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Abstract. In this paper we study existence and uniqueness of equilibria in forward

looking models, focusing on fundamental solutions. The theory presented below can

accommodate several classes of nonlinear models, bounded or unbounded solutions

and a variety of applications. It covers some known results as special cases and opens

the door to new ones. As well as sufficient conditions for existence and uniqueness

of equilibria, we discuss methods of computation.

JEL Classifications: D81, G11

Keywords: Forward looking dynamics, asset pricing, time reversibility, projection

1. Introduction

One of the defining features of economic models—as opposed to, say, physical or

biological models—is the prevalence of forward looking restrictions. Economic models

have forward looking dynamics because economic agents have preferences over future

outcomes. These concerns influence current actions, which in turn affect current

outcomes. Forward looking models came to the fore with the work of authors such

as Cagan (1956), Muth (1961) and Lucas (1972, 1976). They are central to the

1Much of this research was completed while the third author spent time at New York University

and Singapore Management University. These visits were partially funded by the Alfred P. Sloan

Foundation. We also thank Ippei Fujiwara, John Rust and Sean Meyn for helpful comments and

suggestions.
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modeling of a vast range of economic phenomena, from the determination of asset

and commodity prices to exchange rates, inflation, interest rates, saving, borrowing,

investment and consumption.

This modeling methodology gives rise to the problem of characterizing equilibria that

satisfy the restrictions of forward looking models, as well as clarifying conditions

under which they exist and are unique. The early literature focused on linear systems

or linearized systems, with well-cited references including Taylor (1977), Blanchard

and Kahn (1980), Hansen and Sargent (1980), Uhlig (1999), Klein (2000), Christiano

(2002) and Sims (2002). A recent treatment based on Weiner-Hopf factorizations can

be found in Al-Sadoon (2016).

Regarding existence and uniqueness of solutions for more general models, the current

state of the field is that we have many specific results but still lack general the-

ory. While some special classes of models have analytical solutions, moving beyond

these models typically requires sophisticated fixed point arguments. Two seminal

contributions are Lucas (1972) and Lucas (1978). More recent examples includes

Labadie (1986), Lucas and Stokey (1987), Calin et al. (2005) and Brogueira and

Schütze (2015). In these papers the fixed point arguments are tailored directly to the

application in question.

Here we set down a first pass at a more general approach, including tools to ana-

lyze equilibria of forward looking systems encompassing many applications. We focus

throughout on so-called fundamental solutions (as opposed to “bubble” solutions,

which are also of interest but set aside in what follows). The theory developed below

admits linear models, nonlinear models, bounded models, unbounded models and so

on. It covers a number of known existence and uniqueness results across different

applications and opens the door to new ones. As well as sufficient conditions for exis-

tence and uniqueness of equilibria, we provide some means of characterizing equilibria

and methods of computation.

At the first stage, we restrict attention to discrete time models that take the form Yt =

Et [At+1Yt+1] +ϕt, where the vector-valued stochastic process {Yt} is the endogenous

object that we wish to solve for and {ϕt} and At+1 are exogenous random vector and

matrix valued processes respectively. We call these models random coefficient models.

If At+1 is nonrandom, then the problem reduces to a linear rational expectations

model of the type discussed above. A large variety of commonly used models can be

expressed in this framework.
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Despite the seemingly minimal departure from linearity, general results on existence

and uniqueness of solutions to such models are still thin on the ground. It is of

course well known that one can potentially “solve” the model by iterating forwards,

but, apart from some special cases, the question of whether the resulting sequence

converges is nontrivial and insufficiently addressed.

Here we tackle the problem from two complementary angles. First, we study con-

vergence of the random series produced by forward iteration. We do so by adapting

the stability theory of Kesten random coefficient processes with stationary and er-

godic coefficients (see Kesten (1973) and Brandt (1986)) to forward looking models.1

This provides relatively simple and general sufficient conditions for convergence of

the random series.

Unfortunately, the conditions discussed above do not imply that the limiting sums

have finite expectation. To address integrability we use an operator theoretic ap-

proach. Because of the need to handle applications that include unbounded solutions,

we resist the traditional method of embedding our equilibrium problem in a space of

bounded functions. Instead we replace boundedness with the weaker condition that

at least one moment is finite.2

Working in a setting of integrable functions satisfying moment conditions turns out to

have several advantages beyond the ability to accommodate unbounded solutions. For

example, if we have finite second moments we can embed our problem in a Hilbert

space of square integrable functions. This allows us to analyze contractions using

relatively weak sufficient conditions that can be checked numerically, using all the

analytical machinery provided by complete (and, in our case, separable) inner product

spaces.

In addition, the space of square integrable functions supports a powerful approx-

imation theory based around orthogonal projections that can be exploited in the

discussion of computation. As we demonstrate below, this theory is particularly ef-

fective when the orthonormal basis used to represent and decompose functions in the

space is precisely matched with the state process that drives stochastic outcomes in

the model. In fact, in many quantitative studies, economists choose Markov processes

1The theory of traditional backward looking Kesten processes has been applied productively to a

several economic problems, including the tail properties of wealth distributions (see, e.g., Benhabib

et al. (2011)).
2This condition cannot be weakened further, since the conditional expectation in the statement

of the forward looking restriction is not well defined without at least one finite moment.
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for the state that have the property of time reversibility, and, if we match orthonor-

mal bases with these state processes, we can greatly simplifying a range of numerical

computations.

Having treated random coefficient models, we then turn to more general models of

the form Yt = EtG(Xt, Xt+1, Yt+1) where G is a given function and Yt is now allowed

to be either finite or infinite dimensional. Once again our approach is based around

integrability conditions. We develop sufficient conditions for existence and uniqueness

of solutions and discuss computation. It turns out that many of the advantages of

the integrability based approach continue to hold for these more general models.

In terms of existing literature, the theoretical and computational components of parts

of our work are related to Tauchen and Hussey (1991), who study a class of asset pric-

ing problems that can be expressed in operator form as Fredholm integral equations.

The problems in section 2 have this property. Unlike Tauchen and Hussey (1991), we

frame our problem in a space of integrable functions, and hence permit unbounded

solutions and unbounded state spaces. We focus on existence and uniqueness of so-

lutions, while Tauchen and Hussey (1991) focus on computation.

There have been a variety of studies attempting to solve the kinds of functional equa-

tions that arise in economic modeling in the setting where solutions can be unbounded.

One line of attack is based around weighted supremum norms with an appropriately

chosed weighting function. Important examples can be found in Epstein and Zin

(1989), Boyd (1990) and Alvarez and Stokey (1998). For some highly nonlinear prob-

lems, this approach is idea. All of these papers consider specific applications, and the

weighting function is tailored to the structure of the problem.3

The paper is structured as follows: Section 2 treats random coefficient models. Sec-

tion 3 discusses sufficient conditions for the results in section 2. Section 4 covers

computation. More general nonlinear models are treated in section 5, while section 6

covers further extensions. Some proofs are deferred to the appendix.

3Another line of research tackles unboundedness functional equations via the local contraction

approach. See, for example, Rincón-Zapatero and Rodŕıguez-Palmero (2003), Martins-da Rocha

and Vailakis (2010) and Matkowski and Nowak (2011). One of the motivations of this line of work

is to deal with dynamic programming problems that are unbounded both above and below. The

integrability based methods used here can also handle functions that are unbounded above and

below, although the class of problems we treat are different.
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2. Random Coefficient Models

In some models, interaction between the endogenous and exogenous processes comes

only through random additive and multiplicative components. This is the setting

where it is potentially feasible to solve the model by iterating forward in time. In this

section we provide sufficient conditions for convergence of both the random series and

the current expectation of that series.

2.1. Set Up. Consider a random coefficient model of the form

(1) Yt = Et [At+1Yt+1] + ϕt, t ∈ Z,

where {Yt} is an endogenous sequence of random vectors and {ϕt} and {At} are

random and exogenous. The random sequences are defined on a fixed probability

space (Ω,F ,P) and adapted to a filtration {Ft}. The operator Et := E[ · | Ft] is

vector-valued expectation conditional on time t information Ft, and the equality in

(39) is understood as holding P-almost surely.

Since many recent studies deal with infinite dimensional state variables (distributions

of assets or productivity, location, etc.), and since accommodating such states causes

no additional complications to theory or notation, we allow for this possibility. Hence

in what follows we assume that {Yt} and {ϕt} take values in a separable Banach space

(Y, ‖ · ‖) and that {At} takes values in the set of bounded linear operators from Y

into itself. In the standard case, and in the majority of our applications, Y = R
m

and each At should be understood as a random m×m matrix.4

Example 2.1. In the consumption-based asset pricing model of Lucas (1978), the

price process {Pt} of a claim to the dividend stream satisfies

(2) Pt = Et

[
β
u′(Ct+1)

u′(Ct)
(Dt+1 + Pt+1)

]
,

where Ct is consumption, β is a discount factor, and u is utility. In equilibrium,

Ct = Dt for all t, where {Dt} is an exogenous endowment process. The model (2) is

a version of (1) with At+1 = β u
′(Ct+1)
u′(Ct)

and ϕt = βEt
u′(Ct+1)
u′(Ct)

Dt+1.

4Since Y is allowed to be any separable Banach space, the conditional expectation in (1) should

be understood as a Bochner integral. When Yt is an ordinary finite dimensional vector, this reduces

to the usual notion of element-by-element integration. See section 11.8 of Aliprantis and Border

(2007) for details. In the finite dimensional case, vectors are understood as column vectors unless

otherwise stated.
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Example 2.2. When dividends are nonstationary, one can study the price dividend

ratio rather than the price. For example, suppose that Et [Mt+1Rt+1] = 1, where

Mt+1 is the pricing kernel and Rt+1 = (Dt+1 + Pt+1)/Pt is gross returns on an asset

with stochastic cash flow {Dt} and time t price Pt. {Mt} and {Dt} are exogenous.

Rearranging and defining Yt := Pt/Dt as the price-dividend ratio, we can express this

restriction as

(3) Yt = Et

[
Mt+1

Dt+1

Dt

(1 + Yt+1)

]
.

This is a version of (1) with At+1 = Mt+1
Dt+1

Dt
and ϕt = EtAt+1. Many specifications

for the pricing kernel have been proposed in the literature and we discuss several

below.

Example 2.3. Consider the simple new-Keynesian model

πt = βEtπt+1 + θyt + uSt

yt = Etyt+1 − γ(it −Etπt+1) + uDt ,

where yt is the output gap, πt is inflation and it is the interest rate (see, e.g., Farmer

et al. (2009)). The shocks {uSt } and {uDt } are exogenous AR(1) processes. If it = αyt+

δπt and we substitute this into the second and define Yt = (yt, πt) and Xt = (uSt , u
D
t ),

we can express this as the vector system Yt = AEt [Yt+1] + BYt + Xt. If r(B) < 1,

then I −B is invertible, and we can rearrange to obtain

Yt = Et

[
(I −B)−1AYt+1

]
+ (I −B)−1Xt.

This is also a version of (1).

Remark 2.1. In example 2.3, the entire system is linear and the dynamics are already

well understood. Our main interest will be in solving models with some degree of

nonlinearity.

2.2. Convergence of the Random Sum. Returning to the model in (11), we have

the option to iterate forwards, producing the fundamental “solution”

(4) Y ∗t = Et

[
∞∑
j=0

j∏
i=1

At+i ϕt+j

]
where

∏0
i=1At+i = 1. This expression often has a natural economic interpretation.

For example, in the asset pricing model in example 2.1, the right hand side of (4)

is the current expectation of a future flow of dividends, discounted to present value

using time and risk preferences.
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There are two potential problems with the expression (4). First, the sum might fail

to converge, in which case
∑∞

j=0

∏j
i=1At+i ϕt+j is not a well defined random vector.

Second, even if the sum does converge, its expectation might not be finite. In this

section we tackle the first problem. In stating our results, we let

(5) wn :=
n∑
j=0

j∏
i=1

At+iϕt+j and w∞ :=
∞∑
j=0

j∏
i=1

At+iϕt+j

whenever the limit exists. In what follows, we say that (1) is stable under forward

iteration if wn → w∞ and w∞ <∞ with probability one.

