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Abstract

This paper studies a reverse calculation method for consumer’s
preference from demand function that is not necessarily differentiable.
Compared with the classical theory, the feature of this study is to
avoid the use of the Slutsky matrix. Instead, we assume that the
solution of the partial differential equation corresponding with the
Shephard’s lemma has a concave solution. If the demand function
is continuously differentiable, then this assumption is equivalent to
the negative semi-definiteness and symmetry of the Slutsky matrix.
Further, we demonstrate that our result is applicable for a demand
function with quasi-linear preference by showing an example.
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1 Introduction

In this paper, we construct a reverse calculation method for consumer’s pref-
erence from demand function that is not necessarily differentiable. This
study is concerned with the integrability theory, and non-parametric estima-
tion theory on consumer’s preference.
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In traditional consumer theory, a consumer has two theoretical compo-
nents: the demand function and the preference relation. The demand func-
tion is treated as an observable thing, and the preference relation as an
unobservable one. If there is a method for calculating the preference rela-
tion from the demand function, then the preference relation becomes to be
observable. This is the original motivation of the integrability theory.

However, as time goes on, economists found that the demand function
is also unobservable——the observable things are only finite purchase data,
and to obtain the demand function, we must estimate it. In this view,
the meaning of the integrability theory should be changed. The preference
relation is unobservable: but the demand function is also unobservable. Is
this theory nonsense? Our answer is NO. The difficulties to estimate these
are different. The demand function corresponds with the purchase data, and
it is observable. On the other hand, the preference relation corresponds with
no observable data. The preference is hidden in their mind. Therefore, if
there is a method for calculating the preference relation from the demand
function, then such a method decreases the difficulty to estimate the
preference relation. This is our purpose to study such a reverse calculation
method.

To archieve this purpose, however, we must answer the following five
question.

1) When does the demand function have the corresponding preference rela-
tion? (rationalizability, which is a classical theme)

2) How do we calculate the preference relation actually? (constructivity)

3) Is the corresponding preference relation unique? (recoverability)

4) Is the corresponding preference relation continuous?

5) When is the estimate error small?

The most important questions are 2) and 5). To use this method for econo-
metrics, we must prepare an easy and simple method for calculating the
preference relation. Hence, 2) is important. Moreover, we hope that if the
estimate error of the demand function is sufficiently small, then the estimate
error of the corresponding preference relation is also small. Thus, 5) is also
important. However, to show 5), clearly 3) is needed: if 3) is violated, then
we can miss the true preference relation even if we can detect the true de-
mand function. Moreover, to argue 5), we must determine the topology of
the space of both demand functions and preference relations. We should use
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the closed convergence topology for the topology of the latter space, and thus
4) is needed.

Hosoya (2016a) argues the above five questions, and answers all ques-
tions under the continuous differentiability of demand functions. However,
there are three reasons why this result is not sufficiently good. First, Hosoya
(2016a) uses the local C1 topology as the topology of the space of demand
functions. However, under this topology, the true demand function is as-
sumed to be differentiable, which is a too strong assumption. Second, almost
every quasi-linear preference relation has a non-smooth demand function.
Therefore, Hosoya (2016a) could not treat such preference relations. Third,
this theory could not treat Katzner’s (1968) counterexample.

The main result is theorem 1. Theorem 1 shows that for a demand
function f with some mild requirements, if for every (p,m), there is a concave
solution of the following partial differential equation

DE(q) = f(q, E(q)), E(p) = m,

then the demand function f can be rationalized by a utility function uf,p̄.
This theorem answers the questions 1) and 2) simultaneously.

Hosoya (2016b) shows that if f is continuously differentiable, then the ex-
istence of such E is equivalent to the negative semi-definiteness and symmetry
of the Slutsky matrix. However, if f is not differentiable, then the Slutsky
matrix cannot be defined. If f is locally Lipschitz, then by Rademacher’s
theorem, the Slutsky matrix can be defined at almost every point. How-
ever, this condition is far from the continuous differentiability, and we must
add an assumption for ensuring conditions in theorem 1. Fortunately, we can
obtain a reasonable sufficient condition for this assumption. (theorems 2-3)
However, Katzner’s example is not locally Lipschitz, though it is income-
Lipschitzian, and thus the above theorems cannot be used. Instead, our
theorems can be used in almost all quasi-linear cases, and thus, by using our
theorems, we can recover a quasi-linear preference relation from the corre-
sponding demand function (example 1). Note that the above partial differ-
ential equation corresponds with the Shephard’s lemma, and therefore, if f
is rationalizable, then such a E exists and it is the expenditure function.

