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Abstract

We introduce a new axiom called individual bounded response which states that for

each “smallest” change of a preference profile, the change of the social choice must

be the “smallest”, if any, for the agent who induces the change of a preference profile.

We show that individual bounded response is weaker than strategy-proofness, and that

individual bounded response and efficiency imply dictatorship. This impossibility has a

far-reaching negative implication. On the universal domain of preferences, it is hard

to find a nonmanipulability condition which leads to a possibility result.
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1 Introduction

We consider a society which is to choose one alternative based on the agents’ preferences
on a finite set of alternatives. A social choice function (SCF) maps each profile of agents’
preferences to an alternative. We propose an axiom called individual bounded response.
A SCF satisfies individual bounded response if for each “smallest” change of a preference
profile, the change of the social choice must be the “smallest”, if any, for the agent who
induces the change of a preference profile.

We explain individual bounded response in detail. Given a preference profile R = (R1, . . . , Rn),
assume that an alternative x is chosen at R. Consider that one agent, say agent i, ex-
changes the positions of one pair of consecutively ranked alternatives in Ri. We regard
this as the “smallest change” of a preference profile. Let y be the social choice after agent
i changes his preference. Then, individual bounded response requires that either x = y or x
and y are consecutively ranked in Ri.

Our main result is simple; A SCF satisfies individual bounded response and efficiency
if and only if the SCF is dictatorial. This impossibility has interesting and important
implications.

First, our main result shows that the impossibility of the Gibbard–Satterthwaite theo-
rem (Gibbard, 1973; Satterthwaite, 1975) is not necessarily due to an incentive requirement
of strategy-proofness. By the Gibbard–Satterthwaite theorem, it is well-known that strategy-
proofness and efficiency lead to dictatorship. It can be seen that individual bounded response
is weaker than strategy-proofness. Thus, individual bounded response, which is a “side ef-
fect” of strategy-proofness, is sufficient for the impossibility. Note that individual bounded
response is not a condition on incentives to misreport preferences. Individual bounded re-
sponse just says how much the social choice can vary corresponding to changes of agents’
preferences. Thus, when agent i changes his preference from Ri to R′

i, it is possible under
individual bounded response that the social choice at R′

i is preferable (according to Ri) to the
social choice at Ri.

Second, our result readily leads to a new interesting impossibility theorem. Following
recent researches on weakening strategy-proofness (for example, Reffgen, 2011; Carroll,
2012; Sato, 2013; Cho, 2016), we consider a new incentive condition, called weak AM-
proofness. Assume that the options of misrepresentation are restricted to the adjacent
preferences to the true one as in Sato (2013). Given a preference profile R, let x be the
chosen alternative at R, and R′

i be a false preference of agent i which is adjacent to Ri.
Let y and z be the alternatives whose ranks are exchanged in the passage from Ri to R′

i.
Weak AM-proofness requires that (i) if y and z are “near” x in Ri, then the social choice at
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R′
i cannot be preferred to x according to Ri, and (ii) if y and z are “far” from x in Ri, then

the social choice at R′
i can be preferred to x according to Ri, but in that case, the social

choice at R′
i and x should be consecutively ranked in Ri. As a straightforward corollary

of our main result, we can see that weak AM-proofness and efficiency lead to dictatorship.
This result is a surprising one. Even when we allow profitable misrepresentation, when
the degree of the profit is restricted, we cannot deviate from the impossibility.

The remainder of the paper is organized as follows. In Section 2, we introduce no-
tations and definitions, including our main axiom individual bounded response. In Section
3, we present a number of results. In Section 3.1 we show our main theorem after intro-
ducing a technical condition called flipping-wall. In Section 3.2, we present an application
to weak AM-proofness. In Section 3.3, we discuss results when efficiency is weakened to
unanimity. In Section 3.4, we discuss whether our impossibility result holds on restricted
domains of preferences. In Section 4, we provide a complete proof of the main theorem.
Section 5 concludes.