Proposition 2.1. Let {At} and {ϕt} be stationary and ergodic. If, in addition,

(6) E ln ‖At+1‖ < 0 and E ln ‖ϕt‖ <∞,

then (1) is stable under forward iteration.

The norm on ‖At+1‖ in (6) is the induced operator norm ‖A‖ := sup‖y‖=1 ‖Ay‖. For

scalars this is just absolute value. The following proof draws heavily on ideas from a

study of backward looking random coefficient models in Brandt (1986).

Proof. By Cauchy’s root criterion (which is valid for Banach space valued sequences),

to show that wn converges absolutely, it suffices to show that

(7) lim sup
j→∞

∥∥∥∥∥
j∏
i=1

At+i ϕt+j

∥∥∥∥∥
1/j

< 1.

To prove (7), observe that∥∥∥∥∥
j∏
i=1

At+i ϕt+j

∥∥∥∥∥
1/j

6
j∏
i=1

‖At+i‖1/j ‖ϕt+j‖1/j

= exp

(
1

j

j∑
i=1

ln ‖At+i‖+
ln ‖ϕt+j‖

j

)
.

From the conditions in (6) and the law of large numbers for stationary and ergodic

sequences, 1
j

∑j
i=1 ln ‖At+i‖ converges almost surely to a negative constant and

ln‖ϕt+j‖
j
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converges to zero.5 It follows that

lim sup
j→∞

(
1

j

j∑
i=1

ln ‖At+i‖+
ln ‖ϕt+j‖

j

)
< 0 P-a.s.

Hence

lim sup
j→∞

exp

(
1

j

j∑
i=1

ln ‖At+i‖+
ln ‖ϕt+j‖

j

)
< 1 P-a.s.

The bound in (7) follows. �

Example 2.4. Returning to example 2.2, let Gt+1 := ln(Dt+1/Dt) denote dividend

growth, so that At+1 = Mt+1Gt+1. The conditions of proposition 2.1 will hold if the

stochastic discount factor and are stationary and ergodic, E lnEtMt+1Gt+1 is finite,

and, in addition,

(8) E lnMt+1 +EGt+1 < 0.

A familiar example is Mehra and Prescott (1985), where Mt+1 = βu′(Dt+1)/u
′(Dt)

with u(c) = c1−γ/(1 − γ) and {Gt} is stationary and ergodic (being, in their case,

a function of a uniformly ergodic Markov process). Assuming γ > 1 and using

stationarity of {Gt}, the restriction in (8) translates to

EGt >
ln β

γ − 1
.

For a given discount factor, stability under forward iteration requires the expected

steady state growth rate of dividends is sufficiently large, or that the agent is suffi-

ciently risk averse.

Example 2.5. Consider an overlapping generations (OLG) model with money, as

studied by Lucas (1972), Sargent and Wallace (1983) and other authors. The economy

is infinitely lived with two generations. Agents live for two periods, working in the first

and consuming in the second. Lifetime utility is U(`t, ct) = −u1(`t) + βEt[u2(ct+1)],

where `t is labor, ct+1 is consumption and u1 and u2 satisfy standard shape restrictions.

Output per agent is `tZt, where Zt is a productivity shock. Equilibrium in the goods

and money markets requires that Pt`tZt = M , where M is a fixed supply of money.

Individual optimality requires that agents solve max`t,ct+1 {−u1(`t) + βEtu2(ct+1)}

5We use the fact that zn/n → 0 a.s. as n → ∞ whenever {zn} is stationary and ergodic with

finite mean. This holds because if sn :=
∑n

j=1 zj , then zn/n = sn/n − [(n − 1)/n](sn−1/(n − 1)).

The two sample means converge to the same number a.s. by stationarity and ergodicity.
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subject to Pt+1ct+1 6 Pt`tZt and 0 6 `t 6 L. Taking the first order condition and

using the equilibrium constraint to eliminate Pt and Pt+1 yields

(9) `tu
′
1(`t) = βEt {u′2(`t+1Zt+1)`t+1Zt+1} .

Under standard assumptions, the function ξ(`) := `u′1(`) is one to one, so, with

ψ(x) := u′2(x)x and Yt := ξ(`t), we can write (9) as

(10) Yt = βEt
{
ψ[ξ−1(Yt+1)Zt+1]

}
.

This model is quite nonlinear but simplifies in certain cases. If preferences have the

power form u1(x) = u2(x) = x1−γ/(1− γ), then (10) becomes

Yt = EtβZ
1−γ
t+1 Yt+1

The conditions of proposition 2.1 require that {Zt} is ergodic and that E ln{βZ1−γ
t+1 } <

0, or E lnZt > ln β/(γ − 1) when γ > 1.

2.3. Solutions with Finite Expectations. The conditions of proposition 2.1 en-

sure that the random variable on the right hand side of (4), which, in asset pricing

models, corresponds to the current valuation of a flow of payoffs across different

states of the world, is well defined and finite. They do not, however, imply that the

expectation in (4) is finite. In this section we consider finiteness of the expectation.6

To address this problem, we will find it convenient to add a small amount of additional

structure. In particular, we will assume that the model in (1) can be expressed as

(11) Yt = Et [A(Xt, Xt+1)Yt+1] + ϕ(Xt), t ∈ Z.

In other words, At+1 can be written as A(Xt, Xt+1) and ϕt can be written as ϕ(Xt)

for some Borel measurable maps A and ϕ and some state process X := {Xt}t∈Z. We

assume that X is a stationary, exogenous X-valued Markov process with stochastic

kernel Q, so that Q(x,B) represents the probability of transitioning from x into set

B in one step. X is defined on some underlying probability space (Ω,F ,P).7 It is

not required to be ergodic at this stage.

6Note, however, that our conditions guaranteeing finite expectations, while general, do not guar-

antee existence of the random variable in (4). For a full treatment, both approaches are required.
7A stochastic kernel Q on (X,B) is a function from (X,B) to [0, 1] such that B 7→ Q(x,B) is a

probability measure on (X,B) for each x ∈ X, and x 7→ Q(x,B) is B-measurable for each B ∈ B. An

X-valued Markov process {Xt} on probability space (Ω,F ,P) is said to be Markov with stochastic

kernel Q if P{Xt+1 ∈ B |Xt = x} = Q(x,B) for all x ∈ X and B ∈ B.
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The set X is called the state space, and can be any Polish space.8 We let π denote

the common marginal distribution of Xt, so π(B) = P{Xt ∈ B} for all B ∈ B and

t ∈ Z. Since X is assumed to be stationary, π is a stationary distribution of Q.9 As

before, Y will be a separable Banach space with norm ‖ · ‖. In most applications we

will have Y = R
m for some m > 1 and ‖ · ‖ is equal to the ordinary Euclidean norm.

When considering equilibria, one concern is the need to accommodate unbounded

solutions. To this end, we replace boundedness with the weaker condition that at

least one moment is finite. This shifts our search for equilibria out of the space of

bounded functions and into spaces of integrable functions. In particular, given p > 1,

we consider as our candidate set Lp(X,Y, π), the Bochner–Lebesgue space of Borel

measurable functions f : X→ Y such that

‖f‖π :=

{∫
‖f(x)‖pπ(dx)

}1/p

<∞.

When considering this space at fixed p, we are seeking candidate functions f such that

the induced solution Yt = f(Xt) has finite p-th moment. Functions equal π-almost

everywhere are identified, so that ‖ · ‖π defines a norm on Lp(X,Y, π) and together

they form a Banach space.

We make use of the following concepts: The operator norm of any bounded linear

operator L from Lp(X,Y, π) to itself is the induced norm ‖L‖π := sup‖f‖π=1 ‖Lf‖π.

As usual, Li represents the i-th composition of L with itself and L0 is the identity

map I. A scalar λ is called an eigenvalue of L if there exists a nonzero f ∈ Lp(X,Y, π)

such that Lf = λf . The spectrum σ(L) of L is all scalars λ ∈ C such that L− λI is

not bijective.10 The spectral radius r(L) is r(L) := max{|λ| : λ ∈ σ(L)}.

We are interested in two operators in particular. Given Q, the stochastic kernel of

X , and any B-measurable function f : X → Y, we let Qf be the function from X to

Y defined (when the integral exists) by

Qf(x) =

∫
f(y)Q(x, dy) (x ∈ X).

8That is, X is separable and completely metrizable. These weak topological restrictions are only

used to ensure measurability of random elements.
9That is,

∫
Q(x,B)π(dx) = π(B) for all B ∈ B.

10The set σ(L) is nonempty and compact in the complex plane, and every eigenvalue of L lies in

σ(L). Conversely, if L compact (i.e., the image of the unit ball under L is lies in a compact set),

then the set of eigenvalues is at most countable, and an element of σ(L) is either an eigenvalue of L

or the zero element of Lp(X,Y, π). See, e.g., Kantorovich and Akilov (1982).
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Q is called the Markov operator associated with Q and its properties are discussed

in Stokey and Lucas (1989) and Meyn and Tweedie (2009) for the case Y = R.

Properties for the case where Y is a Banach space are similar. In particular, Q is a

bounded linear operator on Lp(X,Y, π) with r(Q) = ‖Q‖π = 1. Proofs are given in

the appendix.

In addition, given A in (11), let A represent the operator

(12) Af(x) =

∫
A(x, x′)f(x′)Q(x, dx′) (x ∈ X).

We call A the valuation operator by analogy with asset pricing models. (If f gives

payoffs in different states and A(x, x′) is a stochastic discount factor, then Af provides

expected discounted values of the payoff.) Conditions under which A is well defined

will be stated below.

Regarding solutions to (11), a Y-valued stochastic process Y = {Yt}t∈Z defined on on

(Ω,F ,P) is called an equilibrium if it satisfies (11) with probability one for all t ∈ Z.

We call an equilibrium Y a stationary equilibrium if it is both an equilibrium and

a stationary stochastic process, and a stationary Markov equilibrium if, in addition,

there exists a Borel measurable function f : X→ Y such that

(13) Yt = f(Xt) for all t ∈ Z.

As before, we have the option to iterate forwards, producing the “solution”

(14) Y ∗t =
∞∑
j=0

Et

[
j∏
i=1

A(Xt+i−1, Xt+i)ϕ(Xt+j)

]
,

where
∏0

i=1A(Xt+i−1, Xt+i) = 1. Notice that we have swapped the order of expecta-

tion and summation relative to (4), the reason being that the results discussed below

map immediately to the representation in (14). The connection between the two

representations is treated in section 2.3.1.

As was the case with (4), the right hand side of (14) can be undefined or infinite

unless conditions are imposed to ensure that the series of random elements on the

right hand side converges. We state conditions under which convergence occurs and

{Y ∗t } defined in (14) is a stationary equilibrium. In fact {Y ∗t } is a stationary Markov

equilibrium with Y ∗t = f ∗(Xt) and

(15) f ∗(x) :=
∞∑
j=0

E

[
j∏
i=1

A(Xt+i−1, Xt+i)ϕ(Xt+j) | Xt = x

]
.
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The next result is a straightforward application of the Neumann series lemma. In the

statement, r(A) is the spectral radius of the valuation operator.

Proposition 2.2. If ϕ ∈ Lp(X,Y, π) and the valuation operator is a bounded linear

operator on Lp(X,Y, π) satisfying r(A) < 1, then

(a) f ∗ in (15) is an element of Lp(X,Y, π) and

(b) setting Y ∗t = f ∗(Xt) for all t defines a stationary Markov equilibrium.

Proof. Let I denote the identity mapping on Lp(X,Y, π). Regarding the first claim,

since r(A) < 1, Gelfand’s formula implies the existence of an i ∈ N such that ‖Ai‖π <
1. As Lp(X,Y, π) is a Banach space, this and the Neumann series theorem imply that

I −A is a bijection on Lp(X,Y, π) and hence the inverse exists and equals
∑∞

i=0 Ai.

(see, e.g., theorem 2.3.1 and corollary 2.3.3 of Atkinson and Han (2009)). Since

ϕ ∈ Lp(X,Y, π), it follows that f ∗ =
∑∞

j=0 Ajϕ is a well-defined element of Lp(X,Y, π)

satisfying

(16) f ∗ −Af ∗ = ϕ.

