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Abstract

Often semiparametric estimators are asymptotically equivalent to a sample average. The
object being averaged is referred to as the influence function. The influence function is use-
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function of a semiparametric estimator can be calculated as the limit of the Gateaux deriva-
tive of a parameter with respect to a smooth deviation as the deviation approaches a point
mass. We also consider high level and primitive regularity conditions for validity of the
influence function calculation. The conditions involve Frechet differentiability, nonparamet-
ric convergence rates, stochastic equicontinuity, and small bias conditions. We apply these
results to examples.
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1 Introduction

There are many economic parameters that depend on nonparametric first steps. Examples

include games, dynamic discrete choice, average consumer surplus, and treatment effects. Often

those estimators are asymptotically equivalent to a sample average. The thing being averaged is

referred to as the influence function. The influence function is useful for a number of purposes.

It can be used to construct estimators with improved properties, Chernozhukov, Escanciano,

Ichimura, and Newey (2016). Its variance is the asymptotic variance of the estimator and so it

can be used for asymptotic variance estimation and asymptotic efficiency comparisons. Also,

the form of remainder terms follow from the form of the influence function so knowing the

influence function is a good starting point in formulating regularity conditions. Furthermore,

the influence function approximately gives the influence of a single observation on the estimator,

and so can be used for robustness comparisons. Indeed this interpretation is where the influence

function gets its name in the robust estimation literature, see Hampel (1974).

BETTER We show how the influence function can be calculated as the limit of a derivative

of the object the estimator converges to. The derivative is taken with respect to a weight on a

general alternative to the true CDF. The limit is taken as the alternative approaches the CDF

of constant. We impose restrictions on the alternative so that the object being differentiated is

well defined. This calculation is similar to that of FIX Von Mises (1947) and Hampel (1974),

of a derivative with respect to a CDF of a constant, but we specify the alternative so that

it is smooth and also allow it to satisfy other restrictions. As a result the calculation given

here applies generally to semiparametric estimator including those where the first step is a

conditional expectation or density.

We also consider regularity conditions for validity of the influence function calculation. The

conditions involve Frechet differentiability as well as convergence rates for nonparametric esti-

mators. They also involve stochastic equicontinuity and small bias conditions. When estimators

depend on nonparametric objects like conditional expectations and pdf’s, the Frechet differen-

tiability condition is generally satisfied for intuitive norms, e.g. as is well known from Goldstein

and Messer (1992). The situation is different for functionals of the empirical distribution where

Frechet differentiability is only known to hold under special norms, Dudley (1994). The asymp-

totic theory here also differs from functionals of the empirical distribution in other ways as will

be discussed below.

Newey (1994) previously showed that the influence function of a semiparametric estimator

can be obtained by solving a functional equation involving pathwise derivatives and scores

of parametric models. That approach has proven useful in many settings but does require the
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solution to a functional equation. The approach of this paper is an explicit calculation that does

not require finding the solution to a functional equation. Here we simply calculate a derivative

and find its limit. This calculation is accomplished by specifying a parametric model, i.e. a

path, in the right way to obtain the influence function.

Regularity conditions for functionals of nonparametric estimators involving Frechet differen-

tiability have previously been formulated by Ait-Sahalia (1991), Goldstein and Messer (1992),

Newey and McFadden (1994), Newey (1994), Chen and Shen (??), Chen, Linton, and Keilegom

(2003), and Ichimura and Lee (2010), among others. Newey (1994) gave stochastic equiconti-

nuity and small bias conditions for functionals of series estimators. In this paper we update

those using Belloni, Chernozhukov, Chetverikov, and Kato (2015). Bickel and Ritov (2003)

formulated similar conditions for kernel estimators. Andrews (2004) gave stochastic equiconti-

nuity conditions for the more general setting of GMM estimators that depend on nonparametric

estimators.

In Section 2 we describe the estimators we consider. Section 3 presents the method for

calculating the influence function. In Section 4 we outline some conditions for validity of the

influence function calculation. Section 5 gives primitive conditions for linear functionals of

kernel density and series regression estimators. Section 6 outlines additional conditions for

semiparametric GMM estimators. Section 7 concludes.

2 Semiparametric Estimators

This paper is about estimators where parameters of interest depend on a first step nonpara-

metric estimator. We refer to these estimators as semiparametric. We could also refer to them

estimators where nonparametric first step estimators are “plugged in.” This terminology seems

awkward though, so we simply refer to them as semiparametric estimators. We denote such

an estimator by β̂, which is a function of the data z1, ..., zn where n is the number of observa-

tions. Throughout the paper we will assume that the data observations zi are i.i.d. We denote

the object that β̂ estimates as β0, the subscript referring to the parameter value under the

distribution that generated the data.

We adopt a general framework where the estimator of the parameter of interest is a gener-

alized method of moments estimator depending on a nonparametric first step. To describe the

type of estimator we consider let m(z, β, γ) denote a vector of functions of the data observation

z, parameters of interest β ∈ Rq, and a function γ that may be vector valued. Here γ repre-

sents some possible value of a nonparametric estimator. A GMM estimator can be based on a
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moment condition where β0 is the unique parameter vector satisfying

E[m(zi, β0, γ0)] = 0, (2.1)

and γ0 is the true γ. Here it is assumed that this moment condition identifies β. Let γ̂ denote

some nonparametric estimator of γ0. Plugging in γ̂ to obtain m(zi, β, γ̂) and averaging over zi

gives the estimated sample moments m̂(β) =
∑n

i=1m(zi, β, γ̂)/n. For Ŵ a positive semi-definite

weighting matrix a semiparametric GMM estimator is

β̂ = arg min
β∈B

m̂(β)T Ŵ m̂(β).

We note that this class of estimators includes an explicit functional µ(F ) of the distribution F

of a single observations, where m(z, β, γ) = µ(F ) − β and F = γ. Many other estimators are

also included as special cases.

Examples can help illustrate the results. We consider one example here and more below.

The first example is an estimator of a bound on average surplus of a price change when there

are bounds on income effects, as in Hausman and Newey (2016a,b). Let y denote quantity

consumed of some good, x = (x1, x2)′ where x1 is price, x2 is income, w2(x2) be a weight

function for income (such as an indicator for some interval), and γ1(x) a possible conditional

expectation function E[yi|xi = x]. We assume that B is a uniform bound on the derivative of

demand with respect to income, i.e. the income effect. The object of interest is a bound on the

weighted average over income of equivalent variation for a price change from x̆1 to x̄1, given by

β0 = E[w2(x2i)

∫ x̄1

x̆1

γ10(u, x2i)e
−B(u−x̆1)du] = E[w2(x2i)

∫
w1(u)γ10(u, x2i)du],

where w1(x1) = 1(x̆1 ≤ x1 ≤ x̄1)e−B(x1−x̆1). If B is an upper (lower) bound on income effects

then β0 is a lower (upper) bound on average equivalent variation over income and individual

heterogenetiy of a price change from x̆1 to x̄1. This object is identified from the semiparametric

moment function.

m(z, β, γ1) = w2(x2)

∫
w1(u)γ1(u, x2)du− β.

We will consider additional examples below.

The results of this paper apply generally to asymptotically linear estimators. An asymp-

totically linear estimator is one satisfying

√
n(β̂ − β0) =

n∑
i=1

ψ(zi)/
√
n+ op(1), E[ψ(zi)] = 0, E[ψ(zi)

Tψ(zi)] <∞. (2.2)

The function ψ(z) is referred to as the influence function, following terminology of Hampel

(1974). It gives the influence of a single observation in the leading term of the expansion in

[3]



equation (2.2). It also quantifies the effect of a small change in the distribution on the limit of

β̂ as we further explain below.

A semiparametric GMM estimator will be asymptotically linear under regularity conditions

that are summarized below. Let

M =
∂E[m(zi, β, γ0)]

∂β

∣∣∣∣
β=β0

,W = plim(Ŵ ).

A standard expansion argument along with well understood properties of semiparametric esti-

mators leads to an influence function of the form

ψ(z) = −(MTWM)−1MTW [m(z, β0, γ0) + φ(z)], (2.3)

where φ(z) is an adjustment term for the estimator γ̂ of γ0, as discussed in Newey (1994).

Here m(z, β0, γ0) + φ(z) will be the influence function of m̂(β0). This formula for the influence

function is valid under weak regularity conditions, that allow for m(z, β, γ0) to not be smooth

in β, e.g. as in Chen, Linton, et al. (??).

3 Calculating the Influence Function

In this Section we provide a method for calculating the influence function. The key object on

which the influence function depends is the limit of the estimator when zi has a CDF F that

is unrestricted except for regularity conditions. We denote this object by β(F ). One can think

of β(F ) as the object that is estimated by β̂ when misspecification is allowed. The idea is that

every estimator converges to something under some regularity conditions. The function β(F )

is that something. It describes how the limit of the estimator varies as the distribution of a

data observation varies. Formally, it is mapping from a set F of CDF’s into real vectors,

β(·) : F −→ <.

In the surplus bound example

β(F ) =

∫
w2(x̃2)w1(x̃1)EF [yi|xi = x̃]dx̃1F2(dx̃2), (3.4)

where EF [yi|xi] denotes the conditional expectation under distribution F and F2(x2) is the

marginal CDF of x2i.

How β(F ) varies as F varies near the true distribution F0 can be used to calculate the

influence function. An important feature of β(F ) is that it may only be well defined when F

is restricted in some way. In the average surplus example β(F ) will only be well defined when

the uniform distribution on (x̆1, x̄1) is absolutely continuous with respect to the distribution of

[4]



x1i. In formal terms this feature means that the domain F of β(·) is restricted. To allow for a

restricted domain we consider only variations in F that are contained in F . The specific kind of

variation we consider is a convex combination Fτ = (1− τ)F0 + τGjz of the true distribution F0

with some other distribution Gjz where Fτ ∈ F . The superscript j and subscript z designate Gjz

as a member of sequence of CDF’s approaching the CDF of the constant z. Under conditions

given below the influence function can be calculated as

ψ(z) = lim
j−→∞

[
d

dτ
β((1− τ) · F0 + τ ·Gjz)

]
, (3.5)

where all derivatives with respect to τ are right derivatives at τ = 0. The derivative in this

expression is the Gateaux derivative of the functional β(F ) with respect to a deviation τ [Gjz −
F0(z)] from the true distribution F0. This formula says that the influence function is the limit

of this Gateaux derivative as Gjz approaches the CDF of the constant z.

Equation (3.5) can be thought of as a generalization of the influence function calculation of

Von Mises (1947) and Hampel (1974). That calculation is based on Gjz = λz where λz is the

CDF of the constant z. If (1− τ) ·F0 + τ ·λz is in F then the influence function is given by the

Gateaux derivative

ψ(z) =
d

dτ
β((1− τ) · F0 + τ · λz)

The problem with this formula is that Fτ = (1− τ) ·F0 + τ ·λz will not be in the domain F for

many semiparametric estimators. In many cases F ∈ F (i.e. β(F ) being well defined) reqiures

that certain marginal distributions of F are continuous. The CDF (1 − τ) · F0 + τ · λz does

not satisfy that restriction. Equation (3.5) circumvents this problem by restricting Fτ to be in

F . The influence function is then obtained as the limit of a Gateaux derivative as Gjz −→ λz

rather than the Gateaux derivative with respect to the CDF of a point. This generalization

applies to most semiparametric estimators.

We can relate equation (3.5) to the pathwise derivative characterization of the influence

function in Newey (1994). Denote one of a class of parametric models as Fθ, where θ denotes

a vector of parameters, with Fθ ∈ F equal to the true distribution F0 at θ = 0. Restrict each

parametric model in the class to be regular in the sense used in the semiparametric efficiency

bounds literature, so that Fθ has a score S(z) (derivative of the log-likelihood in many cases,

e.g. see Van der Vaart, 1998, p. 362) at θ = 0 and possibly other conditions are satisfied.

We assume that the set of scores over all regular parametric families has mean square closure

that includes all functions with mean zero and finite variance. This assumption is the precise

meaning of the statment that we are not restricting F except for regularity conditions. As

shown by Newey (1994) the influence function ψ(z) is then the unique solution to the derivative
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equation of Van der Vaart (1991),

∂β(Fθ)

∂θ
= E[ψ(zi)S(zi)], E[ψ(zi)] = 0, (3.6)

as the score S(z) varies over those for regular parametric models.