The questions 3)-5) is not treated in this paper. Hosoya (2016c) treats
3) and 4) partially.

The next section treats our main results. The proof is in section 3.
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2 Results

2.1 Definitions of Notations

We consider that the notation Ω denotes the consumption space, and assume
that Ω is a subset of Rn

+, where n ≥ 2 be given. We write x ≫ y if xi > yi
for any i.

Choose any binary relation ≿ on Ω, that is, ≿⊂ Ω2. We write x ≿ y if
(x, y) ∈≿ and x ̸≿ y if (x, y) /∈≿. We say that ≿ is

• complete if for any x, y ∈ Ω, either x ≿ y or y ≿ x,

• transitive if for any x, y, z ∈ Ω, x ≿ y and y ≿ z imply x ≿ z,

• continuous if ≿ is closed in Ω2,

• upper semi-continuous if for any x ∈ Ω, the set {y ∈ Ω|y ≿ x} is
closed in Ω,

• monotone if for any x, y ∈ Ω, x ≿ y and y ̸≿ x when x ≫ y,

• strictly convex if for any x, y ∈ Ω with x ≿ y and x ̸= y, and t ∈]0, 1[,
(1− t)x+ ty ≿ y and y ̸≿ (1− t)x+ ty.

We call a binary relation ≿ on Ω a preference relation if it is complete
and transitive. If ≿ is a preference relation, then we write x ≻ y if x ≿ y
and y ̸≿ x, and x ∼ y if x ≿ y and y ≿ x.

Suppose that u : Ω → R satisfies the following condition:

u(x) ≥ u(y) ⇔ x ≿ y.

Then, we say that u represents ≿, or u is a utility function of ≿. Note
that if some function u represents ≿, then ≿ is a preference relation, and ≿
is continuous (resp. upper semi-continuous) if u is continuous. (resp. upper
semi-continuous.)1

Next, we call a function f : Rn
++ × R++ → Ω a demand function if it

satisfies budget inequality: that is,

p · f(p,m) ≤ m,

for any (p,m) ∈ Rn
++ × R++. If

p · f(p,m) = m
1Conversely, if a preference relation ≿ is continuous, (resp. upper semi-continuous,)

then there is a continuous (resp. upper semi-continuous) function u that represents ≿.
This result is obtained by the second countability of Ω. See Debreu (1954).
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for any (p,m) ∈ Rn
++×R++, then this demand function is said to satisfy the

Walras’ law.
Suppose that f is a demand function. Then, the following relations can

be defined.

x ≻r y ⇔ x ̸= y,∃(p,m), x = f(p,m) and p · y ≤ m,

x ≻ir y ⇔ ∃x0, ..., xk ∈ Ω, x0 = x, xk = y,

and xi+1 ≻r xi for any i = 0, ..., k − 1.

Then, f satisfies the weak axiom if ≻r is asymmetric (that is, x ≻r y implies
y ̸≻r x), and f satisfies the strong axiom if ≻ir is asymmetric. Clearly, the
strong axiom implies the weak axiom.

Now, let ≿ be a binary relation on Ω and define

f≿(p,m) = {x ∈ Ω|∀y, p · y ≤ m ⇒ x ≿ y}.

If ≿ is strongly monotone, then f≿ satisfies Walras’ law. We call f≿ a demand
relation induced by ≿ and say that ≿ corresponds with f (or, f corresponds
with ≿) if f = f≿. If u represents ≿, then f≿ is sometimes written as fu,
and we say that u corresponds with f (or, f corresponds with u) if fu = f .
It is well known that for any demand function f , f = f≿ for some preference
relation ≿ if and only if f satisfies the strong axiom.2

Finally, suppose that f is a demand function. f is said to be income-
Lipschitzian3 if for any compact set C ⊂ Rn

++ × R++, there exists L > 0
such that for any p ∈ Rn

++ and m1,m2 > 0 with (p,mi) ∈ C,

∥f(p,m1)− f(p,m2)∥ ≤ L|m1 −m2|.

