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Abstract

Existing explanations of Zipf’s law (Pareto exponent approximately
equal to 1) in size distributions require strong assumptions on growth
rates or the minimum size. I show that Zipf’s law naturally arises in
general equilibrium when individual units operate a constant-returns-to-
scale technology with multiple inputs, one of which is in inelastic supply.
My model explains why Zipf’s law is empirically observed in the size
distributions of cities and firms, which consist of people, but not in other
quantities such as wealth, income, or consumption.
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1 Introduction

Zipf’s law is an empirical regularity that holds in the size distributions of cities
and firms, stating that the frequency of observing a unit larger than x is ap-
proximately inversely proportional to x:

P (X > x) ∼ x−ζ ,

where the Pareto (power law) exponent ζ is slightly above 1. This relationship
holds regardless of the choice of countries or time periods.1 To get a sense of
how the empirical size distribution looks like, Figure 1 shows a log-log plot of
employment cutoffs and the number of firms larger than the cutoffs (essentially
the ranks) using the 2011 U.S. Census Small Business Administration (SBA)
data. Consistent with a power law, the figure shows a straight-line pattern up
to firms as small as 10 employees. The estimated Pareto exponent is ζ̂ = 1.0972
with standard error 0.0788. We obtain similar patterns for all years from 1992
to 2011 for which data is available.

In a seminal paper, Gabaix (1999) has shown that Zipf’s law robustly arises
when individual units follow Gibrat (1931)’s law of proportional growth and
there is some small minimum size that the units must meet. His work has
generated a large subsequent literature on power laws in economics and finance

∗Department of Economics, University of California San Diego. Email: atoda@ucsd.edu.
1For empirical studies documenting Zipf’s law, see Zipf (1949), Rosen and Resnick (1980)

(cities), and Axtell (2001) (firms), among others.
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Figure 1: Log-log plot of firm size distribution.

Note: The figure plots employment cutoffs and the number of firms larger than the cutoffs.
dPlN stands for double Pareto-lognormal, which is a distribution arising from the theoretical
model in the paper. The straight-line pattern is consistent with a power law, with estimated
exponent ζ̂ = 1.0972 and standard error 0.0788 using maximum likelihood with binned data.
Source: 2011 U.S. Census Small Business Administration data.

as well as models that explain Zipf’s law.2 Despite the considerable advances
in the theory of power laws in size distributions made during the past decade
or so, the explanation of Zipf’s law (Pareto exponent very close to 1) remains
incomplete: one of the conditions for Zipf’s law—that there is a small minimum
size, or equivalently the expected growth rate of existing units is small—has
often been assumed without proper justifications. In this paper, I propose a
dynamic general equilibrium model that explains Zipf’s law without ad hoc
assumptions, and hence provide a microfoundation for Zipf’s law.

My model is surprisingly simple, and essentially relies on the following three
elements: (i) Gibrat’s law of proportional growth, (ii) reset events that occur
with small probability (“idiosyncratic rare disasters”), and (iii) existence of a
production factor in inelastic supply. Conditions (i) and (ii) have already been
known to be sufficient to generate Pareto tails (Reed, 2001), but Zipf’s law
(Pareto exponent close to 1) holds only in the knife-edge case in which the
expected growth rate of units is small. My contribution is thus in showing that
condition (iii)—the existence of a production factor in inelastic supply—limits
aggregate growth, which in equilibrium also limits individual growth and hence
generates Zipf’s law. Note that the low growth condition is an endogenous
outcome, not an assumption. Thus my theory provides a microfoundation for
Zipf’s law.

To illustrate these points, I construct a stylized model of the population
dynamics in cities (villages) as well as a more realistic model of entrepreneur-

2The theoretical literature is too large to review here. Examples include Luttmer (2007),
Nirei and Souma (2007), Rossi-Hansberg and Wright (2007), Benhabib et al. (2011, 2015,
2016), Gabaix (2011), Toda (2014), Toda and Walsh (2015), Arkolakis (2016), Gabaix et al.
(2015), Nirei and Aoki (2016), and Aoki and Nirei (2016), among others. See Gabaix (2009,
2016) and Jones (2015) for reviews.
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ship and firm size. In the first model, there are a continuum of villages and
households. The village authorities produce a single good (“potato”) using
a constant-returns-to-scale technology and hiring labor. Households migrate
across villages freely without any cost. Villages are hit by two types of id-
iosyncratic shocks—technological shocks and rare disasters (“famine”). When a
famine occurs, the potatoes in the village are wiped out, but the village author-
ity receives deliveries of potatoes from other villages because they have a mutual
insurance. This simple model has all the ingredients sufficient to generate Zipf’s
law: (i) with multiplicative technological shocks and constant-returns-to-scale
technology, we obtain Gibrat’s law for individual villages, (ii) famines are reset
events and generate a stationary distribution with Pareto tails, and (iii) the
inelastic labor supply endogenously forces the expected population growth rate
in individual villages to be small in equilibrium, generating Zipf’s law.

In the second model, I consider an economy consisting of entrepreneur-CEOs
and household-workers. Each entrepreneur operates a firm using a constant-
returns-to-scale technology and hiring labor, and makes consumption-saving-
portfolio-hiring decisions optimally. Entrepreneurs are subject to idiosyncratic
investment risk and bankruptcy. Workers supply labor inelastically but make
consumption-saving decisions optimally. In this setting under mild conditions
I prove that a unique stationary equilibrium exists and characterize the equi-
librium in closed-form. I prove that the stationary firm size distribution obeys
Zipf’s law when the bankruptcy rate is small. I calibrate the model to the U.S.
economy and find that the Pareto exponent is between 1 and 1.02 even under
bankruptcy rates as high as 10%, replicating Zipf’s law.

2 Difficulties with existing explanations

In this section I review the existing explanations of Zipf’s law based on random
growth models3 and point out their difficulties.

Suppose that the size of individual units (e.g., population of cities, number
of employees in firms, etc.) satisfies Gibrat (1931)’s law of proportional growth:
the growth rate of units is independent of their sizes.4 The simplest of all such
processes is the geometric Brownian motion (GBM)

dXt = gXt dt+ vXt dBt, (2.1)

where Xt is the size of a typical unit, g is the expected growth rate, v > 0 is
the volatility, and Bt is a standard Brownian motion that is independent across
units. As is well known, the geometric Brownian motion leads to the lognormal
distribution whose log variance increases linearly over time, and hence does not
admit a stationary distribution.