2 Model

We consider a society consisting of n agents in N = {1, . . . , n} where n ≥ 2. Let X be a
finite set of feasible alternatives with |X| = m ≥ 3, and L be the set of all linear orders on
X.1 By definition, x R x for each R ∈ L and each x ∈ X. Each agent i ∈ N has a preference
Ri ∈ L. For each pair of distinct alternatives x, y ∈ X, x Ri y means that i (strictly) prefers
x to y. If each agent i has a preference Ri ∈ L, the n-tuple (R1, . . . , Rn) is denoted by
R, and if some agent i changes the preference from Ri to R′

i, the new preference profile
is written as (R′

i, R−i). For each preference R ∈ L and each integer k (1 ≤ k ≤ m), let
rk(R) ∈ X be the kth-ranked alternative according to R. For each preference R ∈ L and
each alternative x ∈ X, let ρR(x) be the rank of x with respect to R, i.e., ρR(x) =

∣∣{y ∈
X | y R x}

∣∣. Two alternatives x and y are adjacent in R ∈ L if they are consecutively ranked
in R, i.e., |ρR(x)− ρR(y)| = 1. Two preferences R and R′ are adjacent if the only difference
between them is the ranks of one pair of adjacent alternatives. If R and R′ are adjacent
and two distinct alternatives x, y ∈ X satisfy x R y and y R′ x, the set of two alternatives
{x, y} is denoted by A(R, R′).

A social choice function (SCF) f is a function from the set of preference profiles Ln to the
set of alternatives X. A SCF is dictatorship if there exists i ∈ N such that f (R) = r1(Ri) for
each R ∈ Ln. This agent i is called a dictator. We introduce a few properties of a SCF. A
SCF f satisfies

1A binary relation is a linear order if it is complete, transitive, and antisymmetric.
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(i) strategy-proofness if f (R) Ri f (R′
i, R−i) for each R ∈ Ln, each i ∈ N, and each R′

i ∈ L.

(ii) monotonicity if f (R′
i, R−i) = f (R) for each R ∈ Ln, each i ∈ N, and each R′

i ∈ L such
that {x ∈ X | f (R) Ri x} ⊆ {x ∈ X | f (R) R′

i x}.

(iii) efficiency if f (R) ̸= x for each R ∈ Ln and each x ∈ X such that there exists y ∈
X \ {x} satisfying y Ri x for each i ∈ N.

(iv) individual bounded response if for each R ∈ Ln, each i ∈ N, and each R′
i ∈ L which is

adjacent to Ri, f (Ri, R−i) and f (R′
i, R−i) are adjacent in Ri or the same, i.e.,

∣∣ρRi( f (Ri, R−i))− ρRi( f (R′
i, R−i))

∣∣ ≤ 1.

Strategy-proofness ensures that reporting the true preference is always the optimal strat-
egy regardless of what the other agents report. Monotonicity says that expanding the
lower contour set of the social choice does not change the social choice. Muller and Sat-
terthwaite (1977) show that, as long as strict preferences are considered, monotonicity is
a necessary and sufficient condition of strategy-proofness. Efficiency is the standard axiom
saying that an alternative cannot be a social choice if it is Pareto dominated by some other
alternative. Individual bounded response is our main axiom in the paper.2 It states that if an
agent i changes the report from Ri to R′

i, and this change is the smallest in the sense that
Ri and R′

i are adjacent, then the change of the social choice must be the smallest, if any.
Here, the change of the social choice is measured by the difference in the ranks accord-
ing to the initial preference Ri of agent i, and thus this condition imposes no requirement
on the change of the ranks according to the other agents’ preferences. This is why we
call the axiom “individual”. Individual bounded response may not seem an incentive con-
dition because it allows agent i to be either better off or worse off after the change of i’s
preference. Nevertheless, we will observe that individual bounded response is weaker than
strategy-proofness in the next section.