Similarly, f is said to be locally Lipschitz if for any compact set C ⊂
Rn

++ × R++, there exists L > 0 such that for any (p1,m1), (p2,m2) ∈ C,

∥f(p1,m1)− f(p2,m2)∥ ≤ L∥(p1,m1)− (p2,m2)∥.

2.2 Main Result

Theorem 1. Suppose that f : Rn
++ × R++ → Ω is a continuous, income-

Lipschitzian demand function that satisfies the Walras’ law. Further, the
following two condition holds.

2See Richter (1966) or section 3.J of Mas-Colell, Whinston, and Green (1995).
3This name is in Mas-Colell (1977).
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(I) for any (p,m) ∈ Rn
++×R++, there exists a concave solution E : Rn

++ →
R++ of the following partial differential equation:

DE(q) = f(q, E(q)), (1)

with the initial value condition E(p) = m, and

(II) If x ̸= y, x = f(p,m), y = f(q, w), E is a solution of (1) with E(p) = m,
and w ≥ E(q), then p · y > m,

Let p̄ ≫ 0 and define uf,p̄(x) = 0 if x is not in the range of f , and uf,p̄(x) =
E(p̄) if x = f(p,m) and E is the solution of the above equation. Then, this
definition of uf,p̄(x) is independent of the choice of (p,m), and f = fuf,p̄ .

Remarks. Under the income-Lipschitzian property, the solution E of (1) is
unique. To verify this, let E1, E2 be solutions of (1) with E1(p) = E2(p) = m.
Choose any q ∈ Rn

++, and define ci(t) = Ei((1 − t)p + tq). Then, ci are
solutions of the following ordinary differential equation:

ċ(t) = f((1− t)p+ tq, c(t)) · (q − p), c(0) = m.

By Picard-Lindelöf theorem, the solution of this equation is unique. Hence,
the income-Lipschitzian property implies that c1(t) ≡ c2(t), and thus E1(q) =
c1(1) = c2(1) = E2(q), as desired.

Note that, if f = f≿ for some preference relation, then we have (I) holds
by Shephard’s lemma. Moreover, if the range of f = f≿ is either open
or convex, then we can show that (II) holds. Therefore, (I) and (II) is a
necessary and sufficient condition of the strong axiom under some additional
condition.

In general, to obtain the solution E is not so easy. However, we can use
the following “guess and verify” method. First, if theorem 1 can be applied,
then E must be the expenditure function of uf,p̄ (by Shephard’s lemma), and
thus it must be homogeneous of degree one. Second, if there exists the
solution E of (1), then c(t) = E((1− t)p+ tq) is the solution of

ċ(t) = f((1− t)p+ tq, c(t)), c(0) = m.

In particular, c(1) = E(q). Therefore, to obtain a candidate of E, the fol-
lowing method is useful. First, we solve the above equation, and define
E(q) = c(1). Second, we examine whether this function E is actually the
concave solution of (1). If either E cannot be defined for some q or E is
not the concave solution of (1), then there is no concave solution of (1). In
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this case, the expenditure function is absent, and thus f must violate the
strong axiom. If E can be defined and is the concave solution of (1), then
theorem 1 can be applied. In next subsection, we demonstrate an example,
and calculate E explicitly.

Actually, to verify (II) of theorem 1 is also not so easy. Therefore, we
want to obtain a sufficient condition of (II) that is easier to check than (II)
itself. The following theorem answers this question. Note that, if f is locally
Lipschitz, then by Rademacher’s theorem, it is differentiable at almost every
point.

Theorem 2. Suppose that f : Rn
++×R++ → Ω is a locally Lipschitz demand

function that satisfies the Walras’ law. Moreover, suppose that (I) of theorem
1 holds. Define

df(p,m; q, w) = lim sup
t↓0

f(p+ tq,m+ tw)− f(p,m)

t
,

for every (p,m) ∈ Rn
++ × R++ and (q, w) ∈ Rn × R, and suppose that

(*) for every (p,m) ∈ Rn
++ × R++ and (q, w) ∈ Rn × R, there exists a

convergent sequence ((pk,mk)) to (p,m) such that f is differentiable at
(pk,mk), and

df(p,m; q, w) = lim
k→∞

df(pk,mk; q, w).

Then, (II) of theorem 1 holds.