The advantage of equation (3.5) is that it is a direct calculation while the outer product

formula (3.6) is a functional equation that must be solved to find the influence function. It

is true that Newey (1994), Hahn (1998), Hirano, Imbens, and Ridder (2003), Bajari, Hong,

Krainer, and Nekipelov (2010), Bajari, Chernozhukov, Hong, and Nekipelov (2009), Hahn

and Ridder (2013, 2016), and Ackerberg, Chen, Hahn, and Liao (2015) have solved equation

(3.6) for important models. Generally though, these results have required the solution to a

functional equation, such as a Riesz representation in Propositions 4 and 5 of Newey (1994)

and in Ackerberg et. al. (2015). No such solution is required to apply equation (3.5). Instead,

all that is required is an expression for ∂β(Fτ )/∂τ and for its limit. This advantage of equation

(3.5) is highlighted in examples to follow. MOVE.

To use the derivative formula to calculate the influence function we need to specify Gjz.

Various kinds of restrictions on Gjz may be needed to insure that Fτ ∈ F . In the surplus

bound example the Lebesgue measure on [x̌1, x̄1] must be absolutely continuous with respect

to the distribution of the price variable x1i for β(F ) to be well defined. In other examples an

identification condition may need to be satisfied. We are free to choose Gjz in whatever way is

convenient for imposing these restrictions and ensuring that equation (3.5) holds. Here we use

Gjz(z̃) = E[1(zi ≤ z̃)δ(zi)], (3.7)

where δ(zi) is a bounded nonnegative function with E[δ(zi)] = 1. The variable z̃ represents

a possible value of the random variable zi, and we supress a j superscript and z subscript

on δ(zi) for notational convenience. We will assume that z ∈ Rr and that F0 is absolutely

continuous with respect to a product measure µ on Rr. This assumption allows for components

of zi to be continuously or discretely distributed, or some mixture of the two. The distribution

Fτ = (1− τ)F0 + τGjz will have a pdf with respect to µ given by

fτ (z̃) = f0(z̃)[1− τ + τδ(z̃)] = f0(z̃)[1 + τS(z̃)], S(z̃) = δ(z̃)− 1.

Also, for any measureable function yi and components xi of zi the marginal pdf fτ (x̃) of xi,

conditional expectation Eτ [yi|xi] of yi given xi, and its derivative are

fτ (x̃) = f0(x̃){1 + τE[S(zi)|xi = x̃]}, (3.8)

Eτ [yi|xi] =
E[yi|xi] + τE[yiS(zi)|xi]

1 + τE[S(zi)|xi]
,
∂Eτ [yi|xi]

∂τ
= E[{yi − E[yi|xi]}S(zi)],
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as shown in Lemma A1 of the Appendix. These formulae will be useful for calculating the

influence function in many cases.

The characterization of the influence function in equation (3.6) justifies the influence func-

tion formula (3.5) for this choice of Gjz . Consider Fτ = (1 − τ) · F0 + τ · Gjz as a model with

parameter τ passing through the truth at τ = 0. This model is regular, as shown in the proof

of Theorem 1 below. Also, the score is given by ∂ ln fτ (z̃)/∂τ = S(z̃). Then equation (3.6) and

E[S(zi)] = 0 gives
∂β(Fτ )

∂τ
= E[ψ(zi)δ(zi)] =

∫
ψ(z̃)δ(z̃)f0(z̃)dµ.

At any point z where ψ(z̃) is continuous, equation (3.5) will follow by taking the limit as

δ(z̃)f0(z̃) approaches a spike at z, which corresponds to Gjz approaching the CDF of a constant

at z.

A particular choice of δ(z) will be useful in the calculations. Let K(u) be a pdf that is

symmetric around zero, has bounded support, and is continuously differentiable of all orders

with bounded derivatives. The smoothness of K is useful for some of the examples. Also let

µ̄j` = j−1
∫
K((z` − z̃`)/j)dµ`(z̃`), and

g(z̃) = Πr
`=1κ

j
`(z̃`), κ

j
`(z̃`) =

(
jµ̄j`

)−1
K((z` − z̃`)/j). (3.9)

We take δ(z̃) to be the function

δ(z̃) = g(z̃)1(f0(z̃) ≥ 1/j)f0(z̃)−1. (3.10)

For this choice of δ(z̃) equation (3.5) will hold when ψ(z̃) is continuous at z and f0(z̃) is bounded

away from zero on a set of z̃ that has full µ measure locally to z, as shown and further discussed

below.

We can calculate the influence function for the surplus bound using this δ(z). We assume

that the joint pdf f0(ỹ, x̃) of (yi, xi) is bounded away from zero on a neighborhood of z so that

δ(z) = g(z)/f0(z̃) where g(z) is positive for large enough j. Now assume j is large enough so

that holds. Then for any a(y, x) we have E[a(yi, xi)S(zi)|xi = x̃] =
∫
a(ỹ, x̃)g(z̃)dỹ/f0(x̃). Let

∆ =

∫
w2(x̃2)w1(x̃1)E[{yi − γ10(xi)}S(zi)|xi = x̃]dx̃1f2(x̃2)dµx2

=

∫
{w2(x̃2)w1(x̃1)[ỹ − γ10(x̃)]f2(x̃2)/f0(x̃)}g(z̃)dµ =

∫
α(x̃)[ỹ − γ1(x̃)]g(z̃)dµ,

α(x̃) = w2(x̃2)w1(x̃1)f2(x̃2)/f0(x̃),

where µx2 is the dominating measure for x2i and f2(x̃2) the pdf of x2i with respect to this

measure. Then plugging Fτ in equation (3.4) and applying the chain rule gives

d

dτ
β(Fτ ) = E[w2(x2i)

{∫
w1(x̃1)γ10(x̃1, x2i)dx̃1

}
S(zi)] + ∆ =

∫
m(z̃, β0, γ10)g(z̃)dµ+ ∆,
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where the second equality follows by iterated expecations, the definition of m(z, β, γ1) above,

and by E[S(zi)] = 0. Assume that γ10(x̃), w1(x̃1), w2(x̃2), and f0(x̃1|x̃2) = f20(x̃2)/f0(x̃) are

continuous at x, so that α(x̃)[ỹ − γ10(x̃)] is continuous at z. Also assume that γ(x̃1, x̃2) is

continuous at (x̃1, x2) for all x̃1 ∈ (x̌1, x̄1), so that
∫
w1(x̃1)γ10(x̃1, x̃2)dx̃1 is continuous at x2.

Then m(z̃, γ10, β0) is continuous at z. By the construction of g (z̃) we have
∫
a(z̃)g(z̃)dµ −→

a(z) for any a(z̃) function that is continuous at z. Therefore as j −→∞ we have

d

dτ
β(Fτ ) −→ m(z, β0, γ10) + α(x)[y − γ10(x)]. (3.11)

We can also characterize the influence function in this example using Proposition 4 of Newey

(1994). To do so we need to find the solution ot the Riesz representation in equation (4.4) of

Newey (1994). Multiplying and dividing by f0(x̃1|x̃2) gives

E[w2(x2i){
∫
w1(x̃1)γ1(x̃1, x2i)dx̃1}] = E[α(xi)γ1(xi)].

Here we see that α(xi) is the Riesz representor in Proposition 4 of Newey (1994), so the

conclusion of that result implies that the influence function of the surplus bound is the expression

on the right of equation (3.11).

This example shows the advantage of the derivative formula in equation (3.5) over solving the

functional equation (3.6). In the example the influence function was derived by a straighforward

calculation of a limit. At no point in that calculation did we need to solve for the function

α(x). Instead the expression for α(x) emerged from the derivative calculation. Thus this new

example demonstrates how the influence function can be obtained from a derivative without

solving a functional equation. We will show this approach is similarly useful in an even more

challenging and original example in the next Section.

We give a precise theoretical justification for the formula in equation (3.5) by assuming that

an estimator is asymptotically linear and then showing that equation (3.5) is satisfied under a

few mild regularity conditions. One of the regularity conditions we use is local regularity of β̂

along the path Fτ . This property is that for any τn = O(1/
√
n), when z1, ..., zn are i.i.d. with

distribution Fτn , √
n[β̂ − β(Fτn)]

d−→ N(0, V ), V = E[ψ(zi)ψ(zi)
T ].

That is, under a sequence of local alternatives, when β̂ is centered at β(Fτ ), then β̂ has the same

limit in distribution as for F0. This is a very mild regularity condition. Many semiparametric

estimators could be shown to be uniformly asymptotically normal for τ in a neighborhood of

0,which would imply this condition. Furthermore, it turns out that asymptotic linearity of β̂

and Gateaux differentiability of β(Fτ ) at τ = 0 with the correct derivative are sufficient for
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local regularity. For these reasons we view local regularity as a mild condition for the influence

function calculation.

We will prove that (3.5) is valid for Gjz as specified in equation (3.7). It would be straight-

forward to extend this validity result to more general classes of Gjz but the result we give should

suffice for most cases.

Theorem 1: Suppose that β̂ is asymptotically linear with influence function ψ(z) and there

is an open set N containing z such that a) there is N̄ ⊆ N such that µ(N ) = µ(N̄ ) and ψ(z̃)

is continuous at z for z̃ ∈ N̄ ; b) there is ε > 0 such that

µ(N∩{z : f0 (z ) ≥ ε}) =µ(N ).

If β̂ is locally regular for the parametric model (1 − τ)F0 + τGjz for τ in a neighborhood of

zero then dβ(Fτ )/∂τ exists and satisfies equation (3.5).

PROOF

This result shows that if an estimator is asymptotically linear and locally regular then the

influence function satisfies equation (3.5), justifying that calculation. This result is like Van

der Vaart (1991) in having differentiability of β(Fτ ) as a conclusion. It differs in restricting

the paths to have the form (1− τ)F0 + τGjz. Such a restriction on the paths actually weakens

the local regularity hypothesis because β̂ only has to be locally regular for a particular kind of

path rather than the general class of paths in Van der Vaart (1991). We view locally regularity

for such paths as a very weak condition because the deviations are bounded smooth densities.

We expect that these deviations are regular enough so that Fτ will generally satisfy whateever

regularity conditions are needed for asymptotic linearity uniformly in τ near zero, so β̂ will

be locally regular. The conditions of Theorem 1 are stronger than Van der Vaart (1991) in

assuming that the influence function is continuous at z and that the pdf of zi is bounded away

from zero on a neighborhood of z. We view this as a weak restriction that will be satisfied

almost everywhere with respect to the dominating measure µ in many cases. We also note

that this result allows for distributions to have a discrete component because the dominating

measure µ may have atoms.

The weak nature of the local regularity condition highlights the strength of the asymptotic

linearity as hypothesis. Primitive conditions for asymptotic linearity can be quite strong and

complicated. For example, it is known that asymptotic linearity of estimators with a nonpara-

metric first step generally requires some degree of smoothness in the functions being estimated,

see Bickel and Ritov (1988). Our purpose here is to bypass those conditions in order to calculate

the influence function, which result can then be used in all the important ways outlined in the
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introduction, including as a starting point for formulating regularity conditions for asymptotic

linearity.

It is interesting to note that the scores for the parametric families (1− τ)F0 + τGjz with Gjz

as given in equation (3.7) all satisfy S(z) ≥ −1. Thus to calculate the influence function we do

not require a family of parametric models where the set of scores can approximate any random

variable with zero mean and finite variance, as is required in Newey (1994). Also, apparently

this restriction means that Theorem 1 is not a special case of the results of Van der Vaart

(1998), where it is assumed that the set of scores is a cone. The proof of Theorem 1 does use

some of Van der Vaart’s (1991) reasoning to show differentiability of β(Fτ ) but otherwise is

very straightforward.

We want to emphasize that the purpose of Theorem 1 is quite different than Van der Vaart

(1991, 1998) and other important contributions to the semiparametric efficiency literature.

Here β (F ) is not a parameter of interest for some semiparametric model. Instead β(F ) is

associated with an estimator β̂, being the limit of that estimator when F is a distribution that

is unrestricted except for regularity conditions, as formulated in Newey (1994). Our goal is to

use β(F ) to calculate the influence function of β̂ under the assumption that β̂ is asymptotically

linear. The purpose of Theorem 1 is to justify this calculation via equation (3.5). In contrast,

the goal of the semiparametric efficiency literature is to find the efficient influence function for

a parameter of interest when F belongs to a family of distributions.

4 Nonparametric Instrumental Variables

In this Section we derive the influence function for a semiparametric GMM estimator where the

first step γ0 is the nonparametric two stage least squares estimator (NP2SLS) of Newey and

Powell (1989, 2003) and Newey (1991), abbreivated NP henceforth. As with consumer surplus,

the form of the influence function emerges from the calculation of the derivative. Also, the

limit of the NP2SLS estimator exists and is unique under deviations similar to those specified

above as is essential for calculation of the influence function. The uniqueness and existence

result is made possible by the specification Fτ = (1 − τ)F0 + τGjz of deviations from the true

distribution. In this way the approach of this paper provides the key intermediate step of

existence and uniqueness of the limit of the NP2SLS estimator.