2Muto and Sato (2016a) introduce an axiom called (weak) individual bounded response: for each R ∈ Ln,
each i ∈ N, and each R′

i ∈ L which is adjacent to Ri,
∣∣ρRi ( f (Ri, R−i)) − ρR′

i
( f (R′

i, R−i))
∣∣ ≤ 1. Note that

the rank of f (R′
i, R−i) is measured according to R′

i in weak individual bounded response whereas it is mea-
sured according to Ri in individual bounded response. It is readily shown that weak individual bounded response
follows from individual bounded response in this paper, and there exists a nondictatorial SCF satisfying weak
individual bounded response and efficiency. An example of a nondictatorial SCF satisfying weak individual
bounded response and efficiency is the following; For each R ∈ Ln, f (R) = r1(R1) if r1(R1) R2 r2(R1), and
f (R) = r2(R1) if r2(R1) R2 r1(R1).
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3 Result

In Section 3.1, we show our main theorem: individual bounded response and efficiency imply
dictatorship. Then, in Section 3.2, we propose a new incentive condition and show that
our main theorem readily implies the impossibility with the new incentive condition. In
Sections 3.3 and 3.4, we examine robustness of our impossibility result.

3.1 Main theorem

First, we show that individual bounded response follows from strategy-proofness.

Proposition 3.1. Strategy-proofness implies individual bounded response.

Proof. Suppose that a SCF f satisfies strategy-proofness. Take preference profile R ∈ Ln,
agent i ∈ N, and R′

i ∈ L which is adjacent to Ri, arbitrarily. By strategy-proofness, we have

f (R) Ri f (R′
i, R−i), and (1)

f (R′
i, R−i) R′

i f (R). (2)

It is obvious that (at least) one of the following three conditions is true: (i) f (R) ̸∈
A(Ri, R′

i), (ii) f (R′
i, R−i) ̸∈ A(Ri, R′

i), or (iii) f (R) ∈ A(Ri, R′
i) and f (R′

i, R−i) ∈ A(Ri, R′
i).

We show
∣∣ρRi( f (R)) − ρRi( f (R′

i, R−i))
∣∣ ≤ 1 in each case. First, suppose (i). Then, the

lower contour set of f (R) remains the same after the change from Ri to R′
i. By (1), f (R) R′

i

f (R′
i, R−i), and by (2), we have f (R) = f (R′

i, R−i). Thus,
∣∣ρRi( f (R))− ρRi( f (R′

i, R−i))
∣∣ =

0 ≤ 1. Second, suppose (ii). Then, the lower contour set of f (R′
i, R−i) remains the same

after the change from R′
i to Ri. By (2), f (R′

i, R−i) Ri f (R), and by (1), we have f (R) =

f (R′
i, R−i). Thus,

∣∣ρRi( f (R))− ρRi( f (R′
i, R−i))

∣∣ = 0 ≤ 1. Third, suppose (iii). Then, the
conclusion is immediate because for each x, y ∈ X, if x ∈ A(Ri, R′

i) and y ∈ A(Ri, R′
i),

then
∣∣ρRi(x)− ρRi(y)

∣∣ ≤ 1.

Next, we introduce a comprehensive condition, which turns out to be weaker than
individual bounded response (and also strategy-proofness by Proposition 3.1). For each pair
of adjacent preferences Ri, R′

i ∈ L, the following partition on the set of alternatives is
induced: (a) U(Ri, R′

i), the alternatives (strictly) preferred to those in A(Ri, R′
i) with re-

spect to Ri or R′
i, (b) A(Ri, R′

i), the pair of alternatives whose ranks are exchanged be-
tween Ri and R′

i, and (c) L(Ri, R′
i), the alternatives (strictly) less preferred to those in

A(Ri, R′
i) with respect to Ri or R′

i. More formally, for each pair of adjacent preferences
Ri, R′

i ∈ L, let U(Ri, R′
i) = {x ∈ X \ A(Ri, R′

i) | x Ri y for each y ∈ A(Ri, R′
i)}, and
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Ri R′
i

U(Ri, R′
i)

{ ...
...

...

...

A(Ri, R′
i)

{
x
y

y
x

L(Ri, R′
i)

{ ...
...

...

...

Figure 1: A partition of X given by a pair of adjacent preferences (Ri, R′
i).