Let {Y ∗t } be defined by Y ∗t = f ∗(Xt) for all t Fix t ∈ Z and observe that

EtA(Xt, Xt+1)Y
∗
t+1 + ϕ(Xt) =

∫
A(Xt, x

′)f ∗(x′)Q(Xt, dx
′) + ϕ(Xt).

In view of (16) and the definition of A, we have

EtA(Xt, Xt+1)Y
∗
t+1 + ϕ(Xt) = f ∗(Xt) = Y ∗t .

Hence {Y ∗t } is a stationary Markov equilibrium.

A straightforward calculation based on the definition (12) shows that

Ajϕ(x) = E

[
j∏
i=1

A(Xt+i−1, Xt+i)ϕ(Xt+j) | Xt = x

]
.

Hence f ∗ satisfies (15). This completes the proof. �

Notice also that, since f ∗ satisfies (15), it follows that f ∗(Xt) is equal to the right

hand side of (14). Hence, with Y ∗t = f ∗(Xt), the equality in (14) is valid.

Remark 2.2. In the statement of proposition 2.2, r(A) is the spectral radius of

the operator from Lp(X,Y, π) to itself defined in (12) . If A(x, x′) ≡ A for some

fixed linear operator A : Y → Y, then A = QA. If A is scalar-valued, then, since

r(Q) = ‖Q‖π = 1 (see above), we have r(A) = |A|r(Q) = |A|.
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Note the role of π here. One reason we weight the Lp space with π is that ‖Q‖π = 1,

which is a key part of the preceding argument.

The next result gives uniqueness of the fundamental solution across a substantial

class of stationary equilibria.

Proposition 2.3. If the conditions of proposition 2.2 hold and {Yt} is a stationary

Markov equilibrium with finite p-th moment, then

(17) P {Yt = Y ∗t for all t ∈ Z} = 1.

Proof. Let {Yt} be a stationary Markov equilibrium with finite p-th moment. By

definition, Yt = f(Xt) for some f ∈ Lp(X,Y, π). Since {Yt} are {Y ∗t } both equilibria,

we can iterate forward on (11) to obtain

Yt − Y ∗t = Et

{
j∏
i=1

A(Xt+i−1, Xt+i)[f(Xt+j)− f ∗(Xt+j)]

}
.

We can write this as Yt − Y ∗t = Ajg(Xt) where g := f ∗ − f , which in turn yields

E‖Yt − Y ∗t ‖p = E‖Ajg(Xt)‖p 6 ‖Aj‖pE‖g(Xt)‖p.

The right hand side is equal to ‖Aj‖p ‖f − f ∗‖pπ. Since r(A) < 1 and f − f ∗ ∈
Lp(X,Y, π), and since this bound is true for all j, we conclude that E‖Yt − Y ∗t ‖ = 0.

The claim now follows from the argument given under equation (60). �

2.3.1. Connection to the Random Sums. The conditions of proposition 2.2 imply that

the representation of Y ∗t as a sum of expectations in (14) is valid. The conditions of

proposition 2.1 guarantee that the random variable inside the expectation in (4) is

well defined. A remaining technical issue is whether the expectation can be passed

through the sum, ensuring that the two expressions are the same. The next result

gives one set of conditions under which the answers to these questions are affirmative.

Proposition 2.4. Let the conditions of propositions 2.1 and 2.2 hold. If A and ϕ

are scalar-valued and nonnegative, then

(18) f ∗(x) = Ex

{
∞∑
j=0

[
j∏
i=1

A(Xt+i−1, Xt+i)ϕ(Xt+j)

]}
.

Here Ex = E[· | Xt = x]. The proposition assures us that (4) is valid, since Y ∗t =

f ∗(Xt), which, from (18), is equal to the right hand side of (4).
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Proof. By definition, we have f ∗(x) = limn→∞Exwn. Since the conditions of propo-

sition 2.1 are assumed, we know that w∞ is well-defined, and that limn→∞wn = w∞

almost surely. Since wn is the sum of n nonnegative random variables it is mono-

tone increasing, and hence f ∗(x) = limn→∞Exwn = Ex limn→∞wn = Exw∞. This is

precisely the claim in proposition 2.4. �

2.3.2. Application: The Classic Asset Pricing Model. We can use proposition 2.2 to

recover and extend a well known existence and uniqueness result due to Robert Lucas

Jr. (which is based around contraction arguments in a space of bounded functions).

To this end, consider again the asset pricing equation (2). Letting Ct = d(Xt) and

applying the change of variable Yt = Pt u
′(d(Xt)), this equation can be expressed as

Yt = EtA(Xt, Xt+1)Yt+1 + ϕ(Xt) when

(19) A(x, x′) := β and ϕ(x) := β

∫
u′(d(x′))d(x′)Q(x, dx′).

Lucas (1978) assumes that u is concave and bounded, which in turn gives 0 6

u′(c(x′))c(x′) 6 M for some M ∈ N. Hence ϕ is likewise bounded. Since bounded

functions are in Lp(X,R, π) for every p > 1, the first condition of proposition 2.2

is satisfied, and it remains only to show that the valuation operator is a bounded

linear operator on Lp(X,R, π) satisfying r(A) < 1. Here A = β, so this is immediate

from remark 2.2. Hence proposition 2.2 implies the existence of a unique stationary

Markov equilibrium, with finite p-th moment for all p. This recovers the existence

and uniqueness results on equilibrium prices in Lucas (1978), proposition 3.

Notice how these results rely on boundedness of the utility function to prove exis-

tence and uniqueness of the price system. In applications utility is rarely bounded.

Brogueira and Schütze (2015) use a weighted supremum norm approach to extend

Lucas’s results to the case of CRRA utility u(c) = c1−γ/(1 − γ) and lognormal divi-

dends Dt = d(Xt) := exp(Xt). The state process is as in (24). In this case ϕ in (19)

becomes

(20) ϕ(x) = β exp

{
(1− γ)

(
ρx+ b+

(1− γ)σ2

2

)}
.

Since π is normal and ϕ is exponential, we have ϕ ∈ Lp(X,R, π) for every p > 1, so

the first condition of proposition 2.2 is again satisfied. Otherwise the arguments are

unchanged, so a uniquely defined fundamental solution Y ∗t = f ∗(Xt) exists. Every

moment of Y ∗t is finite. The conditions of proposition 2.1 and proposition 2.4 are also

easily verified.
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The conditions used here are weaker than in Brogueira and Schütze (2015). For ex-

ample, Brogueira and Schütze (2015) stated a pair of joint restrictions on parameters

that suffice for existence and uniqueness. As shown above, these restrictions are un-

necessary. Brogueira and Schütze (2015) also assume a positively correlated state

process. This assumption is likewise unnecessary.

3. Verifying Conditions on the Valuation Operator

In general, the conditions of proposition 2.1 are straightforward to check in appli-

cations, but the conditions of proposition 2.2 are less so. Even showing that the

valuation operator A is a bounded linear operator on Lp(X,Y, π) is nontrivial. In this

section, we study how the conditions of proposition 2.2 can be verified. We show that

they simplify in certain useful cases. Throughout this section, we will assume that

the state space X is a Borel subset of Rm and Q has a density representation q.11 The

corresponding stationary distribution is represented by density π on X.

3.1. An L2 Bound on the Valuation Operator. To estimate the norm of the

valuation operator, we define the functional Γ by

(21) Γ(A) :=

∫ ∫
‖A(x, x′)‖2q(x, x′)2 π(x)

π(x′)
dx dx′.

This value lies in R+ ∪ {+∞}. The next lemma is proved in the appendix.

Lemma 3.1. On L2(X,Y, π), the norm of A satisfies ‖A‖π 6
√

Γ(A).

One reason that this lemma is useful is that if Γ(A) is finite, then we know that

A is a bounded linear operator on Lp(X,Y, π) when p = 2. Hence we can progress

to checking the spectral radius condition in proposition 2.2. Second, if Γ(A) < 1,

then, since r(A) 6 ‖A‖π always holds, we have r(A) < 1, and all the conditions of

proposition 2.2 are satisfied.

Of course Γ(A) is not itself trivial to evaluate. As we now show, it simplifies when

certain conditions are met. One of these cases is discussed next.

11That is, there exists a measurable function q : X × X → R such that Q(x,B) =
∫
B
q(x, x′) dx′

for all x in X and all B in B.
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3.1.1. Time Reversibility. A stochastic kernel Q on X with stationary distribution π

is called reversible with respect to π if

(22)

∫ ∫
f(x)g(x′)Q(x, dx′)π(dx) =

∫ ∫
g(x)f(x′)Q(x, dx′)π(dx)

for all bounded, B-measurable f, g mapping X to R. Examples of reversible processes

are found among such processes as Levy, Gaussian processes, Cox-Ingersoll-Ross,

Dirichlet and Gamma processes.12 A sufficient condition when Q(x, dx′) has density

representation q(x, x′) dx′ is the so-called detailed balance condition

(23) q(x, x′)π(x) = q(x′, x)π(x′) for all (x, x′) ∈ X× X.

(Here π is the stationary distribution represented as a density.) One example is when

X = R and the state process is a Gaussian processes such as the linear AR(1) model

(24) Xt+1 = ρXt + b+ σWt+1, {Wt}
iid∼ N(0, I) and |ρ| < 1.

The stochastic kernel is q(x, x′) = N(ρx+ b, σ2) and the unique stationary density is

(25) π := N(µ, ν), where µ :=
b

1− ρ
and ν :=

σ2

1− ρ2
.

This process time reversible and satisfies the detailed balance condition with respect

to π (see, e.g., Khare and Zhou (2009)).

3.1.2. Bounds Under Time Reversibility. It turns out that time reversibility is useful

in bounding the norm of the valuation operator. In the next result, q2(x, x
′) :=∫

q(x, z)q(z, x′) dz represents the two-step transition density.

Lemma 3.2. Let q and π satisfy the detailed balance condition and let Y = R. If

there exists a measurable function a : X→ R such that either A(x, x′) = a(x′) for all

x ∈ X or A(x, x′) = a(x) for all x′ ∈ X, then

(26) Γ(A) =

∫
a(x)2q2(x, x) dx.

12See, for example, Boyd et al. (2005), Khare and Zhou (2009), Gouriéroux and Jasiak (2006)

and Longla and Peligrad (2012)). Markov processes generated by symmetric copula models are also

time reversible. as are those generated by the most common variants of Markov chain Monte Carlo

algorithms, such as Metropolis–Hastings or the Gibbs sampler. See, Häggström (2002).
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Proof. If A(x, x′) = a(x′) for all x ∈ X, then the detailed balance condition and the

definition of Γ(A) in (21) gives.

Γ(A) =

∫ ∫
a(x′)2q(x, x′)q(x, x′)π(x)

π(x′)
dx dx′

=

∫ ∫
a(x′)2q(x, x′)q(x′, x)π(x′)

π(x′)
dx dx′

=

∫
a(x′)2

∫
q(x′, x)q(x, x′) dx dx′.

Using the definition of q2 verifies the claim. If, on the other hand, A(x, x′) = a(x) for

all x′ ∈ X, then the detailed balance condition and the definition of Γ(A) in (21) give

Γ(A) =

∫ ∫
a(x)2q(x, x′)q(x, x′)π(x)

π(x′)
dx dx′ =

∫ ∫
a(x)2q(x, x′)q(x′, x) dx dx′.

Changing the order of integration (the integrand is nonnegative and jointly measur-

able, so we can apply Fubini’s theorem) and using the definition of q2 completes the

proof. �

Corollary 3.1. If, in addition to the conditions of lemma 3.2, X obeys the AR(1)

specification in section 3.1.1, then

(27) Γ(A) =
1

1− ρ2

∫
a(z)2ϕ(z,m, s) dz,

where

ϕ(·,m, s) = N(m, s2) with m :=
b(1 + ρ)

1− ρ2
and s := σ

√
1 + ρ2

1− ρ2
.

Proof. The two step transition is Xt+2 = ρ2Xt + ρb+ b+ ρσWt+1 + σWt+2. It follows

that q2(x, x
′) dx′ is the normal density N(ρ2x+ b(1 + ρ), σ2(1 + ρ2)). Evaluating this

density at x′ = x gives

q2(x, x) = (2πσ2(1 + ρ2))−1/2 exp

(
−(x− ρ2x− b(1 + ρ))2

2σ2(1 + ρ2)

)
.