Theorem 3. Suppose that f : Rn
++ × R++ → Ω is a continuous demand

function that satisfies the Walras’ law. Moreover, suppose that there exists
a partition A1, ..., AN of Rn ×R++ and continuously differentiable functions
f i : Rn

++ ×R++ → Rn such that f(p,m) = f i(p,m) for (p,m) ∈ Ai. Further,
suppose that (I) of theorem 1 holds. Then, (*) holds.

2.3 Examples

Consider the problem

max u(x) =
√
x1 + x2,

subject to. x ≥ 0,

p · x ≤ m.
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Then, the solution of this problem is

f(p,m) =

{
(m
p1
, 0) if p22 ≥ 4p1m,

(
p22
4p21

,
4p1m−p22
4p1p2

) otherwise.

This function is not differentiable if p22 = 4p1m. However, it satisfies the
requirement of theorem 3. We shall guess the solution of the equation (1)
with above f , and verify that it is actually the concave solution. First, choose
any q = (q1, q2). If E is a solution of (1), then c(t) = E((1− t)p+ tq) satisfies
the following ordinary differential equation:

ċ(t) = f((1− t)p+ tq, c(t)) · (q − p), c(0) = m. (2)

Therefore, we can guess that if c(t) is a solution of (2) defined on [0, 1], then
c(1) coincides with E(q). Second, define

f 1(p,m) = (
m

p1
, 0), f 2(p,m) = (

p22
4p21

,
4p1m− p22

4p1p2
),

and consider
ċi(t) = fi((1− t)p+ tq, ci(t)) · (q − p). (3)

To solve (3), we have

c1(t) = c1(s)
p1 + t(q1 − p1)

p1 + s(q1 − p1)
,

and if q2 = p2, then

c2(t) = c2(s)−
1

4
[
(p2 + t(q2 − p2))

2

p1 + t(q1 − p1)
− (p2 + t(q2 − p2))

2

p1 + s(q1 − p1)
].

Third, suppose that p2 = q2, 4p1m ≤ p22, and 4q1c1(1) ≤ q22, where c1(0) = m.
Note that 4(p1 + t(q1 − p1))c1(t) is monotone. Thus, in this case we have
c(t) = c1(t) on [0, 1], and

4q1c1(1) =
4q21m

p1
≤ q22.

Therefore, we obtain a candidate of E(q): that is,

E(q) =
q1m

p1
, (4)
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if q1
q2

≤
√

p1
4m

. We can guess that E is homogeneous of degree one, we can
remove the assumption p2 = q2. By easy calculation, we can confirm that E
is actually the concave solution of equation (1) on the set {q| q1

q2
≤

√
p1
4m

}.
Fourth, suppose that p2 = q2, 4p1m ≤ p22, and 4q1c1(1) > q22, where

c1(0) = m. Note that q1 ̸= p1. We can guess that c(t) = c1(t) on [0, t∗], and
c(t) = c2(t) on [t∗, 1], where c(t∗) = c1(t

∗) = c2(t
∗) and ċ1(t

∗) = ċ2(t
∗). Then,

c1(t
∗)(q1 − p1)

p1 + t∗(q1 − p1)
= ċ1(t

∗) = ċ2(t
∗) =

p22(q1 − p1)

4(p1 + t∗(q1 − p1))2
,

and thus

c(t∗) = c1(t
∗) = c2(t

∗) =
p22

4(p1 + t∗(q1 − p1))
.

Then,

c1(t
∗) =

m(p1 + t∗(q1 − p1))

p1
=

p22
4(p1 + t∗(q1 − p1))

,

and hence, we obtain

t∗ =
1

q1 − p1
[

√
p1p22
4m

− p1].

Check that t∗ ∈ [0, 1] if and only if q1
q2

≥
√

p1
4m

, which is equivalent to

4q1c1(1) ≥ q22. We have assumed 4q1c1(1) > q22, this assumption holds, and
q1 < p1. Then,

c(t) =

{
mp1+t(q1−p1)

p1
if t ≤ t∗,

(p2 + t(q2 − p2))
√

m
p1

− (p2+t(q2−p2))2

4(p1+t(q1−p1))
if t ≥ t∗.

Particularly,

c(1) = q2

√
m

p1
− q22

4q1
.