L(Ri, R′
i) = {x ∈ X \ A(Ri, R′

i) | y Ri x for each y ∈ A(Ri, R′
i)}. (We note that U(Ri, R′

i) or
L(Ri, R′

i) may be empty.)
This partition is illustrated by Figure 1, in which each column presents a preference,

and each column with dots represent the identical ordering between two preferences.
The following condition, called flipping-wall, states that even if the social choice changes
by the change of agent i’s preference from Ri to R′

i, these social choices should belong to
the same partition element. Thus, the flipping part A(Ri, R′

i) is a “wall” which blocks the
social choice from moving between the upper part U(Ri, R′

i) and the lower part L(Ri, R′
i).

Definition 3.1 (Flipping-wall). A SCF satisfies flipping-wall if for each R ∈ Ln, each x ∈
X, each i ∈ N, and each R′

i ∈ L such that Ri and R′
i are adjacent, the following three

conditions are true:

(a) f (R) ∈ U(Ri, R′
i) implies f (R′

i, R−i) ∈ U(Ri, R′
i),

(b) f (R) ∈ A(Ri, R′
i) implies f (R′

i, R−i) ∈ A(Ri, R′
i), and

(c) f (R) ∈ L(Ri, R′
i) implies f (R′

i, R−i) ∈ L(Ri, R′
i).

This condition is weak in that if f (R) ∈ U(Ri, R′
i) or f (R) ∈ L(Ri, R′

i), and the parti-
tion element has more than two alternatives, then the difference in the ranks of f (R) and
f (R′

i, R−i) according to Ri may be larger than one. Indeed, we can show that flipping-wall
is implied by individual bounded response.

Lemma 3.2. Individual bounded response implies flipping-wall.

Proof. Suppose that a SCF satisfies individual bounded response. Let x = f (R) and y =

f (R′
i, R−i). By individual bounded response,

∣∣ρRi(y)− ρRi(x)
∣∣ ≤ 1, and (3)∣∣ρR′

i
(x)− ρR′

i
(y)

∣∣ ≤ 1. (4)
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First, suppose that x ∈ U(Ri, R′
i) and y ̸∈ U(Ri, R′

i). By inequality (3), y ∈ A(Ri, R′
i) and

ρRi(y)− ρRi(x) = 1. Then, ρR′
i
(x) = ρRi(x) and ρR′

i
(y) = ρRi(y) + 1, which contradicts

inequality (4). This shows (a). Second, suppose that x ∈ L(Ri, R′
i) and y ̸∈ L(Ri, R′

i). By
inequality (3), y ∈ A(Ri, R′

i) and ρRi(x)− ρRi(y) = 1. Then, ρR′
i
(x) = ρRi(x) and ρR′

i
(y) =

ρRi(y)− 1, which contradicts inequality (4). This shows (c). Finally, if x ∈ A(Ri, R′
i) and

y ∈ U(Ri, R′
i), (a) is violated where the roles Ri and R′

i are exchanged. If x ∈ A(Ri, R′
i)

and y ∈ L(Ri, R′
i), (c) is violated where the roles Ri and R′

i are exchanged. Therefore, (b)
is shown.

It is seen that flipping-wall together with efficiency are enough to imply dictatorship.

Lemma 3.3. If a SCF f satisfies flipping-wall and efficiency then f is dictatorship.

The proof of Lemma 3.3 is given in Section 4. Our main theorem is an immediate
corollary of Lemmas 3.2 and 3.3:

Theorem 3.4. Individual bounded response and efficiency imply dictatorship.

Note that Theorem 3.4 (impossibility with individual bounded response) is logically weaker
than Lemma 3.3 (impossibility with flipping-wall). Nevertheless, we present the impossi-
bility with individual bounded response as our main result. This is because individual bounded
response has a normative meaning, while flipping-wall is just a technical property of SCFs.

3.2 Application

We consider a new condition related to incentives to misreport preferences. We assume
that the options for misrepresentation are restricted to the adjacent preferences to the true
one. Let R ∈ Ln and i ∈ N. Assume that agent i does not have a time to consider every
possible candidate of misrepresentation, or he is reluctant to do so. In investigating an
opportunity of profitable misrepresentation, a natural focal point is f (R). Then, agent i
would focus on alternatives around f (R) at Ri.

1. Thus, agent i thinks carefully if he can have a better outcome by reporting a false
preference R′

i such that A(Ri, R′
i) is near f (R) in Ri.