With some rearranging, we can write this as a scaled univariate normal density. That

is, q2(x, x) = ϕ(x,m, s)/(1− ρ2) where ϕ(·,m, s) is the N(m, s2) density with m and

s as given in the statement of the corollary. Hence Γ(A) in (26) reduces to (27). �

Because the normal density has thin tails, finiteness of Γ(A) in (27) is a weak condi-

tion. The examples below illustrate this point.
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3.1.3. An Illustrative Example. Recall the standard asset price evaluation formula in

in (3). One variation is found in Abel (1990), where habit persistence leads to a

stochastic discount factor of the form

Mt+1 = β

(
Dt+1

Dt

)−γ (
vt+1

vt

)γ−1
Ht+2

EtHt+1

.

Here vt = [crt−1C
r
t−1]

α, with ct being individual consumption and Ct being aggregate

consumption, α > 0 and r > 0, Ht+2 = 1 − βαr(Dt+2/Dt+1)
1−γ(Dt+1/Dt)

−α(1−γ).

The constant β ∈ (0, 1) is the nonstochastic time discount factor. Dividend growth

is assumed to follow ln(Dt+1/Dt) = Xt+1, where Xt+1 = ρXt +x0 +σWt+1 with {Wt}
iid and standard normal. In equilibrium, ct = Ct = Dt. As shown in Calin et al.

(2005), by using these equalities and the definitions above, and by restricting the

state process to

(28) Xt+1 = ρXt + b+ σWt+1 with b := x0 + σ2(1− γ),

we can plug Mt+1 back into (3) to obtain the forward looking model

(29) Yt =
k0 exp(k1Xt)

1− k2 exp(k1Xt)
Et

{
[1− k2 exp[k1(Xt+1 − σ2(1− γ)][1 + Yt+1]

}
,

where k0, k1 and k2 are constants that depend on parameters.13

Following Calin et al. (2005), we focus on the “external” habit formation case, where

r = 0 and hence k2 = 0. In this case, the forward looking restriction in (29) can be

expressed as Yt = Et [A(Xt, Xt+1)Yt+1] + ϕ(Xt) where

(30) A(Xt, Xt+1) = ϕ(Xt) = k0 exp(k1Xt)

As shown in lemma 3.1, the norm of the valuation operator is bounded by
√

Γ(A).

Since the state process is linear and Gaussian, we can apply corollary 3.1 with

A(x, x′) = a(x) := k0 exp(k1x). Evaluating the integral in (27) gives

Γ(A) =
1

1− ρ2

∫
k20 exp(2k1x)ϕ(x,m, s) dx

=
k20

1− ρ2
exp{2k1(m+ k1s

2)}.

where m and s are as given in corollary 3.1. Clearly this term is finite, so Γ(A) is finite

and hence the valuation operator is a bounded linear operator. If, in addition, the

parameters are such that this term is strictly less than one, then r(A) 6 ‖A‖π < 1,

and hence all the conditions of proposition 2.2 are satisfied (when p = 2).

13In particular, k0 := β exp(b(1− γ) + σ2(γ − 1)2/2), k1 := (1− γ)(ρ− α), and k2 := αrk0.
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3.2. Checking the Spectral Radius Condition. When checking the conditions

of proposition 2.2, a key property is the spectral radius condition r(A) < 1 on the

valuation operator. In evaluating the spectral radius, time reversibility can again

be used to simplify computations. The main ideas are presented in this section.

Throughout we suppose that Y = R and p = 2, so that Lp(X,Y, π) = L2(X,R, π). The

inner product on L2(X,R, π) is 〈f, g〉π :=
∫
f(x)g(x)π(dx), under which L2(X,R, π)

is a separable Hilbert space.

3.2.1. Some Diagonalization Results. We will exploit an implication of reversibility

of q(x, dx′) with respect to π, which is that the corresponding Markov operator Q is

self-adjoint on L2(X,R, π). That is, 〈Qf, g〉π = 〈f,Qg〉π for all f, g ∈ L2(X,R, π).

See, for example, Khare and Zhou (2009). If Q is also compact, then, by the spectral

decomposition theorem (see, e.g., Debnath and Mikusinski (2005)), Q is diagonaliz-

able, in the sense that there exists a complete orthonormal basis {ej}j>0 of L2(X,R, π)

such that

(31) Qg =
∞∑
j=0

λj 〈g, ej〉π ej for all g ∈ L2(X,R, π).

Equality is in the sense of convergence in L2(X,R, π). Each ej is necessarily an

eigenfunction of Q and λj is the corresponding eigenvalue.

In many cases we can give explicit representations for the eigenfunctions and eigen-

values. For example, in the case of the linear AR(1) state process in (24), we have

the following result:

Lemma 3.3. If π is as defined in (25) and

(32) ej := hj ◦ τ where τ(x) :=

√
1− ρ2
σ

[
x− b

1− ρ

]
and hj is the j-th normalized Hermite polynomial,14 then {ei}i>0 forms an orthonor-

mal basis of L2(X,R, π). Moreover, the Markov operator Q corresponding to (24)

admits the decomposition in (31) with {ei}i>0 as given in (32) and λi = ρi for all

i > 0.

This is a simple variation on a well known result. A proof is given in the appendix.15

14We refer to normalized “probabilists” Hermite polynomials, which are orthogonal with respect

to the weight function formed by the standard normal density ϕ. Normalized means that
∫
h2j dϕ = 1

for all j.
15The Gaussian setting falls within the so-called Meixner class, which also includes the Gamma,

Poisson and negative binomial distributions. All such distributions have representations as stationary
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3.2.2. Diagonalization and Valuation Operators. The standard approach to evaluat-

ing the spectral radius of an operator such as A is to take the first n elements of a

complete orthonormal basis {ej} of L2(X,Y, π), compute the n× n matrix A, where

Aij := 〈Aei, ej〉, and evaluate the spectral radius of A using standard routines for ma-

trices. If A is compact, then the spectral radius of A converges to r(A) as n→∞.16

The nontrivial aspect of this procedure is computing the n2 inner products 〈Aei, ej〉.
However, as we now show, this procedure simplifies in many applications.

We make two assumptions: First, we suppose that the detailed balance condition

(23) holds and Q is compact, so that Q is diagonalizable, and there exists a complete

orthonormal basis {ej}j>0 of L2(X,R, π) such that Qej = λjej for all j ∈ N. Second,

we assume that A in the definition of the valuation operator (see (12)) is a function

of either x or x′ but not both, so either

(33) Af(x) =

∫
f(x′)g(x′)q(x, x′) dx′

or

(34) Af(x) = g(x)

∫
f(x′)q(x, x′) dx′,

for some function g : X → R. We call operators of the form (33) type I valuation

operators. Operators of the form (34) we call type II valuation operators.

In the case of type I valuation operators, the detailed balance condition gives

〈Aei, ej〉π =

∫ [∫
g(x′)ei(x

′)q(x, x′) dx′ej(x)

]
π(x) dx

=

∫
g(x′)ei(x

′)

[∫
q(x, x′)π(x)ej(x) dx

]
dx′

=

∫
g(x′)ei(x

′)

[∫
q(x′, x)π(x′)ej(x) dx

]
dx′.

distributions of kernel densities that can be written as q(x, y) = π(y)
∑∞

j=0 λjej(x)ej(y) where

{λj}j>0 is a real, square summable sequence satisfying λ0 = 1 and {ej}j>0 is a complete orthonormal

basis for L2(X,R, π) consisting of normalized orthogonal polynomials, with e0 ≡ 1. If Q is the

Markov operator associated with q, then each ek is an eigenfunction of Q and Q is diagonalizable

with respect to {ej}. In the Gaussian case, {ej} is the Chebychev-Hermite polynomials, while in the

Gamma case, {ej} is the Laguerre polynomials. In the Poisson case, {ej} is the Poisson–Charlier

polynomials. For more discussion see Griffiths (2009).
16See, for example, Atkinson (1967). One condition for compactness of A in the density case

Q(x, dx′) = q(x, x′) dx′ is that
∫ ∫

κ(x, x′)2q(x, x′)2π(x)π(x′) dxdy is finite (Kantorovich and Akilov,

1982, p. 326).
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But
∫
q(x′, x)ej(x) dx = Qej(x

′) = λjej(x
′), so that, under this choice of basis, the

double integral simplifies to

〈Aei, ej〉π = λj

∫
g(x′)ei(x

′)π(x′)ej(x
′) dx′.

With Aij := 〈Aei, ej〉π, the spectral radius of A can now be approximated by comput-

ing the spectral radius of the matrix A := (Aij)16i,j6n with n sufficiently large. Notice

also that we can further reduce computation time by expressing A as A = MD, where

D := diag(λ1, . . . , λn) and Mij :=
∫
geiej dπ. Since M is symmetric, we can populate

it by computing only n(n+ 1)/2 terms.

In the case of type II operators, we have

〈Aei, ej〉π =

∫ [∫
g(x)ei(x

′)q(x, x′) dx′
]
ej(x)π(x) dx

=

∫
g(x)

[∫
q(x, x′)ei(x

′) dx′
]
ej(x)π(x) dx

= λi

∫
g(x)ei(x)ej(x)π(x) dx.

In the notation just defined, the corresponding matrix A can be written as DM .

3.3. Application: The Habit Persistence Model. Recall the habit persistence

model discussed in section 3.1.3. As shown in section 3.1.3, when r = 0, the valuation

operator is a bounded linear operator on L2(X,R, π), where π is the stationary density

corresponding to the state process (28). All the conditions of proposition 2.2 will be

satisfied if, in addition, r(A) < 1 on L2(X,R, π).

We discussed analytical conditions in section 3.1.3 that imply Γ(A) < 1 and hence

r(A) 6 ‖A‖π 6
√

Γ(A) < 1. We can think of these conditions as one step contraction

conditions, since A itself is a contraction map (because ‖A‖π < 1). Calin et al. (2005)

also provide a sufficient condition for existence and uniqueness of an equilibrium price-

dividend ratio, and this condition can also be thought of as a one step contraction

condition. (The condition differs somewhat because that study is based on contraction

in a different metric.)

The aim of this section is to demonstrate that spectral radius methods allow us to

establish existence and uniqueness for a much broader set of parameters. In particular,

we show that conditions based on a one step contraction are often relatively strict.

The idea is that, with the weaker condition r(A) < 1, the operator A can be initially
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Figure 1. One step and spectral radius conditions, ρ = 0.96

expansive in some directions, provided that the contractive components eventually

dominate.

To show this, we compare the results of the one step condition of Calin et al. (2005)

with the condition r(A) < 1 at a range of parameter values. Figure 1 shows one set

of results. In each sub-figure, the horizontal and vertical axes show grid points for β

and σ respectively. Pairs (β, σ) with test values strictly less than one (points to the

south west of the 1.0 contour line) are where the respective condition holds. The left

sub-figure is for the condition given in eq. (7) of Calin et al. (2005), while the right

sub-figure gives the spectral radius r(A). The spectral radius condition r(A) < 1 is

satisfied for a significantly broader range of parameters. Put differently, the sufficient

condition in eq. (7) of Calin et al. (2005) fails for many parameterizations that do in

fact have unique stationary Markov equilibria.17

The exercise is repeated figure 2 when ρ = 0.98 and the results are similar. In all

computations we exploit the simplifications described in section 3.2.

4. Computation

In this section we briefly discuss computation, focusing on the case where Y = R
n

for some n ∈ N and the p in Lp is set to 2. The main message of this section is that

projection methods can be greatly simplified in some cases with careful selection of

the set of basis functions.

17The other parameter values are γ = 2.5, x0 = 0.1 and α = 1.
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Figure 2. One step and spectral radius conditions, ρ = 0.98

4.1. Computing Markov Equilibria in Random Coefficient Models. For ran-

dom coefficient models (see (11)), we seek to solve the equation f = Af + ϕ in

L2(X,Y, π), where A is defined in (12). Consider the case where f is scalar-valued.

