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Abstract

We estimate the welfare consequences of local news broadcasting decisions in

advertiser-funded television, a question that has played a central role in US regu-

lation of media markets. We treat station broadcasting decisions as the outcome

of a discrete game in which stations choose programming to maximize advertising

revenue, which depends upon viewership. Using program-level data on television

viewing and advertising prices during the 5-8 p.m. evening news hours, we find

that local news is substantially under-provided relative to the viewer optimum.

Counterfactual simulations suggest that welfare loss arises in part from the higher

value advertisers place on entertainment viewers in a two-sided market framework.

However in many markets additional local news broadcasting would increase joint

station revenues as well as viewing, indicating that classic business stealing also

plays a role in welfare outcomes.
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1 Introduction

The relationship between market competition and television programming decisions

has interested economists since the very start of the TV era when Steiner (1952) and

later Beebe (1977) outlined theoretically how competitive broadcasters might duplicate

mass content and offer too little niche programming. More recently, theoretical work on

two-sided markets by Anderson and Gabszewicz (2006) shows how advertiser funding

can further distort programming away from viewer preferences. The resulting concern

that competitive markets might under-provide local news has motivated strong and

long-standing regulation of local television markets in the United States. These regula-

tory requirements have remained largely unchanged despite dramatic changes in news

delivery brought about by cable television, the internet and mobile platforms.

Yet despite deep policy and research interest in local news, very little empirical

evidence speaks to welfare outcomes associated with television broadcasts. We offer an

empirical analysis of oligopolistic competition among broadcasters in a two-sided mar-

ket framework. Our approach is to model station programming decisions as the outcome

of a discrete game of complete information played by rival stations. We estimate the

model using program-level data on television viewing and advertising prices. Counter-

factual simulations allow us to examine the consequences of programming outcomes to

viewers, advertisers and stations.

After estimation, we simulate the model to determine the program patterns that

maximize viewer utility, joint station revenues, and aggregate advertiser surplus. We

find substantial under-provision of local news compared to the allocation that maxi-

mizes television viewing. Simulations show the average shortfall to be 10.2 half-hour

local news broadcasts per market each day during the evening news hours of 5:00-8:00

p.m., or about 1 half-hour broadcast per local station. Re-allocation of programming

to the viewer optimum would increase total television viewing by about 9% over the

5:00-8:00 p.m. news hours on average, with local news viewing increasing from about

5% of households to 8.5% of households. Most of the estimated shortfall occurs later

in the broadcast day, during the 7:00-8:00 p.m. hour.

We study two sources of welfare loss to consumers. The first arises from divergent

interests of viewers and advertisers in a two-sided market. Even though total view-

ing would increase with more local news broadcasts, stations chose not to provide it

because advertisers will pay more for entertainment viewing, especially in later time
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slots. Overall, the observed broadcast pattern more closely resembles the pattern that

maximizes advertiser surplus than viewership: our simulations indicate that the ob-

served number of local news broadcasts is closer to the advertiser optimum than viewer

optimum in 90% of markets.

The second source of welfare loss arises from station competition in a classic business-

stealing environment. Our simulations indicate that the observed number of local news

broadcast is in fact less than the number that would maximize station revenue and

advertiser surplus in 83% of the sample markets. That is, profits for both advertis-

ers and stations would rise if stations differentiated programming in several time slots

rather than jointly broadcasting entertainment programming, but no single station has

an incentive to do so. The average shortfall from the station optimum is about half

the viewer shortfall, 4.7 half-hour broadcasts versus 10.5 broadcasts. Fully collusive

programming would increase advertising prices (and hence station revenue) by $1.36

(12%) per advertising second per station, or just shy of $50,000 per market on average.

Advertiser surplus would increase even more at the collusive outcome, about $655,200

per market on average. Gains are highest in larger, wealthier markets.

We take a game-theoretic approach to estimation. Because local television markets

are characterized by small numbers of competing broadcasters, station broadcasting

decisions are interdependent. We model local television programming as the outcome

of a discrete game of complete information. We estimate station viewership and adver-

tising revenue functions that allow interdependence in stations payoffs, then control for

possible equilibrium selection using a game-theoretic econometric model to control for

this interdependence.

Our viewership and advertising price models extend the approach of Berry and

Waldfogel (2004). To study viewership, we formulate a nested multinomial logit model

of television program demand. Our advertising price model is based on a log-linear

demand for viewer impressions by advertisers, which changes functional form with

program type. This specification allows the possibility that advertisers value viewer

impressions differently for different types of programs, which we in fact find to be the

case.1

We use game-theoretic techniques both in estimating the model and exploring its

properties in welfare simulations. Using a method based on simulated maximum like-

lihood, we first estimate stations’ reduced-form payoffs from alternative programming

1See George and Hogendorn (2012) for a theoretical treatment of advertising context.
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choices. Owing to the multiplicity or cohesiveness problem (see Ciliberto and Tamer

(2009), we adopt an approach to estimation inspired by Bajari et al. (2010b), and simi-

lar to Zhu et al. (2009) and Ellickson and Misra (2008). Our method allows for studying

markets with varying (and sometimes fairly large) numbers of players, in which players

have large-dimensional choice sets. Because we are interested in using our model for

simulation of counterfactuals, it is important that it does a good job fitting the data.

Following Bajari et al. (2010b), we estimate the model using the Markov chain Monte

Carlo approach described in Chernozhukov and Hong (2003). In addition to the prac-

tical reasons suggested by Chernozhukov and Hong (2003) for turning to this approach

to estimation, an added benefit is that we can build additional degrees of flexibility

into the model (i.e., nesting different sorts of models in one estimation sweep). The

estimation method then picks out, in some sense, the nature of the model that best

captures the data.

Our research contributes empirical evidence to an expansive theoretical literature

on inefficiencies in differentiated product markets, which can arise in both the number

and mix of products. Most familiar is the potential for excess entry, which can occur

if products offered by entrants are close substitutes for existing varieties so that new

entrants divert consumers from existing options.2 Also well known are inefficiencies in

the product mix, which can arise when firms face incentives to cluster in regions of

product space with high demand, or to excessively differentiate in order to sustain high

prices.3 Taken together, this literature demonstrates that under a range of consumer

preference distributions and timing assumptions, product location choices can fall well

short of first-best. Location models without prices, such as the median voter result of

Downs (1957), suggest even more pronounced distortions.

An important class of differentiated product markets, namely advertiser-funded

media, are also two-sided. Product positioning in two-sided markets has not been ex-

tensively studied theoretically, but conceptually any divergence between the marginal

value of differentiated products to consumers versus advertisers introduces the poten-

tial for distortions in the product mix. Heterogenous valuations for media types among

advertisers can arise from the demographic mix on the consumer side, but also through

2Models of entry and competition in this spirit begin with Chamberlin (1933) and are extended
in important contributions by Spence (1976a), Spence (1976b), Dixit and Stiglitz (1977) and Sutton
(1991).

3A large literature starting with Hotelling (1929)) and developed by d’Aspremont et al. (1979)
documents inefficiencies in the location choices of firms.
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better alignment with advertised products or affective context more amenable to per-

suasion. The source of inefficiency matters in the television market, since distortions

driven by competition are likely more readily tackled with market structure regulation

while distortions arising from two-sided market tradeoffs suggests a need for subsidies

or other price remedies.

Few attempts have been made to empirically estimate inefficiencies in differentiated

product markets, especially two-sided ones. A notable exception is Berry and Waldfogel

(2004) study of excess entry in radio broadcasting. The symmetry assumptions in their

model for the entry game precluded analysis of welfare consequences of station format

choices. More recently, Berry et al. (2015) tackle the question of excess entry when

products are differentiated. Filistrucchi et al. (2012) estimate merger effects in the

Dutch newspaper markets.

More generally, our results suggest that product positioning can play an important

role in platform competition. Benchmark models of two-sided markets such as Arm-

strong (2006) as well as more recent contributions such as Weyl (2010) and Weyl and

White (2011) emphasize the balance of prices charged to each side. Product targeting

has not been well explored, and our results suggest that the product mix can play both

a strategic role in platform competition and alter the welfare tradeoffs from one side

of the market to the other. While these effects are likely to be strongest in markets

like broadcast television where there are no viewer prices, they can operate in any

differentiated product setting.

The paper proceeds as follows. Section 2 relates our research to the literature and

provides background on local television news markets. Section 3 describes program-

ming, viewing and advertising data during the evening news hours and section 4 pro-

vides a preliminary outline of potential welfare losses in program choice. Section 5

outlines our econometric model and specification. Section 6 presents our simulation

and estimation procedure and reports parameter estimates. Section 7 evaluates our

simulation results and tackles the welfare analysis. Section 8 concludes the paper. We

provide detail on our estimation methods in an appendix to the main text.
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2 Background and Literature

2.1 Literature

Our study is informed by a well-developed literature on variety and consumption in me-

dia markets. Much of this literature explicitly or implicitly considers the relationship

between product variety and market size. Overall, the positive relationship between

market size, available variety and consumption has been demonstrated in radio (Wald-

fogel, 2003), newspapers George and Waldfogel (2003) and entertainment television

Waldfogel et al. (2004). This literature suggests that the welfare implications of variety

are particularly important for minority taste groups, as larger minority populations

are generally found to increase per capita consumption among these groups. We might

expect similar effects to operate in local television news markets, and one contribution

of this paper is to document the effect of market size and the distribution of tastes on

the supply of local news programs and local news viewing.

Our paper also informs the debate on localism, which constitutes one of the three

principles of media regulation in the US and is the subject of an interesting literature

on the competition between national and local media products. George and Waldfogel

(2006) documents that the national expansion of the New York Times attracted highly

educated readers away from local media, triggering repositioning in local newspapers.

George (2008) documents the effect of the spread of the internet on the composition of

the local newspaper audience. Anderson et al. (1997) offer a theoretical framework for

thinking about competition and welfare when national and local media compete. This

literature is driven by the intuition that firms producing national products can spread

fixed quality investments over a larger market than local producers. Since most of the

expansion in both news and entertainment programming associated with improvements

in television technology has been national, this mechanism might be expected to op-

erate in television markets. Our estimates of the substitutability of national and local

television news speak to this point.

From a welfare perspective, the substitutability of local for outside products mat-

ters most when local news generates positive behavioral externalities that are lost

when national or “non-news” media are privately preferred. Demand-side externalities

are now well documented: George and Waldfogel (2008) show that the New York Times

expansion differentially reduced turnout in local elections among readers targeted by

the Times. Gentzkow (2006) documents significant changes in local political participa-
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tion during the expansion of television in the 1950’s. Oberholzer-Gee and Waldfogel

(2009) media show a relationship between Spanish-language news programming and

voter turnout. Evidence suggests that spillovers are not limited to voting. Strömberg

(2004) shows a relationship between public spending and radio access in the 1920’s,

and Snyder Jr. and Strömberg (2010) describe effects of local media markets on po-

litical competition. In the context of this paper, we would like to know, for example,

whether public affairs programming on cable networks is a strong substitute for local

news. More generally, our model allows us to identify under-provision and estimate the

cost of policy intervention to correct it.