In order to obtain a stationary distribution, a common practice in the lit-
erature is to introduce a minimum size xmin > 0 below which individual units

3I focus on the random growth model because (i) it is the earliest model to explain power
laws (Champernowne, 1953; Simon, 1955), and (ii) almost all existing explanations rely on this
mechanism one way or another. An exception is Geerolf (2016), who studies the production
decision within an organization in a static setting. The Pareto exponent is exactly equal to
2 when there are two layers in the organization (e.g., managers and workers). He also shows
that Zipf’s law obtains as the number of layers tends to infinity.

4See Sutton (1997) for a review of the empirical literature on Gibrat’s law.
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cannot operate.5 Mathematically, we are considering the geometric Brownian
motion with a reflective barrier at xmin. Assuming that the growth rate is neg-
ative (g < 0), it is well known (see Appendix A) that the system converges to
the unique stationary distribution

P (X > x) =

(
x

xmin

)−ζ
, (2.2)

which is a Pareto distribution with minimum size xmin and Pareto exponent

ζ = 1− 2g

v2
> 1. (2.3)

Thus we obtain Zipf’s law (ζ ≈ 1) when the growth rate is small relative to the
variance: |g| � v2. Another way to formulate the condition for Zipf’s law is to
compare the minimum size xmin to the average size x̄. Using the distribution
function (2.2), we obtain

x̄ =

∫ ∞
xmin

xζxζminx
−ζ−1 dx =

ζ

ζ − 1
xmin ⇐⇒ ζ =

1

1− xmin/x̄
. (2.4)

Hence Zipf’s law is also equivalent to xmin � x̄: the minimum size is small
relative to the average.

Although this model is purely mechanical, it underlies the mechanism of gen-
erating Zipf’s law in most papers. Of course, in order to make it an economic
model, one needs to provide mechanisms that generate Gibrat’s law of pro-
portional growth. However, this is not difficult if we assume constant-returns-
to-scale production, multiplicative idiosyncratic risks, and homothetic prefer-
ences.6 The more difficult part is to explain why there is a minimum size, and
why the growth rate is small. These are the difficulties in existing explanations.

First, in many models a minimum size is often introduced as an ad hoc as-
sumption. While a minimum size may be justified in some cases (e.g., positive
integer constraint, fixed cost of operation, borrowing constraints), in the pres-
ence of a minimum size, fully optimizing agents will typically behave differently
depending on whether they are close to the lower boundary or not. Since Zipf’s
law is a statement about the upper tail, and large agents are likely not to be
affected much by the lower boundary, it is reasonable to expect that the size
distribution is similar in models where (i) agents behave rationally in the pres-
ence of an ex ante minimum size,7 and (ii) agents ignore the minimum size but
it is imposed ex post. However, characterizing the stationary distribution with
fully optimizing agents in the presence of a minimum size is challenging.

The second issue, which is more problematic, is the condition that the growth
rate or the minimum size must be small in order to obtain Zipf’s law, which is a
knife-edge case. Since the growth rate g is an endogenous variable in any fully

5Such assumptions are made in Levy and Solomon (1996), Gabaix (1999), Malcai et al.
(1999), Luttmer (2007), Rossi-Hansberg and Wright (2007), Córdoba (2008), and Aoki and
Nirei (2016), among others.

6See, for example, Saito (1998), Krebs (2003), Angeletos (2007), Benhabib et al. (2011,
2016), Toda (2014), and Toda and Walsh (2015), among others.

7For example, Benhabib et al. (2015) consider a Bewley model with capital income risk
and show that the optimal consumption rule is asymptotically linear (i.e., the lower boundary
does not matter) as agents become rich. As a result, they show that the stationary wealth
distribution exhibits a Pareto upper tail.
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specified economic model, there is no obvious reason why we should expect it
to be close to zero. In order to obtain this condition, one usually needs to pick
very particular parameter values.8

To summarize, the explanation of Zipf’s law remains incomplete until we pro-
vide a fully specified economic model with optimizing agents in which (i) there
is no ad hoc minimum size, and (ii) the low growth condition emerges endoge-
nously as an equilibrium outcome. I provide such a model in the following
sections.

3 A simple model of city size distribution

In this section I provide a minimal model of population dynamics and city size
distribution to highlight the ingredients that give rise to Zipf’s law.

3.1 Geometric Brownian motion with birth/death

First consider a purely mechanistic model as in Reed (2001), where the size of
individual units Xt evolves according to the geometric Brownian motion (2.1)
but with a constant probability of birth/death.9 Unlike in the previous example,
there is no minimum size but new units are constantly born at rate η > 0, with
initial size x0, and existing units die at the same rate η.10 It is well known (see
Appendix A) that the size distribution of units has a unique stationary density

f(x) =

{
αβ
α+βx

α
0x
−α−1, (x ≥ x0)

αβ
α+βx

−β
0 xβ−1, (0 < x < x0)

(3.1)

which is known as double Pareto. α, β > 0 are called Pareto (or power law)
exponents. Given the parameters g, v, η of the stochastic process, the exponents
ζ = α,−β are the solutions to the quadratic equation

v2

2
ζ2 +

(
g − v2

2

)
ζ − η = 0. (3.2)

8For example, Simon and Bonini (1958) consider a random growth model of firm size
based on Simon (1955) and show that Zipf’s law obtains when the net growth attributed
to new firms relative to that of existing firms approaches zero. Luttmer (2007) studies a
general equilibrium model of firms with monopolistic competition and entry/exit, and shows
that Zipf’s law holds when the technology improvement rates of entrants is slightly above
those of incumbents. In both of these cases, incumbents will grow slightly slower than the
average, and after subtracting the average rate, we obtain the low growth condition |g| � v2.
Córdoba (2008) studies a model of city size distribution and shows that Zipf’s law holds when
the elasticity of substitution between goods is exactly 1. See Gabaix (1999) for a review of
mechanisms suggested in the earlier literature, which all requires a fine-tuning of parameters.