Therefore, we obtain a candidate of E: that is,

E(q) = q2

√
m

p1
− q22

4q1
,

where this form is homogeneous of degree one. Thus, we can guess that

E(q) =

{
q1m
p1

, if q1
q2

≤
√

p1
4m

,

q2
√

m
p1

− q22
4q1

, otherwise.
(5)
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We can check that this E is actually the concave solution of (1) with E(p) =
m.

By similar arguments, we obtain a candidate of the solution E of (1) even
if 4p1m > p22: that is,

E(q) =

q1

(
2p2
p1

+
4p1m−p22
4p1p2

)2

, if q2
q1

≥ 2
(

2p2
p1

+
4p1m−p22
4p1p2

)
,

q2

(
2p2
p1

+
4p1m−p22
4p1p2

)
− q22

4q1
, otherwise.

(6)

It can easily verified that this E is actually the concave solution of (1).
Therefore, theorem 1 can be applied.

Set p̄ = (1, 1), and choose any x ∈ Rn
+ with x1 > 0, x2 = 0. If 2

√
x1 ≤

1, then x = f(p̄, x1), and thus uf,p̄(x) = x1. If 2
√
x1 > 1, then x =

f( 1
2
√
x1
, 1,

√
x1/2), and thus uf,p̄(x) =

√
x1 − 1

4
.

Next, choose any x ∈ Rn
+ with x1, x2 > 0. Set p2 = 1, p1 = 1

2
√
x1
, and

m = x2 +
√
x1

2
. Then, x = f(p,m). If 2(

√
x1 + x2) ≤ 1, then

uf,p̄(x) = (
√
x1 + x2)

2,

and if 2(
√
x1 + x2) > 1, then

uf,p̄(x) =
√
x1 + x2 −

1

4
.

To summarize, we have

uf,p̄(x) =

{
(u(x))2, if 2u(x) ≤ 1,

u(x)− 1
4
, if 2u(x) > 1.

(7)

Clearly, uf,p̄ represents the same preference as u.

3 Proofs

3.1 Proof of Theorem 1

Suppose that (I) and (II) holds. Let x ̸= y, x = f(p,m), y = f(q, w), p·y ≤ m,
and E (resp. F ) be the solution of (1) with E(p) = m (resp. F(q)=w).
By contraposition of (II), we have E(q) > w = F (q), and thus, we have
E(r) > F (r) for every r ∈ Rn

++. Particularly, m = E(p) > F (p), and hence,
we have q · x > w by (II), which implies that the weak axiom holds.

Suppose that x = f(p,m) = f(q, w). Let p(t) = (1 − t)p + tq and
m(t) = (1− t)m + tw. If f(p(t),m(t)) = y ̸= x for t ∈ [0, 1], then p(t) · y =
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m(t) = p(t) · x, and thus by the weak axiom, p · y > m and q · y > w, which
implies that p(t) · y > m(t), a contradiction. Therefore, f(p(t),m(t)) ≡ x on
[0, 1]. Then,

ṁ(t) = ṗ(t) · x = (q − p) · f(p(t),m(t)), m(0) = m.

Meanwhile, if E is a solution of (1) with E(p) = m, and c(t) = E((1−t)p+tq),
then

ċ(t) = (q − p) · f(p(t), c(t)), c(0) = m.

Therefore, both c(t) and m(t) are the solution of the same ordinary dif-
ferential equation. By income-Lipschitzian assumption and Picard-Linderöf
theorem, such a solution is unique, and thus c(t) ≡ m(t). Particularly,

E(q) = c(1) = m(1) = w,

which implies that the definition of uf,p̄(x) does not depend on the choice of
(p,m).

Next, let x = f(p,m), x ̸= y and p · y ≤ m. If y is not in the range of
f , then uf,p̄(y) = 0 < uf,p̄(x). Otherwise, let E (resp. F ) be the solution
of (1) with E(p) = m (resp. F (q) = w). By contraposition of (II), we have
E(q) > w = F (q). This implies that E(p̄) > F (p̄), and thus uf,p̄(x) > uf,p̄(y).
Therefore, we have fuf,p̄(p,m) = x = f(p,m). This completes the proof. ■

3.2 Proof of Theorem 2

First, we introduce a lemma.

Lemma 1. Choose any p, q ∈ Rn
++ and m > 0, and let E be the solution

of (1) and p(t) = (1 − t)p + tq, d(t) = p · f(p(t), E(p(t))). Then, d(t) is
nondecreasing on [0, 1].