The paper also offers unique evidence of how advertising can shape media markets

through station programming choice. Most theoretical and empirical research in this

area follows the contribution of Anderson and Coate (2005) in emphasizing the role of

advertising minutes and associated viewer disutility in welfare tradeoffs.4 But in tele-

vision, long-term contracts and fixed program length limit the role of advertising time

as a strategic variable: Friends is 22 minutes long and the eight minutes of advertising

allowed in its half-hour time slot cannot be readily altered in the short term. We focus

instead on the imperfect substitutability of programming from the perspective of ad-

vertisers. Advertiser preferences for programming can arise from different valuations of

audience demographics, from different valuations for the same audience in alternative

contextual environments, or from closer targeting to advertised products. We do not in

this paper distinguish among the sources of heterogenous valuation, but doing so is a

promising avenue for future research.5 The model developed in this paper demonstrates

how scale parameters of an advertiser profit function can impact program choice by

stations and resulting advertiser welfare.

From a methodological perspective, our empirical approach builds upon the rapidly

growing work that incorporates ideas from game theory into the process of model es-

timation.6 The literature on estimating discrete games centers on using information

4See Wilbur (2008) for an empirical example in television.
5The potential for overall differences in the marginal value of programming to viewers and advertisers

has long been noted in the empirical media literature (e.g. Berry and Waldfogel (2004) but lacks
comprehensive theoretical treatment. The potential importance of advertiser heterogeneity in scale in
advertising markets is studied in George (2009), which measures the role of television in the decline
of local beer. Most applications of the location choice literature to media markets considers political
targeting, with no direct role for product advertisers. An exception is ?, which considers advertising
directly, but considers only advertisers distributed in a left-right political space.

6Early literature includes Reiss and Spiller (1989), Bresnahan and Reiss (1991), and Bjorn and
Vuong (1984). For recent reviews, see Berry and Reiss (2007), (Ackerberg et al., 2007), Bajari et al.
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revealed in market outcomes to estimate profit functions in the absence of information

about profits. Our data, however, has detailed post-outcome information in the form

of both viewership and advertising expenditure, which constitute the bulk of station

revenue. In this regard, our methods relate more closely to the work of Zhu et al.

(2009) and Zhu et al. (2009). One challenge that we have to deal with in estimating

the model is that broadcasting decisions are complicated, and stations must decide on

a sequence of broadcasts to offer, where broadcasts may be complementary. Consid-

eration of broadcast sequences, or menus, greatly expands the strategy space for each

station, and makes it difficult to check equilibria for multiplicity. We present a practical

approach for dealing with large strategy spaces in estimation.

2.2 Local Television Background

There has never been truly free entry in local television. Since the start of the broadcast

era, television stations have been licensed by the FCC to broadcast programming over

specific portions of the frequency spectrum. Because broadcast signals can interfere with

each other, the number of stations in any particular region is limited by the technology

available to utilize spectrum. To accommodate these technological capacity constraints,

the Federal Communications Commission in the 1950’s allocated three stations in the

largest markets, fewer in smaller cities, setting the stage for the three-network regime

that dominated television through the 1980’s. The limited number of stations in small

cities gave rise early on to concerns about monopoly provision and under-supply of local

programming, especially local news. But at the same time, the number of broadcast

stations licensed in very large markets was not much larger than the number in small

markets, leading to a wide disparity in the number of stations per capita across the US.

The potential for under-provision was thus a subject of concern even in large markets.

Entry barriers for local stations need not translate into restricted entry for local

news, as stations have many scheduling options to satisfy demand. However in prac-

tice, the limited number of station licenses in each market did likely limit local news

programming. Local station license-holders negotiate contracts with national networks

to carry network programs. Station scarcity meant substantial rents paid by networks

to local license holders for airing national programs. The opportunity cost of forgoing

national entertainment programming in favor of additional local news broadcasts has

(2010a), and Bajari et al. (2010b).
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thus always been very high. These opportunity costs were highest in the largest, most

constrained markets with the greatest number of viewers per station. As a result, the

amount of local news programming during the broadcast era did not vary substantially

across markets.

The spread of cable television dramatically lowered entry barriers for national pro-

gramming. By both offering an alternative outlet for network entertainment and divert-

ing viewers from local stations, the spread of cable reduced the networks willingness

to pay for placement on local stations. This effectively lowered the opportunity cost of

airing local news, and is likely the reason that more local news programming is broad-

cast today than in the broadcast and early cable eras. Cable expansion has led to entry

of some stations carrying local and regional news, and we will consider the effect of

these stations in our analysis. But limits to “must carry” rules combined with cable

system maps that do not fully coincide with broadcast geography have limited these

local stations to the very largest market.

In sum, economic theories of differentiated product markets justify policy attention

to potential inefficiencies in the supply of local news, but offer little practical guidance

on where to look for distortions with a reduced-form approach. Our structural model

can both measure the extent of under- or over-provision and pinpoint its causes. This

approach can also uncover the demographic or demand characteristics associated with

inefficiencies.

With this background, we turn to our model of viewing, advertising and program

choice.

3 Programming, Viewing and Advertising Data

We estimate our model with programming, viewing and advertising data in the 101

largest Designated Market Areas (DMA) in the US over four weeks in February 2010.

We work with a single, averaged observation for each station in each of the six half-hour

time slots in the 5:00-8:00 p.m. time period. We focus on this time period because it

brackets the traditional early evening “news hours” when local stations have discretion

over programming. Earlier in the day, a large fraction of the population does not watch

television, while later in the day, prime time programming is dictated by national

affiliation for many stations.

Raw viewing data come from Nielsen, which records the number of households
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viewing television during each fifteen-minute time slot each day on all local stations

and the 100 largest cable stations. We work with the share of households viewing

television, averaging viewing shares to the half-hour level to match with program time

slots.

To construct our working data, we merge viewing data to program schedules from

Nielsen and Kantar Media and categorize programming as local news, national news,

general entertainment and cable entertainment. This categorization allows us to focus

on the choice faced by local stations, to broadcast local news or entertainment program-

ming, while preserving national news and cable entertainment broadcasting as choices

for viewers. This simplification of program types also allows us to think intuitively

about exogenous constraints faced by stations, which must broadcast national news at

times specified by broadcast network affiliates, and also the cable broadcast schedules

that local stations must take as given. Categorization also reduces the complexity of

the estimation. Since we will consider broadcast menus as strategies, even with the

assumption that local stations choose only local news or entertainment programming,

across six time slots there are possibly 26 = 64 potential strategies per station. With

five stations in a market, the estimation must consider 645 potential profiles.

While most local stations broadcast a mix of program categories over the evening

time slots we study, we observe little variation in programming schedules across the

four weeks. This likely reflects that stations decide on a daily programming schedule

and adhere to it for an extended period of time. We also observe that stations’ category

choices do not vary substantially across weekdays. Because of this, we further average

our viewing data for each station over the four weeks in our sample. In our estimation

we thus working with a single, averaged observation for each station-timeslot from

5:00-8:00 p.m.

Station and broadcast counts per market for small, medium and large markets are

summarized in table 1. Small DMA’s have an average of 7.4 local stations with 7.2 local

news broadcasts per evening, while the largest markets average 15.6 local stations with

an average of 14.6 local news broadcasts per evening. The number of major national

cable stations available also increases with market size, ranging from an average of 64.7

in small markets to 94.2 in large markets. The average number of local stations in each

market is 9.9. Note that we include local cable stations in our local station category,

but for brevity refer simply to cable stations rather than national cable stations.

Table 2 shows an analogous breakdown with viewing data. In this table, the share
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of households viewing television is summed over timeslots and stations in each market,

then the totals are averaged over each market category. Both overall and local news

viewing declines steeply with market size. Local news viewing averages 7% in small

markets while only 1% in the largest markets. Total viewing also declines considerably

with market size, falling from 42% in small markets to 8% in the largest markets. The

totals in this table likely reflect both a larger share of households watching television

but also each viewing household watching during more timeslots each evening.

We characterize the typical television market in the early evening in table 3, which

shows the average number of broadcasts and viewing share for local news, national

news, broad-based entertainment on local stations and other entertainment on cable

stations. Local news broadcasts are heavily clustered on the early timeslots, falling

off considerably at 7:00 p.m. Total viewing increases over the evening, but local news

viewing declines, both overall and per broadcast.

Advertising data for local stations come from Kantar Media and are at the adver-

tisement level. We average prices per second across advertisements in each half hour

timeslot to correspond to program times, then average again over weeks to match with

our viewing data. We do not observe cable advertising prices. To convert advertising

prices into revenue, we assume 10 minutes of advertising time per half hour timeslot. 7

Table 5 reports average prices per second for local news, national news and general

entertainment programming in each time slot. Prices in this table are averaged across

all stations in a market, then averaged across markets. Prices per second generally rise

through the evening, reflecting higher total viewing. National news prices are about

20% higher than local news prices on average, though because national networks dictate

scheduling the price difference is not central to decision making. Across the evening, the

local news and entertainment categories available for station choice are very similar, at

$9.61 and $9.89 for the evening.

Table ?? reports average prices per 1,000 viewers per second, a closer analog to

the “Cost per Mille (CPM)” figures used most often for cross-media comparison. As

above, prices per viewer in this table are averaged across all stations in a market, then

averaged across markets. As above, prices per viewer rise through the evening. Early

in the evening, prices per viewer for entertainment on local stations are higher than

localnews prices per viewer, but the pattern reverses after the 6:00 timeslot. Few news

7Although we observe some variation in the number of advertising seconds in our data, some of this
variation is spuriously related to missing advertisements.
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broadcasts are shown after 7:00 p.m., so the values in these cases reflect small numbers

of programs.

Figures 2 and 1 provide a visual description of the broadcast and viewing infor-

mation in the tables. Local news is disproportionately broadcast in the 5:00 and 6:00

timeslots, followed by national news at 5:30 and 6:30, with viewership of these two pro-

gramming categories showing a similar pattern. As the broadcast evening nears prime

time, news broadcasting drops off and is replaced by entertainment programming and

viewership. Owing to the viewership pattern, advertising prices per second tend to be

higher for local news early in the evening, and lower later in the evening. While we

show simple averages across major US markets, it turns out that these patterns are

consistent whether we categorize markets by size, geography, or time zone.

Our model of station decisions focuses on choice of a broadcasting sequence - i.e.,

in which, if any, time slots to offer local news. It is thus useful to think about broad-

casts as a sequence of programs. Along these lines, table 6 tabulates the most common

programming sequences offered by local stations. The table shows that general enter-

tainment programming (represented by “o”) is the most common station choice in 34%

of timeslots. This is the typical strategy of small local stations. The next most common

configurations show stations offering local news in either the two or three earliest slots

in the day, followed by national news, then general entertainment programming. We

use a sequence plot to represent common schedules visually in 8. The plot groups the

most common sequences together in bars, which gives a visual impression of broadcast

counts over time. We will return to this plot when discussing optimal scheduling.

Having described station programming in general terms, we turn to a discussion of

potential inefficiencies that might arise through program choice in television markets.

We then turn to outlining the model that allows us to measure welfare loss.

4 Program Choice and Welfare

We conceptualize a market in which stations make programming decisions to attract

viewers according to a simultaneous, non-cooperative game. While we ultimately will

model station choices over broadcast schedules subject to constraints, the basic welfare

issues are clear from simple two-by-two games.

As a backdrop for the model, suppose that stations wish to attract viewers because

more viewers means higher advertising revenue. Advertisers, however, may pay differ-
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entially for viewers of different types of programming for any number of reasons. Viewer

utility is proportional to total viewership, so that viewers watch more television when

doing so makes them happier than the alternative. Then, the socially most desirable

programming configuration from the perspective of television viewers is the one that

produces the most aggregate viewership.