The first step will be based on a linear, nonparametric, instrumental variables model in NP

where

yi = γ0(wi) + εi, E[εi|xi] = 0, (4.12)

where wi are right hand side variables that may be correlated with the disturbance εi and xi are

[10]



instrumental variables. We begin with the case where wi and xi have the same dimension and

are continuously distributed with rectangular supports. The identification condition for γ0(wi)

in this model is completeness of the conditional expectation given xi, meaning E[∆(wi)|xi] = 0

implies ∆(wi) = 0. Under our conditions on wi and xi completeness holds generically, as shown

by Andrews (2011) and Chen, Chernozhukov, Lee, and Newey (2014). Genericity justifies our

assumption of completness, although as with other important generic conditions (e.g. existence

of moments), completeness cannot be be tested (see Canay, Santos, Shaik, 2013).

The NP2SLS estimator minimizes the objective function Q̂(γ) =
∑

i{yi − Ê[γ(·)|xi]}2/n
over γ ∈ Γn where Ê[·|xi] is a conditional expectation estimator and Γn imposes restrictions on

the function, such as it being a linear combination of known functions. We first consider the

case where Γn leaves γ unrestricted in the limit, except for having finite second moment. For

fixed γ the limit of the objective function will be Q(γ, F ) = EF [{yi −EF [γ(wi)|xi]}2] where F

denotes the distribution of a single observation. The objective function will also be the limit

of other regularized objective functions such as Darolles, Fan, Florens, and Renault (2011),

so we expect that the corresponding estimators converge to the same object. As usual for

an extremum estimator the limit of the minimizer will be the minimizer of the limit under

appropriate regularity conditions. Therefore the limit γ(F ) of the NP2SLS estimator will be

γ(F ) = arg min
γ
Q(γ, F ) = arg min

γ
EF [{yi − EF [γ(wi)|xi]}2].

A problem with this calculation is that γ(F ) need not exist nor be unique. This problem

occurs because γ appears inside a conditional expectation. Our framework helps. Under our

conditions γ(Fτ ) does exist and is unique for Fτ = (1 − τ)F0 + τGjz when τ is small enough.

The use of deviations from the truth of the form we have considered allows us to specify Gjz in

such a way that γ(Fτ ) exists and is unique.

We modify slightly our choice of δ(z) in order to allow for weak conditions on the marginal

pdf f0(x̃) of xi as outlined below. Let gy(y), gw(w), and gx(x) be as specified in equation (3.9)

except that for gx(x) (and gy(y), gw(w)) the product is only taken over components of x (y, w).

For example we let µ̄jx` = j−1
∫
K((x` − x̃`)/j)dµ̃`,

gx(x̃) = Πr
`=1κ

j
`(x̃`), κ

j
`(x̃`) =

(
jµ̄j`

)−1
K((x` − x̃`)/j). (4.13)

We then choose δ (z) to be

δ(z) = gy(y)gw(w)gx(x)

[
f0(y, w|x)

∫
f0(x̃)gx(x̃)dµx̃

]−1

1(f(y, w|x) ≥ 1/j).

With this δ(z) we can make a key assumption that we use to show existence and uniqueness of

γ(Fτ ).

[11]



Assumption 1: a) wi and xi have the same dimension, b) E[∆(wi)|xi] is complete, and c)

for each j there is ∆j(wi) such that E
[
∆j(wi)|xi

]
= gx(xi)/

∫
gx(x̃)f0(x̃)dx̃.

Recall that K(u) is continuously differentiable of all orders with bounded support so that

gx(x̃) is also continuously differentiable with bounded derivatives of all orders. Assumption 1

c) is then satisfied if E [∆(wi)|xi] is a compact operator with singular values that do not decline

too fast and other technical conditions hold, as discussed in the Appendix. If we had used

the δ(z) from earlier we would need to replace Assumption 1 c) with existence of ∆j(wi) with

E
[
∆j(wi)|xi

]
= gx(xi)/fx(xi), which would only hold if fx(x̃) were very smooth near x. The

choice of δ(z) allows us to avoid these smoothness conditions for f0(x̃).

The following result shows that γ(Fτ ) exists for small enough τ and gives a useful formula

Lemma 2: If Assumption 1 is satisfied then for each j and τ small enough, γ(Fτ ) =

arg minγ Q(γ, Fτ ) exists and is unique and there is c(τ) with c(0) = 0 and

γ(wi, Fτ ) = γ0(wi) + cj(τ)∆j(wi),
∂cj(τ)

∂τ
=

∫
[ỹ − γ0(w̃)]gy(ỹ)gw(w̃)dµỹdµw̃

With this result in place we can derive the influence function for a variety of different

estimators with NP2SLS first step. We begin with a plug in estimator of the form

β̂ =
n∑
i=1

v(wi)γ̂(wi)/n, (4.14)

where v(w) is a known function. This β̂ is an estimator of β0 = E[v(wi)γ0(wi)]. The limit of

β̂ will be

β(F ) = EF [v(wi)γ(wi, F )].

As shown by Severini and Tripathi (2012), a necessary condition for root-n consistent estima-

bility here is that β0 there exists α(xi) such that

v(wi) = E[α(xi)|wi]. (4.15)

We will assume that α(x) is unique, which is equivalent to completeness of E[a(xi)|wi], as holds

generically like discussed above.

To calculate the influence β̂ note that by equation (4.15) and Assumption 1,

E[v(wi)∆
j(wi)] = E[E[α(xi)|wi]∆j(wi)] = E[α(xi)∆

j(wi)] = E[α(xi)E[∆j(wi)|xi]]

= E[α(xi)g̃x(xi)], g̃x(xi) = gx (xi) /

∫
gx (x̃) f0(x̃)dx̃.

[12]



By the chain rule and Lemma 2

∂β(Fτ )

∂τ
=

∂EFτ [v(wi)γ(wi, Fτ )]

∂τ
(4.16)

= E[v(wi)γ0(wi)S(zi)] +
∂cj(τ)

∂τ
E[v(wi)∆

j(wi)]

= E[{v(wi)γ0(wi)− β0}δ(zi)]

+

∫
[ỹ − γ0(w̃)]gy(ỹ)gw(w̃)dµỹdµw̃E[α(xi)g̃x (xi)]

= E[ψ(zi)δ(zi)], ψ(z) = v(w)γ0(w)− β0 + α(x)[y − γ0(w)].

As j −→∞ we will have
∫

[ỹ−γ0(w̃)]gy(ỹ)gw(w̃)dµỹdµw̃ −→ y−γ0(w) for γ0(w̃) continuous at

w and E[α(xi)g̃x (xi)] −→ α(x)f0(x)/f0(x) = α(x) for α(x̃) and f0(x̃) continuous at x, so we

have

Theorem 3: If Assumption 1 is satisfied, there exists a unique solution α(xi) to v(wi) =

E[α(xi)|wi], each of α̃(x), f0(x̃), v(w̃), and γ0(w̃) are continuous at (w, x), the conditional pdf

f(ỹ, w̃|x̃) is bounded away from zero in a neighborhood of (y, w, x), and f0(x) > 0,then for

NP2SLS

lim
j−→∞

∂β(Fτ )

∂τ
= ψ(z) = v(w)γ0(w)− β0 + α(x)[y − γ0(w)].

Here we find that the influence function of β̂ of equation (4.14) is ψ(z) of Theorem 3.

Like the consumer surplus example a nonparametric residual y− γ0(w) residual emerges in the

calculation of ψ(z). Unlike the surplus example the residual is from the structural equation

(4.12) rather than a nonparametric regression. The function α(x) of the instrumental variables

is also a key component of the influence function. Here α(x) is defined implicitly rather than

having an explicit form. This implicit form seems inherent to the NP2SLS first step, with

existence of α(x) solving equation (4.15) being required for root-n consistency of β̂.

Note that α(x) is the solution of a ”reverse” structural equation involving an expectation

conditional on the endogenous variable wi rather than the instrument xi. An analogous ”re-

verse” structural equation also appears in a linear instrumental variables (IV) setting. Let d̂ =

(
∑n

i=1XiW
T
i )−1

∑n
i=1Xiyi be the linear IV estimator having limit d0 = (E[XiW

T
i ])−1E[Xiyi].

A linear IV analog of the structural function γ0(w) is wTd0 and of parameter β0 is

b0 = E[v(Wi)(w
T
i d0)].

A corresponding estimator of b0 is b̂ =
∑n

i=1 v(Wi)W
T
i d̂/n. It is straightforward to show that

the influence function of b̂ is

v(w)(wTd0)− b0 + a(x)[y − wTd0], a(x) = xT
(
E[wix

T
i ]
)−1

E[wiv(wi)].

[13]



Here a(x) is the function obtained from ”reverse” IV where x is the right hand side variable

and w the instrumental variable. The functional α(x) is a nonparametric analog of a(x) where

linear IV is replaced by the solution to a conditional expectation equation.

A solution α(x) to equation (4.15) will only exist when v(w) satisfies certain conditions.

When E[v(wi)
2] < ∞ a function α(x) can only exist when v(wi) has Fourier coefficients, with

respect to the singular value basis corresponding to the (assumed to be compact) operator

E[·|wi], that decline fast enough relative to the inverse of the singular values. This condition

requires some ”smoothness” of v(wi) and will rule out some functions, such as v(w) that that

have jumps (e.g. indicator functions).

The influence function of Theorem 3 is consistent with the semiparametric efficiency bound

given in Severini and Tripathi (2012). WHAT ABOUT AI AND CHEN 2007.

There is a different way of estimating β0 that is analogous to Santos (2014). By equation

(4.15), the conditional moment restriction (4.12), and iterated expectations,

β0 = E[E[α(xi)|wi]γ0(wi)] = E[α(xi)γ0(wi)] = E[α(xi)yi]. (4.17)

Based on the last equality an estimator for β0 could be constructed as β̃ =
∑n

i=1 α̂(xi)yi/n

where α̂ is an estimator of the solution of equation (4.15). The influence function for this

estimator is the same as in Theorem 3. This equality of influence functions occurs because

equation (4.17) is satisfied for any Fτ where equation (4.15) holds and equation (4.15) will hold

for the Fτ we are considering using arguments like those of Lemma 2. Thus β̃ will have the

same limit as β̂ for a general distribution and thus the same influence function.

This influence function calculation can be extended beyond the estimator of (4.14) to other

semiparametric GMM estimators. This extension requires a corresponding extension of equation

(4.15). The following condition provides such an extension:

Assumption 2: There exists α(xi) with E[α(xi)
2] <∞ such that for all Fτ

∂E[m(zi, β0, γ(Fτ ))]

∂τ
= E[α(xi)

∂E[γ(wi, Fτ )|xi]
∂τ

] (4.18)

For m(z, β, γ) = v(w)γ(w) − β Assumption 2 is equivalent to equation (4.15). If equation

(4.15) is satisfied then

∂E[m(zi, β0, γ(Fτ ))]

∂τ
= E[α(xi)

∂γ(wi, τ)

∂τ
] = E[α(xi)

∂E[γ(wi, Fτ )|xi]
∂τ

],

where the last equality follows by iterated expectations and interchanging the order of differ-

entiation and integration. Also, if Assumption 2 is satisfied for all ∆τ (wi) = ∂γ(wi, Fτ )/∂τ we

have

E[v(wi)∆τ (wi)] = E[α(xi)∆τ (wi)] = E[E[α(xi)|wi]∆τ (wi)],

[14]



by iterated expectations. The only way this equation can hold over all ∆τ (wi) is if equation

(4.15) is satisfied.

The existence of α(xi) satisfying Assumption 2 will follow from other conditions. If the

∂E[m(zi, β0, γ(Fτ ))]/∂τ is a continuous linear functional of ∂E[γ(wi, Fτ )|xi]/∂τ which is con-

tained in a closed linear set L and that functional can be extended to be continuous on all of

L then existence of α(x) satisfying Assumtpion 2 follows by the Riesz represenation theorem.

Similar uses of the Riesz representation theorem are given in Newey (1994), Ai and Chen (2007),

and Ackerberg, Chen, Hahn, and Liao (2014).