Since A is linear and r(A) < 1, we can use ordinary projection and still have guar-

anteed convergence. If {ej}j>0 is any complete orthonormal basis of L2(X,Y, π), the

Galerkin equations are

〈f, ej〉π =
n−1∑
i=0

〈f, ei〉π Aij + 〈ϕ, ej〉π , j = 0, . . . , n− 1,

where Aij := 〈Aei, ej〉π. Solving this finite dimensional linear system at n and pro-

duces a vector cn, with i-th element cn,i. Setting f ∗n :=
∑n−1

i=0 cn,iei, we have f ∗n → f ∗

in L2(X,Y, π) as n→∞. See, for example, theorem 4.8 of Cheney (2001).

The nontrivial part of this exercise is computing the n2 double integrals in the defi-

nition of of Aij. However, this often simplifies if the state process is time reversible.

For example, if A(Xt, Xt+1) = g(Xt) for some function g and q satisfies the detailed

balance condition, then A is a type II valuation operator in the language of sec-

tion 3.2. As shown in that section, if we choose as our orthonormal basis the basis

that diagonalizes the Markov operator corresponding to the state process, then we

need only compute n(n+ 1)/2 single integrals.

The habit persistence model discussed in section 3.1.3 is of this type (see, in particular,

equation (30)), so we can exploit the procedures described above. Figure 3 shows a

plot of the log price-dividend ratio computed using this method. The details of

the model are as discussed in section 3.1.3. The price-dividend ratio is shown as a
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Figure 3. Log price-dividend ratio as a function of γ and the state

function of γ and the state x. The other parameters are ρ = 0.96, σ = 0.1, β = 0.96

and α = 1.0. The number of basis elements is n = 60.

4.2. Partial Linearity and Time Reversibility. In this section we discuss the

special case where A(Xt, Xt+1) is constant. (We showed in section 2.3.2 that the

standard Lucas asset pricing model can be framed in this way with a suitable change

of variable.) We show that the projection based computational approach simplifies

further in this setting. For the sake of brevity, we restrict our discussion to the case

Y = R.

Consider the partially linear forward looking equation Yt = αEt [Yt+1]+ϕ(Xt), where

α, Yt and ϕ are scalar valued. If ϕ ∈ L2(X,R, π) and |α| < 1, then by proposition 2.2

and remark 2.2, there is a unique f ∗ ∈ L2(X,R, π) satisfying

(35) f ∗ = αQf ∗ + ϕ

The next result provides a simple expression for f ∗ when Q is diagonalizable.

Proposition 4.1. If ϕ ∈ L2(X,R, π) and Q satisfies (31), then

(36) f ∗ =
∞∑
j=0

(1− αλj)−1 〈ϕ, ej〉π ej.

Proof. Let f ∗ be as defined in (36). We claim that f ∗ satisfies (35) when Q is the

diagonalizable operator in (31). To see this, recall that Q is continous and linear,
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and that ej is an eigenvector of Q with eigenvalue λj. Hence

Qf ∗ =
∞∑
j=0

1

1− αλj
〈ϕ, ej〉π Qej =

∞∑
j=0

λj
1− αλj

〈ϕ, ej〉π ej.

Since {ej} is a complete orthonormal basis, we then have

ϕ+ αQf ∗ = ϕ+
∞∑
j=0

αλj
1− αλj

〈ϕ, ej〉π ej

=
∞∑
j=0

〈ϕ, ej〉π ej +
∞∑
j=0

αλj
1− αλj

〈ϕ, ej〉π ej =
∞∑
j=0

1

1− αλj
〈ϕ, ej〉π ej = f ∗.

In particular, f ∗ satisfies (35). �

In the Gaussian setting of section 3.1.1, the solution (36) becomes

(37) f ∗ =
∞∑
i=0

(1− αρi)−1 〈ϕ, ei〉π ei

where {ej} is as defined in (32).

Example 4.1. Recall the CRRA utility asset pricing model with lognormal dividends

from section 2.3.2. To compute f ∗ we take this expression for ϕ and insert it into

(37). The price function p∗ is obtained from f ∗ by reversing the change of variable

f(x) = p(x)u′(d(x)). That is,

(38) p∗(x) = exp(γx)
∞∑
i=0

(1− βρi)−1 〈ϕ, ei〉π ei(x).

5. General Nonlinear Models

In this section we set out a more general forward looking equation and study existence

and uniqueness of solutions.

5.1. Problem Statement. We analyze forward looking models where the equilib-

rium condition can be expressed as

(39) Yt = EtG(Xt, Xt+1, Yt+1)

for all t ∈ Z, the integers.18 The sequence Y := {Yt}t∈Z evolves in Banach space Y and

is understood as endogenous. The function G : X×X×Y → Y is a Borel measurable

18 In the theory that follows, nothing changes if we replace t ∈ Z with t ∈ {0, 1, . . .}.
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function that defines a relationship between the endogenous variables and the state

process. Together G and X are the primitives and Y is the object that we wish to

solve for.

Example 5.1. For agents with risk sensitive preferences (Hansen and Sargent (1995)),

a typical formulation of the present value of lifetime utility associated with consump-

tion path {Ct} is Ut = u(Ct)+ β
σ

lnEt exp(σUt+1), where u is a flow utility function and

β and σ are parameters. Assume as in Tallarini (2000) or Anderson (2005) that Ct is

a function of some given state process. Since the expectation lies inside the log func-

tion, this equation is not in the form of (39). However, if we set Yt := Et exp(σUt+1),

then the equation is Ut = u(Ct) + β
σ

lnYt, or exp(σUt) = exp{σu(Ct) +β lnYt}. Shift-

ing this equation forward one period and taking expectations conditional on time t

gives

Yt = Et exp{σu(Ct+1) + β lnYt+1}.
This is a version of (39). If we solve it for Yt, we can recover Ut via Ut = u(Ct)+ β

σ
lnYt.

5.2. Existence and Uniqueness. To begin, observe that if f induces a station-

ary Markov equilibrium—that is, if {Yt} defined by (13) is an equilibrium—then

f(Xt) = EtG(Xt, Xt+1, f(Xt+1)) must hold with probability one. State-by-state, this

restriction can be expressed as

(40) f(x) =

∫
G(x, x′, f(x′))Q(x, dx′) (x ∈ X).

Any solution to the functional equation (40) induces a stationary Markov equilibrium

via Yt = f(Xt). This prompts us to study fixed points of the operator T defined by

(41) Tf(x) =

∫
G(x, x′, f(x′))Q(x, dx′) (x ∈ X).

Rather than embedding T in a space of bounded functions—which would preclude

unbounded solutions—we treat it as a mapping from Lp(X,Y, π) into itself. As before,

p > 1 and π is the distribution of each Xt. To pursue this approach, it is necessary

that T is invariant on Lp(X,Y, π). We will say that (G,X ) is order p regular if T has

this property; that is, if Tf is in Lp(X,Y, π) whenever f is in Lp(X,Y, π). We provide

sufficient conditions for order p regularity in section 5.3.

The second strand of conditions we require relate to stability under iteration. Below,

we say that (G,X ) is order p contracting if there exists a measurable function κ : X×
X→ R+ such that, for all (x, x′) in X× X and (y1, y2) in Y × Y,

(42) ‖G(x, x′, y1)−G(x, x′, y2)‖ 6 κ(x, x′) ‖y1 − y2‖,
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and, in addition, K defined by

(43) Kf(x) =

∫
f(x′)κ(x, x′)Q(x, dx′) (x ∈ X)

is a bounded linear operator on Lp(X,R, π) with r(K) < 1. As a further property,

we will say that (G,X ) is strongly order p contracting if it is order p contracting and

the operator K in (43) satisfies ‖K‖π < 1.

Remark 5.1. The spectral radius condition r(K) < 1 in the order p contraction

property will typically be checked numerically at each parameterization. Examples

are given below.

Remark 5.2. In some nonlinear models, a function κ that fits the bound in (42) can

be found by studying the derivative of the mapping y 7→ G(x, x′, y). For example,

suppose that Y = R
n and that the Jacobian ∇G(x, x′, y) of this mapping exists and

is continuous. Then, by the mean value theorem, for each y1, y2 ∈ Y, there exists a

θ ∈ (0, 1) with

‖G(x, x′, y1)−G(x, x′, y2)‖ 6 ‖∇G(x, x′, θy1 + (1− θ)y2)‖ · ‖y1 − y2‖.

In particular, if there exists a function κ with ‖∇G(x, x′, y)‖ 6 κ(x, x′) for all (x, x′) ∈
X× X and y ∈ Y, then the bound (42) holds for this function κ.

Together, regularity and either of the contraction properties implies existence and

uniqueness of a fixed point of T. This follows from the next proposition.

Proposition 5.1. Let (G,X ) be order p regular. The following statements are true:

(a) If (G,X ) is order p contracting, then there exists an m ∈ N such that Tm is

a Banach contraction on Lp(X,Y, π).

(b) If G is strongly order p contracting, then T is a Banach contraction on

Lp(X,Y, π).

Proof of proposition 5.1. Regarding the first claim, fix p > 1 and let the conditions

of the theorem be satisfied. By proposition 5.4, we know that T maps Lp(X,R, π) to

itself. It remains only to show that Tm is a contraction mapping for some m. To this

end, pick f, g ∈ Lp(X,Y, π) and fix j ∈ N and x ∈ X. By the definition of T and the
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order p contraction property, we have

‖Tjf(x)−Tjg(x)‖ =

∥∥∥∥∫ [G(x, x′,Tj−1f(x′))−G(x, x′,Tj−1g(x′))]Q(x, dx′)

∥∥∥∥
6
∫
‖G(x, x′,Tj−1f(x′))−G(x, x′,Tj−1g(x′))‖Q(x, dx′)

6
∫
κ(x, x′) ‖Tj−1f(x′)−Tj−1g(x′)‖Q(x, dx′).

If we let hj(x) := ‖Tjf(x)−Tjg(x)‖, then the preceding inequality can be expressed

as hj 6 Khj−1. Since κ > 0, the operator K is order preserving, in the sense

that Kf 6 Kg whenever f 6 g. This gives hj 6 K2hj−2, and, iterating further,

hj 6 Kjh0. Since the norm on Lp(X,R, π) preserves order for nonnegative functions,

we then have ‖hj‖π 6 ‖Kjh0‖π. By the submultiplicative property of the operator

norm, this implies ‖hj‖π 6 ‖Kj‖π‖h0‖π. In other words,

‖Tjf −Tjg‖π 6 ‖Kj‖π‖f − g‖π.

From Gelfand’s formula, ‖Kj‖1/jπ → r(K), where r(K) is the spectral radius. By

assumption, r(K) < 1. hence there is an m ∈ N such that ‖Km‖π < 1. For this m,

we see that Tm is a Banach contraction on Lp(X,Y, π).

Regarding the second claim in the theorem, suppose that the strong contraction

property holds. Pick f, g ∈ Lp(S,Y, π) and fix x ∈ S. Using similar arguments to the

proof of the first claim, we have

‖Tf(x)−Tg(x)‖p =

∥∥∥∥∫ [G(x, x′, f(x′))−G(x, x′, g(x′))]Q(x, dx′)

∥∥∥∥p
6
∫
‖G(x, x′, f(x′))−G(x, x′, g(x′))‖pQ(x, dx′)

6 θp
∫
‖f(x′)− g(x′)‖pQ(x, dx′).

Integrating with respect to π and applying (56) gives

‖Tf −Tg‖pπ 6 θp‖f − g‖pπ

Raising both sides to the power of 1/p gives stated contraction property. �

Let the conditions of proposition 5.1 be satisfied. Since Lp(X,Y, π) is complete, it

follows from the theorem that, under order p regularity and the order p contraction
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property, there exists a unique f ∗ ∈ Lp(X,Y, π) such that

(44) f ∗(x) =

∫
G(x, x′, f ∗(x′))Q(x, dx′) (x ∈ X).

Given this f ∗, let Y ∗t = f ∗(Xt) for all t ∈ Z. We call {Y ∗t } the fundamental solution.

Theorem 5.1. If (G,X ) is order p regular and order p contracting, then

(a) the fundamental solution {Y ∗t } is a stationary Markov equilibrium,

(b) the vector Y ∗t has finite p-th moment, and

(c) if {Yt} is a stationary Markov equilibrium such that Yt has finite p-th moment,

then

(45) P {Yt = Y ∗t for all t ∈ Z} = 1.