Table 7 presents two examples, developed from our model, where two stations must

choose whether to broadcast local news or entertainment programming. The top portion

of each panel shows viewing associated with the program choices; the middle panel

shows advertiser surplus; and the bottom shows station revenue. In the left hand panel,

the optimal programming combination from the perspective of viewers is for one station

to broadcast local news and the other station to broadcast entertainment programming.

Total viewership is 0.078, which is greater than it would be if both stations broadcast

local news (0.048), or if both stations broadcast entertainment programming (0.070).

One interpretation of this viewing outcome is that viewers have a taste for variety.

There is little substitution between programming types; viewers watch their preferred

program or nothing at all.

The center and lower panels show advertiser surplus and station revenue from the

same programming choices. Since revenues guide station decisions, the Nash equilibrium

occurs with both stations opting for entertainment programming. Thus, in equilibrium

the two stations provide less variety in programming than viewers would like. Advertis-

ers also prefer this outcome, as the aggregate advertiser surplus - the value advertisers

get net of the costs of advertising - is 52, as opposed to 48 when more variety is offered

to consumers. The outcome with both stations broadcasting entertainment also maxi-

mizes joint station profits. Thus, the only dimension to the welfare loss in this case is

that viewers get less variety than optimal. Advertisers and stations cannot improve on

their outcome unilaterally or through collusion.

A second set of potential payoffs are shown on the right side of the table. Viewers

again have a preference for variety, with total viewing highest with differentiation.

However in this case, both advertisers and stations also see higher total surplus or

revenue with differentiation. Competition for more profitable programming leads to

a Nash equilibrium where both stations broadcast entertainment programming. This

outcome involves welfare losses to all market participants.

Both examples were constructed using formulas that follow from our model. For

the left panel, parameters are chosen such that: 1) viewer utility from watching local
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news is lower than that of other programming; 2) local news broadcasts are more

substitutable for one another than entertainment broadcasts; and 3) advertisers are

willing to pay the same amount per viewer for local news viewers and entertainment

viewers. The parameter choices in the second example maintains the assumption that

entertainment programs are less substitutable for each other than local news broadcasts.

But instead of differential utility for viewing and common advertiser valuations, the

second panel parameters assume viewer utility is constant across program types but

advertiser valuations for local news viewers is less than for entertainment viewers.

Our results suggest that both of these configurations of viewer, advertiser, and station

interests reflects actual outcomes in many markets.

In both of these examples, stations decisions are not the ones preferred by viewers,

but they are optimal for advertisers and the stations themselves. However, it might be

the case that stations would be jointly better off differentiating, but asymmetric payoffs

meant that no station individually has an incentive to be the one providing local news

rather than entertainment programming (or vice versa). Our estimates and simulations

will allow us to characterize welfare losses.8

Other sorts of interest conflicts may arise from different dimensions of the variety

problem, or the way in which news viewing enters the consumers utility function. For

example, viewers might be less inclined to watch local news on a station later in the

broadcasting period because another station already broke the news earlier in the day.

In this instance, stations might wish to broadcast their news before other stations,

leading to all stations (inefficiently) broadcasting news as early as possible.9

With this overview of potential welfare tradeoffs, we turn to our model of news

broadcasts.

5 Model

We balance several objectives in modeling television programming choice, viewership

and advertising. The primary function of the model is to simulate and predict coun-

terfactual outcomes such as viewership shares and advertising revenue under different

programming choices. Therefore, the predictive ability of the model is of primary im-

8It also bears mentioning that there are situations in which there are no conflicts of interest per
se but there may be a multiplicity problem. That is, stations provide variety, but the wrong stations
provide the broadcasts of each type.

9The dynamics of business stealing are explored theoretically in Ted Bergstrom and Bills (1995).
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portance. That said, we would also like to set up the model so that parameter estimates

have useful interpretations. The model should also capture important aspects of news

broadcasting and viewership; breaking news might attract more viewers, or viewers

might prefer to watch local news before national news. Finally, the model should cap-

ture key welfare tradeoffs, such as whether advertisers pay more for different types of

viewers, and how substitutable broadcasts of different types are for viewers.

We employ a nested multinomial logit structure to model viewing and a log-linear

model of advertiser revenues. In both cases, estimated parameters provide direct insight

into the magnitude and direction of the important governing effects of the model.

A nested multinomial logit model has several attributes which make it desirable for

modeling television viewing. Berry (1994) showed how a NMNL can be estimated using

a linear estimating equation when the dependent variable is a market share. Linearity

eases inclusion of fixed or random effects, which allows us to thoroughly control for

unobserved station and market characteristics. A NMNL is also based on a simple and

tractable random utility model, simplifying calculation of viewer utility. Finally, market

shares deriving from a NMNL always fall in the (0, 1) range and always sum to unity

across the market. This feature is important in our setting, as many shares are close

to zero, and we seek to estimate accurately how one station’s broadcasting decision

impacts the viewership of other stations.

Ackerberg (2006) has noted that the NMNL requires very restrictive assumptions on

substitution patterns and errors. Fortunately, Ackerberg (2006) shows how the NMNL

can be made more flexible by including additional terms. To err on the side of caution,

we include some additional terms in our NMNL model, and also include a variety of

market, time, and station specific effects in the model.

5.1 Viewing

We allow for the possibility that a representative viewer may first choose a type of

programming then choose a particular broadcast of the chosen type. For example, the

viewer first might choose to watch local news, and then select a broadcast on one of

the stations broadcasting local news. The program types we consider are local news,

national news, general entertainment and cable entertainment programming. We denote

this viewer choice set as B = {l, n, o, c}. Further, we use Sb, b ∈ B to denote the set of

stations broadcasting a program of type b ∈ B. We use bi ∈ B to denote the broadcast
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type of station i.

Following Berry (1994), write a station i’s viewership share in a particular time slot

as:

si = si|bsb (1)

Where si|b is station’s i’s share of stations with broadcast type b, and sb is the broadcast

group share. If uk(bk) denotes an index for the utility a representative viewer gets from

watching station k when k broadcasts programming of type bk. In a nested multinomial

logit model, a substitutability parameter µb ∈ [0, 1] is used to characterize the degree to

which items within a given type substitute for one another. As in Berry (1994), define:

Db =
∑
k∈Sb

e
uk(bk)

1−µb (2)

Then, the components of si in (1) can be written as:

si|b =
e
ui(bi)

1−µb

Db
, sb =

D1−µb
b∑

k∈BD
1−µk
k

(3)

As µb approaches one, items within a class become very close substitutes, as small

differences in utility lead to large differences in within-group shares. At the same time,

µb close to one implies that the group share does not change much as more broadcasts

of a given type are added. Goods remain substitutes as µb approaches zero. However,

within-group choices in this case are governed by a regular multinomial logit in which

items can be viewed as being compared pairwise. We follow the usual approach of nor-

malizing utility by setting the utility from the null alternative - not watching television

- equal to zero, so u0 = 0, and D0 = 1.

Berry (1994) describes how to cast the model in linear form. Since s0 =
(∑

k∈B D
1−µk
k

)−1
,

(3) and (1) can be used to get:

ln si − ln s0 =
ui(bi)

1− µb
− µb lnDb (4)

From equation (3), we have:

lnDb =
ui(bi)

1− µb
− si|b (5)
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Plugging (5) into (4) and simplifying gives:

yi = ln si − ln s0 = ui(bi) + µb ln si|b (6)

Another advantage of the share-form nested multinomial logit model is straight-

forward calculation of the total expected utility of the representative consumer from

viewing. McFadden (1980) showed that the NMNL derives from a utility function with

the form:

U = ln

[∑
k∈B

D1−µk
k

]
(7)

Equation (7) provides an alternative derivation of shares based on application of Roy’s

identity (differentiation of (7) with respect to ui(bi) yields si). For our purposes, the im-

portant thing about expression (7) is that it links observed or counterfactual viewership

shares to utility. Since si|b = si
sb

, utilities can be expressed using (6) as follows:

ui(bi) = ln

[(
si
s0

)1−µb (sb
s0

)µb]
(8)

Plugging (8) into (2) results in:

Db =
∑
k∈Sb

si
s0

(
sb
s0

) µb
1−µb

(9)

Since sb =
∑

k∈Sb sk, Db in (9) simplifies to:

Db =

(
sb
s0

) 1
1−µb

(10)

Inserting this last result into the utility function (17), we have:

U = ln

[∑
k∈B

sk
s0

]
= − ln s0 (11)

The last part of (11) follows from the fact that the sum of group shares must sum

to one. Hence, the utility gains from viewership vary in inverse proportion with the

fraction of non-viewers.
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5.2 Advertising

We follow Berry and Waldfogel (1999) in modeling advertising revenue. The idea is

to model station advertising revenues so that a measure of consumer’s surplus can be

computed, where in our application the consumers are advertisers. Suppose advertisers

have diminishing willingness to pay for additional viewers, and that price-per-viewer is

set competitively. Suppose further that price-per-viewer is of an exponential form:

ppvj = K̃vη−1
j (12)

where η ∈ (0, 1). Multiplying ppv in (12) by the number of viewers vj then gives an

expression for how advertising revenues depend upon total viewership:

r = ppvj ∗ vj = K̃jv
η
j

That is, price-per-viewer multiplied by the number of viewers gives total advertising

revenues (per unit time). Taking logs gives the linear relationship:

ln rj = Kj + η ln vj (13)

Equation (13) is a log-linear equation describing how total advertising revenues depend

upon viewership. As was the case with the viewership model, one convenience is that a

linear estimating equation can be matched quite flexibly to data through inclusion of

fixed and/or random effects.

We can use the willingness to pay function (12) to study advertiser’s surplus, and

how it depends on viewership. Integrating (12) with respect to total viewers gives K̃
η v

η,

which is the gross “utility” advertisers derive from contact with v viewers. Subtracting

from this r - what is paid by advertisers to attract the viewers - gives advertiser’s

surplus as:

ASj =
K̃j

η
vηj − K̃jv

η
j =

1− η
η

K̃jv
η
j (14)

Thus, advertisers’ surplus amounts to weighting observed revenues in a way that de-

pends upon the elasticity of willingness to pay with respect to viewers. By allowing the

parameters of (13) to vary with broadcast type, one can allow for advertisers to weight

and value viewers of different sorts of programming differently.
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6 Estimation

The viewership estimating equation (6) and the advertising revenue equation (13) form

the core of our model. The rest of the model controls for the impact of strategic,

optimizing behavior on the part of stations in estimating these two equations. Our

assumption is that stations make programming choices to maximize advertising rev-

enue across the early evening, which entails attracting viewership. We detail how this

assumption impacts estimation after describing how we supplement (6) and (13) to

increase flexibility.

