probability approaching one, where M = dm(3)/08, M = dm(3)/dp3, and B is a mean
value that actually differs from row to row of M. Assuming that W 25 W for positive semi-
definite W, and that M 25 M = E[0m(z;, Bg, Fo)/dB] and M 25 M, it will follow that
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(MTWM)'MTW 25 (MTWM)~*MTW. Then asymptotic linearity of 3 will follow from
asymptotic linearity of m ().

With an additional stochastic equicontinuity condition like that of Andrews (1994), asymp-
totic linearity of m () will follow from asymptotic linearity of functionals of F.For F € F let
u(F) = E[m(zi, By, F)] and

Rs(F) = = 3" {m(zi, B, F) — m(zi, Bo, Fo) — ()
=1

Note that /nR3(F) is the difference of two objects that are bounded in probability (by
E[m(z;, By, Fo)] = 0) and differ only when F is different than Fy. Assuming that m(z;, By, F)
is continuous in F' in an appropriate sense we would expect that \/nRs3 (F) should be close to
zero when F' is close to Fy. As long as F is close to Fy in large samples in that sense, i.e. is

consistent in the right way, then we expect that the following condition holds.
ASSUMPTION 7: /nR3(F) - 0.

This condition will generally be satisfied when the nonparametrically estimated functions are
sufficiently smooth with enough derivatives that are uniformly bounded, see Andrews (1994) and
Van der Vaart and Wellner (1996). Under Assumption 7 asymptotic linearity of ,u(ﬁ’ ) will suffice

for asymptotic linearity of /nm(5,). To see this suppose that p(F') is asymptotically linear
with influence function ¢(z). Then under Assumption 7 and by p(Fo) = E[m(zi, By, Fo)] = 0,

Van(Bo) = jﬁ D= e By )+ VAA(E) + 0,(1) = \}ﬁ;[m(%ﬁoa%) + ()] + op(1).

Thus Assumption 7 and asymptotic linearity of p(F') suffice for asymptotic linearity of m(8,)
with influence function m(z, By, Fo) + ¢(2). In turn these conditions and others will imply that

B is asymptotically linear with influence function
¥(z) = —(MTWM) " MW m(z, By, Fo) + ¢(2)]-

The influence function ¢(z) of u(F) = E[m(zi, By, F)] can be viewed as a correction term
for estimation of Fy. It can be calculated from equation (3.5) applied to the functional p(F').
Assumptions 1 and 2 can be applied with 5(F') = u(F') for regularity conditions for asymptotic

linearity of u(F). Here is a result doing so

THEOREM 5: If 3 2> Bos w2 w, m(B) is continuously differentiable in a neighborhood
of By with probability approaching 1, for any B LN By we have Om(B)/0B Ly M, MTWM
is nonsingular, Assumptions 1 and 2 are satisfied for B(F) = E[m(z, By, F)] and (z) =
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©(z), and Assumption 7 is satisfied then B is asymptotically linear with influence function
—(MTWM)' M W [m(z, By, Fo) + ¢(2)].

For brevity we do not give a full set of primitive regularity conditions for the general GMM
setting. They can be formulated using the results above for linear functionals as well as Frechet

differentiability, convergence rates, and primitive conditions for Assumption 7.

8 Conclusion

In this paper we have given a method for calculating the influence function of a semiparametric
estimator. We have also considered ways to use that calculation to formulate regularity condi-
tions for asymptotic linearity. Consideration of other uses of the influence function are outside

the scope of this paper.

9 Appendix A: Proofs

We first give the formulas for the marginal pdf f;(a) of a measureable function a(z;) conditional
expectation E;[b(z;)|a(z;)] when the expectation is E[b(z;)] = E[b(z;){1 4+ 75(zi)}].