2. On the other hand, if a big reward is not expected, he is not willing to think carefully
about a false preference R′

i such that A(Ri, R′
i) is far from f (R) in Ri.

We do not argue that the agents always behave in this way. However, we believe that
the above setting is plausible in some cases, and it is interesting to see whether we can
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construct a SCF which prevents such misrepresentation. The condition ensuring that each
agent reports his true preference in such a setting is the following. We say that a SCF f
satisfies weak AM-proofness if for each R ∈ Ln, each i ∈ N and each R′

i which is adjacent
to Ri,3

1. f (R) Ri f (R′
i, R−i), when |ρRi(x) − ρRi( f (R))| ≤ 1 or |ρRi(y) − ρRi( f (R))| ≤ 1,

where {x, y} = A(Ri, R′
i), and

2. ρRi( f (R′
i, R−i)) − ρRi( f (R)) ≤ 1, when |ρRi(x) − ρRi( f (R))| ≥ 2 and |ρRi(y) −

ρRi( f (R))| ≥ 2.

Since it can be readily seen that individual bounded response implies weak AM-proofness, we
have the following corollary.

Corollary 3.5. If a SCF f satisfies weak AM-proofness and efficiency, then f is dictatorship.

3.3 Unanimity

A SCF f satisfies unanimity if f (R) = x for each R ∈ Ln and each x ∈ X such that r1(Ri) =

x for each i ∈ N. We note that unanimity follows from efficiency. Since the Gibbard–
Satterthwaite theorem shows that strategy-proofness and unanimity imply dictatorship, it
is of interest to ask whether individual bounded response and unanimity imply dictatorship.
In general, we have a negative answer to this question, as the following counterexample
shows.

Example 3.1. Suppose n = 3 and m = 4. Consider the following SCF f . For each R ∈ Ln,

(a) if
∣∣{r1(R1), r1(R2), r1(R3)}

∣∣ = 1, then f (R) = r1(R1).

(b) if
∣∣{r1(R1), r1(R2), r1(R3)}

∣∣ = 2, then f (R) = r1(Ri) where there exist i, j, k ∈ N such
that {i, j, k} = N and r1(Ri) ̸= r1(Rj) = r1(Rk).

(c) if
∣∣{r1(R1), r1(R2), r1(R3)}

∣∣ = 3, then f (R) = w where w is the unique alternative in
X \ {r1(R1), r1(R2), r1(R3)}.

We explain this SCF by words. If the three agents agree on the best alternative, that alter-
native is chosen. If exactly two of them agree on the best alternative, the best alternative
for the remaining agent is chosen. If the best alternatives by the three agents are distinct
from each other, the alternative which is not the best for any of them is chosen.

3In Sato (2013), a SCF f satisfies AM-proofness if f (R) Ri f (R′
i, R−i) for each R ∈ Ln, each i ∈ N, and

each R′
i ∈ L which is adjacent to Ri. Here, “AM” stands for Adjacent Manipulation.
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By (a), f satisfies unanimity. Let us observe that f satisfies individual bounded response.
For each preference profile R ∈ L3, let T(R) = {r1(R1), r1(R2), r1(R3)} ⊂ X be the

set of top alternatives. Fix a preference profile R ∈ L3 and an agent i ∈ N arbitrarily.
Since f depends only on the top alternatives, it suffices to consider the flip between the
top alternative and the second-best one. Let R′

i ∈ L be the preference adjacent to Ri given
by flipping r1(Ri) and r2(Ri). We consider three cases in order.

CASE a: Suppose that
∣∣T(R)

∣∣ = 1. Then,
∣∣T(R′

i, R−i)
∣∣ = 2, and f (R′

i, R−i) = r1(R′
i) =

r2(Ri). Individual bounded response holds in this case.