The proof is relatively straightforward and delayed until the appendix.

We can strengthen the uniqueness result in the case where (G,X ) is strongly order

p contracting. The next proposition shows uniqueness over the class of all stationary

solutions with finite first moment.

Proposition 5.2. Let (G,X ) be first order regular and strongly first order contract-

ing, and let {Y ∗t } be the fundamental solution. If {Yt} is a Y-valued stationary sto-

chastic process satisfying the forward looking restriction (39) and having finite first

moment, then

P {Yt = Y ∗t for all t ∈ Z} = 1.

Proof. fix t > 0 and let {Yt} be as in the statement of the proposition. Since both

processes are equilibria and G is strongly order p contracting, we have

‖Yt − Y ∗t ‖ 6 Et
∥∥G(Xt, Xt+1, Yt+1)−G(Xt, Xt+1, Y

∗
t+1)
∥∥ 6 θEt

∥∥Yt+1 − Y ∗t+1

∥∥ .
Iterating and then taking expectations gives

E ‖Yt − Y ∗t ‖ 6 θiE ‖Yt+i − Y ∗t+i‖ 6 θiE ‖Yt+i‖+ θiE ‖Y ∗t+i‖

for all i > 0. Since {Yt} and {Y ∗t } are both stationary with finite first moments, the

right hand side of this expression converges to zero, and hence E ‖Yt − Y ∗t ‖p = 0. It

follows that P{Yt = Y ∗t } = 1. Countable intersections of probability one sets have

probability one. �
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5.3. Sufficient Conditions. Order p regularity and the contraction properties stated

above can be non-trivial to check in applications. In this section we give a variety of

sufficient conditions for the regularity and contraction properties stated above, and

show how they can be used in various applications.

5.3.1. Sufficient Conditions for Regularity. The first result is elementary but a useful

first step.

Proposition 5.3. If E ‖G(Xt, Xt+1, f(Xt+1))‖p < ∞ for all f ∈ Lp(X,Y, π), then

(G,X ) is order p regular.

Proof. Fix p > 1 and let f ∈ Lp(X,Y, π). By Jensen’s inequality for Bochner integrals,

we have ‖Tf(x)‖p 6
∫
‖G(x, x′, f(x′))‖pQ(x, dx′), and hence

‖Tf‖pπ 6
∫ ∫

‖G(x, x′, f(x′))‖pQ(x, dx′)π(dx).

The right hand side is finite by assumption. Thus (G,X ) is order p regular. �

Condition 5.1. There exists a measurable function ` : X × X → R and a constant

m ∈ R+ such that E |`(Xt, Xt+1)|p <∞ and

‖G(x, x′, y)‖ 6 `(x, x′) +m‖y‖ for all (x, x′) ∈ X× X and y ∈ Y.

Proposition 5.4. If condition 5.1 holds, then (G,X ) is order p regular.

Proof. Now suppose that condition 5.1 holds. Fix f ∈ Lp(X,Y, π). We have19

E ‖G(Xt, Xt+1, f(Xt+1))‖p 6 E |`(Xt, Xt+1) +m‖f(Xt+1)‖|p

6 2p−1E |`(Xt, Xt+1)|p + 2p−1mp
E‖f(Xt+1)‖p

= 2p−1E |`(Xt, Xt+1)|p + 2p−1mp‖f‖pπ.

Since ‖f‖pπ < ∞ and the first term is finite by assumption, proposition 5.3 implies

that (G,X ) is order p regular. �

Remark 5.3. Condition 5.1 simplifies if we have additional structure. For example,

if G(x, x′, y) = ψ(x′) + βy and ψ is in Lp(X,Y, π), then condition 5.1 holds: take

`(x, x′) := ‖ψ(x′)‖ and observe that E |`(Xt, Xt+1)|p =
∫
‖ψ(x)‖pπ(dx) <∞.

19We are applying the elementary inequality |a+ b|p 6 2p−1(|a|p + |b|p).



31

Example 5.2. Consider again the Lucas asset pricing equation (2). Letting Ct =

d(Xt) and applying the change of variable Yt = Pt u
′(d(Xt)), this equation can be

expressed as Yt = EtG(Xt, Xt+1, Yt+1) when

(46) G(x, x′, y) = βu′(d(x′))d(x′) + βy.

By remark 5.3, to show order p regularity, it suffices to show that ψ(x′) := βu′(d(x′))d(x′)

is in Lp(X,R, π). Lucas (1978) assumes that u is concave and bounded, which in turn

gives 0 6 u′(c(x′))c(x′) 6 M for some M ∈ N. Since bounded functions are in

Lp(X,R, π) for every p > 1, this model is order p regular for all p.

In the next sufficient condition, we assume that X is a Borel subset of Rn and that

Q(x, dx′) has density representation q(x, x′) dx′ = Q(x, dx′). That is, there exists a

measurable function q : X× X→ R such that Q(x,B) =
∫
B
q(x, x′) dx′ for all x in X

and all B in B. The corresponding stationary distribution is represented by density

π on X. In this setting for any measurable function κ : X × X → R, we let Γ be the

functional defined by (21).

Proposition 5.5. If there exist measurable functions κ : X×X→ R and b : X×X→ R

such that Γ(κ) and E[ζ(Xt, Xt+1)
2] are finite and, for all (x, x′) ∈ X× X and y ∈ Y,

(47) ‖G(x, x′, y)‖ 6 κ(x, x′)‖y‖+ ζ(x, x′),

then (G,X ) is second order (i.e., order 2) regular.

The proof is deferred to the appendix. Techniques for computing Γ(κ) were discussed

in section 3.1.2.

5.3.2. Sufficient Conditions for Contractivity. Next we provide sufficient conditions

for contractivity. The first condition requires that, stepping backwards in time, the

system is contracting in every state of the world.

Lemma 5.1. Let p > 1. If there exists a θ ∈ (0, 1) such that, for all (x, x′) ∈ X× X

and all (y1, y2) ∈ Y × Y,

(48) ‖G(x, x′, y1)−G(x, x′, y2)‖ 6 θ‖y1 − y2‖,

then (G,X ) is strongly order p contracting.

Proof. If the stated conditions holds, then (42) holds with κ(x, x′) equal to the con-

stant θ. The corresponding operator K in (43) is given by K = θQ, where Q is the
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Markov operator. Hence ‖K‖π = ‖θQ‖π = θ‖Q‖π. But ‖Q‖π = 1 (see section 3).

The stated property follows. �

Example 5.3. We saw in (46) that the dynamics of the Lucas asset pricing model

model can be represented by the function G(x, x′, y) = βu′(d(x′))d(x′) + βy. Clearly

|G(x, x′, y1)−G(x, x′, y2)| 6 β|y1 − y2| for all (x, x′) ∈ X× X and y1, y2 ∈ Y. In par-

ticular, the conditions of lemma 5.1 hold, and (G,X ) is strongly order p contracting.

Example 5.4. If, in the OLG model in example 2.5, preferences have the power form

h(`) = `1−γ/(1−γ) and v(c) = c1−γ/(1−γ), then G(x, x′, y) = βy[ζ(x′)]1−γ and hence

|G(x, x′, y1)−G(x, x′, y2)| 6 β[ζ(x′)]1−γ|y1−y2|. If ζ is bounded with β[ζ(x′)]1−γ < 1,

then (G,X ) is strongly order p contracting for any p and any choice of X .

The operator T that we study in this paper can be thought of as an abstract version

of an Urysohn operator, fixed point theory for which typically involves Lipschitz

conditions that are uniform across all states.20 Lemma 5.1 is of this type, and has

some useful applications. But for some models, this uniformity is too strict. This

fact motivates us to develop fixed point results that rely on weaker conditions, where

contractivity does not necessarily hold state-by-state. We turn to this problem next.

Suppose that X is a Borel subset of Rn and that Q has density representation

q(x, x′) dx′ = Q(x, dx′). Assume the existence of a measurable function κ : X×X→ R

such that the contraction condition (42) holds and let Γ be the functional in (21). Let

K be the operator defined in (43). In this setting, the following statement is true:

Proposition 5.6. If Γ(κ) is finite and r(K) < 1, then (G,X ) is second order con-

tracting. If Γ(κ) < 1, then (G,X ) is strongly second order contracting.

Proof. If Γ(κ) is finite, then lemma 3.1 implies that K in (43) is a bounded linear

operator on L2(X,R, π). It then follows from the definition that r(K) < 1 implies

(G,X ) is second order contracting. In addition, if Γ(κ) < 1, then the bound in

lemma 3.1 implies that ‖K‖π < 1. Hence (G,X ) is strongly second order contracting.

�

5.4. Application: Overlapping Generations with Money. Consider again the

OLG model discussed in example 2.5. As shown in (10), the dynamics are given

by Yt = EtG(Xt, Xt+1, Yt+1) when G(x, x′, y) = βψ[ξ−1(y)ζ(x′)], ξ(`) := `h′(`) and

20See, for example, Atkinson and Han (2009), p. 217, or Stokey and Lucas (1989), lemma 17.1.
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ψ(x) := v′(x)x. Suppose for now that v, the utility function for consumption, is

bounded and concave (other possibilities are explored below). We seek conditions

under which (G,X ) is order p regular and order p contracting. We will focus on the

case p = 2.

As a first step, observe that (G,X ) is second order regular, regardless of the specifi-

cation of the Markov process X . To see this, note that in our setting the function ψ

is bounded.21 Hence G is bounded, and (G,X ) is order p regular by proposition 5.3.

Whether the contraction property holds or not will depend on the functional forms

and parameters. For now, suppose that preferences are linear in leisure, so that

h(`) = a` for some a > 0, and hence G(x, x′, y) = βψ[y ζ(x′)/a]. Suppose further

that X is the AR(1) process in (24), and that there exists a constant δ such that

(49)

∣∣∣∣∂ G(x, x′, y)

∂y

∣∣∣∣ = β|ψ′[y ζ(x′)/a]|ζ(x′)/a 6 δζ(x′)

for all y ∈ Y = R. Then, by remark 5.2, the bound (42) holds with κ(x, x′) =

δζ(x′). To check whether the corresponding operator K in (43) is a bounded linear

operator on L2(X,Y, π) we can use corollary 3.1. With κ(x, x′) = η(x′) = δζ(x′),

we can evaluate Γ(κ) using (27), which gives Γ(κ) = δ2

1−ρ2
∫
ζ(z)2ϕ(z,m, s) dz, where

ϕ(·,m, s) is the N(m, s2) density with m and s as defined in corollary 3.1. For this

integral to be finite, it suffices that Eζ(Z)2 is finite whenever Z is normally distributed

(i.e., the productivity process has finite second moment).

If this is true, then proposition 5.6 implies that K is a bounded linear operator from

L2(X,R, π) to itself with ‖K‖π 6
√

Γ(κ). If Γ(κ) < 1, then (G,X ) is strongly second

order contracting, and a unique stationary Markov equilibrium exists. If not, we can

study the spectral radius r(K). In the latter case, the relevent condition is r(K) < 1,

under which a unique stationary Markov equilibrium exists.

One utility function for consumption that satisfies the stated conditions is the CARA

form v(c) = 1 − exp(−γc), where γ > 0. In this case, straightforward calculations

show that (49) holds with δ := γβ/a. Figure 4 shows (β, ρ) pairs such that the

condition r(K) < 1 is satisfied (all pairs below the 1.0 contour line). In the left sub-

figure, σ = 0.05. In the right sub-figure, σ = 0.05, and the set of stable (β, ρ) pairs

has increased.22 In general, a parameterization is more likely to satisfy the second

21Since v is bounded and concave, there exists an M and N such that, for all x > 0, we have

N = v(0) 6 v(x) + v′(x)(0− x) 6M − v′(x)x, and hence 0 6 v′(x)x 6M −N .
22The other parameters are a = 1.0, b = 0.0 and γ = 0.5.
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Figure 4. The spectral radius condition for the OLG model with money

order contraction property when the discount factor is smaller, the state process is

less persistent and the volatility of the state process is lower.

5.5. Computing Markov Equilibria in the General Setting. Consider the gen-

eral forward looking model discussed in section 5. Assume the conditions of theo-

rem 5.1. Our next aim is to produce a consistent and globally convergent method

for computing the unique fixed point f ∗ in proposition 5.1, where consistency means

that the limit of our iterative method converges to the true fixed point f ∗ as the

approximation architecture becomes finer and finer.