LEMMA Al: For f-(2) = fo(2)[1 — 7+ 70(2)] and S(z) = 0(z) — 1 the marginal pdf of any
measureable function a(z;) is fr(a) = fo(a){l + T7E[S(zi)|a(z) = a]} and for any b(z;) with

E[|b(2i)]] < oo,
Eb(zi)|a(2:)] + TE[b(2:)S(2i)]a(2i)]
1+ 7E[S(z)]a(z)] '

Proof: Let 1; = 1(a(z;) € A) for any measureable set A. By iterated expectations,r

Ex[b(zi)|a(zi)] =

/ @ € A)f(a)du = B[]+ 7E[LEIS(z)la] = E[L] + TE[L:S()] = B/[1],
(

E.[1; o ED(Ea(z)] + TEb(z)S (z1) a(z1)]

L1 rB[5(z0)[a(z)] |
= EL{ED)az)] + rEb()S()]a(z >m E{Lib(z)] + rE[Lib(z0)S (2]
)

= E[b(z){1 +7S(z)}] = E[Lib(2:)].Q.F

Proof of Theorem 1: Note that in a neighborhood of 7 = 0, [(1 — 7) fo(2) + T¢"()] 12

is continuously differentiable and we have

87'(2) = 887_ (1 - T)fo(i) + ng(f) 2 =

1 G- hB) < o8O+ fo2)
2l7gh(2) + (1 =) fo(? o3

By fo(%) bounded away from zero on a neighborhood of z and the support of ¢%(Z) shrinking
to zero as h — 0 it follows that there is a bounded set B with g”(2)/fo(2)Y/? < C1(2 € B) for
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h small enough. Therefore, it follows that

/WduSC/l(ieB)dZ+l<oo.
Then by the dominated convergence theorem [(1 — 7) fo(Z) + 792 ()] V2 i mean-square differ-
entiable and I(7) = [ s,(2)?dZ is continuous in 7 on a neighborhood of zero for all h small
enough. Also, by gh(Z) — 0 for all # # z and fy(Z) > 0 on a neighborhood of it follows
that g7(2) # fo(Z) for all 7 and h small enough and hence I(r) > 0. Then by Theorem 7.2
and Example 6.5 of Van der Vaart (1998) it follows that for any 7, = O(1/4/n) a vector of n
observations (21, ..., z,) that is i.i.d. with pdf f,, (2) = (1 —7,) fo(Z) + Tng? (%) is contiguous to

a vector of n observations with pdf fy(2). Therefore,

\f(/B BO fzwzz +Op )

holds when (z1, ..., z,) are i.i.d. with pdf f; (2).

Next by (Z) continuous at z, ¥ (2) is bounded on a neighborhood of z. Therefore for small
enough h, [ [[$(2)[* g2(2)d% < oo, and hence [ [[¢(2)|* f-(2)dz = (1 —7) [ 02| f-(2)dZ +
T [lw(2)]? h(~)d,§ is continuous in 7 in a neighborhood of 7 = 0. Also, for u? = [(2)gl(Z)dz
note that f’l/) (2)dz = Tl

Suppose (zl, s zn) are i.i.d. with pdf f,, (). Let 3(1) = B((1—7)Fy+7G") and B3,, = B(7,).
Adding and subtracting terms,

Vi (B=8.) = VaB - Bo) — VB, — By) = wa 20) + 0p(1) = V(B — By)
= ;ﬁ > (z) + 0p(1) + Vurupl = (B, — Bo), (i) = 1(2:) — Tl
=1

Note that [ 1/Jn Z) fr,(2)dz = 0. Also, for large enough n,

Pa(2)] 2 00)|

lim 1((
M—0c0

b Fr@iz < Jim 0 / 1)) > M/ ([EIPHC) fo(2)dz — 0,

so the Lindbergh-Feller condition for a central limit theorem is satisfied. Furthermore, it follows
by similar calculations that [ wn wn( )T f.. (2)dZ — V. Therefore, by the Lindbergh-Feller
central limit theorem, )" , ¥, () LN N(0,V). Therefore we have /n(8 — 8,,) 4, N(0,V) if
and only if

VTt —v/n(B, — By) — 0. (9.27)

Suppose that 8(7) is differentiable at 7 = 0 with derivative u. Then
V(B — Bo) — Varuul = v/no(r,) = vnrro(1) — 0
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by /n7, bounded. Next, we follow the proof of Theorem 2.1 of Van der Vaart (1991), and
suppose that eq. (9.27) holds for all 7,, = O(1/+/n). Consider any sequence r,, — 0. Let ny,

be the subsequence such that

(14 nm) V2 <1y < t/2
Let 7, = 7y, for n = n,, and 7,, = n~Y2 for n ¢ {ny,ns, ...}. By construction, 7, = O(1/,/n),
so that eq (9.27) holds. Therefore it also holds along the subsequence n,,, so that
B(rm) — Bo

T'm

Vi {al - b= Vg = () = ol — 0

By construction /7,7y, is bounded away from zero, so that p? — [8(rm) — Bo) /rm — O.
Since 7, is any sequence converging to zero it follows that 5(7) is differentiable at 7 = 0 with
derivative ph.