CASE b: Suppose that
∣∣T(R)

∣∣ = 2.
SUBCASE b.1: If

∣∣T(R′
i, R−i)

∣∣ = 1, individual bounded response holds by Case a.
SUBCASE b.2: Suppose that

∣∣T(R′
i, R−i)

∣∣ = 2, that is, there exist j, k ∈ N \ {i} such
that r1(Ri) = r1(Rj) ̸= r1(Rk) = r1(R′

i). Then, f (R) = r1(Rk) = r1(R′
i) = r2(Ri), and

f (R′
i, R−i) = r1(Rj) = r1(Ri). Individual bounded response holds in this case.
SUBCASE b.3: Suppose that

∣∣T(R′
i, R−i)

∣∣ = 3, that is, there exist j, k ∈ N \ {i} such
that r1(Ri) = r1(Rj) ̸= r1(Rk) and r1(R′

i) = r2(Ri) ∈ X \ T(R). Then, f (R) = r1(Rk) ∈
X \ {r1(Ri), r2(Ri)}, and f (R′

i, R−i) ∈ X \ {r1(R′
i), r1(Rj), r1(Rk)} ⊂ X \ {r1(Ri), r2(Ri)}.

Thus, { f (R), f (R′
i, R−i)} ⊆ {r3(Ri), r4(Ri)}. Individual bounded response holds in this case.

CASE c: Suppose that
∣∣T(R)

∣∣ = 3. Then,
∣∣T(R′

i, R−i)
∣∣ ≥ 2.

SUBCASE c.1: If
∣∣T(R′

i, R−i)
∣∣ = 2. individual bounded response holds by Subcase b.3.

SUBCASE c.2: Suppose that
∣∣T(R′

i, R−i)
∣∣ = 3, that is, r1(R′

i) = r2(Ri) ∈ X \ T(R).
Then, f (R) = r2(Ri) and f (R′

i, R−i) = r2(R′
i) = r1(Ri). Individual bounded response holds

in this case.

Therefore, f satisfies individual bounded response in all cases.

Let X = {x, y, z, w}. In Example 3.1, if R = (R1, R2, R3) is such that r1(R1) = x,
r1(R2) = y, r1(R3) = z, and r4(R1) = r4(R2) = r4(R3) = w, then f (R) = w. This
is somewhat curious in that the worst alternative w is chosen even if the agents unani-
mously agree that the best three alternatives are x, y, and z. In fact, we can show that
a strengthened version of unanimity, which excludes such cases, is enough to obtain the
impossibility result.

We say that a SCF f satisfies strong unanimity if f satisfies unanimity, and f (R) ∈
{x, y, z} for each R ∈ Ln and each x, y, z ∈ X such that {r1(Ri), r2(Ri), r3(Ri)} = {x, y, z}
for each i ∈ N. We note that strong unanimity follows from efficiency.4

4Thus, Theorem 3.4 is a corollary of Proposition 3.6. We nevertheless place Theorem 3.4 as the main
theorem because efficiency is the standard axiom while strong unanimity is not. Moreover, the proof with
strong unanimity is more complicated than the proof with efficiency.
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Proposition 3.6. If a SCF f satisfies flipping-wall and strong unanimity, then f is dictator-
ship.

Proof. See the supplementary note Muto and Sato (2016b).

We note that by the definition of strong unanimity, if m = 3, strong unanimity is trivially
equivalent to unanimity. Also, we can show that if n = 2, flipping-wall and unanimity
implies strong unanimity. Hence, we have the following corollary.

Corollary 3.7. Suppose that n = 2 or m = 3. If a SCF f satisfies flipping-wall and unanimity,
then f is dictatorship.

Proof. It suffices to show that if n = 2, flipping-wall and unanimity implies strong unanimity.
Suppose that n = 2. Take an arbitrary preference profile (R1, R2) ∈ L2 satisfying

{r1(R1), r2(R1), r3(R1)} = {r1(R2), r2(R2), r3(R2)}, which implies ρR1(r
1(R2)) ≤ 3. Let

R′
1 ∈ L be the preference such that r1(R′

1) = r1(R2), and x R′
1 y if and only if x R1 y

for each x, y ∈ X \ {r1(R2)}. By unanimity, f (R′
1, R2) = r1(R2). By Definition 3.1 (a)

and (b), ρR1(r
1(R2)) = ρR1( f (R′

1, R2)) ≥ ρR1( f (R1, R2)). Since ρR1(r
1(R2)) ≤ 3, we have

ρR1( f (R1, R2)) ≤ 3. Hence, f satisfies strong unanimity.