6.1 Viewing

The viewership data covers a large number of stations across markets spanning multiple

time slots. Accordingly, we index viewing shares by station i, market m, and time slot

t. We break the viewer utility index ui(bi) into a component depending on observable

covariates, market-time random effects, station specific random effect, program type,

and an unobserved idiosyncratic error term. With these modifications, equation (6)

becomes:

ln sjmt − ln s0mt︸ ︷︷ ︸
yjmt

= µb ln sjmt|sbmt + αvb +Xv
jmtβv + ζvb ln(1 + nb)︸ ︷︷ ︸

zvjmt

+ωvj + ωvmt + εvjmt︸ ︷︷ ︸
evjmt︸ ︷︷ ︸

ujmt

(15)

The superscript v is used to distinguish terms in the viewership equation from similar

terms in the advertising revenue equation. As we detail when describing estimation

results, the vector of covariates Xv
jmt includes elements designed to capture lead-in

effects and other features of television broadcasting. The term ζvb ln(1 + nb) is a way

of including a function of the number of broadcasts of a given type, which Ackerberg

(2006) suggests should be included in the model to make errors flexible. The under-

braces in (15) indicate how viewing utility depends upon a systematic component z

and a random component e, which contains station, market-time, and idiosyncratic

components. We re-introduce yjmt from equation (6) as a simplifying notation for the

right hand side of (15).

As outlined above, we model programming as nested into the four categories of

general entertainment, national news, local news, and cable entertainment. We adopt
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an error structure with market-time, station, and idiosyncratic random effects. We add

to the estimation equation independent variables that capture intuition and have strong

predictive power. These include dummy variables for programming category, and also

1) a set of variables that capture lead-in effects, 2) a set of variables that capture a

“breaking news” effect, and a set of variables that allows for additional flexibility in the

error terms. We have also observed that viewership shares appear to be systematically

smaller in larger markets, so we also include a variable capturing market size.

We include lead-in effects in the viewership model by including lagged viewership

shares, and a set of dummies that indicate whether a local news broadcast follows

another local news broadcast, a local news broadcast follows a national news broadcast,

a national news broadcast follows a local news broadcast, or a national news broadcast

follows another national news broadcast. We interact the lagged viewership share with

these dummies. The idea behind these variables is that people might have beliefs or

expectations about the correct sequence within which to ingest news, in addition to

capturing the standard inertia in channel viewership.

We also interact local news and national news with the cumulative share of local

and national news viewed in a market up to the current time. This is how we allow

for a “breaking news” effect in the model, in that people might be less likely to watch

news later in the day if news has already been broadcast earlier on some other station.

6.2 Advertising

We break the constant term Kj in (13) into a component depending on observable

covariates, market-time random effects, and station random effects, as we did with the

viewership model. We allow for the elasticity of revenue with respect to viewership to

depend upon the type of programming. This allows advertisers to weight additional

viewers of different types of programming differently. The revenue equation becomes:

ln rjmtb = αpb + ηb ln vjmtb︸ ︷︷ ︸
zpjmt

+ωvj + ωvmt + εpjmt︸ ︷︷ ︸
epjmt

(16)

6.3 Maximizing advertising revenue

Stations choose broadcast lineups to maximize advertising revenue. In our model, sta-

tions choose over program types throughout the early evening into prime time. Of
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course, maximizing revenues across the evening is different than maximizing revenues

obtained in a given half-hour time slot. This is because of viewer lead-in effects, which

might be program type-specific.10 For example, people may be more likely to watch na-

tional news after a local news broadcast, so a station may prefer to broadcast local news

prior to national news even though other programming would give more viewership and

revenue in the current time slot.

Of the four types of programming categories (B = {l, e, n, c}), only “local news (l)”

and “general entertainment (e)” can be selected by local stations. Local stations view

cable schedules as fixed and are obligated by national contracts to broadcast national

news at certain times. Hence, when a station is free to choose programming, it makes

a choice from a binary local choice set, B′ = {l, e}. National news is a fixed broadcast

from the perspective of the station, around which other broadcasts must be arranged.

While the binary nature of programming choice is a simplification, it still admits

a large number of broadcast menus for local stations over the six early-evening time

slots. If a station does not broadcast national news at all, it is making a binary l, e

programming decision in six time slots in our observation period. This creates 26 = 64

possible programming sequences.

Expanding previous notation a bit, we write ui in (15) as:

ui = u(bi, zi, ei, θv) (17)

That is, viewer utility depends upon broadcast type and parameters θv, and has both

systemic and idiosyncratic components. The NMNL creates a viewership share from

the utility indices of all firms in the market, which we may alternatively write as:

si = si(ui, u−i, θv) (18)

Similarly, we expand on notation and write our revenue equation (16) as:

ri = r̃i(vi, bi, θp) (19)

10The importance of lead-in effects in television viewing is well documented, see for example Esteves-
Sorenson and Perretti (2012), and Wilbur (2004).
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By virtue of equation (18), (19) can be rewritten:

ri = r̃i(Msi(ui(bi, zi, ei), u−i(b−i, z−i, e−i), θv), bi, e
p
i , θp) (20)

Expression (20) reflects that advertising revenue depend upon programming choices

and viewing, which in turn depends upon the viewership model. It is helpful to write

(20) in a more streamlined form:

ri = ri(ui, u−i, bi, e
p
i , θ) (21)

The convenience of (21) is that it provides a recipe for computing counterfactual ad-

vertising revenues. One first obtains a counterfactual utility index u′i, and uses this

to compute a counterfactual viewership share s′i using (18). Then, the share can be

inflated into viewership and inserted into the revenue function to obtain hypothetical

revenues from broadcasting different sorts of programming.

To introduce a time component to the model, let bi = {bit}Tt=1 now denote station

i’s “broadcast lineup,” and let b−i denote the lineups of other stations in the market.

Let Bi denote all of station i’s possible lineups. Revenue maximization by i implies

that station i has chosen its revenue maximizing lineup from available lineups, given

the broadcast lineups of other stations. Aggregate revenue is:

Ri(ui(bi), u−i(b−i), θ) =

T∑
t=1

rit(uit(bit), u−it(b−it), θ) (22)

Under the maintained assumption that stations engage in Nash competition in

broadcast choices to maximize profits, we require that the broadcast menu chosen by a

station maximizing a station’s revenues, given the broadcast menus chosen by all other

stations. Using (22), this means that:

Rj(uj(bj , zj , ej), u−j), θ) ≥ Rjm(uj(b
′
j , z
′
j , e
′
j), u−j), θ)

∀b′ ∈ Bj ,∀j ∈ L (23)

Equation (23) reflects the idea that the broadcast sequence actually chosen by station

j maximizes revenues, given the broadcast sequences chosen by other stations. The

condition ∀j ∈ L means that the condition applies to all the local stations making

programming decisions in the market.
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Condition (23) implies that each station is choosing a broadcast menu to maximize

revenues given the decisions of other stations, so that (23) means observed programming

in a market is a Nash equilibrium.

6.4 Likelihood

We now describe the likelihood function built around the viewership and revenue equa-

tions, introducing additional details as needed. The contribution of each market m to

the likelihood function can be broken into four components: the viewership model, the

advertising revenue model, the revenue maximization condition, and then a correction

term necessitated by the assumption that outcomes are consistent with the outcome

of a game. The last term derives from condition (23) not fully determining a unique

market outcome, as pointed out by Ciliberto and Tamer (2010) and Bajari, Hong,

and Ryan (2011). This “cohesiveness” problem has to be addressed in the likelihood

function.

The likelihood contribution of a market as a function of its four components is:

Lm = LvmLpmLrmLcm (24)

The first two components of the log-likelihood are straightforward. The latter two are

somewhat simple conceptually, but induce a degree of complexity in estimation.

6.4.1 Viewership Likelihood

To form an expression for Lvm, rewrite equation (15) as:

ev = y − µb ln s.|b − αb −Xvβv (25)

Which expresses the joint likelihood of y in terms of ev. Accordingly, we have:

Lvm = fv(e
v, Xv, θv)

∣∣∣∣devdy
∣∣∣∣ (26)

23



where
∣∣∣devdy ∣∣∣ is the Jacobian determinant of ev with respect to y. In the appendix, it is

shown that this determinant is:∣∣∣∣devdy =

∣∣∣∣ ∏
b∈B

(1− µb)Nb−1

That is, to compute the jacobian determinant, one simply counts the number of broad-

casts of each type, subtracts one from this count, and the raises the terms (1− µb) to

the power Nb−1. Under the assumption that the terms are jointly normally distributed

according to the covariance matrix Ωv, where Ωv is built to take into account common

market-time and station-level random effects.

6.5 Revenue Likelihood

For Lpm, we rewrite equation (16):

ep = ln r − αpb − ηb ln v (27)

As the transformation from dependent variable to error term for (27) is unitary, we

have simply

Lpm = fp(e
p, Xp, θp) (28)

We again assume that eP is normally distributed with covariance matrix Ωp, where Ωp

considers market-time and station-level random effects.

6.6 Profit Maximization

Profit maximization requires that we calculate:

Lrm =

∫
e′vj ,e′pj∈Γj

Rj ≥ Rj(uj(b′j , z′j , e
′v
j ), u−j , e

′p
j ), θ)

∀b′ ∈ Bj , ∀j ∈ L (29)

That is, a term calculating the probability that observed advertising revenues from

observed broadcasting decisions given parameter values and data must be added to

the likelihood. While conceptually clear, condition (29) obviously presents some com-

putational challenges, as the region Γj is quite complicated. How we addressed these
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challenges will be discussed in the estimation section of the paper.

6.7 Nash Equilibrium

To close the empirical model, we also need a condition describing an equilibrium se-

lection mechanism. That is, conditional on (29), which means that observed broadcast

menus across the market could be an outcome, what are the chances that they actually

will be a market outcome? We write this condition as:

Lcm = P (b|R ≥ R(u(b′, z′, e
′v), e

′p, θ) (30)

We now give an overview as to how the model likelihood L =
∏M
m=1 Lm, where Lm

is comprised of (25), (28), (29), and (30), is actually maximized to produce estimates

of model parameters θ. Once we have these parameters, we can then recover implied

random effects and use the estimated model to conduct counterfactuals.

6.8 Estimation Details

In this section we stress the key aspects of estimating the model, referring to an online

appendix for the finer details. While most of the model can be estimated without

difficulty using standard maximum likelihood methods, selection effects and game-

theoretic aspects of the problem render estimation a bit more difficult. Selection effects

arise because stations choose the observed broadcast menu because it is expected to

generate higher profits than alternative broadcast menus. Game-theoretic concerns arise

because stations make their revenue maximizing broadcasting decisions in consideration

of the broadcasting decisions of other stations.

Both of these aspects of the problem require consideration of a variety of counter-

factuals and asking questions about what prices and viewership would be if stations

had followed different courses of action. Because these counterfactuals are computation-

ally costly, we adopt a simulation-based approach to estimation that follows Ackerberg

(2010), and also borrows elements from Bajari, Hong, and Ryan (2010), and Cher-

nozhukov and Hong (2003). Our approach is to estimate a simple, preliminary model,

and then based on this model simulate counterfactual shares and revenues consistent

with the observed broadcasts in each market constituting a Nash equilibrium. We then

check these simulated market outcomes for other equilibria and correct the simulated
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likelihood for multiplicity or cohesiveness (see, e.g., Ciliberto and Tamer (2010)). We

then weight the simulations according to their likelihood value, and reestimate the

model. These final estimates are then taken to be the right ones - fully corrected for

multiplicity and selection.

In the course of estimation, we restrict all of the multinomial substitutability param-

eters to the (0, 1) range. One advantage of the MCMC method is that in the event that

a parameter tends to either its upper or lower limit, estimation can proceed without

creating problems created by, say, numerical differentiation.