We have now shown that eq. (9.27) holds for all sequences 7, = O(1/4/n) if and only if
B(7) is differentiable at 7 = 0 with derivative p”. Furthermore, as shown above eq. (9.27)
holds if and only if B is regular. Thus we have shown that B is regular if and only if 3(7) is
differentiable at 7 = 0 with derivative u”.

Finally note that as h — 0 it follows from continuity of ¥ (2) at z, K(u) bounded with

bounded support, and the dominated convergence theorem that

ph = /¢(2)gf(2)d§ = h_r/q/)(,%)K((,% —z)/h)dz = /w(z + hu)K (u)du.Q.E.D.

Proof of Theorem 2: We will first prove that E;[A(w;)|z;] is complete as a function of
A(w;) for all 7 small enough. Consider 7 € [0,7) for 7 = min{1/|1 — E,[A*(w)]|,1}. Consider
any A(w;) # 0. Note that for large enough j by f(y,w|z) bounded away from zero,

E[0(z0) Awi)|i] = Ex[A(wi)|0z(z:), Ex[A(w)] = /A(w,;)nw(w)du@.
From equation (3.8), E [A(w;)|x;] = 0 only if
0=01—7)E[A(w;)|z;] + TE. [A(w;)] 02 ().

If E.[A(w;)] = 0 note that (1 — 7)E[A(w;)|x;] # 0 by hypothesis i), so that E-[A(w;)|x;] # 0.
If Ex[A(w;)] # 0 then E[A(w;)|z;] = Cdp(x;) for C = T7E.[A(w;)]/(1 — 7) # 0. Note that
E[CA*(w;)|zi] = Cdz(x;) by hypothesis ii) so by hypothesis i), A(w;) = CA*(w;). Substituting

this back in the above equation it follows that

0={(1—-7)C+7CE; [A"(w;)]}dz(z;).

[34]



By C # 0 and d,(z;) positive with positive probability this equation implies 0 = (1 — 7) +
TE, [A*(w;)], which does not hold by 7 € [0,7). Therefore E; [A(w;)|x;] # 0 for all 7 small
enough.

Next consider (w;, C') = vo(w;) + CA*(w;) for a constant C. Note that E;[y(w;, C)|x;] =
E.[y;|z;] if and only if

Ely(wi, C)|z] + TE[6(2:)y(wi, C)|zi] = Elyi|xi] + TE[0(2:)yi|:].

Noting that E[vyq(w;)|zi] = Elyi|zi] and E[A*(w;)|z;] = 0(x;), this equation holds if any only
if
Cdx(wi) + 7(Ex[yo(wi)] + CELAY(W)])ox(2:) = 7Ex[§]02(2:)-

Since d,(x;) is positive with positive probablity this equation holds if and only if
C + 7(Exlyo(w)] + CEL[A™(w)]) = TEx[g].
Solve for C' = ¢(1) to obtain

C(T) — TEH[@ B ’70(‘%)]
1+ TE[A*(w;)]

for all 7 small enough. Then by construction and by differentiating ¢(7) at 7 = 0 the conclusion

holds. Q.E.D.

Proof of Theorem 2: This follows as outlined in the text from Assumptions 1 and 2 and
eq. (5.23) and the fact that if several random variables converge in probability to zero then so

does their sum. Q.E.D.

Proof of Theorem 3: By the first dominance condition of Assumption 4, [¢(z+1¢)f(z)dz
is continuously differentiable with respect ¢ up to order s¢ in a neighborhood of zero and for all
A with |A] < s¢,

8)‘/1/1(2 +t) fo(z)dz = /8)‘¢(z +t) fo(z)dz.
For any A with |A\| = s¢ it follows by a change of variables Z = z 4t and the second dominance

condition that
[P+ 0z = [0 00 - s
is continuously differentiable in ¢up to order sy in a neighborhood of zero and that for any A’
with |/\/‘ < sy
o / PV(E) folZ — £)dz = / ()0 folz — t)d5.