Algorithm 1 yields such a method when {ej} is an orthonormal basis of L2(X,Y, π).

In the statement of the algorithm, Π is the distribution of (Xt, Xt+1) on X× X.

Algorithm 1: Iteration composed with projection

1 fix initial f ∈ L2(X,Y, π) ;

2 while a stopping condition fails do

3 for i = 0, . . . , n do

4 set ci =
∫ ∫
〈G(x, x′, f(x′)), ei(x)〉Π(dx, dx′) ;

5 end

6 set f =
∑n

i=0 ciei ;

7 end

8 return f ;
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Since Π(dx, dx′) = Q(x, dx′)π(dx), we have

ci =

∫ ∫
〈G(x, x′, f(x′)), ei(x)〉Q(x, dx′)π(dx)

=

∫ 〈∫
G(x, x′, f(x′))Q(x, dx′), ei(x)

〉
π(dx)

= 〈Tf, ei〉π .

Hence f in line 7 evaluates to
∑n

i=0 〈Tf, ei〉π ei. The implication is that stepping

through the loop in algorithm 1 is equivalent to iterating with P◦T, the composition

of the orthogonal projection P from L2(X,Y, π) onto the span of {ej}j6n with the

operator T.

The operator P has three fundamental properties that are important for us. First,

it is optimal in the sense that, for each f ∈ L2(X,Y, π), the function Pf equals the

minimizer of ‖f−h‖π over all h ∈ span{e0, . . . , en}. Note that optimality with respect

to ‖ · ‖π enforces small deviation where π puts most of its probability mass. This is

desirable because it implies that the quality of approximation is maximized in regions

where the state process spends most of its time—assuming some degree of ergodicity.

The second and third properties we make use of are that the orthogonal projection is

linear and nonexpansive respectively, where nonexpansive means that ‖Pf‖π 6 ‖f‖π
for all f in L2(X,Y, π).23 These two facts lie behind the following lemma.

Lemma 5.2. If T is a contraction of modulus θ on L2(X,Y, π), then so is T̂ := P◦T.

Proof. Let f and g be elements of L2(X,Y, π). Since the projection P is linear and

nonexpansive under the norm ‖ · ‖π, we have

‖T̂f − T̂ g‖π = ‖PTf −PTg‖π = ‖P(Tf −Tg)‖π 6 ‖Tf −Tg‖π 6 θ‖f − g‖π.

Hence T̂ is a contraction of modulus θ as claimed. �

Now consider expanding the number of basis elements. In particular, let En be the

linear span of {ej}j6n and let Pn be the orthogonal projection onto En. Let fn be

the unique fixed point of T̂n := Pn ◦ T, existence of which follows from lemma 5.2.

We can now state the following result:

Proposition 5.7. Let T be a contraction of modulus θ and let f ∗ be the unique

fixed point of T. If {ej}j>0 is a complete orthonormal basis of L2(X,Y, π), then

‖fn − f ∗‖π → 0 as n→∞.

23See, e.g., chapter 2 of Cheney (2001) or section 1.3 of Atkinson and Han (2009).
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Proof. Fix n ∈ N. By lemma 5.2, T and T̂1, T̂2, . . . are all contractions of modulus θ.

It then follows from lemma 2.1 of Rust (1996) that ‖fn−f ∗‖π 6 ‖T̂nf
∗−f ∗‖π/(1−θ).

(The norm is different here but the proof is identical.) Since T̂n = Pn◦T, this becomes

‖fn − f ∗‖π 6
‖Pnf

∗ − f ∗‖π
1− θ

.

The fact that {ej}j>0 is a complete orthonormal basis implies ‖Pnf
∗ − f ∗‖π → 0,

which in turn gives ‖fn − f ∗‖π → 0. �

6. Extensions

In this section we show how the ideas expressed above can be extended in different

directions. Section 6.1 connects our analysis to the decomposition in Hansen and

Scheinkman (2009), while section 6.2 considers nonstationary models.

6.1. Decompositions. In this section we show how the decomposition in Hansen and

Scheinkman (2009) can be applied to simplify computations by converting a random

coefficients model into a partially linear model. The process involves a change of

measure. If diagonalizability of the Markov operator is preserved, then the results in

section 4.2 can be applied.

To illustrate, consider an asset price equation of the form (3). As in Hansen and

Scheinkman (2009), suppose that there exists a positive function k such that k(Xt, Xt+1) =

Mt+1
Dt+1

Dt
for all t > 0. Under some regularity conditions, we can use the decomposi-

tion in Hansen and Scheinkman (2009) to rewrite (3) as

Yt = Et

[
λ
v(Xt)

v(Xt+1)

Ht+1

Ht

(1 + Yt+1)

]
,

where λ > 0 is an eigenvalue of the operator K defined by Kf(x) =
∫
k(x, x′)f(x′)Q(x, dx′),

v is a π-a.e. positive eigenfunction, and {Ht} is an Ft-martingale. Absorbing the mar-

tingale component into the expectation gives

Yt = Ẽt

[
λ
v(Xt)

v(Xt+1)
(1 + Yt+1)

]
.

Dividing by v(Xt) leads to the expression

Ŷt = λẼt

[
Ŷt+1

]
+ λ Ẽt

[
1

v(Xt+1)

]
where Ŷt :=

Ft
v(Xt)

.
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This is a special case of the partially linear models discussed in section 4.2. If the

stability conditions are satisfied (see remark 2.2), then we can apply proposition 4.1,

provided that time reversibility is preserved in the change of measure.

The following gives one example where the Hansen–Scheinkman decomposition pre-

serves time reversibility. Let {Xt} obey the AR(1) process in section 3.1.1 with b = 0.

Consumption evolves according to logCt+1 − logCt = gc + gxXt + gwWt+1. The sto-

chastic discount factor is

Mt+1 = β

(
Ct+1

Ct

)−γ
= β exp[(1− γ)(gc + gxXt + gwWt+1)].

Substituting in Wt+1 = (ρXt−Xt+1)/σ shows that we can write Mt+1 as k(Xt, Xt+1).

Straightforward algebra shows that

v(x) := exp

{
(1− γ)gx

1− ρ
x

}
and λ := β exp

{
(1− γ)gc + (1− γ)2

1

2

[
gw +

gx
1− ρ

σ

]}
provide a positive eigenfunction and corresponding eigenvalue of K. It follows that

Ht+1

Ht

= λ−1
v(Xt+1)

v(Xt)
β exp[(1− γ)(gc + gxXt + gwWt+1)]

This leads to

Ht+1

Ht

= exp

(
αWt+1 −

1

2
α2

)
where α := (1− γ)

[
gw +

σgx
1− ρ

]
.

The conditional expectation has the form

Ẽt [f(Xt+1)] = Et

[
exp

(
αWt+1 −

1

2
α2

)
f(ρXt + σWt+1)

]
.

Some manipulations show that ν(w) := exp
(
αw − 1

2
α2
)
π(0,1)(w) = N(α, 1). The

Markov operator corresponding to Ẽt is therefore

(Q̃f)(x) =

∫
exp

(
αw − 1

2
α2

)
f(ρx+ σw)π(0,1)(w) dw

=

∫
f(ρx+ σw)ν(w) dw

=

∫
f(ρx+ ασ + σw)π(0,1)(w) dw.

From the results in section 3.1.1, this operator is diagonalizable on L2(X,Y, π̃) where

π̃ is the stationary distribution of Q̃.
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6.2. Nonstationary Models. Some degree of nonstationarity in the model can be

incorporated, provided that growth is not too fast. For example, consider a version

of (11) where

(50) Yt = Et [a(Xt, Xt+1)Yt+1] + ϕt(Xt), t > 0.

Here {ϕt}t>0 is a sequence of Borel measurable maps from X to Y. Apart from the

nonnegative time index, other aspects of the model are the same.

To ensure convergence of the solution, we introduce the following condition:

Assumption 6.1. The function ϕ0 is in Lp(X,Y, π) and there exists a positive con-

stant ε such that

ε <
1

r(A)
and ‖ϕt+1‖π 6 ε‖ϕt‖π for all t > 0.

To state the main result for this section result, let

(51) f ∗t :=
∞∑
i=0

Aiϕt+i (t > 0),

where convergence of the series still remains to be proved. (Equality is in the sense

of norm convergence in L2(X,Y, π).)

Theorem 6.1. If assumption 6.1 holds, then, for all t > 0, the series (51) converges

in Lp(X,Y, π), and the sequence {f ∗t } satisfies

(52) f ∗t = Af ∗t+1 + ϕt, ∀ t > 0.

Moreover, if Y ∗t = f ∗t (Xt) for all t, then {Y ∗t } satisfies (50).

Proof of theorem 6.1. Pick any t > 0 and p > 1. Since r(εA) < 1, it follows from

Gelfand’s formula that we can find a δ < 1 and M0 < ∞ such that ‖(εA)j‖ 6 δjM0

for all j > 0. If we now take M := M0 ‖ϕt‖π then

‖Ajϕt+j‖π 6 ‖Aj‖π‖ϕt+j‖π 6 ‖(εA)j‖π‖ϕt‖π 6 δjM for all j > 0.

(Note that M can depend on t but does not depend on j.) Let gn :=
∑n

i=0 Aiϕt+i.

By the triangle inequality in Lp(X,Y, π) and δ < 1 we have

‖gn‖π 6
n∑
i=0

‖Aiϕt+i‖π 6
n∑
i=0

δiM 6
M

1− δ
.
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Hence gn ∈ Lp(X,Y, π) for all n. In fact {gn} is Cauchy in Lp(X,Y, π) because, for

any n, j ∈ N,

‖gn − gn+j‖π 6
n+j∑
i=n+1

‖Aiϕt+i‖π.

This yields

lim
n→∞

sup
j>n
‖gn − gn+j‖π 6 lim

n→∞
sup
j>n

δn
1− δj

1− δ
M = lim

n→∞
δn

1

1− δ
M = 0.

Since {gn} is Cauchy, its limit exists in Lp(X,Y, π). In particular, the series in (51)

converges for any t > 0. Let f ∗t denote this limit. In other words, {f ∗t } is the sequence

defined in (51).

For f ∗t+1 we have f ∗t+1 =
∑∞

i=0 Aiϕt+i+1, implying that

ϕt + Af ∗t+1 = ϕt + Aϕt+1 + A2ϕt+2 + · · · =
∞∑
i=0

Aiϕt+i.

In other words, ϕt + Af ∗t+1 = f ∗t . This confirms (52).

Regarding the final claim of theorem 6.1, let Y ∗t := f ∗t (Xt) for all t. Pick any t > 0.

Since {f ∗t } satisfies (52), we have

(53) Y ∗t = f ∗(Xt) = ϕt(Xt) + (Af ∗t+1)(Xt).

The Markov property of X and the definition of A imply that

(Af ∗t+1)(Xt) =

∫
f ∗t+1(x

′)a(Xt, x
′)Q(Xt, dx

′) = Et[a(Xt, Xt+1)f
∗
t+1(Xt+1)].

Using our definition of {Y ∗t } again, we see that

(Af ∗t+1)(Xt) = Et[a(Xt, Xt+1)Y
∗
t+1].

Combining this with (53) confirms (50). �

Example 6.1. Consider the model (2) again, but suppose as in Tallarini (2000) that

log dividends follow a linear growth trend. That is, lnDt = θt+Xt, where {Xt} is a

stationary state process. With the change of variable Ut := D1−γ
t Yt, we can write (2)

as Ut = βEt[Ut+1 +D1−γ
t+1 ]. This expands out to

(54) Ut = Et[βUt+1] + βEt exp[(1− γ)(θ(t+ 1) +Xt+1)],

which is a version of (50) when Y = R,

(55) ϕt(x) := β

∫
exp {(1− γ)(θ(t+ 1) + x′)}Q(x, dx′)
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and a(x, x′) ≡ β. If π is a Gaussian distribution, one can use (56) and the expression

for the mean of a lognormal distribution to show that ‖ϕt+1‖π = exp{θ(1−γ)} ‖ϕt‖π.