3.4 Restricted domains

So far, we considered the universal domain of preferences L. It may be natural to ask if
the impossibility result of Theorem 3.4 holds on restricted domains. Although we have
no complete answer to this question, we provide two examples of restricted domains on
which the possibility result holds when n = 3 and m = 4.

The first example is a domain on which unanimity and strategy-proofness imply dictator-
ship. Thus, the possibility on this domain suggests a distance between strategy-proofness
and individual bounded response.

Example 3.2. Suppose that X is indexed as {x1, x2, . . . , xm}. For each pair of integers ℓ, ℓ′,
let xℓ′ = xℓ if ℓ′ ≡ ℓ mod m.5 Let D ⊂ L be the restricted domain of preferences R ∈ L
such that there exists an integer ℓ satisfying r1(R) = xℓ and r2(R) ∈ {xℓ−1, xℓ+1}. This
domain D is a circular domain (Sato, 2010), on which unanimity and strategy-proofness
imply dictatorship.

Suppose that n = 3 and m = 4. Consider the SCF f defined as follows. For each
R = (R1, R2, R3) ∈ D3,

5For each pair of integers k, k′ and each positive integer K, k′ ≡ k mod K if and only if k′− k is a multiple
of K.
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(a) if there exist i, j ∈ N such that i ̸= j and r1(Ri) = r1(Rj), then f (R) = r1(Ri), and

(b) otherwise, there must exist an integer ℓ such that {r1(R1), r1(R2), r1(R3)} = {xℓ−1, xℓ, xℓ+1}.
We define f (R) = xℓ in this case.

This SCF f depends only on the profile of top alternatives (r1(R1), r1(R2), r1(R3)). If at
most two alternatives appear in this profile, then f (R) is defined by the plurality rule. If
not, f (R) is determined by the specific tie-breaking rule which picks the “middle” one
among three. Since for each R ∈ D3 there exists i ∈ N such that f (R) = r1(Ri), the SCF f
satisfies efficiency. Let us observe that f satisfies individual bounded response.

For each preference profile R ∈ L3, let T(R) = {r1(R1), r1(R2), r1(R3)} ⊂ X be the
set of top alternatives. Fix a preference profile R ∈ L3 and an agent i ∈ N arbitrarily.
Since f depends only on the top alternatives, it suffices to consider the flip between the
top alternative and the second-best one. Let R′

i ∈ L be the preference adjacent to Ri given
by flipping r1(Ri) and r2(Ri). We consider two cases in order.

CASE a: Suppose that
∣∣T(R)

∣∣ ≤ 2.
SUBCASE a.1: If

∣∣T(R)
∣∣ = 1 or

∣∣T(R′
i, R−i)

∣∣ = 1, then f (R) = f (R′
i, R−i). Individual

bounded response is trivial in this case.
SUBCASE a.2: Suppose that

∣∣T(R)
∣∣ = ∣∣T(R′

i, R−i)
∣∣ = 2 and f (R) ̸= f (R′

i, R−i), that
is, there exist j, k ∈ N \ {i} such that r1(Ri) = r1(Rj) ̸= r1(Rk) = r1(R′

i). Then, f (R) =

r1(Ri), and f (R′
i, R−i) = r1(R′

i) = r2(Ri). Individual bounded response holds in this case.
SUBCASE a.3: Suppose that

∣∣T(R)
∣∣ = 2 and

∣∣T(R′
i, R−i)

∣∣ = 3, that is, there exist
j, k ∈ N \ {i} such that r1(Ri) = r1(Rj) ̸= r1(Rk) and r1(R′

i) = r2(Ri) ∈ X \ T(R).
Then, f (R) = r1(Ri).