Proof of lemma 1. Suppose not. Then, there exists t1, t2 ∈ [0, 1] such that
t1 < t2 and d(t1) > d(t2). Let

c(t) = (t− t1)(d(t2)− d(t1))− (t2 − t1)(d(t)− d(t1)).

Then, c(t1) = c(t2) = 0. Because c(t) is continuous on [t1, t2], there exists
t∗ ∈]t1, t2[ such that c(t∗) attains either the maximum or the minimum on
[t1, t2]. If c(t

∗) attains the minimum, then

lim inf
t↓t∗

c(t)− c(t∗)

t− t∗
≥ 0.
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This implies that

lim sup
t↓t∗

d(t)− d(t∗)

t− t∗
≤ d(t2)− d(t1)

t2 − t1
< 0.

Now, suppose that t > t∗. Then,∣∣∣∣∣d(t)− d(t∗)

t− t∗
− p ·

f(p(t), E(p(t∗)) + (t− t∗) d
ds
E(p(s))

∣∣
s=t∗

)− f(p(t∗), E(p(t∗)))

t− t∗

∣∣∣∣∣
≤ ∥p∥

∥∥∥∥∥f(p(t), E(p(t)))− f(p(t), E(p(t∗)) + (t− t∗) d
ds
E(p(s))

∣∣
s=t∗

)

t− t∗

∥∥∥∥∥
≤ L∥p∥

∣∣∣∣∣E(p(t))− E(p(t∗))− (t− t∗) d
ds
E(p(s))

∣∣
s=t∗

t− t∗

∣∣∣∣∣
→ 0 as t ↓ t∗,

where L > 0 is some positive constant whose existence is ensured by the local
Lipschitz property. We abbriviate d

ds
E(p(s)) by w∗. By (*), there exists a

sequence (pk,mk) such that (pk,mk) → (p(t∗), E(p(t∗))), and

p·df(pk,mk; (q−p), w∗) → p·df(p(t∗), E(p(t∗)); (q−p, w∗)) = lim sup
t↓t∗

d(t)− d(t∗)

t− t∗
.

However,

df(pk,mk; (q − p), w∗) = [Dpf(pk,mk) +Dmf(pk,mk)f
T (p(t∗), E(p(t∗)))](q − p)

= Sf (pk,mk)(q − p)

+Dmf(pk,mk)(f
T (p(t∗), E(p(t∗)))− fT (pk,mk))(q − p),

where Sf (pk,mk) = Dpf(pk,mk) +Dmf(pk,mk)f
T (pk,mk) is a Slutsky ma-

trix of f at (pk,mk). Clearly, if Ek is a solution of (1) with initial value
condition Ek(pk) = mk, then D2Ek(pk) = Sf (pk,mk). Because Ek is con-
cave, it is negative semi-definite. Moreover, to differentiate the both side of
the Walras’ law, we have

pTkDpf(pk,mk) = −fT (pk,mk), pTkDmf(pk,mk) = 1,

and thus,
pTk Sf (pk,mk) = 0.

Therefore,

pTdf(pk,mk; (q − p), w∗) = −t∗(q − p)TSf (pk,mk)(q − p) + (p(t∗)− pk)
TSf (pk,mk)(q − p)

+ pTDmf(pk,mk)(f
T (p(t∗), E(p(t∗)))− fT (pk,mk))(q − p)

≥ (p(t∗)− pk)
TSf (pk,mk)(q − p)

+ pTDmf(pk,mk)(f
T (p(t∗), E(p(t∗)))− fT (pk,mk))(q − p),
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where the left-hand side goes to zero as k → ∞ because of the local Lipschitz
condition of f . This implies that

lim sup
t↓t∗

d(t)− d(t∗)

t− t∗
≥ 0,

a contradiction. This completes the proof of lemma 1. ■

Now, let x ̸= y, x = f(p,m), y = f(q, w) and E (resp. F ) be the solution of
(1) with E(p) = m (resp. F (q) = w).

