Risk Measures on Orlicz spaces: some new characterisation of convex closed sets

Freddy Delbaen (ETH-Zurich, Uni-Zurich, on visit at Tokyo Metropolitan University)

Keita Owari (Ritsumeikan University, Kusatsu)

The usual definition for monetary utility functions is given on the space L^{∞} . For dual spaces, L^{Φ} , of Orlicz $-\Delta_2$ spaces, L^{Ψ} , there are two generalisations. One uses norm bounded sets, the other one uses order intervals. We show that a monetary utility function has a dual representation with a penalty function defined on L^{Φ} , if the utility function is upper semi continuous for the convergence in probability on order intervals. More precisely we show that a convex set $C \subset L^{\Phi}$ is $\sigma(L^{\Phi}, L^{\Psi})$ closed if for each order interval, $[-\eta, \eta] = \{\xi \mid -\eta \leq \xi \leq \eta\}$ ($0 \leq \eta \in L^{\Phi}$), the intersection $C \cap [-\eta, \eta]$ is closed for the convergence in probability. The result is based on the following technical lemma. For a norm bounded sequence ξ_n in L^{Φ} , which converges in probability to 0, there exist *forward* convex combinations $\zeta_n \in conv\{\xi_n, \xi_{n+1}, \ldots\}$ as well as an element $\eta \in L^{\Phi}$, such that $\zeta_n \to 0$, almost surely and $|\zeta_n| \leq \eta$.