9Wold and Whittle (1957) is one of the earliest examples that shows that random
birth/death can generate Pareto tails. Working in continuous-time is convenient for tractabil-
ity. Although the results in this section are exact only in continuous-time, Toda (2014) shows
that it is also approximately true in discrete-time under general Markov processes.

10For cities it may be unreasonable to assume that they disappear at a constant rate.
However, this assumption is not important because we obtain the exact same result if cities
are infinitely lived, new cities are created at rate η, and the total population also grows at
rate η. Also it is not important that the average size of cities is constant over time. If there is
population growth, we obtain the same conclusion by considering the balanced growth path.
See the discussion in Reed (2001) for details.
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Solving (3.2), we obtain the Pareto exponents

α, β =
1

2

√(1− 2g

v2

)2

+
8η

v2
±
(

1− 2g

v2

) . (3.3)

As is clear from this formula, Zipf’s law (α ≈ 1) arises when g, η � v2, i.e.,
when the growth rate and death probability are small compared to the variance.
This is a purely mathematical result, and of course there is no reason to expect
that the growth rate of units is small. In order to explain Zipf’s law, we need
to introduce some economics, which I turn to next.

3.2 Size distribution with production and inelastic factor

Environment Consider an economy consisting of a continuum of villages and
households. The mass of villages and households is normalized to 1 and N , re-
spectively. There is a single consumption good, potato. Each household supplies
1 unit of labor inelastically and consumes the entire wage (“hand-to-mouth”
behavior). Households migrate across villages freely without any moving costs;
therefore in equilibrium, all villages must offer the same competitive wage. Each
village authority uses its stock of potatoes and hires labor to produce new pota-
toes using a constant-returns-to-scale technology.

Each village is subject to two types of idiosyncratic shocks. First, the stock
of potatoes is subject to a productivity shock coming from a Brownian motion.
Second, each village is occasionally hit by a rare disaster—famine—which arrives
at a (small) Poisson rate η > 0. When a famine hits a village, the entire stock
of potatoes perishes. However, there is a mutual insurance agreement across
villages: each village gives out fraction κ ∈ (0, 1) of its stock of potatoes to a
village hit by a famine.

A stationary equilibrium is defined by a wage ω and size distributions of
village population and stock of potatoes such that (i) profit maximization:
given the wage and stock of potatoes, each village authority demands labor to
maximize profits, (ii) market clearing: for each village, population equals labor
demand, and (iii) stationarity: the size distributions are invariant over time.

Population dynamics of individual villages Let ω be the equilibrium
wage and xt be the stock of potatoes in a typical village. Then the resource
constraint when there is no famine is

dxt = (F (xt, nt)− ωnt) dt− ηκxt dt+ vxt dBt, (3.4)

where nt is the labor input (population of the village in equilibrium), F is
the production function (which is homogeneous of degree 1 since it exhibits
constant-returns-to-scale), v is volatility, and Bt is a standard Brownian motion.
F (xt, nt) − ωnt is the amount of potatoes the village authority retains after
paying the wage. The term −ηκxt reflects the delivery of potatoes to a village
hit by a famine (in a short period of time ∆t, there are η∆t such villages, and
each village gets κxt). The term vxt dBt is the technological shock to the stock
of potatoes. The village authority maximizes the profit, so chooses nt such that

nt = arg max
n

(F (xt, n)− ωn).
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Let f(x) = F (x, 1).11 Since by assumption F is homogeneous of degree 1, we
have F (x, n) = nf(x/n). By the first-order condition, we obtain

ω = f(y)− yf ′(y), (3.5)

where y = xt/n is the potato per capita. Hence given the wage ω and the stock
of potatoes xt, the labor demand is nt = xt/y, where y is determined by (3.5).
The profit rate per unit of potato is then

µ =
F (xt, n)− ωn

x
=

1

y
(f(y)− (f(y)− yf ′(y))) = f ′(y). (3.6)

Substituting the profit (3.6) into the resource constraint (3.4), we obtain

dxt = (µ− ηκ)xt dt+ vxt dBt. (3.7)

Therefore the stock of potatoes in each village evolves according to a geometric
Brownian motion until a famine hits. Since nt = xt/y is proportional to xt, the
village population nt also obeys the same geometric Brownian motion (3.7).

Equilibrium To compute the equilibrium, we need to derive the dynamics of
the aggregate stock of potatoes, Xt (which is constant in steady state). Consider
what happens to the stock of potatoes in each village during a short period
of time ∆t. If the village does not experience a famine (which occurs with
probability 1 − η∆t), then by (3.7) the stock of potatoes grows at rate µ − ηκ
on average. If the village is hit by a famine (which occurs with probability
η∆t), the potatoes are wiped out, and the village receives a delivery of κXt

from other villages according to the mutual agreement. Hence aggregating the
stock of potatoes across villages and using the law of large numbers, we obtain

X + ∆X = (1− η∆t)(1 + (µ− ηκ)∆t)X︸ ︷︷ ︸
Aggregate potatoes of non-famine villages

+ (η∆t)(κX)︸ ︷︷ ︸
Aggregate potatoes of famine villages

= (1 + (µ− η)∆t)X + higher order terms.

Subtracting X from both sides and letting ∆t→ 0, we obtain

dX = (µ− η)X dt.

In steady state, since by definition the aggregate stock of potatoes is constant,
we must have dX = 0 and hence

µ = η. (3.8)

Combining (3.6) and (3.8), the equilibrium potato per capita y is determined
by f ′(y) = η. The equilibrium wage is then determined by (3.5). Substituting
(3.8) into the equation of motion (3.7) of potatoes in each village (and hence
the population), we obtain

dxt = η(1− κ)xt dt+ vxt dBt. (3.9)

Note that (3.9) is a special case of the mechanistic model (2.1) with g = η(1−κ).
Since η is small, so is g, and hence we can expect Zipf’s law to hold. In fact, we
can show the following proposition.

11A typical example is the Cobb-Douglas production function F (x, n) = Axαn1−α − δx, so
f(x) = Axα − δx, where δ is the depreciation rate.
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Proposition 3.1. The stationary city size distribution is double Pareto. The
upper tail Pareto exponent ζ is given by α in (3.3) with g = η(1 − κ), which
satisfies

1 < ζ < 1 +
2ηκ

v2
. (3.10)

As η → 0, we obtain Zipf ’s law ζ → 1.