While the details are discussed in the appendix, some additional aspects of estima-

tion should be mentioned. For one, since we consider broadcast menus as strategies,

even under our assumption that each station may select only local news or entertain-

ment programming, across six time slots there are possibly 26 = 64 potential strategies

per station. If there are five stations in a market, there are 645 potential profiles that

must be checked. The computational costs of checking each strategy so thoroughly is

prohibitive, so we employ what we believe to be a novel markov-chain-monte-carlo ap-

proach to finding additional equilibria of the game. The whole model was estimated

using methods described in Chernozhukov and Hong (2003), and Baker (2014).

As described in the appendix, estimation proceeds by piecing together each of the

four components of the likelihood function. While there are closed-form expressions for

the observed viewership share and the observed price, closed forms are impossible to

calculate for the revenue maximizing condition and the nash equilibrium condition. For

each market and station that we assume is choosing a broadcast menu, we therefore

simulate S = 25 drawn counterfactual errors, where errors are drawn so that the

observed revenue and viewership outcome produces the highest revenue over the course

of the evening, given the broadcast menus of other stations. We then adjust likelihood

by observing whether or not another equilibrium outcome is consistent with any of

our draws. The details as to how we performed this drawing, and some of the nuances

involved, are described in the appendix. To get starting values for the model, we first

fit the model in simple linear form - i.e., without the correction for the possibility

of multiple equilibria or without assuming what is observed is a revenue-maximizing

outcome on behalf of stations. These starting values provide a point of contrast with

our eventual model estimates.

One thing that is worth mentioning before discussing model results is that we do not

rely on a classical estimation method. This is for practical as well as conceptual reasons.
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Because we have an interest in generating a predictive model, we have included a variety

of different sorts of controls, substitution parameters, and random effects. It is bound

to be the case (and indeed, may even be of some interest) that some of these effects are

not well-identified. With this in mind, we employ a Markov-chain Monte Carlo method

of estimation, as it experiences none of the problems a direct optimization method

might encounter when faced with an overidentified model (i.e., missing derivatives).

Details of how the draw occurs are also described in the appendix; readers with general

interest should consult Chernozhukov and Hong (2003) for theory, and Baker (2014)

for some details of practical application.

6.9 Estimation Results

Estimation results are presented in table 8. For purposes of comparison, we present

both the starting values and the final estimation results. Starting values were obtained

by ignoring selection and multiplicity and estimating viewership and pricing models

separately by maximum likelihood.

The top portion of the table reports program substitutability parameters from the

viewer model. The estimated values are all close to zero, indicating that when the model

is fully saturated with market-time and station fixed effects as well as broadcast counts,

the nesting parameters are not that important in describing viewing choice. In other

words, the nested logit adds little over a standard multinomial logit in viewer program

choice. In practical terms, this indicates that viewers tend to look at the spectrum of

broadcasts and make a choice rather than first choosing a category. 11

The program type dummies show that local stations typically get more viewers

than the control group (cable stations), and that this effect is even bigger for local

news broadcasts.

The Dynamics portion of the table shows a series of controls for lagged viewing

by program type. Overall, the magnitude and statistical significance of these estimates

indicates that the dynamics matter – early viewing spills over into later viewing, and

local news viewing especially bumps national news viewing. The results are reminiscent

of Wilbur (2008), which emphasizes dynamics in viewing.

The negative cumulative viewing estimates in the fourth section of the table indicate

11Our result contrasts markedly with the estimates in Berry and Waldfogel (2004) for radio, where
broadcast substitutability parameters approach unity revealing that categories are highly differentiated
from the listener perspective.
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a substantial breaking news effect for local news. Higher local news viewing earlier in

the evening is associated with lower local news viewing in the current timeslot. This

result suggests one reason why local news broadcasts are clustered early in the evening.

This effect does not operate for national news (the parameter estimate is close to zero)

indicating a reason that local news typically precedes national news.

In terms of the variances of the random effects, a substantial share of variation in

viewership is more or less split equally between station and market-time fixed effects,

with the contribution of idiosyncratic errors being smaller.

Estimates for advertising prices are shown in the Revenue portion of the table.

The elasticity estimates indicate that the demand for local news viewers is modestly

more inelastic than for entertainment viewers (0.6 vs. 0.7), controlling for station and

market-time fixed effects. In other words, an increase in the number of viewers raises

the advertising price per second more for entertainment broadcasts than for local news

broadcasts. However, the modest difference in the estimates indicates that the number

of viewers is more important in determining station price than the type of viewer. In

our welfare analysis this will be evident again in examining how much welfare loss is

due to two-sided market tradeoffs versus business stealing. The table also indicates

that advertiser demand for national news viewers is substantially less elastic than for

local news viewers, 0.3 vs. 0.6, however this likely reflects the small number of similar

stations that broadcast national news.

In terms of random effects, the station, the market-time, and the idiosyncratic

components of viewership contribute equally to variation in revenue across stations.

Overall the coefficient patterns in the equation-by-equation and selection models

are similar, with two key differences. The substitutability parameters for local news and

entertainment are substantially lower in the selection model, indicating that program

categories are less important in choice than in the naive approach. Ignoring selection

would also underestimate the importance of dynamics in program scheduling.

With these basic parameter estimates, we turn to the counter-factual simulations

that allow for welfare analysis.
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7 Welfare Analysis

The goal of this section is to evaluate and compare the three program configurations

that maximize viewer welfare, advertiser surplus and station revenues. We make three

comparisons. First, we assess generally how far the observed program configuration lies

from the configuration that maximizes viewing (viewer optimum), the configuration

that maximizes advertiser surplus (advertiser optimum) and the configuration that

maximizes station revenue (station optimum). We then compare the viewing optimum

to the advertiser optimum, which shows the potential tradeoffs between viewer and

advertiser welfare in the context of a two-sided market. Finally, we compare the program

configuration that maximizes station revenue to the observed outcome, which provides a

sense of the extent to which classic business stealing reduces welfare in relation to a fully

collusive outcome. With these comparison’s, we proceed to evaluate the characteristics

of markets most likely to experience welfare loss from sub-optimal program choices and

discuss policy remedies best suited to the competitive environment.

To conduct our simulations and counterfactual analysis, we first estimate the ran-

dom effects for each station and each market-time block. With these terms, we then

simulate the model 25 times. After simulating the model, we calculate market equilib-

ria for each simulation, and then redraw from the simulations so as not to overweight

simulations with multiple equilibria.

Because the number of possible sequences and strategy profiles for each station and

market is large, it is impractical to search through them all when trying to maximize

viewership, joint station profits, or advertisers’ surplus. We therefore use a a Markov-

chain Monte Carlo approach to maximize shares. We begin by randomly perturbing a

station’s broadcast profile, check to see that the proposed change in strategy increases

the quantity of interest, and proceed in this fashion until further guesses fail to find an

improvement. For our evaluation, we average the results across the 25 simulations.

An overall summary of the welfare calculations is presented in table 9. The top por-

tion of the table shows the optimal number of local news and entertainment broadcasts

from the viewer, advertiser and station perspectives along with observed outcomes.

(We show national news and cable broadcasts for completeness, but these are taken

as given by stations so do not vary across profiles.) Both broadcast and viewing are

summed over the entire evening in each market, so the viewing totals are best viewed

as program-views per capita.
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The first row indicates that the average market shows 10.2 local news broadcasts

per night. The program allocation that maximizes total viewership would include 20.7

local news broadcasts on average, approximately double. Total viewing at the viewer

optimum would increase from 0.297 to 0.325, about 10%. As would be expected, local

news viewing increases substantially, from 0.049 to 0.084, almost double. Local news

viewing increases more than entertainment and national news viewing falls, suggesting

additional local news broadcasts would increase viewing overall rather than simply

reallocate viewing across programming.

The third and fourth data columns report the program allocation and outcomes

associated with the advertiser and station optimum. Interestingly, the number of local

news broadcasts at the advertiser and station maximum is higher than observed levels

by about 4 broadcasts, about 45%, though not as high as at the viewer maximum. Local

news viewing would be about 5% higher at the station maximum, and entertainment

viewing would increase as well.

The bottom two rows of the table provide a measure of advertiser surplus and station

revenue at the different program allocations. The reported surpluses and prices are

averaged rather than summed across markets in this table. Total surplus and revenue

can be approximated by multiplying the averages by 3600, or 600 seconds of advertising

per timeslot times 6 timeslots.12 The table indicates that a shift to the viewer optimal

allocation would reduce station revenue by 11%, while a shift to the station optimum

would increase revenue by 12%. Advertiser surplus would increase substantially with a

re-allocation of programming.

The table reveals some interesting welfare results. There clear is evidence of a

two-sided market tradeoff in product choice. In dividing approximately 52 program

timeslots on average, viewers prefer 21 local news and 31 entertainment broadcasts

while advertisers prefer 15 local news and 37 entertainment broadcasts. The difference

of 6 broadcasts (12%) reflects the size of the two-sided market distortion. However, the

fact that observed broadcasts deviate from even the station maximum indicate that

business stealing occurs in the market. The difference between the station optimum of

15 local news and 37 entertainment broadcasts and the observed outcome of 10 and

42 suggest a mis-allocation of 5 broadcasts, almost as large as the two-sided market

distortion.

12Recall that we observe very little variation in advertising minutes in our data, with an average of
about 10 minutes per 30 minute timeslot.
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The price and surplus simulation results allow us to quantify the cost of better

satisfying viewers. A move from the observed profile to the viewer equilibrium would

decrease station revenue by $1.25 x 3600 or about $4,500 per station. With an average

of about 10 stations per market, this is $45,000 per market on average. The shift would

increase viewership by 0.028 from the observed to the viewer optimum, which implies

a cost of approximately $16,000 to stations to increase total viewing by one percentage

point. We cannot, however, estimate whether the benefits of this shift outweigh the

cost, as we cannot with our model quantify the relative value of broadcasts to viewers.

The role of business stealing can perhaps be seen best with a market example. Table

10 shows the program allocation in Lexington, Kentucky during the 7:00-7:30 times-

lot. All of the local stations broadcast entertainment during this period. The viewer

optimum includes one local news broadcast. If WLEX were to switch to local news

broadcasting, station revenue would fall. However gains to competitors broadcasting

entertainment would rise substantially more than WLEX would decline, increasing to-

tal revenues in the market by about 8%. Both local news and entertainment viewing

would also increase.

Timing plays an important role in broadcast outcomes. Table 11 shows observed

and optimal broadcasts and viewing by timeslot, averaged across markets. The dif-

ferences between the observed and viewer optimum are small early in the evening,

increasing later, with the largest gap in the 7:00-8:00 timeslot heading into prime time.

The differences between observed and optimal local news and entertainment viewing

also diverge as the evening progresses. The differences can perhaps be captured best

visually. Figure 3 shows a sequence plot that shows observed broadcast patterns over

the evening in relation to the viewer, advertiser and station optimum. The value of

more differentiated programming across the evening can be seen in the multicolored

bars of the optimal allocation relative to the solid areas on the observed outcome.

Table 12 provides information on cost tradeoffs at the timeslot level. Switching pro-

gram configurations to the viewer maximum reduces the price per second that stations

earn by 1-4% and increase viewing by a commensurate amount. In proportional terms,

the lowest cost for largest gains is in the middle to late time period.

To better understand possible drivers of inefficiencies, we regress deviations from

optimal outcomes on market characteristics. Results are shown in table 13. The first

column shows the deviation of observed outcomes from the viewership maximizing

profile. The dependent variable is the difference between the viewer maximizing viewing
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share and the observed viewing share, expressed as a percentage. Larger, wealthier,

younger markets see the largest deviation from the viewer optimum in equilibrium.