We can use Assumption 2 and Lemma 2 to calculate the influence function of a semipara-

metric GMM estimator with a NP2SLS first step. Recall from the discussion of equation (2.3)

that the influence function of semiparametric GMM is determined by the correction term φ(z)

for the first step and that φ(z)is the influence function of E[m(zi, β, γ(F ))]. When Assumption

2 is satisfied it follows exactly as in equation (4.16) that

∂E[m(zi, β0, γ(Fτ ))]

∂τ
= E[α(xi)

∂cj(τ)

∂τ
E[∆j(wi)|xi]]

= E[φ(zi)δ(zi)], φ(z) = α(x)[y − γ0(w)],

giving the following result:

Theorem 4: If Assumptions 1 and 2 are satisfied then for the NP2SLS first step

lim
j−→∞

∂E[m(zi, β0, γ(Fτ ))]

∂τ
= φ(z) = α(x)[y − γ0(w)].

An interesting example of this result is the average derivative estimator of Ai and Chen

(2007), wherem(z, β, γ) = v̄(w)∂γ(w)/∂w−β for some known v̄(w). Let v(w) =−f0(w)−1∂[v̄(w)f0(w)]/∂w.

Assume that equation (4.15) is satisfied for this v(w), so that there exist α(xi) with

−f0(wi)
−1∂[v̄(wi)f0(wi)]/∂w = E[α(xi)|wi]. (4.19)

Then integration by parts and iterated expectations gives

∂E[m(zi, β0, γ(Fτ ))]

∂τ
=

∂E[v̄(wi)∂γ(wi, Fτ )/∂w]

∂τ
=
∂E[v(wi)γ(wi, Fτ )]

∂τ

=
∂E[α(xi)E[γ(wi, Fτ )|xi]]

∂τ
= E[α(xi)

∂E[γ(wi, Fτ )|xi]
∂τ

],

so Assumption 2 is satisfied. It then follows by m(z, β, γ) = v̄(w)∂γ(w)/∂w − β and Theorem

4 that the influence function for the weighted average derivative is

ψ(z) = v̄(w)
∂γ0(w)

∂w
− β0 + α(x)[y − γ0(w)].
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Comparison with Ai and Chen ??.

ESTIMATOR; NP2SLS estimator of ??.

We can also calculate the influence function for NP2SLS for a nonlinear, possibly misspeci-

fied residual ρ(z, γ) where the NP2SLS estimatori is based on orthogonality of ρ(z, γ0) with a

set A of functions of instrumental variables x. We will assume that there is a fixed countable

basis (a1(x), a2(x), ...) that spans A in mean square for each Fτ for τ small enough. NP2SLS

is here based on the orthogonality condition

E[aj(xi)ρ(zi, γ0)] = 0 for all j.

For example, if A is all functions of xt with finite second moment this restriction is equivalent

to E[ρ(zi, γ0)|xi] = 0. Here aj(x) could be power series in a bounded one-to-one function of x

or could be regression splines. More generally aj(x) could be functions of only a subvector of x

or could be restricted to be additive in subvectors of x.

The NP2SLS estimator is like that given in NP. It minimizes over γ ∈ Γn the sample second

moment of the predicted values from the ordinary least squares regression of the residual ρ(zi, γ)

on pK(xi) = (p1K(xi), ..., pKK(xi))
T , where each function pkK(x) is one of the basis functions

aj(x) for some j. We assume that as K −→∞ any element of A may be approximated in mean

square by a linear combination of pK(xi). Let b(zi) denote any random variable with finite

variance and πτ (ρ(γ), xi) and πτ (b, xi) denote the population orthogonal projection of ρ(zi, γ)

and b(zi) on A when the true distribution is Fτ . Also let Eτ [·] denote the expectation under

Fτ . The limit of the 2SLS objective function will be

Qτ (γ) = Eτ [πτ (ρ(γ), xi)
2].

We will assume that γ(w) is restricted to belong to a linear set Γ and that Γn ⊂ Γ for all n. For

example, γ(w) might be restricted to be additive in subvectors of w. It then follows as usual

for extemum estimators that the limit of the NP2SLS estimator will be

γτ = arg min
Γ
Qτ (γ).

Here we will just assume that γτ exists and is unique. We do this, rather than prove exis-

tence and uniqueness, because it is difficult to show uniqueness of a minimum when ρ(z, γ)

is nonlinear in γ and when there are more instrumental variables than endogenous variables.

Given the previous results of this Section and Chen, Chernozhukov, Lee, and Newey (2014) we

conjecture that conditions for local existence and uniquenss could be formulated, but we leave

that formulation to future work.
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To find the form of the adjustment term in this setting we need an extended version of

Assumption 2. The following condition provides that extension.

Assumption 3: There exists α(xi) ∈ A with E[α(xi)
2] <∞ such that for all Fτ

∂E[m(zi, β0, γ(Fτ ))]

∂τ
= −E[α(xi)

∂π0(ρ(γτ ), xi)

∂τ
] (4.20)

To derive the adjustment term for NP2SLS it is helpful to consider first order conditions

for γτ . Let ζ denote a scalar and ∆(w) some function of the endogenous variables w such that

∆(wi) ∈ Γ. Then we have γτ (wi) + ζ∆(wi) ∈ Γ for any ζ by Γ linear. We will impose the

following condition:

Assumption 4: For all τ small enough πτ (ρ(γτ + ζ∆), xi) is differentiable in at ζ = 0 and

there is dτ (zi) such that

∂πτ (ρ(γτ + ζ∆), xi)

∂ζ

∣∣∣∣
ζ=0

= πτ (dτ∆, xi).

To illustrate consider the endogenous quantile model of Chernozhukov and Hansen (2004)

and Chernozhukov, Imbens, and Newey (2007) where ρ(z, γ) = 1(y < γ(w)) − η for a scalar η

with 0 < η < 1. Suppose that for τ small enough the distribution of yi conditional on xi and

wi is continuous in a neighborhood of γτ (wi) with conditional pdf fτ (y|w, x). Let derivatives

with respect to ζ be evaluated at ζ = 0. Then

∂Eτ [ρ(zi, γτ + ζ∆)|wi, xi]
∂ζ

= −fτ (γτ (wi)|wi, xi)∆(wi) = −dτ (wi, xi)∆(wi), (4.21)

dτ (wi, xi) = fτ (γτ (wi)|wi, xi).

Assuming that the order of differentiation and projection can be interchanged, it follows by

iterated projections that

∂πτ (ρ(γτ + ζ∆), xi)

∂ζ
= πτ

(
∂E[ρ(zi, γτ + ζ∆)|wi, xi]

∂ζ
, xi

)
= πτ (dτ∆, xi),

so that Assumption 3 is satisfied. More generally Assumption 3 will hold if ρ(z, γ) = ρ(z, γ(w))

with dτ (w, x) = ∂E[ρ(zi, γτ (w) + ζ)|wi, xi]/∂ζ.

By calculus of variations and Assumption 3 the first order conditions for γτ are that for any

∆(wi) ∈ Γ,

0 = Eτ [πτ (ρ(γτ ), xi)
∂πτ (ρ(γτ + ζ∆), xi)

∂ζ
] = Eτ [πτ (ρ(γτ ), xi)πτ (dτ∆, xi)].
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This is an identity in τ . Differentiating this identity in τ at τ = 0 and applying the chain rule

gives

0 = E[π0(d0∆, xi)
∂π0(ρ(γτ ), xi)

∂τ
] + E[π0(ρ(γ0), xi)π0(d0∆, xi)S(zi)] (4.22)

+E[π0(d0∆, xi)
∂πτ (ρ(γ0), xi)

∂τ
] + E[π0(ρ(γ0), xi)

∂πτ (d0∆, xi)

∂τ
]

+E[π0(ρ(γ0), xi)
∂π0(dτ∆, xi)

∂τ
]

The following result helps us evaluate the third and fourth terms in this equation.

Lemma 5: For any a(xi) ∈ A and b(zi) with finite variance

∂E[a(xi)πτ (b|xi)]
∂τ

= E[a(xi){b(zi)− π0(b|xi)}S(zi)].

Proof of Lemma 5: Note that for each j the definition of the projection implies that

Eτ [aj(xi)b(zi)] = Eτ [aj(xi)πτ (b|xi)]

identically in τ . Differentiating both sides at τ = 0 and applying the chain rule and ?? gives

E[aj(xi)b(zi)S(zi)] = E[aj(xi)π0(b|xi)S(zi)] +
∂E[aj(xi)πτ (b|xi)]

∂τ
.

Solving it follows that for each j,

∂E[a(xi)πτ (b|xi)]
∂τ

= E[aj(xi){b(zi)− π0(b|xi)}S(zi)].

Consider λ = (λ1, ..., λJ)T such that (a1(xi), ..., aJ(xi))λ −→ a(xi) in mean square. The con-

clusion then follows by S(z) bounded. Q.E.D..

We can apply Lemma 5 to the third and fourth terms of equation (4.22) and solve for the

first term to obtain

E[π0(d0∆, xi)
∂π0(ρ(γτ ), xi)

∂τ
] = −E[φ∆(zi)S(zi)]−−E[π0(ρ(γ0), xi)

∂π0(dτ∆, xi)

∂τ
],

φ∆(z) = π0(ρ(γ0), x)[d0(w, x)∆(w)− π0(d∆, x)] + π0(d∆, x)[ρ(z, γ0)− π0(ρ(γ0), x)]

+π0(ρ(γ0), x)π0(d∆, x)− E[π0(ρ(γ0), xi)π0(d∆, xi)].

This result can be combined with Assumption 3 to obtain the adjustment term when the first

step has is the NP2SLS estimator. We state this result as a Proposition, similarly to Newey
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(1994), because its derivation uses formal caclulations without specifying a sufficient set of

regularity conditions.

Proposition 6: If the model is correctly specified, so π0(ρ(γ0), xi) = 0, and there is a

sequence ∆j(w) such that π0(d0∆j , xi) −→ α(xi) in mean square then the adjustment term is

φ(z) = α(x)ρ(z, γ0).

If the model is misspecified with π0(ρ(γ0), xi) 6= 0, ∂π0(dτ∆, xi)/∂τ = 0, and there exists ∆(w)

such that α(xi) = π0(d∆, xi) then the adjustment term is φ(z) = φ∆(z).

Note here that the result with misspecification assumes that ∂π0(dτ∆, xi)/∂τ = 0. We do

not know if an influence function exists when this condition does not hold. The problem is

that dτ may be a nonparametric object evaluated at a point and hence the derivative of the

projection of dτ∆ on A may not have a representation as an expected product with the score.

For example, for quantile IV dτ (wi, xi) = fτ (γτ (wi)|wi, xi) which is nonparametric conditional

density evaluated at a point. In such cases it may be the case that the influence function does

not exist.

The existence of ∆ (w) with α(xi) = π0(d∆, xi) in the misspecified case is restrictive. This

condition requires α(x) be smooth in a way similar to v(w) being smooth because of v(wi) =

E[α(xi)|wi]. Because these conditions are similar that the one for v(w) is necessary for root-

n consistent estimability under correct specification it may be that existence of ∆ (w) with

α(xi) = π0(d∆, xi) is necessary for root-n consistent estimability under misspecification. The

condition under correct specification, that there is a sequence ∆j(w) such that π0(d0∆j , xi) −→
α(xi), is a much weaker condition. For example, for a model where d0 is constant, A is the set

of all functions of xi with finite variance, and the dimension of wi is equal to the dimension of

zi this condition automatically holds.

To illustrate we can apply Proposition 6 to obtain the adjustment term when the first step

is quantile IV, so that ρ(z, γ) = 1(y < γ(w))− τ , and the model is correctly specified. Similar

to the above discussion of equation (4.21) assume that

∂π0(ρ(γτ ), xi)

∂τ
= −π0(d0

∂γτ (·)
∂τ

, xi).

Suppose also that there is some v(wi) such that

∂E[m(zi, β0, γ(Fτ ))]

∂τ
= E[v(wi)

∂γτ (wi)

∂τ
].

Then by α(xi) ∈ A and E[α(xi)π0(b, xi)] = E[α(xi)b(zi)] for any b(zi) with finite variance

Assumption 3 becomes

E[v(wi)
∂γτ (wi)

∂τ
] = E[α(xi)d0(wi, xi)

∂γτ (wi)

∂τ
].
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This equation will hold if

v(wi) = E[α(xi)d0(wi, xi)|wi].

Applying Proposition 6 then gives

Proposition 7: If ρ(z, γ) = 1(y < γ(w)) − η, π0(ρ(γ0), xi) = 0, and i) there there exists

α(xi) such that v(wi) = E[d0(wi, xi)α(xi)|wi] and ii) there exists a sequence ∆j(w)π0(d0∆j , xi) −→
α(xi) in mean square then the adjustment term is

φ(z) = α(x)ρ(z, γ0).