3.3 Discussion

The above model is highly stylized (the next section presents a model of the
firm size distribution with fully optimizing agents). However, it is useful be-
cause it highlights the minimal sufficient conditions that give rise to Zipf’s law,
without going into the details of a more realistic but elaborate model. There
are essentially two ingredients.

First, we have the mechanistic model (geometric Brownian motion and Pois-
son death), which gives us the double Pareto distribution for free. It turns out
that the upper tail exponent α is close to 1 (Zipf’s law) if the growth rate and
the birth/death rate of individual units are small compared to the volatility.

Second, it is economics that gives us the low growth necessary to obtain
Zipf’s law. In this example, total population is fixed, and the production func-
tion exhibits decreasing returns with respect to one factor (potato). Therefore
in steady state, by definition the aggregate stock of potatoes must be constant,
which means that it is impossible for individual villages to grow on average
faster than the rate of rare disasters, which is small. The equilibrium wage
adjusts so that this low growth condition is satisfied endogenously.

Thus we can conclude that Zipf’s law obtains whenever the following con-
ditions hold: (i) individual units follow Gibrat’s law of proportional growth
(possibly due to multiplicative idiosyncratic shocks, constant-returns-to-scale
technology, and homothetic preferences); (ii) individual units are reset at a
(small) constant Poisson rate; (iii) there is a factor of production in inelastic
supply, which limits aggregate growth.

I must emphasize that the purpose of the model in this section is to show
that it is possible to explain Zipf’s law without any ad hoc assumptions. There
are obviously many important features that are left out in the model. First,
in my model villages (cities) are exogenously fixed, but one might wonder why
there are cities in the first place. As Rossi-Hansberg and Wright (2007) argue,
the existence of cities (urban structure) suggests local increasing returns, while
balanced growth suggests constant returns at the aggregate level. They propose
a model with these features and explain the endogenous emergence of cities. A
similar model can be developed in my setting since the mathematical structure
(multiplicative shocks, constant-returns-to-scale, and homothetic preferences) is
the same.

Second, my model predicts that the size distribution of cities is double
Pareto, which has a kink at the mode and so is unlikely to be observed in
the data. Reed (2002) and Giesen et al. (2010) suggest that the entire size dis-
tribution of cities is closer to the double Pareto-lognormal (dPlN) distribution,
which has two Pareto tails with a lognormal body (Reed, 2003). It is straightfor-
ward to obtain dPlN in my model: instead of assuming that the initial size after
the reset event is fixed, if the initial size distribution is lognormal, we obtain
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dPlN. Therefore my model can explain simultaneously why the size distribution
of cities is close to dPlN and obeys Zipf’s law.

4 A model of firm size distribution

In the previous section I showed that it is possible to obtain Zipf’s law without
ad hoc assumptions. In this section I develop a more realistic model of the
firm size distribution with fully optimizing agents. The model builds on the
continuous-time version of Angeletos (2007).

4.1 Environment

Consider an economy populated by two types of agents, household-workers and
entrepreneur-CEOs. There are a continuum of both types, and entrepreneurs
and workers have mass 1 and N , respectively. There is a single consumption
good produced by the firms operated by the entrepreneurs, which can also be
used as capital.

Households are infinitely lived and supply 1 unit of labor inelastically in a
perfectly competitive labor market. They are infinitely risk averse, so they only
borrow or lend at the market risk-free rate up to the natural borrowing limit
and make consumption-saving decisions optimally.

Entrepreneurs die (go bankrupt) and are born at Poisson rate η > 0 (Yaari
(1965)-Blanchard (1985) perpetual youth model). When an entrepreneur dies,
his capital is wiped out and his firm disappears. Each entrepreneur is born with
one “idea”. Upon birth, she converts her “idea” to physical capital one-for-one12

and starts to operate a constant-returns-to-scale technology with idiosyncratic
investment risk. Entrepreneurs use their own physical capital and hire labor
in a competitive market to carry out production. Markets are incomplete, so
entrepreneurs may only invest in their own firms but can borrow or lend at the
market risk-free rate.

A stationary equilibrium is defined by a wage ω, risk-free rate r, aggregate
capital stock K, households’ risk-free asset position X, households’ consumption
choice, entrepreneur’s consumption-portfolio-saving-hiring choice, and size dis-
tributions of firms’ capital and employment such that (i) households make opti-
mal consumption-saving choice and entrepreneurs make optimal consumption-
portfolio-saving-hiring choice, (ii) markets for labor and risk-free asset clear,
and (iii) all aggregate variables and size distributions are invariant over time.

4.2 Individual decisions

Workers The utility function of a worker is

Ut =

∫ ∞
0

e−ρs
c
1−1/ε
t+s

1− 1/ε
ds,

where ρ > 0 is the discount rate and ε > 0 is the elasticity of intertemporal
substitution. Since workers hold only the risk-free asset, the budget constraint

12Since capital is wiped out when an entrepreneur goes bankrupt and entrepreneurs are
born with capital, it is more appropriate to interpret capital as organization capital.
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is
dxt = (rxt + ωt − ct) dt,

where xt is the financial wealth (which is entirely invested in the risk-free asset)
and ωt = ω is the (constant) wage. Letting

ht =

∫ ∞
0

e−rsωt+s ds =
ω

r

be the human wealth (present discounted value of future wages) and wt = xt+ht
be the effective total wealth, we have

dwt = (rwt − ct) dt. (4.1)

The problem thus reduces to a standard Merton (1969, 1971)-type optimal
consumption-saving problem. A solution exists if and only if ρε+ (1− ε)r > 0,
in which case the optimal consumption rule is

c = (ρε+ (1− ε)r)w = (ρε+ (1− ε)r)(x+ ω/r). (4.2)

Entrepreneurs Entrepreneurs have Epstein-Zin preferences with discount
rate ρ, relative risk aversion γ, and elasticity of intertemporal substitution ε.