The results also indicate that a larger black fraction is associated with a smaller gap

and a larger hispanic population with a larger gap. The results support the marketing

notion that advertiser’s care more and thus perhaps impose a greater influence in these

markets.

The second column and third columns shows the difference between the viewership

maximizing profile and the advertiser optimum, a measure of the potential for advertiser

bias. Column two reports the difference in viewing and column three in advertising

prices, again expressed as a percentage. Market size is positively correlated with the

gap in viewership, indicating large markets show the greatest potential for distortion.

Larger markets also have a larger gap (more negative) in advertising prices between

the viewer and advertiser optimum. An implication of this result is that the scope for

two-sided market distortions away from viewer preferences toward those of advertisers

is greatest in large markets. Wealth is not associated with a greater viewer distortion,

but is associated with a greater (more negative) gap in advertiser prices. Expressed

another way, the potential for advertiser bias is highest in large, wealthy markets.

The fourth column speaks to business stealing effects. The dependent variable in

this specification is the difference between the station revenue maximizing allocation

and the observed equilibrium, again expressed in percentage terms. Larger markets

have the largest gap, experiencing the largest losses from business stealing. This is

consistent with standard results that suggest coordinated action among firms is more

difficult with more market participants, though in this case coordinated action would

improve welfare.

More broadly, we find that the observed number of local news broadcasts is below

the station optimum in 84 of 101 markets. Advertising prices, which convert directly

to station revenues, are in all markets below what would be expected under a fully

collusive outcome. Observed prices are even lower than predicted under the viewer

maximum in 13 markets. Taken together with the results in 13, the welfare estimates

suggest that coordination among stations would increase welfare.
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8 Conclusions

We estimate the welfare consequences of local news broadcasting decisions in advertiser-

funded television, finding a substantial shortfall in local news provision relative to

the viewer optimum. The shortfall is greatest late in the evening news hours from

7:00-8:00 p.m. Higher advertiser value for entertainment programming during these

timeslots explains some of the shortfall. However we also find the number of local news

broadcasts to be less than the revenue maximizing allocation for stations, suggesting

that classic business plays a role in local television broadcast decisions. The two different

mechanisms speak to the role of policy interventions. While subsidies might be used to

increase incentives for stations to broadcast local news, alliances and mergers that allow

stations to internalize business stealing incentives might prove a less costly alternative.

A Estimation details

In this section we discuss the details of our econometric model and how we estimate it.

Our basic method is maximum likelihood, and indeed, most of the likelihood function

can be written in closed terms. A few aspects of estimation present some difficulties

which require simulation-based methods. Combining the terms in (25), (28), (29), and

(30), results in an expression for the log-likelihood contribution of a market to overall

likelihood as:

lnLm = lnLvm + lnLpm + lnLrm + lnLcm (31)

The first two components of Lm on the right-hand side of (31) are the viewership

model and the advertising revenue model. The latter two parts effectively enforce some

constraints on the model; the term lnLrm imposes that observed revenues be maximal

given the decisions of other stations, while the term lnLcm imposes cohesiveness on the

model. That is, given a set of error terms and parameters, it is possible that there are

other equilibria. This term corrects for this possibility.

As described previously, the nested multinomial logit model of viewership share

results in share expression that can be written as:

ln sjmt − ln s0mt︸ ︷︷ ︸
yjmt

= µb ln sjmt|bmt+α
v
b + ζvb ln(1 + nb) +Xv

jmtβv︸ ︷︷ ︸
Uvjmt

+ωvj + ωvmt + εjmt︸ ︷︷ ︸
evjmt

(32)
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In the underbraces, we have indicated how the above can be broken into a dependent

variable, which can be explained by a substitution component, an observable compo-

nent, and an unobserved component which has an error structure allowing for idiosyn-

cratic effects, in which there are market-time, station, and idiosyncratic components.

This is a useful way of writing the viewership equation because we can now write

the viewership model in the form (see equation (6)):

yjmt = µb ln

 e
Uvjmt+e

v
jmt

1−µb∑
bk∈b e

Uvkmt+e
v
kmt

1−µb

+ Uvjmt + evjmt (33)

While Berry (1994) advocates using instrumental-variables methods to tackle this prob-

lem, we take a more direct approach and compute the jacobian determinant of the

transformation implied by (32) and adding this on to the likelihood. Write the density

of y, f(y), as:

f(y) = f(e)|de
dy
| = f(y) = f(e)

1

|dyde |

This jacobian is fairly straightforward to calculate using expression (33). Expanding

and simplifying, we have:

yjmt =
1

1− µb
(Uvjmt + evjmt)− ln

 ∑
bkmt∈b

e
Uvkmt+e

v
kmt

1−µb

 (34)

Differentiating (34) with respect to evkmt, and using the fact that i’s share within the

group is:

simt|bmt =
e
Uvimt+e

v
imt

1−µb∑
bkmt∈b e

Uvkmt+e
v
kmt

1−µb

This results in the following partial derivatives:

∂yimt
∂ejmt

= 1
1−µb −

µb
1−µb sj|bmt i = j

= − µb
1−µb sj|bmt i 6= j, i, j ∈ bmt

= 0 otherwise (35)

Accordingly, for a given market and timeslot, we have a block matrix in which stations
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are grouped according to broadcast type:

J =


Jl 0 0 0

0 Je 0 0

0 0 Jn 0

0 0 0 Jc


Each block is a square matrix of dimension Nb, with shape.

Jb =
1

1− µb


1− µbs1|bmt −µbs2|bmt . . . −µbsNb|bmt
−µbs1|bmt 1− µbs2|bmt . . . −µbsNb|bmt

...
...

. . .
...

µbs1|bmt µbs2|bmt 1− µbsNb|bmt

 (36)

Since the matrix is of block form, we can calculate the absolute value of the deter-

minant as:

|J| = |Jl||Je||Jn||Jc|

Since Jb in (36) can be written as:

Jb =
1

1− µb
(I + ubvb

′)

Where:

ub =


−µb
−µb

...

−µb

 , vb =


s1|bmt

s2|bmt
...

sNb|bmt


It follows the determinant of Jb is:

|Jb| =
(

1

1− µb

)Nb
(1 + ub

′vb)

Since:

1 + ub
′vb = 1− µb

Nb∑
i=1

si|bmt = (1− µb)
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because the sum of shares within group must add to one, we find that:

|Jb| =
(

1

1− µb

)Nb−1

Therefore, the log of the reciprocal of this determinant must be added to the likeli-

hood. Baltagi shows how the density of errors with a two-way random effect assuming

normally distributed error terms can be computed (Baltagi, 2008, p. 42). Putting his

expression in context, and adding on the jacobian term, we have the log-likelihood as:

lnLvm = constant− 1

2
ln |Ωv| −

1

2
e′jΩv

−1ej +
6∑
t=1

∑
bmt∈B

(Nbmt − 1) ln(1− µb) (37)

Where

Ωv = σ2
mtv(Imtv ⊗ Jsv) + σ2

sv(Jmtv ⊗ Isv) + σ2
smtvImtv ⊗ Isv) (38)

and Imtv, Isv are identity matrices of dimension mtv and sv, where mtv are the total

number of viewership shares across the market, and sv are the number of observed

shares per station across the market (i.e., sv = 6). Similarly, Jmtv, Jsv are matrices of

ones of dimensions mtv and sv. Note that the Jacobian transform that must be used is

akin to multiplying the the substitution term by the number of observations less one.

Also, note that the inclusion of the term puts downward pressure on the likelihood, as,

absent other concerns, the likelihood would be maximized by setting µk = 0.

The price equation is:

ln rjmtb = αpb + ηb ln vjmtb + ωps + ωpmt + εjmt

This can be written as:

ωps + ωpmt + εjmt︸ ︷︷ ︸
epjmt

= ln rjmtb − αpb − ηb ln vjmtb (39)

As before, this two-way random components structure has a likelihood mirroring that

described in (40) and (41), which can be written as:

lnLpm = constant− 1

2
ln |Ωp| −

1

2
ep′Ω−1

p ep (40)
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Where

Ωp = σ2
mtp(Imtp ⊗ Jsp) + σ2

spJmtp ⊗ Isp) + σ2
smtpImtp ⊗ Isp) (41)

and Imt, Is are identity matrices of dimension mtp and sp, where mtp is the number

of revenue observations across all time slots in a market, and sp is the number of

observations per station (i.e., sp = 6). Similarly, Jmtp, Jsp are matrices of ones of

dimensions mtp and sp.

So far, the likelihood has consisted of terms for which there are a closed form.

The parts of the likelihood capturing the idea that stations must be choosing a profit-

maximizing configuration of broadcasts across the evening, and that all broadcast con-

figurations in a market must be Nash equilibria, are typically impossible to calculate

in closed form and therefore must be simulated. The drawing is fairly straightforward,

but does involve some nuances that need to be discussed.

First, in the text, we combine expressions (16) and (22) to get an expression for

total revenues:

Rj =

6∑
t=1

(
αpb + ηb ln vjmtb + ωpj + ωpmt + ωjmt

)
Using the viewership equation in the text, and the means of expressing it we developed

above, we have total viewership as market population Mm multiplied by the viewership

share, which can be written as:

vjmtb = M
e
Uvjmt+ω

v
j+ω

v
mt+εjmt

1−µb∑
k∈b e

Uvkmt+ω
v
k
+ωvmt+εkmt

1−µb

∑
k∈b e

Uvkmt+ω
v
k+ω

v
mt+εkmt

1−µb

1 +
∑

k∈b

(∑
k∈b e

Uvkmt+ω
v
k
+ωvmt+εkmt)

1−µb

)1−µb (42)

Beginning with draws for market-time and station effects, we can then compute actual

viewership errors êvjmt. To get shares due to one firm deviating, while all others hold

decisions constant, we draw a new set of viewership errors ẽvjmt, and use these to predict

counterfactual shares for the whole market, for each broadcast menu that a firm might

follow. This gives us a set of hypothetical viewership patters for the deviating firm (in

fact, for all firms) That can be used in the revenue equation as vjmtb. Simulating all

potential viewerships involves computing viewership patterns for all possible combina-

tions of observed and hypothetical actions and error terms. While this makes things

tricky, we can recursively draw the error terms by working backwards.
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To illustrate, at the very end of prime time it must be the case that:

Rj =
5∑
t=1

αpb + ηb ln vjmtb + ωpj + ωpmt + ωjmt

+αpb + ηb ln vjm6b + ωpj + ωpm6 + ωjm6

≥

R
(6)
j =

5∑
t=1

αpb + ηb ln vjmtb + ωpj + ωpmt + ωjmt

+αpb + ηb ln vjm6b + ωpj + ωpm6 + ω̃jm6 (43)

Which reduces to:

ηb ln vjm6b + ωjm6 ≥ ηb ln ṽjm6b + ω̃jm6 (44)

Or

T6 = ηb (ln vjm6b − ln ṽjm6b) + ωjm6 ≥ ω̃jm6 (45)

Since by assumption ωjmt ∼ N(0, σ2
vjmt, ω̃jm6) can be drawn from a right-truncated

normal distribution N(0, σ2
vjmt;T6). This gives a counterfactual error term for period