For example consider the average derivative for quantile IV where β0 = E[v̄(wi)∂γ0(wi)/∂w]

for known v̄(w). Here condition i) of Proposition 7 is existence of α(x) such that

v(wi) = −f0(wi)
−1∂[v̄(wi)f0(wi)]/∂w = E[α(xi)d0(wi, xi)|wi].

This is a weighted (by d0(wi, xi)) modification of equation (4.19) that will only hold when the

function on the left satisfies certain restrictions, similar to the above discussion. Condition ii)

may place some additional restrictions on v(wi). These restrictions will be weaker the richer is

the instrumental variable setA. Consider the case whereA is the set of all functions of xi so that

π0(d0∆j , xi) = E[d0(wi, xi)∆j(wi)|xi]. If the operator E[d0(wi, xi)∆j(wi)|xi] is compact then

condition ii) will hold by standard arguments as in ??. More generally if A were restricted that

would impose corresponding restrictions on α(x), and hence on v(w). When both conditions i)

and ii) are satisfied the conclusion of Proposition 7 implies that the influence function of the

weighted average derivative for quantile IV is

ψ(z) = v̄(w)
∂γ0(w)

∂w
− β0 + α (x) [1(y < γ0(w))− η].

5 Sufficient Conditions for Asymptotic Linearity

One of the important uses of the influence function is to help specify regularity conditions for

asymptotic linearity. The idea is that an formula for ψ(z) determines the remainder terms that

can then be analyzed in order to formulate primitive regularity conditions. In this Section we

formulate such regularity conditions using a functional expansion approach that applies quite

broadly. It may be possible to formulate regularity conditions for particular estimators that

are weaker than we consider.

In this section we consider estimators that are functionals of a nonparametric estimator

taking the form

β̂ = β(F̂ ),
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where F̂ is some nonparametric estimator of the distribution of zi. Both the integrated squared

density and the average consumer surplus estimators have this form, as discussed below. We

consider a more general class of estimators in Section 7.

Since β0 = β(F0), adding and subtracting the term
∫
ψ(z)F̂ (dz) gives

√
n(β̂ − β0)−

n∑
i=1

ψ(zi)/
√
n =

√
nR̂1(F̂ ) +

√
nR2(F̂ ), (5.23)

R̂1(F ) =

∫
ψ(z)F (dz)−

n∑
i=1

ψ(zi)/n, R2(F ) = β(F )− β(F0)−
∫
ψ(z)F (dz).

If
√
nR̂1(F̂ ) and

√
nR2(F̂ ) both converge in probability to zero then β̂ will be asymptotically

linear. To the best of our knowledge little is gained in terms of clarity or relaxing conditions

by considering R̂1(F ) + R2(F ) rather than R̂1(F ) and R2(F ) separately, so we focus on the

individual remainders.

The form of the remainders R̂1(F ) and R2(F ) are motivated by ψ(z) being a derivative of

β(F ) with respect to F . The derivative interpretation of ψ(z) suggests a linear approximation

of the form

β(F ) ≈ β(F0) +

∫
ψ(z)(F − F0)(dz) = β(F0) +

∫
ψ(z)F (dz),

where the equality follows by E[ψ(zi)] = 0. Plugging in F̂ in this approximation gives
∫
ψ(z)F̂ (dz)

as a linear approximation to β̂ − β0. The term R2(F̂ ) is then the remainder from linearizing

β̂ = β(F̂ ) around F0. The term R̂1(F̂ ) is the difference between the linear approximation∫
ψ(z)F (dz) evaluated at the nonparametric estimator F̂ and at the empirical distribution F̃ ,

with
∫
ψ(z)F̃ (dz) =

∑n
i=1 ψ(zi)/n.

It is easy to fit the kernel estimator of the integrated squared density into this framework. We

let F̂ be the CDF corresponding to a kernel density estimator f̂(z). Then for β(F ) =
∫
f(z)2dz,

the fact that f̂2 − f2 = (f̂ − f)2 + 2f(f̂ − f) gives an expansion as in equation (5.23) with

R̂1(F̂ ) =

∫
ψ(z)f̂(z)dz −

n∑
i=1

ψ(zi)/n,R2(F̂ ) =

∫
[f̂(z)− f0(z)]2dz.

Applying this framework to a series regression estimator requires formulating that as an esti-

mator of a distribution F . One way to do that is to specify a conditional expectation operator

conditional on x and a marginal distribution for x, since a conditional expectation operator

implies a conditional distribution. For a series estimator we can take F̂ to have a conditional

expectation operator such that

EF̂ [a(q, x)|x] =
1

n

n∑
i=1

a(qi, x)pK(xi)
T Σ̂−1pK(x).
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Then it will be the case such that

β(F̂ ) =

∫
W (x)EF̂ [q|x]dx =

∫
W (x)d̂(x)dx = β̂,

which only depends on the conditional expectation operator, leaving us free to specify any

marginal distribution for x that is convenient. Taking F̂ to have a marginal distribution which

is the true distribution of the data we see that

β(F̂ )− β0 =

∫
EF̂ [W (x){q − d0(x)}|x]dx =

∫
EF̂ [ψ(z)|x]f0(x)dx =

∫
ψ(z)F̂ (dz).

In this case R2(F ) = 0 and

R̂1(F̂ ) =

∫
EF̂ [ψ(z)|x]f0(x)dx− 1

n

n∑
i=1

ψ(zi).

Next we consider conditions for both of the remainder terms R̂1(F̂ ) and R2(F̂ ) to be small

enough so that β̂ is asymptotically linear. The remainder term R̂1(F̂ ) =
∫
ψ(z)(F̂ − F̃ )(dz) is

the difference between a linear functional of the nonparametric estimator F̂ and the same linear

functional of the empirical distribution F̃ . It will shrink with the sample size due to F̂ and

F̃ being nonparametric estimators of the distribution of zi, meaning that they both converge

to F0 as the sample size grows. This remainder will be the only one when β(F ) is a linear

functional of F̂ .

This remainder often has an important expectation component that is related to the bias of

β̂. Often F̂ can be thought of as a result of some smoothing operation applied to the empirical

distribution. The F̂ corresponding to a kernel density estimator is of course an example of

this. An expectation of R̂1(F̂ ) can then be thought of as a smoothing bias for β̂, or more

precisely a smoothing bias in the linear approximation term for β̂. Consequently, requiring that
√
nR̂1(F̂ )

p−→ 0 will include a requirement that
√
n times this smoothing bias in β̂ goes to zero.

Also
√
n times the deviation of R̂1(F̂ ) from an expectation will need to go zero in order for

√
nR̂1(F̂ )

p−→ 0. Subtracting an expectation from
√
nR̂1(F ) will generally result in a stochastic

equicontinuity remainder, which is bounded in probability for fixed F and converges to zero as

F approaches the empirical distribution. In the examples the resulting remainder goes to zero

under quite weak conditions.

To formulate a high level condition we will consider an expectation conditional on some

sigma algebra χn that can depend on all of the observations. This set up gives flexibility in the

specification of the stochastic equicontinuity condition.

Assumption 1: E[R̂1(F̂ )|χn] = op(n
−1/2) and R̂1(F̂ )− E[R̂1(F̂ )|χn] = op(n

−1/2).
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We illustrate this condition with the examples. For the integrated square density let χn be a

constant so that the conditional expectation in Assumption 1 is the unconditional expectation.

Let ψ(z, h) =
∫
ψ(z+hu)K(u)du and note that by a change of variables u = (z−zi)/h we have∫

ψ(z)f̂(z)dz = n−1h−r
∑n

i=1

∫
ψ(z)K((z − zi)/h)dz =

∑n
i=1 ψ(zi, h)/n. Then

E[R̂1(F̂ )] = E[ψ(zi, h)] =

∫
[

∫
ψ(z + hu)f0(z)dz]K(u)du, (5.24)

R̂1(F̂ )− E[R̂1(F̂ )] =
1

n

n∑
i=1

{ψ(zi, h)− E[ψ(zi, h)]− ψ(zi)} .

Here E[R̂1(F̂ )] is the kernel bias for the convolution ρ(t) =
∫
ψ(z + t)f0(z)dz of the influence

function and the true pdf. It will be o(n−1/2) under smoothness, kernel, and bandwidth con-

ditions that are further discussed below. The term R̂1(F̂ )−E[R̂1(F̂ )] is evidently a stochastic

equicontinuity term that is op(n
−1/2) as long as limh−→0E[{ψ(zi, h)− ψ(zi)}2] = 0.

For the series estimator for consumer surplus let δ̂(x) = [
∫
W (x)pK(x)dx]T Σ̂−1pK(x) and

note that β̂ =
∑n

i=1 δ̂(xi)qi/n. Here we take χn = {x1, ..., xn}. Then we have

E[R̂1(F̂ )|χn] =
1

n

n∑
i=1

δ̂(xi)d0(xi)− β0, (5.25)

R̂1(F̂ )− E[R̂1(F̂ )|χn] =
1

n

n∑
i=1

[δ̂(xi)− δ(xi)][qi − d0(xi)].

Here E[R̂1(F̂ )|χn] is a series bias term that will be op(n
−1/2) under conditions discussed below.

The term R̂1(F̂ ) − E[R̂1(F̂ )|χn] is a stochastic equicontinuity term that will be op(n
−1/2) as

δ̂(x) gets close to δ(x). In particular, since δ̂(x) depends only on x1, ..., xn, the expected square

of this term conditional on χn will be n−2
∑n

i=1[δ̂(xi)−δ(xi)]2V ar(qi|xi), which is op(n
−1) when

V ar(qi|xi) is bounded and n−1
∑n

i=1[δ̂(xi)− δ(xi)]2 = op(1).

Turning now to the other remainder R2(F ), we note that this remainder results from lin-

earizing around F0. The size of this remainder is related to the smoothness properties of β(F ).

We previously used Gateaux differentiability of β(F ) along certain directions to calculate the in-

fluence function. We need a stronger smoothness condition to make the remainder R2(F̂ ) small.

Frechet differentiability is one helpful condition. If the functional β(F ) is Frechet differentiable

at F0 then we will have

R2(F ) = o(‖F − F0‖),

for some norm ‖·‖ . Unfortunately Frechet differentiability is generally not enough for R2(F̂ ) =

op(n
−1/2). This problem occurs because β(F ) and hence ‖F − F0‖ may depend on features of

F which cannot be estimated at a rate of 1/
√
n. For the integrated squared error ‖F − F0‖ =
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{∫
[f(z)− f0(z)]2dz

}1/2
is the root integrated squared error. Consequently

√
n
∥∥∥F̂ − F0

∥∥∥ is not

bounded in probability and so
√
nR2(F̂ ) does not converge in probability to zero.

This problem can be addressed by specifying that
∥∥∥F̂ − F0

∥∥∥ converges at some rate and

that β(F ) satisfies a stronger condition than Frechet differentiability. One condition that is

commonly used is that R2(F ) = O(‖F − F0‖2). This condition will be satisfied if β(F ) is

twice continuously differentiable at F0 or if the first Frechet derivative is Lipschitz. If it is also

assumed that F̂ converges faster than n−1/4 then Assumption A1 will be satisfied. A more

general condition that allows for larger R2(F ) is given in the following hypothesis.

Assumption 2: For some 1 < ζ ≤ 2, R2(F ) = O(‖F − F0‖ζ) and
∥∥∥F̂ − F0

∥∥∥ = op(n
−1/2ζ).

This condition separates nicely into two parts, one about the properties of the functional and

another about a convergence rate for F̂ . For the case ζ = 2 Assumption 2 has been previously

been used to prove asymptotic linearity, e.g. by Ait-Sahalia (1991), Andrews (1994), Newey

(1994), Newey and McFadden (1994), Chen and Shen (1997), Chen, Linton, and Keilegom

(2003), and Ichimura and Lee (2010) among others.

In the example of the integrated squared densityR2(F ) =
∫

[f(z)−f0(z)]2dz = O(‖F − F0‖2)

for ‖F − F0‖ = {
∫

[f(z)− f0(z)]2dz}1/2. Thus Assumption 2 will be satisfied with ζ = 2 when

f̂ converges to f0 faster than n−1/4 in the integrated squared error norm.

The following result formalizes the observation that Assumption 1 and 2 are sufficient for

asymptotic linearity of β̂.

Theorem 2: If Assumptions 1 and 2 are satisfied then β̂ is asymptotically linear with

influence function ψ(z).