Let kt be the physical capital, bt be the corporate bond holdings, and xt =
kt+bt be the financial wealth (net worth) of a typical entrepreneur. The budget
constraint is

dxt = (F (kt, nt)− ωnt + (r + η)bt − ct) dt+ σkt dBt, (4.3)

where nt is the labor input, ct is consumption, F is a constant-returns-to-scale
production function net of capital depreciation, σ > 0 is the volatility of the
idiosyncratic shock, and Bt is a standard Brownian motion that is indepen-
dent across entrepreneurs. Note that the effective risk-free rate faced by en-
trepreneurs is not r, but r + η, reflecting the fact that they go bankrupt at
Poisson rate η > 0 and hence are charged an insurance premium η > 0 on their
borrowing (they get annuities at the same rate if they are lending). η can also
be interpreted as the spread of corporate bonds over the risk-free asset.

Because labor appears only in the budget constraint and can be chosen freely,
letting f(k) = F (k, 1), as in (3.5) the capital-labor ratio y = kt/nt satisfies
ω = f(y) − yf ′(y). The labor demand is nt = kt/y, and as in (3.6) the profit
rate per unit of capital is µ = f ′(y). Substituting into the budget constraint
(4.3), we obtain

dxt = (re + (µ− re)θ −m)xt dt+ σθxt dBt, (4.4)

where re = r+η is the effective risk-free rate faced by entrepreneurs, θ = kt/xt is
the leverage (the fraction of wealth invested in the physical capital, so kt = θxt
and bt = (1 − θ)xt), and m = ct/xt is the propensity to consume out of
wealth. Therefore this problem also becomes a Merton (1971)-type optimal
consumption-saving-portfolio problem. According to Svensson (1989), the solu-
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tion for the case with Epstein-Zin utility is

θ =
µ− re
γσ2

, (4.5a)

m = (ρ+ η)ε+ (1− ε)
(
re + (µ− re)θ −

1

2
γθ2σ2

)
= (ρ+ η)ε+ (1− ε)

(
re +

(µ− re)2

2γσ2

)
, (4.5b)

provided that these θ,m are positive. Substituting these rules into the budget
constraint (4.4), we obtain

dxt = gxt dt+ vxt dBt, (4.6)

where the drift g and volatility v are given by

g = (r − ρ)ε+ (1 + ε)
(µ− re)2

2γσ2
, (4.7a)

v = σθ =
µ− re
γσ

. (4.7b)

4.3 Equilibrium

So far I have implicitly assumed that the discount rate ρ and EIS ε are com-
mon across agent types, but this is not necessary. Allowing for heterogeneous
parameters across types is also useful for calibration, and in fact, necessary for
the existence of equilibrium when the bankruptcy rate η is small. Hence let
ρW , εW be the parameter values for the workers, and let the symbols without
subscripts be those of the entrepreneurs. The following theorem characterizes
the equilibrium.

Theorem 4.1. Suppose that f(x) = F (x, 1) satisfies the usual Inada conditions
f ′ > 0, f ′′ < 0, f ′(0) =∞, and f ′(∞) ≤ 0. Then a stationary equilibrium exists
if and only if (

1− 1

ȳN

)
η > (ρW − ρ)ε, (4.8)

where ȳ > 0 is the (unique) number such that f ′(ȳ) = ρW + η. The steady state
is unique and satisfies the following properties.

1. The risk-free rate equals the discount rate of workers: r = ρW .

2. The capital-labor ratio y = K/N is the unique solution in (0, ȳ) to(
1− 1

yN

)
η = (ρW − ρ)ε+ (1 + ε)

(f ′(y)− ρW − η)2

2γσ2
. (4.9)

3. The net worth xt of individual entrepreneurs evolves according to the ge-
ometric Brownian motion

dxt = η(1− κ)xt dt+ vxt dBt, (4.10)

where κ = 1
K = 1

yN is the ratio between the initial and the steady state

capital and v = f ′(y)−ρW−η
γσ > 0 is volatility.
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Condition (4.8) says that entrepreneurs must be sufficiently impatient. This
assumption is natural, for otherwise their wealth will grow indefinitely and there
will be no steady state. In order for (4.8) to hold for small enough η > 0, it is
necessary and sufficient that ρW < ρ. Therefore in order to consider the limit
where the bankruptcy rate converges to zero, we need to assume that workers
are more patient than entrepreneurs (otherwise an equilibrium does not exist).

Note that the equation of motion (4.10) is exactly the same as (3.9). Hence
by Proposition 3.1, the upper tail Pareto exponent ζ satisfies the bound (3.10).
However, since κ, v are endogenous unlike in the previous model, it is not im-
mediately clear whether Zipf’s law holds as η → 0. We can nevertheless show
that Zipf’s law holds in this case, too.

Theorem 4.2. Suppose that ρW < ρ, so the equilibrium existence condition
(4.8) holds for small enough η > 0. As η → 0, we obtain Zipf ’s law ζ → 1.

Note that Theorem 4.2 is an asymptotic result, and hence for any given
parameters the upper tail Pareto exponent need not be close to 1, although
the bound (3.10) is always true. Whether ζ is close to 1 or not is therefore a
quantitative question, which I address in the numerical example below.

5 Numerical example

In this section I compute a numerical example of the model of firm size distribu-
tion. For the production function, I assume the Cobb-Douglas form F (k, n) =
Akαn1−α − δk, where A is a constant (normalized to A = 1), α is the capital
share, and δ is the depreciation rate.

5.1 Calibration

The model is completely specified by the parameters (ρW , ρ, γ, ε, α, δ, σ, η,N).13

I calibrate the model at the annual frequency. Following Angeletos (2007), I
set ρ = 0.04, ε = 1, α = 0.36, δ = 0.08, and σ = 0.2, which are all relatively
standard values. Since in steady state the risk-free rate r equals the discount
rate of the workers ρW , I set ρW = 0.01 so that the risk-free rate is 1%, which is
about the historical value in U.S. For N , which is the average number of workers
per firm, according to 2011 U.S. Census Small Business Administration (SBA)
data,14 5,684,424 firms employed 113,425,965 workers, which implies an average
of 19.95 employees per firm. Therefore I set N = 20.