6. Backing up one period, we now have the requirement that the observed schedule

generate the greatest possible revenue of all potential schedules, that might be followed

from t forward. So:

Rj =

6∑
t=1

exp(αpb + ηb ln vjmtb + ωpj + ωpmt + ωjmt)

≥

R
(56)
j =

4∑
t=1

exp(αpb + ηb ln vjmtb + ωpj + ωpmt + ωjmt)

+ max
[
exp(αpb + ηb ln vjm5b + ωpj + ωpm5 + ω̃jm5)

+ exp(αpb + ηb ln vjm6b + ωpj + ωpm6 + ω̃jm6),

exp(αpb + ηb ln vjm5b + ωpj + ωpm5 + ω̃jm5)

+ exp(αpb + ηb ln vjm6b + ωpj + ωpm6 + ω̃jm6)
]

(46)
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Which becomes:

Rj =
6∑
t=1

exp(αpb + ηb ln vjmtb + ωpj + ωpmt + ωjmt)

≥

R
(56)
j =

4∑
t=1

exp(αpb + ηb ln vjmtb + ωpj + ωpmt + ωjmt)

+ max
[
exp(αpb + ηb ln vjm5b + ωpj + ωpm5 + ω̃jm5)

+ exp(αpb + ηb ln vjm6b + ωpj + ωpm6 + ω̃jm6),

exp(αpb + ηb ln vjm5b + ωpj + ωpm5 + ω̃jm5)

+ exp(αpb + ηb ln vjm6b + ωpj + ωpm6 + ω̃jm6)
]

(47)

That is, we require that the error term be such that changing so that a different item

is broadcast in the 5th timeslot is less than what is observed, when the continuation

strategy could be to either follow the observed broadcast in period 6, or change broad-

casts in period 6 along with a change in broadcast in period 5. Out of this logic, we

find an upper bound for the error term of ω̃jm5, T5. So, this can be drawn accordingly.

We proceed in this fashion until we arrive at the first broadcast period, at which

point we have a bound T1. we can then calculate the density of everything as

f =

φ

(
ω̃′vjm1

σpjmt

)
Φ

(
T1
σpjmt

)
We now have a set of counterfactual and actual error terms for each station that is

choosing a broadcast menu. The last remaining thing to do is check for other potential

equilibria. This is somewhat challenging because each station has a rather large strategy

space, and each market is characterized by a reasonably large number of stations. So,

the strategy space for the entire broadcasting game can be of a large dimension. With

4 stations, each with 64 possible menus and two different types of broadcasts, this gives

4 ∗ 264 = 7.3786976e+ 19 potential strategy profiles across the viewership market. It is

clearly impracticable to check them all.

We therefore follow an approximate procedure, which resembles an adaptive Markov-

chain Monte Carlo technique. For each station, we first pare down the strategy space
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to include only those that are likely to be viable alternatives. It typically happens in

simulating prices and shares, that some strategies would generate significantly lower

revenue than what is observed (for example, broadcasting local news in all six possible

slots, or broadcasting local news at 7:30). We therefore pare down the set of poten-

tial choices to the ten best possible strategies. In the above example, this reduces the

available strategy space to 104 = 10000. While this is an improvement, it is still hard

to check all possibilities - especially in markets in which there are as many as 10 sta-

tions. Accordingly, what we do is select a number of stations randomly, perturb their

strategies using choices from the likely set of strategies, and then iterate from this point

to a Nash equilibrium. If we find additional equilibria using this procedure, we make

note of this. In the final assessment, we adjust the likelihood of the entire vector of

error draws by 1
Neq

, where Neq is the (approximate) number of observed equilibria. For

small dimensional examples, (i.e., markets with two stations), this approach produces

accurate results.

As an additional note on estimation methods, because our parametric model is in

some sense overidentified (i.e., we have some redundancy in controlling for heterogeneity

in the model), we do not want to resort to standard simulated maximum likelihood.

Instead, we rely on the methods in Chernozhukov and Hong (2003) and use an Markov-

chain Monte Carlo approach to classical estimation. The practical means by which this

is done are detailed in Baker (2014).

Here, we detail how we can apply an Ackerberg-Keane-Wolpin type simulation-

based estimation strategy to our problem. The problem emerges because it is computa-

tionally difficult and time consuming to simulate Nash equilibria of the broadcast menu

choice game, the error terms operate over a difficult-to-define region of integration, and

because it is also costly to compute counterfactual shares.

We basically follow Ackerberg (2010) in our estimation strategy. The basic idea is

as follows. Suppose that one wishes to calculate a likelihood function that includes data

x and parameters θ, which requires some integration of an unobserved variable ε over

a region Γ. ε could be, and often is, multidimensional. Thus:

L =

∫
ε∈Γ

F (x, θ, ε)f(ε)dε

The difficulty arises because F (x, θ, ε) is costly and/or time-consuming to calculate.

Ackerberg (2010) shows how the problem may be, in certain circumstances, recast as

40



follows. First, if one can form an index u(x, θ, ε), one can write:

L =

∫
ε∈Γ

F (u(x, θ, ε))f(ε)dε

u is often a linear index function of the form u = xβ + ε, where β ∈ θ. Then, one can

introduce a change of variables:

L =

∫
u∈Γ′

F (u)h(u, θ, x)du

Suppose that one can find a way to simulate values of u that does not depend upon θ.

Then one can introduce an importance sampler as follows:

L =

∫
u∈Γ′

F (u)h(u, θ, x)
g(u, x)

g(u, x)
du

Values of u can be drawn from g(u), which in practice often derives from some approx-

imate, yet reliable and easy-to-estimate model, so g(u, x) is in fact g(u, x, θ0). Then,

an approximation of L is obtained using S simulated values of u:

L ≈ 1

S

S∑
s=1

F (us)

g(us, x)
h(us, θ, x)

The convenience of this last expression is clear; the problem now relies on calculating

h(us, θ, x) instead of repeated calculation of F (x, θ, ε). Essentially, simulated observa-

tions are re-weighted by the estimation procedure.

In our problem, we seek to integrate over the unobserved features of the problem,

which include unobserved viewership error terms and unobserved advertising price error

terms. Counterfactual viewership and prices from unobserved choices are time consum-

ing to calculate, and checking the cohesiveness of the results (i.e., checking for multiple

Nash equilibria) is also time-consuming. Accordingly, we rely on Ackerberg’s (2010)

procedure as follows. The idea is to first simulate viewership for a set of draws, and

then simulate prices so that observed prices constitute the revenue maximizing price.

Given these conditions, we check for existence of alternative Nash equilibria.
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The details are as follows. First, note that viewership can be written as:

vjmtb = M
e
Uvjmt+ω

v
j+ω

v
mt+εjmt

1−µb∑
k∈b e

Uvkmt+ω
v
k
+ωvmt+εkmt

1−µb

∑
k∈b e

Uvkmt+ω
v
k+ω

v
mt+εkmt

1−µb

1 +
∑

k∈b

(∑
k∈b e

Uvkmt+ω
v
k
+ωvmt+εkmt)

1−µb

)1−µb (48)

We break up the viewership utility index as follows:

uvjmt = Uvjmt + ωvj + ωvmt + εjmt

After replacng Uvjmt with its definition, we have:

uvjmt = αvb +Xv
jmtβv + ζvb ln(1 + nb) + ωvj + ωvmt + εjmt

In this term, we think about creating simulated viewership indexes as a three step

procedure in which first market-time and station level random effects are drawn, which

then imply a value of the error term εjmt. Conditional on the market-time and station

level fixed effects, we then draw error terms ε′jmt for unobserved programming choices

and calculate hypotheticals. That is, we draw viewership utility indexes as:

u′vjmt = αvb +Xv
jmtβv + ζvb ln(1 + nb) + ωvj︸︷︷︸

uv1

+ ωvmt︸︷︷︸
uv2

+εjmt

︸ ︷︷ ︸
uv3

Based on these draws, we then create a hypothetical share:

v′jmtb = M
e
u′vjmt
1−µb′∑

k∈b′ e
ukmtb′
1−µb′

∑
k∈b e

ukmtb′
1−µb

1 +
∑

k∈b

(∑
k∈b e

ukmtb
1−µb

)1−µb (49)

We then have a density for the draw as:

h(u′vjmtbs, θ,X) = φ(αvb +Xv
jmtβv + ζvb ln(1 + nb) + ωvjs + ωvmts, σmt)×

φ(0, σj)φ(0, σmt)

The importance sampling weight is calculated using preliminary estimates of the pa-
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rameters as:

g(u) = φ(uv1, σv0)φ(uv2, σmt0)φ(uv3, σsmt0)φ(u′v3, σsmt0)

Note that there are actually two individual-level densities to be drawn in this case.

Once counterfactual viewership shares are created, we can now draw counterfactual

advertising prices. First, inserting our hypothetical viewership draw into the pricing

equation gives:

ln rjmtb = αpb + ηb ln v′jmtb + ωvj︸︷︷︸
up1

+ ωvmt︸︷︷︸
up2

+εpjmt

︸ ︷︷ ︸
up3

(50)

The nuance here is that we have a set of bounds, as detailed previously, that the

advertising price revenues have to satisfy. These give bounds for Tjs1, Tjs2, . . . , Tjs6.

Which results in our values of up belonging to a truncated normal density. Hence, we

have:

h(u′pjmtb, θ,X) =
φ(αpb + ηb ln v′jmtb + up1 + up2, σmt)

Φ(Tjmtb)
×

φ(u1p, σj)φ(u2p, σmt)

with important sampling weight:

g(u) = φ(up1, σp0)φ(up2, σpmt0)φ(up3, σpsmt)φ(u′v3, σpsmt0)

As a final step, we have to calculate the number of Nash equilibria for each alter-

native draw, and then add a weight 1
Neq

to the likelihood. We do this as detailed in the

text. We first perturb each strategy, and then begin a process of iterated dominance.

Often, the process leads back to the original equilibrium, but in the event that it leads

to some other equilibrium, we decrease the sampling weight proportionally. As a prac-

tical matter, when another equilibrium is found, it typically involves stations switching

broadcast types in one or two settings.

In terms of practical details, we employ S = 40 for each station and market. For each

draw, we check 5000 randomly drawn perturbations to the strategies to find alternative

Nash equilibria. Once this is complete, we perform T = 1000 iterations of the MCMC

estimation procedure over the full likelihood, for which we then discard the first 500
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draws. After discarding the first 500 draws, we retain every fifth draw only, and then

use the remaining 100 draws to compute standard errors, confidence intervals, etc. See

Baker (2015) and Chernozhukov and Hong (2003) for the logic behind these choices.
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Table 1: Station and Broadcast Counts per Market, by Market Category

N Mean SD 5th Pct. 95th Pct.

Small Markets (Under 1 Million HH)
- Local Stations 40 7.4 1.4 5.5 10.5
- Natl. Cable Stations 40 64.7 9.8 53.0 84.0
- Local News Broadcasts 40 7.2 1.9 5.0 10.0
Medium Markets (1-3 Million HH)
- Local Stations 43 9.9 2.1 7.0 14.0
- Natl. Cable Stations 43 93.0 14.4 61.0 110.0
- Local News Broadcasts 43 11.2 3.0 7.0 17.0
Large Markets (Over 3 Million HH)
- Local Stations 18 15.6 3.7 10.0 22.0
- Natl. Cable Stations 18 94.2 7.5 81.0 107.0
- Local News Broadcasts 18 14.6 3.9 9.0 22.0
All Markets
- Local Stations 101 9.9 3.6 6.0 18.0
- Natl. Cable Stations 101 82.0 18.2 56.0 107.0
- Local News Broadcasts 101 10.2 3.9 6.0 17.0
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Table 2: Total News and Television Viewing per Market, by Market Category

N Mean SD 5th Pct. 95th Pct.