An alternative set of conditions for asymptotic normality of
√
n(β̂ − β0) was given by Ait-

Sahalia (1991). Instead of using Assumption 1 Ait-Sahalia used the condition that
√
n(F̂ −F0)

converged weakly as a stochastic process to the same limit as the empirical process. Asymp-

totic normality of
√
n
∫
ψ(z)F̂ (dz) then follows immediately by the functional delta method.

This approach is a more direct way to obtain asymptotic normality of the linear term in the

expansion. However weak convergence of
√
n(F̂ − F0) requires stronger conditions on the non-

parametric bias than does the approach adopted here. Also, Ait-Sahalia’s (1991) approach does

not deliver asymptotic linearity, though it does give asymptotic normality.

These conditions for asymptotic linearity of semiparametric estimators are more complicated

than the functional delta method outlined in Reeds (1976), Gill (1989), and Van der Vaart

and Wellner (1996). The functional delta method gives asymptotic normality of a functional

of the empirical distribution or other root-n consistent distribution estimator under just two
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conditions, Hadamard differentiability of the functional and weak convergence of the empirical

process. That approach is based on a nice separation of conditions into smoothness conditions

on the functional and statistical conditions on the estimated distribution. It does not appear

to be possible to have such simple conditions for semiparametric estimators. One reason is

that they are only differentiable in norms where
√
n
∥∥∥F̂ − F0

∥∥∥ is not bounded in probability. In

addition the smoothing inherent in F̂ introduces a bias that depends on the functional and so

the weakest conditions are only attainable by accounting for interactions between the functional

and the form of F̂ . In the next Section we discuss this bias issue.

6 Linear Functionals

In this Section we consider primitive conditions for Assumption 1 to be satisfied for kernel

density and series estimators. We focus on Assumption 1 because it is substantially more

complicated than Assumption 2. Assumption 2 will generally be satisfied when β(F ) is suffi-

ciently smooth and F̂ converges at a fast enough rate in a norm. Such conditions are quite well

understood. Assumption 1 is more complicated because it involves both bias and stochastic

equicontinuity terms. The behavior of these terms seems to be less well understood than the

behavior of the nonlinear terms.

Assumption 1 being satisfied is equivalent to the linear functional β(F ) =
∫
ψ(z)F (dz) being

an asymptotically linear estimator. Thus conditions for linear functionals to be asymptotically

linear are also conditions for Assumption 1. For that reason it suffices to confine attention to

linear functionals in this Section. Also, for any linear functional of the form β(F ) =
∫
ζ(z)F (dz)

we can renormalize so that β(F )− β0 =
∫
ψ(z)F (dz) for ψ(z) = ζ(z)−E[ζ(zi)]. Then without

loss of generality we can restrict attention to functionals β(F ) =
∫
ψ(z)F (dz) with E[ψ(zi)] = 0.

6.1 Kernel Density Estimators

Conditions for a linear functional of a kernel density estimator to be asymptotically linear

were stated though (apparently) not proven in Bickel and Ritov (2003). Here we give a brief

exposition of those conditions and a result. Let z be an r × 1 vector and F̂ have pdf f̂(z) =

n−1h−r
∑

iK((z − zi)/h). As previously noted, for ψ(z, h) =
∫
ψ(z + hu)K(u)du we have

β̂ = n−1
∑n

i=1 ψ(zi, h). To make sure that the stochastic equicontinuity condition holds we

assume:

Assumption 3: K(u) is bounded with bounded support,
∫
K(u)du = 1, ψ(z) is continuous

almost everywhere, and for some ε > 0, E[sup|t|≤ε ψ(zi + t)2] <∞.
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From Bickel and Ritov (2003, pp. 1035-1037) we know that the kernel bias for linear

functionals is that of a convolution. From equation (5.24) we see that

E[β̂]− β0 =

∫
ρ(hu)K(u)du, ρ(t) =

∫
ψ(z + t)f0(z)dz =

∫
ψ(z̃)f0(z̃ − t)dz̃.

Since ρ(0) = 0 the bias in β̂ is the kernel bias for the convolution ρ(t). A convolution is smoother

than the individual functions involved. Under quite general conditions the number of derivatives

of ρ(t) that exist will equal the sum of the number of derivatives sf of f0(z) that exist and

the number of derivatives sψ of ψ(z) that exist. The idea is that we can differentiate the first

expression for ρ(t) with respect to t up to sψ times, do a change of variables z̃ = z + t, and

then differentiate sf more times with respect to t to see that ρ(t) is sψ +sf times differentiable.

Consequently, the kernel smoothing bias for β̂ behaves like the kernel bias for a function that

is sψ + sf times differentiable. If a kernel of order sf + sψ is used the bias of β̂ will be of

order hsψ+sf that is smaller than the bias order hsf for the density. Intuitively, the integration

inherent in a linear function is a smoothing operation and so leads to bias that is smaller order

than in estimation of the density.

Some papers have used asymptotics for kernel based semiparametric estimators based on

the supposition that the bias of the semiparametric estimator is the same order as the bias of

the nonparametric estimator. Instead the order of the bias of β̂ is the product of the order

of kernel bias for f0(z) and ψ(z) when the kernel is high enough order. This observations is

made in Bickel and Ritov (2003). Newey, Hsieh, and Robins (2004) also showed this result for

a twicing kernel, but a twicing kernel is not needed, just any kernel of appropriate order.

As discussed in Bickel and Ritov (2003) a bandwidth that is optimal for estimation of f0

may also give asymptotic linearity. To see this note that the optimal bandwidth for estimation

of f0 is n−1/(r+2sf ). Plugging in this bandwidth to a bias order of hsψ+sf gives a bias in β̂

that goes to zero like n−(sψ+sf )/(r+2sf ). This bias will be smaller than n−1/2 for sψ > r/2.

Thus, root-n consistency of β̂ is possible with optimal bandwidth for f̂ when the number of

derivatives of ψ(z) is more than half the dimension of z. Such a bandwidth will require use of

a sψ + sf order kernel, which is higher order than is needed for optimal estimation of f0. Bickel

and Ritov (2003) refer to nonparametric estimators that both converge at optimal rates and

for which linear functionals are root-n consistent as plug in estimators, and stated sψ > r/2 as

a condition for existence of a kernel based plug in estimator.

We now give a precise smoothness condition appropriate for kernel estimators. Let λ =

(λ1, ..., λr)
T denote a vector of nonnegative integers and |λ| =

∑r
j=1 λj . Let ∂λf(z) = ∂|λ|f(z)/∂zλ11 ·

· · ∂zλrr denote the λth partial derivative of f(z) with respect to the components of z.

Assumption 4: f0(z) is continuously differentiable of order sf , ψ(z) is continuously dif-
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ferentiable of order sψ, K(u) is a kernel of order sf + sψ,
√
nhsf+sψ −→ 0, and there is ε > 0

such that for all λ, λ′, λ′′ with |λ| ≤ sψ,
∣∣λ′∣∣ = sψ, and

∣∣λ′∣∣ ≤ sf∫
sup
|t|≤ε

∣∣∣∂λψ(z + t)
∣∣∣ f0(z)dz <∞,

∫ ∣∣∣∂λ′ψ(z)
∣∣∣ sup
|t|≤ε

∣∣∣∂λ′′f(z + t)
∣∣∣ dz <∞

Here is a result on asymptotic linearity of kernel estimators of linear functionals.

Theorem 3: If Assumptions 3 and 4 are satisfied then
∫
ψ(z)F̂ (dz) =

∑n
i=1 ψ(zi)/n +

op(n
−1/2).

There are many previous results on asymptotic linearity of linear functionals of kernel density

estimators. Newey and McFadden (1994) survey some of these. Theorem 3 differs from many of

these previous results in Assumption 4 and the way the convolution form of the bias is handled.

We follow Bickel and Ritov (2003) in this.

6.2 Series Regression Estimators

Conditions for a linear functional of series regression estimator to be asymptotically linear were

given in Newey (1994). It was shown there that the bias of a linear functional of a series

estimator is of smaller order than the bias of the series estimator. Here we provide an update

to those previous conditions using Belloni, Chernozhukov, Chetverikov, and Kato (2015) on

asymptotic properties of series estimators. We give conditions for asymptotic linearity of a

linear functional of a series regression estimator of the form

β̂ =

∫
W (x)d̂(x)dx.

We give primitive conditions for the stochastic equicontinuity and bias terms from equation

(5.25) to be small.

Let δ̂(x) = [
∫
W (x)pK(x)dx]T Σ̂−1pK(x) = E[δ(x)pK(x)T ]Σ̂−1pK(x) and δ(x) = f0(x)−1W (x)

as described earlier. The stochastic equicontinuity term will be small if
∑n

i=1[δ̂(xi)−δ(xi)]2/n
p−→

0. Let Σ = E[pK(xi)p
K(xi)

T ] and γ = Σ−1E[pK(xi)d0(xi)] be the coefficients of the population

regression of d0(xi) on pK(xi). Then the bias term from equation (5.25) satisfies

1

n

n∑
i=1

δ̂(xi)d0(xi) = ΓT Σ̂−1
n∑
i=1

pK(xi)[d0(xi)− pK(xi)
Tγ]/n+ E[δ(xi){pK(xi)

Tγ − d0(xi)}],

(6.26)

The first term following the equality is a stochastic bias term that will be op(n
−1/2) under rela-

tively mild conditions from Belloni et. al. (2015). For the coefficients γδ = Σ−1E[pK(xi)δ(xi)]

of the population projection of δ(xi) on pK(xi) the second term satisfies

E[δ(xi){pK(xi)
Tγ − d0(xi)}] = −E[{δ(xi)− γTδ pK(xi)}{d0(xi)− pK(xi)

Tγ}]
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where the equality holds by d0(xi) − pK(xi)
Tγ being orthogonal to pK(xi) in the population.

As pointed out in Newey (1994), the size of this bias term is determined by the product of series

approximation errors to δ(xi) and to d0(xi). Thus, the bias of a series semiparametric estimator

will generally be smaller than the nonparametric bias for a series estimate of d0(x). For example,

for power series if d0(x) and δ(x) are continuously differentiable of order sd and sδ respectively,

x is r-dimensional, and the support of x is compact then by standard approximation theory ,∣∣E[{δ(x)− γTδ pK(x)}{d0(x)− pK(x)Tγ}]
∣∣ ≤ CK−(sd+sδ)/r

As discussed in Newey (1994) it may be possible to use a K that is optimal for estimation

of d0 and also results in asymptotic linearity. If sδ > r/2 and K is chosen to be optimal for

estimation of d0 then
√
nK−(sd+sδ)/r −→ 0. Thus, root-n consistency of β̂ is possible with

optimal number of terms for d0 when the number of derivatives of δ(x) is more than half the

dimension of z.

Turning now to the regularity conditions for asymptotic linearity, we follow Belloni et. al.

(2015) and impose the following assumption that takes care of the stochastic equicontinuity

condition and the random bias term.:

Assumption 5: var(qi|xi) is bounded, E[δ(xi)
2] <∞, the eigenvalues of Σ = E[pK(xi)p

K(xi)
T ]

are bounded and bounded away from zero uniformly in K, there is a set χ with Pr(xi ∈ χ) = 1

and cK and `K such that
√
E[{d0(xi)− pK(xi)Tγ}2] ≤ cK , supx∈χ |d0(x) − pK(x)Tγ| ≤ `KcK ,

and for ξK = supx∈χ
∥∥pK(x)

∥∥ , we have K/n+
√
ξ2
K (lnK) /n(1 +

√
K`KcK) + `KcK −→ 0.

The next condition takes care of the nonrandom bias term.

Assumption 6:
√
E[{δ(xi)− pK(xi)Tγδ}2] ≤ cδK , cδK −→ 0, and

√
ncδKcK −→ 0.

Belloni et. al. (2015) give an extensive discussion of the size of cK , `K , and ξK for various

kinds of series approximations and distributions for xi. For power series Assumptions 5 and 6

are satisfied with cK = CK−sd/r, cδK = CK−sδ/r, `K = K, ξK = K, and√
K2 (lnK) /n(1 +K3/2K−sd/r) +K1−(sd/r) −→ 0,

√
nK−(sd+sδ)/r −→ 0.

For tensor product splines of order o, Assumptions 5 and 6 are satisfied with cK = CK−min{sd,o}/r,

cδK = CK−min{sδ,o}/r, `K = C, ξK =
√
K, and√

K (lnK) /n(1 +
√
KK−min{sd,o}/r) −→ 0,

√
nK−(min{sd,o}+min{sδ,o})/r −→ 0.