The parameters that may be controversial are the relative risk aversion γ
and the bankruptcy rate η. Based on SBA data for 1988–2006, Luttmer (2010)
reports that the average exit rate is 10.4% per annum for firms with fewer than
20 employees and 2.5% for firms with 500 or more employees. If we take the
model literally, η is also the spread of (defaultable) corporate bond over the
risk-free asset. Based on a monthly 1990–2008 sample of 899 publicly traded
non-financial firms (mostly large firms) covered by the Center for Research in
Security Prices (CRSP), Gilchrist et al. (2009) find that the mean spread of
corporate bonds is 192 basis points (1.92%), which is comparable to the exit rate.

13Note that the elasticity of intertemporal substitution for the workers, εW , is irrelevant for
the steady state, so there is no need to specify it.

14https://www.sba.gov/advocacy/firm-size-data
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Since I am interested in the upper tail behavior (large firms), I set η = 0.025
or 2.5% spread, which implies an average lifespan of 1/η = 40 years. However,
since by Theorem 4.2 Zipf’s law obtains when η is small, it is interesting to
know the Pareto exponent under larger values of η, for which the bound (3.10)
may not be so informative. Therefore I also consider the cases η = 0.05 (5%
spread or 20 years lifespan) and η = 0.1 (10% spread or 10 years lifespan). One
can think of the case η = 0.025 as a CEO operating a blue-chip firm, and the
case η = 0.05, 0.1 as a young entrepreneur operating a start-up company.

For the relative risk aversion, it is reasonable to assume that the rich CEOs
of large firms are not so risk averse, so I set γ = 1.15 As a robustness check, I
also consider the cases γ = 0.5, 2.

5.2 Results

By Theorem 4.1, computing the equilibrium reduces to solving a single nonlinear
equation (4.9). Table 1 shows the results. The private equity premium, leverage
(fraction of own physical capital to entrepreneur net worth), and volatility are
all reasonable numbers, roughly in line with U.S. stock returns. In each case,
the upper tail Pareto exponent ζ is close to 1, in agreement with Zipf’s law.

Table 1: Parameters and endogenous variables in steady state.

Quantity Symbol Values

Risk aversion γ 1 0.5 2 1 1
Bankruptcy rate (%) η 2.5 2.5 2.5 5 10

Capital-labor ratio y 3.49 4.01 2.93 2.58 1.65
Wage ω 1.004 1.055 0.942 0.900 0.767
Private premium (%) µ− re 4.68 3.31 6.61 5.62 7.13
Equity premium (%) µ− r 7.18 5.81 9.11 10.62 17.13
Leverage θ 1.17 1.65 0.83 1.41 1.78
Volatility (%) v 23.4 33.1 16.5 28.1 35.6
Pareto exponent ζ 1.007 1.004 1.011 1.011 1.019

Note: the table shows the values of endogenous variables in steady state. The capital-labor
ratio is y = K/N , where K is the aggregate capital. The private premium is the expected
return on capital in excess of the effective risk-free rate faced by entrepreneurs, µ− re, where
µ = f ′(y) and re = r + η = ρW + η is the effective risk-free rate (true risk-free rate plus
spread). The equity premium is the expected return on capital in excess of the risk-free rate

r = ρW conditional on survival. The leverage θ = µ−re
γσ2 is the ratio between entrepreneur’s

own physical capital to net worth. v = σθ is the volatility of entrepreneur’s net worth (which
is also the market capitalization of the firm). ζ is the upper tail Pareto exponent computed
by (3.10).

As we make the environment riskier (larger γ or η), the private equity pre-
mium goes up, the capital-labor ratio goes down, which also suppresses the wage.
However, the mechanism is very different depending on whether we increase risk
aversion γ or the bankruptcy rate η. When γ increases, the entrepreneurs be-
come less willing to invest capital, so they leverage less (portfolio effect). Since
there is less investment in the high return capital, the aggregate capital goes

15Aoki and Nirei (2016) also assume γ = 1 (log utility), but the reason is for tractability
for solving the entire transitional dynamics.
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down. On the other hand, when η increases, aggregate capital goes down just
because there is more bankruptcy and hence destruction of capital (resource ef-
fect). Since capital is more scarce, the risk premium goes up, and entrepreneurs
leverage more to take advantage.

It is not surprising that the upper tail Pareto exponent ζ is close to 1 re-
gardless of the parameter specification. The reason is that, according to (3.10),
we always have the bound

1 < ζ < 1 +
2ηκ

v2
.

As a rough estimate, the bankruptcy rate η has order of magnitude about 10−1

or 10−2 and the volatility v has order of magnitude about 10−1. Hence the
upper bound of ζ is 1 + 2ηκ

v2 ≈ 1 + κ. Since κ is the ratio of the initial capital of
new firms to that of the average firm, it is reasonable to expect that κ is quite
small. Therefore ζ must be close to 1.

A Fokker-Planck equation

In this appendix, I derive the Fokker-Planck equation, also known as the Kol-
mogorov forward equation, which is useful in characterizing the cross-sectional
distribution in general settings. A good reference is Gabaix (2009).

A.1 Derivation of Fokker-Planck equation

Proposition A.1. Consider the diffusion

dXt = g(t,Xt) dt+ v(t,Xt) dBt, (A.1)

where Bt is standard Brownian motion. Let p(x, t) be the density of Xt at time
t. Then

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p), (A.2)

which is known as the Fokker-Planck (Kolmogorov forward) equation.

Proof. The proof is based on the following (unintuitive) calculation.
First, fix t1 < t2 and let F (t, x) be a smooth function such that F (t1, x) =

F (t2, x) = 0 and F (t, x), Fx(t, x) → 0 as x → ±∞. There are plenty of such
functions, for example

F (t, x) = (t− t1)(t− t2)f(x)

with f(x) > 0 and f(x), f ′(x)→ 0 as x→ ±∞.
By Itô’s formula, we get

dF (t,X(t)) = Ft dt+ Fx dXt +
1

2
Fxx(dXt)

2

= Ft dt+ Fx(g dt+ v dB) +
1

2
Fxxv

2 dt

=

(
Ft + Fxg +

1

2
Fxxv

2

)
dt+ Fxv dB.
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Taking expectations and using the martingale property of the Brownian motion,
we get

E[dF (t,X(t))] = E

[(
Ft + Fxg +

1

2
Fxxv

2

)
dt

]
=

∫ ∞
−∞

(
Ft + Fxg +

1

2
Fxxv

2

)
p(x, t) dtdx.