If F (q) = w > E(q), then F (p) > m, and thus by lemma 1,

p · y = p · f(q, F (q)) = d(1) ≥ d(0) = p · f(p, F (p)) = F (p) > m,

where p(t) = (1− t)p+ tq and d(t) = p · f(p(t), F (p(t))).
Next, suppose that F (q) = w = E(q). Then, we have E ≡ F . Let

p(t) = (1 − t)p + tq, d(t) = p · f(p(t), E(p(t))). It suffices to show m =
d(0) < d(1). Suppose not. By lemma 1, we have d(t) ≡ d(0) on [0, 1]. Let
X(r) = f(r, E(r)) and Y (t) = X(p(t)). Because Y (0) = x ̸= y = Y (1) and
Y is absolutely continuous, there exists t∗ ∈]0, 1[ such that Ẏ (t∗) ̸= 0.

Let w∗ and (pk,mk) be the same as in the proof of lemma 1, and Sk

denote Sf (pk,mk). Note that by Young’s theorem, we have Sk is symmetric
and negative semi-definite, and thus there exists a symmetric and positive
semi-definite matrix Ak such that Sk = −A2

k.
4 Then,

−t∗(q − p)Sk(q − p) = t∗∥Ak(q − p)∥2.

Because ḋ(t∗) = 0, we have Ak(q − p) → 0 as k → ∞.

4If

Sk = PT


λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ... λn

P,

where P is an orthogonal matrix and λ1, ..., λn are eigenvalues of Sk, then

Ak = PT


√
−λ1 0 ... 0
0

√
−λ2 ... 0

...
...

. . .
...

0 0 ...
√
−λn

P.

13



Meanwhile, by the same arguments as in lemma 1, we have∣∣∣∣Y (t)− Y (t∗)

t− t∗
− f(p(t), E(p(t∗)) + (t− t∗)w∗)− f(p(t∗), E(p(t∗)))

t− t∗

∣∣∣∣
≤ L

∣∣∣∣∣E(p(t))− E(p(t∗)) + (t− t∗) d
ds
E(p(s))

∣∣
s=t∗

t− t∗

∣∣∣∣∣
→ 0 as t ↓ t∗,

where L > 0 is some constant. Therefore, we have

Ẏ (t∗) = lim
k→∞

df(pk,mk; (q − p), w∗).

This implies that

Ẏ (t∗) = lim
k→∞

Sk(q − p) = lim
k→∞

Ak(Ak(q − p)) = 0,

which is absurd.5 This completes the proof. ■

3.3 Proof of Theorem 3

Clearly, this function f is locally Lipschitz, and by Rademacher’s theorem, it
is differentiable at almost every point. If f is differentiable at (p,m), then for
any (q, w), there exists i and a sequence (tk) of positive real numbers such that
tk ↓ 0 and (p+ tkq,m+ tkw) ∈ Ai. By continuity, we have f(p,m) = f i(p,m)
and thus,

Df(p,m)(q, w) = lim
k→∞

f(p+ tkq,m+ tkw)− f(p,m)

tk

= lim
k→∞

f i(p+ tkq,m+ tkw)− f i(p,m)

tk
= Df i(p,m)(q, w).

Therefore, if we define

Bi = {(p,m) ∈ Rn
++×R++|f(p,m) = f i(p,m), Df(p,m)(q, w) = Df i(p,m)(q, w)},

then ∪iBi is dense in Rn
++ × R++.

Choose any (p,m) ∈ Rn
++ × R++ and (q, w) ∈ Rn × R, and a sequence

(tk) of positive real numbers such that tk ↓ 0 and

df(p,m; q, w) = lim
k→∞

f(p+ tkq,m+ tkw)− f(p,m)

tk
.

5Note that the operator norm of Ak is less than the square root of the operator norm
of Sk, which is bounded by the local Lipschitz condition.
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Taking a subsequence, we can assume that there exists i such that for every
k, (p+ tkq,m+ tkw) is in the closure of Bi. Then, (p,m) is also in the closure
of Bi, and by continuity of f , we have f(p,m) = f i(p,m) and f(p+ tkq,m+
tkw) = f i(p+ tkq,m+ tkw). Clearly,

df(p,m; q, w) = Df i(p,m)(q, w),

and thus, if we choose any sequence ((pk,mk)) in Bi such that (pk,mk) →
(p,m), then

df(pk,mk; q, w) = Df i(pk,mk)(q, w) → Df i(p,m)(q, w) = df(p,m; q, w),

which completes the proof. ■
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