Theorem 4: If Assumptions 5 and 6 are satisfied then for ψ(z) = δ(x)[q − d0(x)] we have∫
W (x)d̂(x) =

∑n
i=1 ψ(zi)/n+ op(n

−1/2).
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Turning now to the consumer surplus bound example, note that in this case W (x) is not

even continuous so that δ(x) is not continuous. This generally means that one cannot assume

a rate at which cδK goes to zero. As long as pK(x) can provide arbitrarily good mean-square

approximation to any square integrable function, then cδK −→ 0 as K grows. Then Assumption

6 will require that
√
ncK is bounded. Therefore for power series it suffices for asymptotic

linearity of the series estimator of the bound that√
K2 (lnK) /n(1 +K3/2K−sd/2) +K1−(sd/2) −→ 0,

√
nK−sd/2 ≤ C.

For this condition to hold it suffices that d0(x) is three times differentiable, K2 ln(K)/n −→ 0,

and K3/n is bounded away from zero. For regression splines it suffices that

√
K (lnK) /n(1 +

√
KK−min{sd,o}/2) −→ 0,

√
nK−min{sd,o}/2 ≤ C.

For this condition to hold it suffices that the splines are of order at least 2, d0(x) is twice

differentiable, K ln(K)/n −→ 0 and K2/n is bounded away from zero. Here we find weaker

sufficient conditions for a spline based estimator to be asymptotically linear than for a power

series estimator.

7 Semiparametric GMM Estimators

A more general class of semiparametric estimators that has many applications is the class of

generalized method of moment (GMM) estimators that depend on nonparametric estimators.

Let m(z, β, F ) denote a vector of functions of the data observation z, parameters of interest β,

and a distribution F . A GMM estimator can be based on a moment condition where β0 is the

unique parameter vector satisfying

E[m(zi, β, F0)] = 0.

That is we assume that this moment condition identifies β.

Semiparametric single index estimation provides examples. For the conditional mean re-

striction, the model assumes the conditional mean function to only depend on the index, so

that E(y|x) = φ(xT θ0). With normalization imposed, first regressor coefficient is 1 so that

θ0 = (1, βT0 )T . Let θ = (1, βT )T . Ichimura (1993) showed that under some regularity condi-

tions,

min
β
E{[y − E(y|xT θ)]2}

identifies β0. Thus in this case, z = (x, y) and

m(z, β, F ) =
∂{[y − EF (y|xT θ)]2}

∂β
.
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For the conditional median restriction, the model assumes the conditional median function

M(y|x) to only depend on the index, so that M(y|x) = φ(xT θ0). Ichimura and Lee (2010)

showed that under some regularity conditions,

min
β
E{|y −M(y|xT θ)|}

identifies β0. Thus in this case,

m(z, β, F ) =
∂{|y −MF (y|xT θ)|}

∂β
.

Let x = (x1, x̃
T )T . Note that at β = β0, the derivative of E(y|xT θ) with respect to β equals

φ′(xT θ0)[x̃− E(x̃|xT θ0)].

Thus the target parameter β0 satisfies the first order condition

0 = E{φ′(xT θ0)[x̃− E(x̃|xT θ0)][y − E(y|xT θ0)]}.

Analogously, at β = β0, the derivative of M(Y |XT θ) with respect to β equals

φ′(xT θ0)[x̃− E(x̃|xTβ)]/fy|x(M(y|xT θ0)|x).

Thus the target parameter β0 satisfies the first order condition

0 = E{φ′(xT θ0)[x̃− E(x̃|xT θ0)][2 · 1{y < M(y|xT θ0)} − 1]/fy|x(M(y|xT θ0)|x)}.

Estimators of β0 can often be viewed as choosing β̂ to minimize a quadratic form in sample

moments evaluated at some estimator F̂ of F0. For m̂(β) =
∑n

i=1m(zi, β, F̂ )/n and Ŵ a

positive semi-definite weighting matrix the GMM estimator is given by

β̂ = arg min
β∈B

m̂(β)T Ŵ m̂(β).

In this Section we discuss conditions for asymptotic linearity of this estimator.

For this type of nonlinear estimator showing consistency generally precedes showing asymp-

totic linearity. Conditions for consistency are well understood. For differentiable m̂(β) asymp-

totic linearity of β̂ will follow from an expansion of m̂(β̂) around β0 in the first order conditions.

This gives
√
n(β̂ − β0) = −(M̂T ŴM̄)−1M̂T Ŵ

√
nm̂(β0),

with probability approaching one, where M̂ = ∂m̂(β̂)/∂β, M̄ = ∂m̂(β̄)/∂β, and β̄ is a mean

value that actually differs from row to row of M̄ . Assuming that Ŵ
p−→ W for positive semi-

definite W , and that M̂
p−→ M = E[∂m(zi, β0, F0)/∂β] and M̄

p−→ M, it will follow that
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(M̂T ŴM̄)−1M̂T Ŵ
p−→ (MTWM)−1MTW. Then asymptotic linearity of β̂ will follow from

asymptotic linearity of m̂(β0).

With an additional stochastic equicontinuity condition like that of Andrews (1994), asymp-

totic linearity of m̂(β0) will follow from asymptotic linearity of functionals of F̂ . For F ∈ F let

µ(F ) = E[m(zi, β0, F )] and

R̂3(F ) =
1

n

n∑
i=1

{m(zi, β0, F )−m(zi, β0, F0)− µ(F )}

Note that
√
nR̂3(F ) is the difference of two objects that are bounded in probability (by

E[m(zi, β0, F0)] = 0) and differ only when F is different than F0. Assuming that m(zi, β0, F )

is continuous in F in an appropriate sense we would expect that
√
nR̂3(F ) should be close to

zero when F is close to F0. As long as F̂ is close to F0 in large samples in that sense, i.e. is

consistent in the right way, then we expect that the following condition holds.

Assumption 7:
√
nR̂3(F̂ )

p−→ 0.

This condition will generally be satisfied when the nonparametrically estimated functions are

sufficiently smooth with enough derivatives that are uniformly bounded, see Andrews (1994) and

Van der Vaart and Wellner (1996). Under Assumption 7 asymptotic linearity of µ(F̂ ) will suffice

for asymptotic linearity of
√
nm̂(β0). To see this suppose that µ(F̂ ) is asymptotically linear

with influence function ϕ(z). Then under Assumption 7 and by µ(F0) = E[m(zi, β0, F0)] = 0,

√
nm̂(β0) =

1√
n

n∑
i=1

m(zi, β0, F0) +
√
nµ(F̂ ) + op(1) =

1√
n

n∑
i=1

[m(zi, β0, F0) + ϕ(zi)] + op(1).

Thus Assumption 7 and asymptotic linearity of µ(F̂ ) suffice for asymptotic linearity of m̂(β0)

with influence function m(z, β0, F0) +ϕ(z). In turn these conditions and others will imply that

β̂ is asymptotically linear with influence function

ψ(z) = −(MTWM)−1MTW [m(z, β0, F0) + ϕ(z)].

The influence function ϕ(z) of µ(F ) = E[m(zi, β0, F )] can be viewed as a correction term

for estimation of F0. It can be calculated from equation (3.5) applied to the functional µ(F ).

Assumptions 1 and 2 can be applied with β(F ) = µ(F ) for regularity conditions for asymptotic

linearity of µ(F̂ ). Here is a result doing so

Theorem 5: If β̂
p−→ β0, Ŵ

p−→W , m̂(β) is continuously differentiable in a neighborhood

of β0 with probability approaching 1, for any β̄
p−→ β0 we have ∂m̂(β̄)/∂β

p−→ M, MTWM

is nonsingular, Assumptions 1 and 2 are satisfied for β(F ) = E[m(zi, β0, F )] and ψ(z) =

[31]



ϕ(z), and Assumption 7 is satisfied then β̂ is asymptotically linear with influence function

−(MTWM)−1MTW [m(z, β0, F0) + ϕ(z)].

For brevity we do not give a full set of primitive regularity conditions for the general GMM

setting. They can be formulated using the results above for linear functionals as well as Frechet

differentiability, convergence rates, and primitive conditions for Assumption 7.

8 Conclusion

In this paper we have given a method for calculating the influence function of a semiparametric

estimator. We have also considered ways to use that calculation to formulate regularity condi-

tions for asymptotic linearity. Consideration of other uses of the influence function are outside

the scope of this paper.

9 Appendix A: Proofs

We first give the formulas for the marginal pdf fτ (ã) of a measureable function a(zi) conditional

expectation Eτ [b(zi)|a(zi)] when the expectation is Eτ [b(zi)] = E[b(zi){1 + τS(zi)}].
Lemma A1: For fτ (z̃) = f0(z̃)[1− τ + τδ(z)] and S(z) = δ(z)− 1 the marginal pdf of any

measureable function a(zi) is fτ (ã) = f0(ã){1 + τE[S(zi)|a(zi) = ã]} and for any b(zi) with

E[|b(zi)|] <∞,

Eτ [b(zi)|a(zi)] =
E[b(zi)|a(zi)] + τE[b(zi)S(zi)|a(zi)]

1 + τE[S(zi)|a(zi)]
.

Proof: Let 1i = 1(a(zi) ∈ A) for any measureable set A. By iterated expectations,τ∫
1(ã ∈ A)fτ (a)dµ = E[1i] + τE[1iE[S(zi)|ai]] = E[1i] + τE[1iS(zi)] = Eτ [1i],

Eτ [1i •
E[b(zi)|a(zi)] + τE[b(zi)S(zi)|a(zi)]

1 + τE[S(zi)|a(zi)]
]

= E[1i{E[b(zi)|a(zi)] + τE[b(zi)S(zi)|a(zi)]}] = E[1ib(zi)] + τE[1ib(zi)S(zi)]

= E[1ib(zi){1 + τS(zi)}] = E[1ib(zi)].Q.E.D.

Proof of Theorem 1: Note that in a neighborhood of τ = 0,
[
(1− τ)f0(z̃) + τghz (z̃)

]1/2
is continuously differentiable and we have

sτ (z̃) =
∂

∂τ

[
(1− τ)f0(z̃) + τghz (z̃)

]1/2
=

1

2

ghz (z̃)− f0(z̃)

[τghz (z̃) + (1− τ)f0(z̃)]
1/2
≤ C g

h
z (z̃) + f0(z̃)

f0(z̃)1/2
.

By f0(z̃) bounded away from zero on a neighborhood of z and the support of ghz (z̃) shrinking

to zero as h −→ 0 it follows that there is a bounded set B with ghz (z̃)/f0(z̃)1/2 ≤ C1(z̃ ∈ B) for
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h small enough. Therefore, it follows that∫
ghz (z̃) + f0(z̃)

f0(z̃)1/2
dµ ≤ C

∫
1(z̃ ∈ B)dz̃ + 1 <∞.

Then by the dominated convergence theorem
[
(1− τ)f0(z̃) + τghz (z̃)

]1/2
is mean-square differ-

entiable and I(τ) =
∫
sτ (z̃)2dz̃ is continuous in τ on a neighborhood of zero for all h small

enough. Also, by ghz (z̃) −→ 0 for all z̃ 6= z and f0(z̃) > 0 on a neighborhood of it follows

that ghz (z̃) 6= f0(z̃) for all τ and h small enough and hence I(τ) > 0. Then by Theorem 7.2

and Example 6.5 of Van der Vaart (1998) it follows that for any τn = O(1/
√
n) a vector of n

observations (z1, ..., zn) that is i.i.d. with pdf fτn(z̃) = (1− τn)f0(z̃) + τng
h
z (z̃) is contiguous to

a vector of n observations with pdf f0(z̃). Therefore,

√
n(β̂ − β0) =

1√
n

n∑
i=1

ψ(zi) + op(1)

holds when (z1, ..., zn) are i.i.d. with pdf fτn(z̃).

Next by ψ(z̃) continuous at z, ψ(z̃) is bounded on a neighborhood of z. Therefore for small

enough h,
∫
‖ψ(z̃)‖2 ghz (z̃)dz̃ < ∞, and hence

∫
‖ψ(z̃)‖2 fτ (z̃)dz̃ = (1 − τ)

∫
‖ψ(z̃)‖2 fτ (z̃)dz̃ +

τ
∫
‖ψ(z̃)‖2 ghz (z̃)dz̃ is continuous in τ in a neighborhood of τ = 0. Also, for µhz =

∫
ψ(z̃)ghz (z̃)dz̃

note that
∫
ψ(z̃)fτ (z̃)dz̃ = τµhz .

Suppose (z1, ..., zn) are i.i.d. with pdf fτn(z̃). Let β(τ) = β((1−τ)F0+τGhz ) and βn = β(τn).