Integrating from t = t1 to t2 and using F (t1, x) = F (t2, x) = 0, we get

0 = E[F (t2, X(t2))− F (t1, X(t1))]

=

∫ ∞
−∞

∫ t2

t1

(
Ft + Fxg +

1

2
Fxxv

2

)
p(x, t) dtdx =: I1 + I2 + I3.

Integrating by parts, we get

I1 =

∫ ∞
−∞

∫ t2

t1

∂F

∂t
p(x, t) dtdx

=

∫ ∞
−∞

(
F (t2, x)− F (t1, x)−

∫ t2

t1

F
∂

∂t
p(x, t) dt

)
dx

= −
∫ t2

t1

∫ ∞
−∞

F
∂

∂t
p(x, t) dxdt,

where I have used F (t1, x) = F (t2, x) = 0 and Fubini’s theorem. By similar
calculations, we get

I2 = −
∫ t2

t1

∫ ∞
−∞

F
∂

∂x
(gp(x, t)) dxdt,

I3 =

∫ t2

t1

∫ ∞
−∞

F
∂2

∂x2

(
1

2
v2p(x, t)

)
dxdt.

Putting all the pieces together, we get

0 = I1 + I2 + I3 =

∫ t2

t1

∫ ∞
−∞

F

[
−∂p
∂t
− ∂

∂x
(gp) +

∂2

∂x2

(
1

2
v2p

)]
dxdt.

Since F is (nearly) arbitrary, the integrand must be identically zero.16 Therefore
we obtain the (parabolic) partial differential equation (PDE) (A.2).

The Fokker-Planck equation (A.2) holds if the diffusion (A.1) holds at all
times. However, we can consider situations in which the process is occasionally
reset. For example, if Xt in (A.1) describe individual wealth, since the individual
will die eventually, we need to specify what happens when an individual dies.
If there is influx j+(x, t) and outflux j−(x, t) per unit of time at location x at
time t, then the Fokker-Planck equation (A.2) must be modified as

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p) + j+ − j−.

16To see this more rigorously, set

F = (t− t1)(t− t2)

[
−
∂p

∂t
−

∂

∂x
(gp) +

∂2

∂x2

(
1

2
v2p

)]
.
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For example, if the units die at constant probability η per unit of time (Poisson
rate η) and is reborn at location x0, then the FPE becomes

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p) + ηδ(x− x0)− ηp,

where δ(x− x0) is the Dirac delta function located at x0.

A.2 Stationary density

If the diffusion has time-independent drift g(x) and variance v(x) and admits a
stationary distribution p(x), then we get

0 = − d

dx
(gp) +

1

2

d2

dx2
(v2p).

Integrating with respect to x and using the boundary condition p(x), p′(x)→ 0
as x→ ±∞, we get

0 = −g(x)p(x) +
1

2
(v(x)2p(x))′.

Letting q(x) = v(x)2p(x) and solving the ODE, we get

q′ =
2g

v2
q ⇐⇒ q′

q
=

2g

v2

⇐⇒ log q(x) =

∫
q′(x)

q(x)
dx =

∫
2g(x)

v(x)2
dx

⇐⇒ q(x) = exp

(∫
2g(x)

v(x)2
dx

)
.

Therefore the stationary density is

p(x) =
q(x)

v(x)2
=

1

v(x)2
exp

(∫
2g(x)

v(x)2
dx

)
, (A.3)

where the constant of integration is determined by the condition
∫∞
−∞ p(x) dx =

1 since p(x) is a density.
If there is a constant probability of death η, the stationary density is the

solution of the second-order ODE

0 = − d

dx
(gp) +

1

2

d2

dx2
(v2p)− ηp,

which holds at every point except x0.

A.2.1 Geometric Brownian motion with minimum size

As examples, consider the geometric Brownian motion with minimum size xmin

or constant Poisson rate η of birth/death with reset size x0. In the former case,
setting g(x) = gx (with g < 0) and v(x) = vx in (A.3), the stationary density is

p(x) =
1

(vx)2
exp

(∫
2gx

(vx)2
dx

)
= Cx

2g

v2−2
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for some constant C > 0. Since the minimum size is xmin and the probability
must add up to 1, it follows that

1 = C

∫ ∞
xmin

x
2g

v2−2 =
C

1− 2g
v2

x
−1+ 2g

v2

min .

Therefore
p(x) = ζxζminx

−ζ−1

for ζ = 1 − 2g/v2, which is the probability density function of the Pareto dis-
tribution (2.2) with exponent ζ > 1.

A.2.2 Geometric Brownian motion with Poisson birth/death

Next, consider the geometric Brownian motion with birth/death at Poisson rate
η > 0 and reset size x0. In this case, it is easier to solve in logs. Using Itô’s
lemma, Yt = logXt obeys the Brownian motion

dYt =

(
g − 1

2
v2

)
dt+ v dBt.

The Fokker-Planck equation in the steady state is

0 = −
(
g − 1

2
v2

)
p(y)′ +

1

2
v2p(y)′′ − ηp(y)

except at y0 := log x0, where I used the fact that g, v are constant. Since this
is a linear second-order ODE with constant coefficients, the general solution is

p(y) = C1e−λ1y + C2e−λ2y,

where λ1 > 0 > λ2 are solutions to the quadratic equation

1

2
v2ξ2 +

(
g − 1

2
v2

)
ξ − η = 0,

which is (3.2). Since the PDF must be continuous and integrate to 1, letting
α = λ1 > 0 and β = −λ2 > 0, it follows that

p(y) =

{
αβ
α+β e−α|y−y0|, (y ≥ y0)
αβ
α+β e−β|y−y0|, (y ≤ y0)

which is the asymmetric Laplace distribution with mode y0 and exponents α, β.
Taking the exponential, we obtain the double Pareto distribution (3.1).