[35]



Therefore p(t) = [ (2 +1t) fo(z)dz is continuously differentiable of order s¢ + sy in a neighbor-
hood of zero. Smce p(0) = 0 and K(u) has bounded support and is order s + s; the usual

expansion for kernel bias gives

BB~ 80 = [ plhu) K (u)du = 05+,

Therefore, E[\/nRi(F)] — 0.

Next, by continuity almost everywhere of ¢(z) in Assumption 3 it follows that ¢ (z;+hu) —
¥(zi) as h — 0 with probability one (w.p.1). Also, by Assumption 3 supy|<, [¢(z; +1)| is finite
w.p.1, so that by K (u) having bounded support and the dominated convergence theorem, w.p.1,

V(zi, h /@ZJ zi + hu) K (u)du — 9¥(z;).
Furthermore, for h small enough
Y(zi,h)* < O sup (=i +1)?,
[t|<e

so it follows by the dominated convergence theorem that E[{1(z;, h) —(2;)}?] — 0 as h — 0.
Therefore,

Var(vVnRy(F)) = Var(n 1/22{1/1 (i, h) = ¥(2)}) < Bl{v (2, h) — 9 (2)}°] — 0.

Since the expectation and variance of \/nR;(F) converges to zero it follows that Assumption
1 is satisfied. Assumption 2 is satisfied because S(F’) is a linear functional, so the conclusion

follows by Theorem 2. Q.E.D.

Proof of Theorem 4: Since everything in the remainders is invariant to nonsingu-
lar linear transformations of p’(x) it can be assumed without loss of generality that ¥ =
Ep™ (x:)p™ (x:)T] = I. Let §(x;) = TTpX (2;) = +4p™ () so that by Assumption 6, F[{d(x;) —
§(w;)}?] — 0. Note that by Var(g]|x;) bounded and the Markov inequality,

2{3(%) — 8(x) 2 Var(glz:) /n < CZ{(S (z:) — 8(z) 2 /n
i=1

C Z{a ;) — ¥ /n+C Z{FT — Dpf(x)¥?/n

op(1) +rTEt-nuEt - I)F = 0,(1),

IN

IN

where the last equality follows as in Step 1 of the proof of Lemma 4.1 of Belloni et. al. (2015).

We also have
I'T = E[5(x)p™ (2:) 1S E6(2)p™ (2:)] = E[{75 p" (x:)}?].

[36]



By cxk — 0 it follows that E[{yIp®(2;)}?] — E[6(x;)?] > 0, so that I' # 0. Let I' =
I'/(TTT)'/2, so that ITT = 1. Note that

n

TS0y " p™ (@) ldo(w:) — p™ ()" /n =TT (7 —7), 7 = 7" ) p"(ws)do(w:) /n
=1 =1

Let R, (') and Ray,(I') be defined by the equations

n

VLT (5 = 5) =TT pX (@:)do(x:) — p™ (2:)"9]/v/n + Rin(T) = Rin(T) + Ron(T).
i=1

By eqs. (4.12) and (4.14) of Lemma 4.1 of Belloni et. al. (2015) and by Assumption 5 we have

Rin(T) = 0,(1/€% (0 K) /n(1 + VElkck)) -5 0, Ron(T) = Op(Lxcx) 2 0.
Noting that T7T < E[§(x;)%] = O(1), we have
TT50> " p™ (i) ldo(x:) — p" ()41 /n = TTT)’TT (v — 5) = O(1)0,(1) = 0.
=1

Also, note that E[p” (z;){do(z;) — p* (2;)T+}] = 0, so that by the Cauchy-Schwarz inequality,
V| B[S (xi){do(xi) — " (@) "y }| = V| E[{8(w:) — ™ (2:) v5Hdo(@i) = p™ ()" 1}]] < Vackex — 0.
Then the conclusion follows by the triangle inequality and eq. (6.26). Q.E.D.

Proof of Theorem 5: As discussed in the text it suffices to prove that m(8,) is asymp-
totically linear with influence function m(z, 8y, Fy) + «(z). By Assumption 7 it follows that

n

(Bo) = + S mzi, B Fo) + p(E) + 0p(n ).
=1

Also, by the conclusion of Theorem 1 and p(Fp) = 0 we have
1 n
uE) = =3 () + op(n?).
i=1

By the triangle inequality it follows that

n

S Imlzi, Bo, Fo) + ¢(20)] + 0p(n~?).Q.E.D.
=1

1

n

(o)
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