Small Markets (Under 1 Million HH)
- Local News Broadcasts 40 7.2 1.9 5.0 10.0
- All TV Viewing 40 0.42 0.08 0.32 0.57
- Local News Viewing 40 0.07 0.02 0.05 0.11
Medium Markets (1-3 Million HH)
- Local News Broadcasts 43 11.2 3.0 7.0 17.0
- All TV Viewing 43 0.27 0.08 0.15 0.42
- Local News Viewing 43 0.04 0.01 0.02 0.07
Large Markets (Over 3 Million HH)
- Local News Broadcasts 18 14.6 3.9 9.0 22.0
- All TV Viewing 18 0.08 0.03 0.02 0.13
- Local News Viewing 18 0.01 0.00 0.00 0.02
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Table 3: Average broadcast count and aggregate viewership shares by times and pro-
gram.

Local News National News Entertainment Cable Total

Broadcasts
5:00 3.37 1.32 6.30 80.93 91.91
5:30 1.85 3.22 5.91 80.93 91.91
6:00 3.52 2.04 5.28 81.07 91.91
6:30 0.75 3.80 6.29 81.07 91.91
7:00 0.53 1.19 8.70 81.49 91.91
7:30 0.19 0.96 9.28 81.49 91.91
Total 1 10.22 12.52 41.75 486.97 551.47
Viewing
5:00 0.0168 0.0004 0.0048 0.0201 0.0420
5:30 0.0082 0.0099 0.0051 0.0213 0.0445
6:00 0.0211 0.0008 0.0052 0.0222 0.0492
6:30 0.0016 0.0113 0.0137 0.0237 0.0504
7:00 0.0012 0.0007 0.0259 0.0272 0.0550
7:30 0.0001 0.0003 0.0274 0.0285 0.0562
Total 1 0.0489 0.0233 0.0821 0.1430 0.2973
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Table 4: Average advertisement prices per second by times and program type.

Local News National News Entertainment Average

Broadcasts
5:00 $9.10 $4.58 $3.91 $6.54
5:30 $9.11 $10.68 $3.96 $6.91
6:00 $11.47 $15.44 $6.04 $8.82
6:30 $11.41 $13.00 $7.68 $9.60
7:00 $8.65 $16.53 $17.76 $16.79
7:30 $14.09 $18.94 $18.40
Total Average $9.61 $11.49 $9.89 $11.18
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Table 5: Average advertisement prices per 1,000 viewers, by times and program type.

Local News National News Entertainment Average

Broadcasts
5:00 $0.76 $0.39 $1.28 $0.99
5:30 $0.89 $1.02 $1.15 $0.95
6:00 $0.83 $1.13 $1.51 $1.13
6:30 $1.46 $1.42 $1.19 $1.17
7:00 $1.60 $0.86 $1.65 $1.59
7:30 $5.58 $1.66 $1.73
Total Average $0.91 $1.10 $1.38 $1.26
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Figure 1: Number of broadcasts of each type by timeslot (other cable programming
omitted).
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Figure 2: Average viewership shares by programming type and time slot.
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Table 6: Most common programming sequences

Programming lineups No. Col % Cum %

oooooo 213 34.2 34.2
lnlooo 106 17.0 51.2
lllnoo 96 15.4 66.6
oolnoo 35 5.6 72.2
lnlloo 21 3.4 75.6
lnoooo 21 3.4 79.0
lllnlo 17 2.7 81.7
lloooo 16 2.6 84.3
lllooo 15 2.4 86.7
oooloo 10 1.6 88.3
other 73 11.7 100.0
Total 623 100.0
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Full Model Eq-by-Eq ML
Parameter b se b se

Substitution
Local news µl 0.033+ 0.016 0.157* 0.021
Entertainment µe 0.084* 0.025 0.141* 0.010
National news µn 0.098* 0.007 0.090* 0.013
Other cable µc 0.000 0.001 0.000 0.000
Program Type
Local news dummy αvl 4.881* 0.041 5.075* 0.033
Entertainment dummy αve 3.895* 0.102 3.173* 0.063
National news dummy αvn 2.963* 0.071 3.030* 0.060
Dynamics
loc. news after loc. news βll 0.105 0.090 -0.212* 0.077
loc. news after nat. news βln 0.369 0.198 -0.015 0.100
nat. news after loc. news βnl 1.076* 0.139 0.753* 0.085
nat. news after nat. news βnn 1.362* 0.087 1.519* 0.048
share prev. timeslot βs 0.235* 0.008 0.228* 0.006
loc. news after loc. news X share βsll 0.068* 0.016 0.022* 0.008
loc. news after nat. news X share βsln 0.144* 0.037 0.076* 0.014
nat. news after loc. news X share βsnl 0.053 0.029 -0.006 0.011
nat. news after loc. news X share βsnn 0.144* 0.009 0.162* 0.008
Breaking News
Cum. share local news βcuml -11.744* 0.441 -11.802* 0.870
Cum. share nat. news βcumn 0.449 1.313 -0.456 2.084
Controls
Market Size βvM -0.678* 0.004 -0.690* 0.003
ln(1+no. loc. news) ζl 0.084 0.091 0.211* 0.043
ln(1+no. enter.) ζe 0.209 0.112 0.656* 0.024
ln(1+no. nat. news) ζn 0.428* 0.026 0.481* 0.054
ln(1+other cable) ζc 0.720* 0.015 0.764* 0.005
constant αv -0.290* 0.071 -0.554* 0.029
Rand FX
log(sd) station RE lnσvs 0.790* 0.009 0.795* 0.007
log(sd) market RE lnσvmt 0.942* 0.020 0.898* 0.030
log(sd) model lnσvsmt 0.332* 0.001 0.328* 0.001

Revenue
Local news viewer elast. ηl 0.596* 0.003 0.612* 0.002
Entertainment viewer elast. ηe 0.702* 0.009 0.708* 0.001
Nat. news viewer elast. ηn 0.297* 0.005 0.270* 0.003
Local news dummy αpl -2.708* 0.023 -3.113* 0.025
Entertainment dummy αpe -3.406* 0.080 -3.693* 0.015
Market Size βpM 0.874* 0.002 0.875* 0.001
constant -12.337* 0.035 -12.460* 0.032
Rand FX
log(sd) station RE σps 0.404* 0.012 0.371* 0.014
log(sd) market RE σpmt 0.324* 0.009 0.311* 0.013
log(sd) model σpsmt 0.250* 0.005 0.294* 0.005
N
Total obs. 55698 55698
Markets 101 101
Stations 623 623
Local news 1032 1032
Other local 4217 4217
Nat’l news 1265 1265

Table 8: Estimation results: starting values and results from full model
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Table 9: Observed vs. Optimal Total Broadcasts and Viewing

Observed Viewer Max Advertiser Max Station Max

Local News Broadcasts 10.2 20.7 14.7 14.9
National News Broadcasts 12.5 12.5 12.5 12.5
Entertainment Broadcasts 41.8 30.8 37.5 37.4
Cable Broadcasts 487.0 487.0 487.0 487.0

Evening Total Viewing 0.297 0.325 0.313 0.316
Local News Viewing 0.049 0.084 0.054 0.054
National News Viewing 0.023 0.024 0.021 0.023
Entertainment Viewing 0.082 0.075 0.099 0.100
Cable Viewing 0.143 0.142 0.142 0.142

Advertiser Surplus ($/Second) $7.46 $19.97 $25.67 $25.67
Station Revenue ($/Second) $11.40 $10.15 $12.77 $12.80
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Table 11: Observed vs. Optimal Broadcasts and Viewing by Timeslot

Observed Viewer Max Advertiser Max Station Max

Local News Broadcasts
5:00 3.4 5.0 4.3 5.0
5:30 1.9 2.5 2.1 1.9
6:00 3.5 4.2 3.6 3.6
6:30 0.8 2.5 2.1 2.0
7:00 0.5 2.2 2.3 2.1
7:30 0.2 4.4 0.3 0.3
Local News Viewing

5:00 0.017 0.017 0.011 0.017
5:30 0.008 0.008 0.005 0.005
6:00 0.021 0.023 0.018 0.018
6:30 0.002 0.008 0.007 0.006
7:00 0.001 0.010 0.010 0.007
7:30 0.000 0.019 0.001 0.001
National News Viewing

5:00 0.000 0.000 0.000 0.000
5:30 0.010 0.010 0.007 0.009
6:00 0.001 0.001 0.001 0.001
6:30 0.011 0.012 0.012 0.012
7:00 0.001 0.001 0.001 0.001
7:30 0.000 0.000 0.000 0.000
Entertainment Viewing

5:00 0.005 0.004 0.008 0.005
5:30 0.005 0.010 0.011 0.011
6:00 0.005 0.009 0.012 0.013
6:30 0.014 0.012 0.014 0.014
7:00 0.026 0.025 0.027 0.028
7:30 0.027 0.015 0.029 0.029
Cable Viewing

5:00 0.020 0.020 0.020 0.020
5:30 0.021 0.021 0.021 0.021
6:00 0.022 0.022 0.022 0.022
6:30 0.024 0.024 0.024 0.024
7:00 0.027 0.027 0.027 0.027
7:30 0.028 0.028 0.028 0.028
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Figure 3: Combined sequence plots

0

200

400

600

S
ta

tio
ns

 5:00  5:30  6:00  6:30  7:00  7:30  8:00
Time slots

Actual
0

200

400

600

S
ta

tio
ns

 5:00  5:30  6:00  6:30  7:00  7:30  8:00
Time slots

Viewers

0

200

400

600

S
ta

tio
ns

 5:00  5:30  6:00  6:30  7:00  7:30  8:00
Time slots

Station joint profit
0

200

400

600

S
ta

tio
ns

 5:00  5:30  6:00  6:30  7:00  7:30  8:00
Time slots

Advertiser Surplus

Actual, Surplus, Profit, and Viewership Maximizing Programming Lineups
Sequence plots

Local news
National News
Entertainment

58



Table 12: Observed vs. Optimal Advertising Prices per Second by Timeslot

Timeslot Observed Price Viewer Max Price %Difference Observed Viewing Viewer Max %Difference

5:00 $6.50 $6.06 -1.30% 0.0420 0.0428 0.70%
5:30 $6.81 $6.03 -2.12% 0.0445 0.0477 1.90%
6:00 $9.00 $8.25 -1.63% 0.0492 0.0547 2.78%
6:30 $9.80 $9.17 -0.96% 0.0504 0.0553 2.70%
7:00 $17.52 $15.78 -1.67% 0.0550 0.0611 2.87%
7:30 $18.80 $15.62 -3.83% 0.0562 0.0634 3.68%
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Figure 4: A depiction of the broadcasting game
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Figure 5: Actual shares and simulated shares at the viewer optimal programming
configuration.
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Figure 6: Actual shares and simulated shares at the station revenue maximizing con-
figuration.
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Figure 7: Actual shares and simulated shares at advertiser’s surplus maximizing con-
figuration.
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Figure 8: Sequence plot of actual programming offered
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