B Proofs

Proof of Proposition 3.1. Since the equation of motion (3.9) is a special case
of the mechanistic model (2.1), it suffices to show the bound (3.10). Let

q(ζ) =
v2

2
ζ2 +

(
η(1− κ)− v2

2

)
ζ − η
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be the quadratic function that determines the Pareto exponent as in (3.2). Since

q(1) =
v2

2
+ η(1− κ)− v2

2
− η = −ηκ < 0,

q

(
1 +

2ηκ

v2

)
=
v2

2

(
1 +

2ηκ

v2

)2

+

(
η(1− κ)− v2

2

)(
1 +

2ηκ

v2

)
− η

=
v2

2

(
1 +

4ηκ

v2
+

4η2κ2

v4

)
+

(
η − ηκ− v2

2

)(
1 +

2ηκ

v2

)
− η

=
2η2κ

v2
> 0,

the solution satisfies 1 < ζ < 1 + 2ηκ
v2 , which is (3.10).

Proof of Theorem 4.1. First I prove the properties of the equilibrium assum-
ing existence, and later I show existence and uniqueness.

Step 1. The equilibrium risk-free rate is r = ρW .

In steady state, the wealth of the worker cannot grow. Setting dw/dt = 0
in (4.1), we have c = rw. Comparing to the optimal consumption rule (4.2), we
obtain

r = ρW εW + (1− εW )r ⇐⇒ r = ρW . (B.1)

Step 2. The net worth xt of individual entrepreneurs satisfies (4.10).

Since (4.6) holds and kt = θxt, there θ is given by (4.5a), individual capital
kt also obeys the same geometric Brownian motion: dk = gk dt + vk dBt. To
derive the dynamics of aggregate capital Kt (which is constant in steady state),
consider what happens to individual capital during a short period of time ∆t.
If the entrepreneur survives (which occurs with probability 1 − η∆t), then the
capital grows at rate g, so it becomes (1 + g∆t)kt. If the entrepreneur goes
bankrupt (which occurs with probability η∆t), the capital is wiped out, and a
new agent is born with 1 unit of capital. Hence by accounting we obtain

K + ∆K = (1− η∆t)(1 + g∆t)K︸ ︷︷ ︸
Aggregate capital of surviving agents

+ η∆t× 1︸ ︷︷ ︸
Aggregate capital of newborn agents

= (1 + (g − η)∆t)K + η∆t+ higher order terms.

Subtracting K from both sides and letting ∆t→ 0, we obtain

dK = (g − η)K dt+ η dt.

In steady state, aggregate capital is constant, so it must be

(g − η)K + η = 0 ⇐⇒ g = (1− κ)η, (B.2)

where κ = 1/K is the amount of initial capital relative to the steady state value.
Substituting this g into (4.6), we obtain (4.10).

Step 3. There exists a (unique) steady state if and only if (4.8) holds. The
equilibrium capital-labor ratio y = K/N solves (4.9).
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By (B.2) and (4.7a), we must have

g = (1− κ)η = (r − ρ)ε+ (1 + ε)
(µ− re)2

2γσ2
.

Substituting κ = 1
yN , r = ρW , µ = f ′(y), and re = r + η = ρW + η, the

equilibrium capital-labor ratio y must satisfy (4.9). Let

φ(y) =

(
1− 1

yN

)
η − (ρW − ρ)ε− (1 + ε)

(f ′(y)− ρW − η)2

2γσ2
(B.3)

be the left-hand side minus the right-hand side of (4.9). Let us show that φ is
strictly increasing on (0, ȳ). By simple algebra, we have

φ′(y) =
η

y2N
− (1 + ε)

f ′(y)− ρW − η
γσ2

f ′′(y).

For y < ȳ, since f ′′ < 0 we have f ′(y) > f ′(ȳ) = ρW + η. Therefore φ′(y) > 0.
Now note that (4.9) is equivalent to φ(y) = 0. If the condition (4.8) does not

hold, then φ(ȳ) ≤ 0. Also, clearly φ(0) = −∞. Since φ is strictly increasing,
we would have φ(y) < 0 for all y ∈ (0, ȳ), and therefore a steady state does not
exist. Conversely, if (4.8) holds, then φ(ȳ) > 0, so by the intermediate value
theorem there exists y ∈ (0, ȳ) such that φ(y) = 0. Since φ is strictly increasing,
y is unique.

Step 4. The propensity to consume out of wealth, m in (4.5b), is positive. The

volatility of entrepreneur’s wealth is given by v = f ′(y)−ρW−η
γσ > 0.

By the construction of y, we have f ′(y) > ρW + η. By (4.7b), µ = f ′(y),

re = r+ η, and r = ρW , we have v = f ′(y)−ρW−η
γσ > 0. By (4.5a), in equilibrium

the fraction of wealth invested in physical capital is

θ =
µ− re
γσ2

=
f ′(y)− ρW − η

γσ2
.

To show that the propensity to consume is positive, note that by (4.4), (4.5a),
and (4.10), we have

g = re +
(µ− re)2

γσ2
−m = (1− κ)η.

Since re = ρW + η and µ = f ′(y), it follows that

m = ρW + κη +
(f ′(y)− ρW − η)2

γσ2
> 0.

Proof of Theorem 4.2. Since the bound (3.10) holds, in order to show ζ → 1
as η → 0, it suffices to show that κ > 0 is bounded above and v > 0 is bounded
away from 0. Fix any y

¯
> 0 such that

−(ρW − ρ)ε− (1 + ε)
(f ′(y

¯
)− ρW )2

2γσ2
< 0,
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which exists by the Inada condition f ′(0) = ∞. Let φ(y; η) be φ(y) in (B.3),
given η > 0. Then we have

lim
η→0

φ(y
¯
; η) = −(ρW − ρ)ε− (1 + ε)

(f ′(y
¯
)− ρW )2

2γσ2
< 0.

Since φ is strictly increasing in y and φ(y, η) = 0 in steady state, it follows that
for sufficiently small η we have y > y

¯
. Therefore κ = 1

yN < 1
y
¯
N is bounded.

By Theorem 4.1, the equilibrium condition (4.9) is equivalent to

(1− κ)η = (ρW − ρ)ε+
1 + ε

2
γv2 ⇐⇒ v2 =

2ε(ρ− ρW ) + 2(1− κ)η

γ(1 + ε)
.

Since κ is bounded and ρW < ρ, v is bounded away from 0 as η → 0.
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