Hence assumption 6.1 holds whenever exp{θ(1− γ)} < 1/β.

7. Appendix

Let Q be a stochastic kernel on (X,B) and let π be stationary for Q. Let Q be the

Markov operator. We prove some properties of Q and Q. One is that, if g : X→ Y is

in Lp(X,Y, π), then

(56)

∫
Qg dπ =

∫
g dπ.

First we prove (56) in the scalar case. To this end, fix any g ∈ Lp(X,R, π). We can

write
∫ [∫

g(x′)Q(x, dx′)
]
π(dx) =

∫
g(x′)µ(dx′) where µ is the measure defined by

µ(B) =
∫
Q(x,B)π(dx). Since π is stationary for Q we have µ = π. Hence (56) holds

for scalar valued functions.

Now let Y be a separable Banach space. Let Y∗ be the dual space and let y∗ ∈ Y∗.

Recall that if µ is a finite measure on X and f : X → Y is Bochner integrable, then

〈
∫
f dµ, y∗〉 =

∫
〈f, y∗〉 dµ. It follows that, for any g ∈ Lp(X,Y, π),〈∫

g dπ, y∗
〉

=

∫
〈g, y∗〉 dπ

=

∫ ∫
〈g(x′), y∗〉Q(x, dx′)π(dx)

=

〈∫ ∫
g(x′)Q(x, dx′)π(dx), y∗

〉
,

where the second equality uses the previously established validity of (56) in the scalar

case. Since y∗ is an arbitrary element of Y∗, we conclude (by the Hahn–Banach

theorem) that
∫
g dπ =

∫ ∫
g(x′)Q(x, dx′)π(dx), as was to be shown.

Lemma 7.1. Q is a bounded linear self-map on Lp(X,Y, π) with r(Q) = ‖Q‖π = 1.

Proof of lemma 7.1. Linearity of Q is obvious and boundedness is weaker then the

claim that ‖Q‖π = 1. Hence it suffices to show that r(Q) = ‖Q‖π = 1.
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To this end, fix f ∈ Lp(X,Y, π) and observe that∫
‖Qf‖p dπ =

∫ ∥∥∥∥∫ f(x′)Q(x, dx′)

∥∥∥∥p π(dx)

6
∫ ∫

‖f(x′)‖pQ(x, dx′)π(dx) =

∫
‖f‖p dπ,

where we used Jensen’s inequality and (56). Raising both sides to the power of 1/p

gives ‖Qf‖π 6 ‖f‖π, implying that ‖Q‖π 6 1. As for an linear operator, we have

r(Q) 6 ‖Q‖, and hence the proof will be complete if we can show that r(Q) > 1,

which in turn will be established if 1 is an eigenvalue of Q. It is easy to check that if

c is a fixed element of Y and f(x) ≡ c 6= 0, then Qf = f . Hence 1 is an eigenvalue of

Q. �

Proof of lemma 3.1. Let f be in L2(X,Y, π). By the Cauchy-Schwarz inequality, we

have∫
‖Af(x)‖2π(x) dx =

∫ ∥∥∥∥∫ A(x, x′)f(x′)q(x, x′) dx′
∥∥∥∥2 π(x) dx

6
∫ [∫

‖A(x, x′)f(x′)‖q(x, x′) dx′
]2
π(x) dx

6
∫ [∫

‖A(x, x′)‖ ‖f(x′)‖q(x, x′) dx′
]2
π(x) dx

=

∫ [∫
‖f(x′)‖‖A(x, x′)‖q(x, x′)

π(x′)
π(x′) dx′

]2
π(x) dx

6
∫ ∫

‖f(x′)‖2π(x′) dx′
∫

[‖A(x, x′)‖q(x, x′)]2

π(x′)2
π(x′) dx′π(x) dx

= ‖f‖2π
∫ ∫

[‖A(x, x′)‖q(x, x′)]2 π(x)

π(x′)
dx′ dx.

Hence ‖Af‖π 6
√

Γ(A)‖f‖π. �

The following discussion provides some preliminaries to the proof of lemma 3.3. Con-

sider the normalized linear state dynamics

(57) Xt+1 = ρXt + (1− ρ2)1/2Wt+1 where {Wt}
iid∼ π(0,1) := N(0, I)

and −1 < ρ < 1. Here π(0,1) = N(0, I) is the standard normal distribution on R. The

corresponding stochastic kernel is q(x, y) = N(ρx, (1 − ρ2)1/2). It is known to have
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stationary density π(0,1) and orthogonal expansion

(58) q(x, y) = π(0,1)(y)
∞∑
j=0

ρjhj(x)hj(y),

where ρ is the autocorrelation coefficient in (57) and {hj} is the normalized Hermite

polynomials. (See, for example, O’Donnell (2014). The representation (58) is called

the Mehler expansion of q.) The corresponding Markov operator Q(0,1) is diagonaliz-

able with

(59) Q(0,1) g =
∞∑
j=0

ρj 〈g, hj〉π hj for all g ∈ L2(X,R, π).

The operator Q(0,1) is called the Gaussian noise operator or the Mehler transform.

Proof of lemma 3.3. Writing π(0,1) for the standard normal distribution, we can ex-

press the relationship between π and π(0,1) as π(0,1) = π ◦ τ−1 on B. That is, π(0,1) is

the image measure of π under τ . It follows from the usual rules for integration over

image measures (Dudley, 2002, theorem 4.1.11) that

(a) f ∈ L2(X,R, π(0,1)) =⇒ f ◦ τ ∈ L2(X,R, π) and
∫
f dπ(0,1) =

∫
f ◦ τ dπ.

(b) f ∈ L2(X,R, π) =⇒ f ◦ τ−1 ∈ L2(X,R, π(0,1)) and
∫
f dπ =

∫
f ◦ τ−1 dπ(0,1).

Let M be the operator from L2(X,R, π(0,1)) to L2(X,R, π) defined by Mf = f ◦ τ .

By repeated use of (i) and (ii) above, it is straightforward to confirm that M is a

linear bijection that preserves inner products. In other words, M is a Hilbert space

isomorphism. Since {hi} is a complete orthonormal basis of L2(X,R, π(0,1)), this

implies that {Mhi} = {ei} is a complete orthonormal basis of L2(X,R, π).

To verify the rest of lemma 3.3 it suffices to show that, for any i > 0, we have

Qei = ρiei. Since {ej} is a complete orthonormal basis, to prove this equality it

suffices to show that 〈Qei, ej〉π = ρi1{i = j} for any fixed j.

To this end, observe that Q and Q(0,1) are topologically conjugate under M, in the

sense that Q = MQ(0,1)M
−1 on L2(X,R, π). Indeed, for any f ∈ L2(X,R, π) and any

x ∈ R, we have

(MQ(0,1)M
−1)f(x) =

∫
(f ◦ τ−1)(ρτ(x) + (1− ρ2)1/2w)π(0,1)(w) dw

=

∫
f(ρx+ b+ σw)π(0,1)(w) dw

= (Qf)(x).
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Returning to the claim that 〈Qei, ej〉π = ρi1{i = j}, we have

〈Qei, ej〉π =
〈
MQ(0,1)M

−1ei, ej
〉
π

=
〈
MQ(0,1)hi, ej

〉
π

= ρj 〈ei, ej〉π ,

where the last equality is by (59) and Mhi = ei. The proof is now done. �

Proof of theorem 5.1. Let {Y ∗t } be as defined. Regarding the first claim, fix t ∈ Z
and observe that

EtG(Xt, Xt+1, Y
∗
t+1) =

∫
G(Xt, x

′, f ∗(x′))Q(Xt, dx
′) = Tf ∗(Xt).

Since f ∗ is a fixed point, the right hand side equals f ∗(Xt) = Y ∗t . Hence {Y ∗t } is a

stationary Markov equilibrium. Moreover, f ∗ ∈ Lp(X,Y, π) and E‖Y ∗t ‖p = ‖f ∗‖pπ, so

the second claim also holds.

Regarding the third claim, let {Yt} be any other stationary Markov equilibrium with

finite p-th moment. Fix t ∈ Z and ε > 0. We will show that

(60) [E‖Yt − Y ∗t ‖p]1/p < ε.

Since ε was chosen arbitrarily, (60) implies thatP{Yt = Y ∗t } = 1. Moreover, countable

intersections of probability one sets are probability one, which proves the third claim

in the theorem. Hence we need only show that (60) holds.

To this end, we can use Jensen’s inequality and the function κ from the order p

contraction property to write

‖Yt − Y ∗t ‖ 6 Et
∥∥G(Xt, Xt+1, Yt+1)−G(Xt, Xt+1, Y

∗
t+1)
∥∥

6 κ(Xt, Xt+1)Et
∥∥Yt+1 − Y ∗t+1

∥∥ .
Continuing to iterate in this way gives

‖Yt − Y ∗t ‖ 6 Et
`−1∏
j=0

κ(Xt+j, Xt+1+j)‖Yt+` − Y ∗t+`‖.

Because {Yt} is a stationary Markov equilibrium, there is a fixed function g : X→ Y

such that Yt+` = g(Xt+`). This means that

‖Yt − Y ∗t ‖ 6 Et
`−1∏
j=0

κ(Xt+j, Xt+1+j)‖g(Xt+`)− f ∗(Xt+`)‖

= K`h(Xt+`) where h(x) := ‖g(x)− f ∗(x)‖.

Raising to the power of p and taking expectations gives

(61) E‖Yt − Y ∗t ‖p 6 ‖K`h‖pπ 6 ‖K`‖pπ ‖h‖pπ = ‖K`‖pπ ‖f ∗ − g‖pπ.
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Since (G,X ) is order p contracting, the operator K defined in (43) has spectral radius

less than 1. Gelfand’s formula then implies the existence of an m ∈ N such that

‖Km‖π < 1. Choosing n ∈ N such that ‖Km‖nπ < ε/‖f ∗ − g‖π and setting ` = mn in

(61), we have

(E‖Yt − Y ∗t ‖p)1/p 6 ‖Knm‖π ‖f ∗ − g‖π 6 ‖Km‖nπ ‖f ∗ − g‖π < ε.

This confirms (60), and the proof is now done. �

Proof of proposition 5.5. Fix f ∈ L2(X,Y, π) and x ∈ X. By Jensen’s inequality and

the conditions of proposition 5.5 we have

‖Tf(x)‖2 =

∥∥∥∥∫ G(x, x′, f(x′))q(x, x′) dx′
∥∥∥∥2

6

[∫
‖G(x, x′, f(x′))‖q(x, x′) dx′

]2
6

{∫
κ(x, x′)‖f(x′)‖q(x, x′) dx′ +

∫
ζ(x, x′)q(x, x′) dx′

}2

6 2

{∫
κ(x, x′)‖f(x′)‖q(x, x′) dx′

}2

+ 2

{∫
ζ(x, x′)q(x, x′) dx′

}2

6 2

{∫
κ(x, x′)‖f(x′)‖q(x, x′) dx′

}2

+ 2

∫
ζ(x, x′)2q(x, x′) dx′.

From the Cauchy-Schwarz inequality,{∫
κ(x, x′)‖f(x′)‖q(x, x′) dx′

}2

=

[∫
‖f(x′)‖κ(x, x′)q(x, x′)

π(x′)
π(x′) dx′

]2
6

[∫
‖f(x′)‖2π(x′) dx′

∫
[κ(x, x′)q(x, x′)]2

π(x′)2
π(x′) dx′

]2
= ‖f‖2π

∫
[κ(x, x′)q(x, x′)]2

π(x′)
dx′.

Hence

‖Tf(x)‖2 6 2‖f‖2π
∫

[κ(x, x′)q(x, x′)]2

π(x′)
dx′ + 2

∫
ζ(x, x′)2q(x, x′) dx′.

Integrating with respect to π(x) dx now gives

‖Tf‖2π 6 2‖f‖π
∫ ∫

[κ(x, x′)q(x, x′)]2
π(x)

π(x′)
dx′ dx+2

∫ ∫
ζ(x, x′)2q(x, x′)π(x) dx dx′.

That is, ‖Tf‖2π 6 2‖f‖πΓ(κ) + 2Eζ(Xt, Xt+1)
2. The right hand side is finite, so Tf

is in L2(X,Y, π). Hence (G,X ) is second order regular. �
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