Adding and subtracting terms,

√
n
(
β̂ − βn

)
=
√
n(β̂ − β0)−

√
n(βn − β0) =

1√
n

n∑
i=1

ψ(zi) + op(1)−
√
n(βn − β0)

=
1√
n

n∑
i=1

ψ̆n(zi) + op(1) +
√
nτnµ

h
z −
√
n(βn − β0), ψ̆n(zi) = ψ(zi)− τnµhz .

Note that
∫
ψ̆n(z̃)fτn(z̃)dz̃ = 0. Also, for large enough n,

lim
M−→∞

∫
1(
∥∥∥ψ̆n(z̃)

∥∥∥ ≥M)
∥∥∥ψ̆n(z̃)

∥∥∥2
fτn(z̃)dz̃ ≤ lim

M−→∞
C

∫
1(‖ψ(z̃)‖ ≥M/2)(‖ψ(z̃)‖2+C)f0(z̃)dz̃ −→ 0,

so the Lindbergh-Feller condition for a central limit theorem is satisfied. Furthermore, it follows

by similar calculations that
∫
ψ̆n(z̃)ψ̆n(z̃)T fτn(z̃)dz̃ −→ V. Therefore, by the Lindbergh-Feller

central limit theorem,
∑n

i=1 ψ̆n(zi)
d−→ N(0, V ). Therefore we have

√
n(β̂− βn)

d−→ N(0, V ) if

and only if
√
nτnµ

h
z −
√
n(βn − β0) −→ 0. (9.27)

Suppose that β(τ) is differentiable at τ = 0 with derivative µhz . Then

√
n(βn − β0)−

√
nτnµ

h
z =
√
no(τn) =

√
nτno(1) −→ 0
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by
√
nτn bounded. Next, we follow the proof of Theorem 2.1 of Van der Vaart (1991), and

suppose that eq. (9.27) holds for all τn = O(1/
√
n). Consider any sequence rm −→ 0. Let nm

be the subsequence such that

(1 + nm)−1/2 < rm ≤ n−1/2
m .

Let τn = rm for n = nm and τn = n−1/2 for n /∈ {n1, n2, ...}. By construction, τn = O(1/
√
n),

so that eq (9.27) holds. Therefore it also holds along the subsequence nm, so that

√
nmrm

{
µhz −

β(rm)− β0

rm

}
=
√
nmrmµ

h
z −
√
nm[β(rm)− β0] −→ 0.

By construction
√
nmrm is bounded away from zero, so that µhz − [β(rm)− β0] /rm −→ 0.

Since rm is any sequence converging to zero it follows that β(τ) is differentiable at τ = 0 with

derivative µhz .

We have now shown that eq. (9.27) holds for all sequences τn = O(1/
√
n) if and only if

β(τ) is differentiable at τ = 0 with derivative µhz . Furthermore, as shown above eq. (9.27)

holds if and only if β̂ is regular. Thus we have shown that β̂ is regular if and only if β(τ) is

differentiable at τ = 0 with derivative µhz .

Finally note that as h −→ 0 it follows from continuity of ψ(z̃) at z, K(u) bounded with

bounded support, and the dominated convergence theorem that

µhz =

∫
ψ(z̃)ghz (z̃)dz̃ = h−r

∫
ψ(z̃)K((z̃ − z)/h)dz̃ =

∫
ψ(z + hu)K(u)du.Q.E.D.

Proof of Theorem 2: We will first prove that Eτ [∆(wi)|xi] is complete as a function of

∆(wi) for all τ small enough. Consider τ ∈ [0, τ̄) for τ̄ = min{1/|1− Eκ[∆∗(w)]|, 1}. Consider

any ∆(wi) 6= 0. Note that for large enough j by f(y, w|x) bounded away from zero,

E[δ(zi)∆(wi)|xi] = Eκ[∆(wi)]δx(xi), Eκ[∆(w̃)] =

∫
∆(wi)κw(w̃)dµw̃.

From equation (3.8), Eτ [∆(wi)|xi] = 0 only if

0 = (1− τ)E [∆(wi)|xi] + τEκ [∆(wi)] δx(xi).

If Eκ[∆(wi)] = 0 note that (1− τ)E[∆(wi)|xi] 6= 0 by hypothesis i), so that Eτ [∆(wi)|xi] 6= 0.

If Eκ[∆(wi)] 6= 0 then E[∆(wi)|xi] = Cδx(xi) for C = τEκ[∆(wi)]/(1 − τ) 6= 0. Note that

E[C∆∗(wi)|xi] = Cδx(xi) by hypothesis ii) so by hypothesis i), ∆(wi) = C∆∗(wi). Substituting

this back in the above equation it follows that

0 = {(1− τ)C + τCEκ [∆∗(wi)]}δx(xi).
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By C 6= 0 and δx(xi) positive with positive probability this equation implies 0 = (1 − τ) +

τEκ [∆∗(wi)] , which does not hold by τ ∈ [0, τ). Therefore Eτ [∆(wi)|xi] 6= 0 for all τ small

enough.

Next consider γ(wi, C) = γ0(wi) + C∆∗(wi) for a constant C. Note that Eτ [γ(wi, C)|xi] =

Eτ [yi|xi] if and only if

E[γ(wi, C)|xi] + τE[δ(zi)γ(wi, C)|xi] = E[yi|xi] + τE[δ(zi)yi|xi].

Noting that E[γ0(wi)|xi] = E[yi|xi] and E[∆∗(wi)|xi] = δx(xi), this equation holds if any only

if

Cδx(xi) + τ(Eκ[γ0(wi)] + CEκ[∆∗(w̃)])δx(xi) = τEκ[ỹ]δx(xi).

Since δx(xi) is positive with positive probablity this equation holds if and only if

C + τ(Eκ[γ0(w̃)] + CEκ[∆∗(w̃)]) = τEκ[ỹ].

Solve for C = c(τ) to obtain

c(τ) =
τEκ[ỹ − γ0(x̃)]

1 + τEκ[∆∗(wi)]
,

for all τ small enough. Then by construction and by differentiating c(τ) at τ = 0 the conclusion

holds. Q.E.D.

Proof of Theorem 2: This follows as outlined in the text from Assumptions 1 and 2 and

eq. (5.23) and the fact that if several random variables converge in probability to zero then so

does their sum. Q.E.D.

Proof of Theorem 3: By the first dominance condition of Assumption 4,
∫
ψ(z+ t)f(z)dz

is continuously differentiable with respect t up to order sζ in a neighborhood of zero and for all

λ with |λ| ≤ sζ ,

∂λ
∫
ψ(z + t)f0(z)dz =

∫
∂λψ(z + t)f0(z)dz.

For any λ with |λ| = sζ it follows by a change of variables z̃ = z + t and the second dominance

condition that ∫
∂λψ(z + t)f0(z)dz =

∫
∂λψ(z̃)f0(z̃ − t)dz̃

is continuously differentiable in tup to order sf in a neighborhood of zero and that for any λ′

with
∣∣λ′∣∣ ≤ sf

∂λ
′
∫
∂λψ(z̃)f0(z̃ − t)dz̃ =

∫
∂λψ(z̃)∂λ

′
f0(z̃ − t)dz̃.
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Therefore ρ(t) =
∫
ψ(z+ t)f0(z)dz is continuously differentiable of order sζ + sf in a neighbor-

hood of zero. Since ρ(0) = 0 and K(u) has bounded support and is order sζ + sf the usual

expansion for kernel bias gives

E[β̂]− β0 =

∫
ρ(hu)K(u)du = O(hsζ+sf ).

Therefore, E[
√
nR̂1(F̂ )] −→ 0.

Next, by continuity almost everywhere of ψ(z) in Assumption 3 it follows that ψ(zi+hu) −→
ψ(zi) as h −→ 0 with probability one (w.p.1). Also, by Assumption 3 sup|t|≤ε |ψ(zi+ t)| is finite

w.p.1, so that by K(u) having bounded support and the dominated convergence theorem, w.p.1,

ψ(zi, h) =

∫
ψ(zi + hu)K(u)du −→ ψ(zi).

Furthermore, for h small enough

ψ(zi, h)2 ≤ C sup
|t|≤ε

ψ(zi + t)2,

so it follows by the dominated convergence theorem that E[{ψ(zi, h)−ψ(zi)}2] −→ 0 as h −→ 0.

Therefore,

V ar(
√
nR̂1(F̂ )) = V ar(n−1/2

n∑
i=1

{ψ(zi, h)− ψ(zi)}) ≤ E[{ψ(zi, h)− ψ(zi)}2] −→ 0.

Since the expectation and variance of
√
nR̂1(F̂ ) converges to zero it follows that Assumption

1 is satisfied. Assumption 2 is satisfied because β(F ) is a linear functional, so the conclusion

follows by Theorem 2. Q.E.D.

Proof of Theorem 4: Since everything in the remainders is invariant to nonsingu-

lar linear transformations of pK(x) it can be assumed without loss of generality that Σ =

E[pK(xi)p
K(xi)

T ] = I. Let δ̃(xi) = ΓT pK(xi) = γ′δp
K(xi) so that by Assumption 6, E[{δ̃(xi)−

δ(xi)}2] −→ 0. Note that by V ar(qi|xi) bounded and the Markov inequality,

n∑
i=1

{δ̂(xi)− δ(xi)}2V ar(qi|xi)/n ≤ C

n∑
i=1

{δ̂(xi)− δ(xi)}2/n

≤ C

n∑
i=1

{δ̃(xi)− δ(xi)}2/n+ C

n∑
i=1

{ΓT (Σ̂−1 − I)pK(xi)}2/n

≤ op(1) + ΓT (Σ̂−1 − I)Σ̂(Σ̂−1 − I)Γ = op(1),

where the last equality follows as in Step 1 of the proof of Lemma 4.1 of Belloni et. al. (2015).

We also have

ΓTΓ = E[δ(x)pK(xi)
T ]Σ−1E[δ(x)pK(xi)] = E[{γTδ pK(xi)}2].
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By cK −→ 0 it follows that E[{γTδ pK(xi)}2] −→ E[δ(xi)
2] > 0, so that Γ 6= 0. Let Γ̄ =

Γ/(ΓTΓ)1/2, so that Γ̄T Γ̄ = 1. Note that

Γ̄T Σ̂−1
n∑
i=1

pK(xi)[d0(xi)− pK(xi)
Tγ]/n = Γ̄T (γ̃ − γ), γ̃ = Σ̂−1

n∑
i=1

pK(xi)d0(xi)/n

Let R1n(Γ) and R2n(Γ) be defined by the equations

√
nΓ̄T (γ̃ − γ) = Γ̄T

n∑
i=1

pK(xi)[d0(xi)− pK(xi)
Tγ]/
√
n+R1n(Γ̄) = R1n(Γ) +R2n(Γ̄).

By eqs. (4.12) and (4.14) of Lemma 4.1 of Belloni et. al. (2015) and by Assumption 5 we have

R1n(Γ̄) = Op(

√
ξ2
K (lnK) /n(1 +

√
K`KcK))

p−→ 0, R2n(Γ̄) = Op(`KcK)
p−→ 0.

Noting that ΓTΓ ≤ E[δ(xi)
2] = O(1), we have

ΓT Σ̂−1
n∑
i=1

pK(xi)[d0(xi)− pK(xi)
Tγ]/n = (ΓTΓ)1/2Γ̄T (γ − γ) = O(1)op(1)

p−→ 0.

Also, note that E[pK(xi){d0(xi)− pK(xi)
Tγ}] = 0, so that by the Cauchy-Schwarz inequality,

√
n
∣∣E[δ(xi){d0(xi)− pK(xi)

Tγ}]
∣∣ =
√
n
∣∣E[{δ(xi)− pK(xi)

Tγδ}{d0(xi)− pK(xi)
Tγ}]

∣∣ ≤ √ncδKcK −→ 0.

Then the conclusion follows by the triangle inequality and eq. (6.26). Q.E.D.

Proof of Theorem 5: As discussed in the text it suffices to prove that m̂(β0) is asymp-

totically linear with influence function m(z, β0, F0) + α(z). By Assumption 7 it follows that

m̂(β0) =
1

n

n∑
i=1

m(zi, β0, F0) + µ(F̂ ) + op(n
−1/2).

Also, by the conclusion of Theorem 1 and µ(F0) = 0 we have

µ(F̂ ) =
1

n

n∑
i=1

ϕ(zi) + op(n
−1/2).

By the triangle inequality it follows that

m̂(β0) =
1

n

n∑
i=1

[m(zi, β0, F0) + ϕ(zi)] + op(n
−1/2).Q.E.D.
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