Let r1(Ri) = xℓ. By the definition of D, r1(R′
i) = r2(Ri) ∈ {xℓ−1, xℓ+1}. First, suppose

that r1(R′
i) = xℓ−1. Then, r1(Rk) = xℓ+1 or xℓ−2, and f (R′

i, R−i) = xℓ or xℓ−1. This
implies that f (R′

i, R−i) = r1(Ri), or f (R′
i, R−i) = r1(R′

i) = r2(Ri). Individual bounded
response holds in either case. Next, suppose that r1(R′

i) = xℓ+1. Then, r1(Rk) = xℓ+2 or
xℓ−1, and f (R′

i, R−i) = xℓ+1 or xℓ. This implies that f (R′
i, R−i) = r1(R′

i) = r2(Ri), or
f (R′

i, R−i) = r1(Ri). Individual bounded response holds in either case.

CASE b: Suppose that
∣∣T(R)

∣∣ = 3. Then,
∣∣T(R′

i, R−i)
∣∣ ≥ 2.

SUBCASE b.1: If
∣∣T(R′

i, R−i)
∣∣ = 2, then individual bounded response holds by Subcase

a.3.
SUBCASE b.2: Suppose that

∣∣T(R′
i, R−i)

∣∣ = 3, that is, r1(R′
i) = r2(Ri) ∈ X \ T(R).

Let r1(Ri) = xℓ. By the definition of D, r1(R′
i) = r2(Ri) ∈ {xℓ−1, xℓ+1}. First, suppose

that r1(R′
i) = xℓ−1. Then, {r1(Rj), r1(Rk)} = {xℓ+1, xℓ+2}. We have f (R) = xℓ+1 and
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f (R′
i, R−i) = xℓ+2. Thus, { f (R), f (R′

i, R−i)} ⊆ {r3(Ri), r4(Ri)}. Individual bounded re-
sponse holds in this case. Next, suppose that r1(R′

i) = xℓ+1. Then, {r1(Rj), r1(Rk)} =

{xℓ−1, xℓ−2}. We have f (R) = xℓ−1 and f (R′
i, R−i) = xℓ−2. Thus, { f (R), f (R′

i, R−i)} ⊆
{r3(Ri), r4(Ri)}. Individual bounded response holds in this case.

Therefore, f satisfies individual bounded response in all cases.

The second example is the single-peaked domain. On this domain, we provide a
nondictatorial SCF which satisfies individual bounded response and efficiency but violates
strategy-proofness. This also suggests a distance between strategy-proofness and individual
bounded response.

Example 3.3. Suppose that n is odd, and m = 4. Let X = {x1, x2, x3, x4}, and D ⊂ L
be the single-peaked domain with respect to the above indexes, that is, D is the set of all
preferences R such that there exists k ∈ {1, 2, 3, 4} such that if 4 ≥ k > k′ > k′′ ≥ 1 or
1 ≤ k < k′ < k′′ ≤ 4, then xk′ R xk′′ . Consider the following SCF f . For each R ∈ Dn, if
there exists y ∈ X such that r1(Ri) = y for each i ∈ N, then f (R) = y. Otherwise,

(a) if
∣∣{i ∈ N | x1 Ri x4}

∣∣ ≥ (n + 1)/2, then

(i) if x2 is Pareto efficient at R, then f (R) = x2,

(ii) otherwise, x3 must be Pareto efficient at R,6 and f (R) = x3.

(b) if
∣∣{i ∈ N | x1 Ri x4}

∣∣ ≤ (n − 1)/2, then

(i) if x3 is Pareto efficient at R, then f (R) = x3,

(ii) otherwise, x2 must be Pareto efficient at R, and f (R) = x2.

This SCF f satisfies unanimity. Suppose that at a preference profile R, some agents dis-
agree with the most-preferred alternative. In this case, f (R) is defined by two steps.
Either x1 or x4 is the worst alternative at every preference in the single-peaked domain.
In the first step, agents determine the socially worst alternative by the plurality rule be-
tween x1 and x4. In the second step, the social alternative is chosen from {x2, x3} by the
rule which chooses the one “more distant” from the worst as long as it is efficient.

The SCF f satisfies efficiency by definition. f violates strategy-proofness because when
n = 3 and a preference profile R ∈ Ln satisfies x2 R1 x3 R1 x4 R1 x1, x2 R2 x3 R2 x1 R2 x4,

6If R ∈ Dn, either x2 or x3 is Pareto efficient at R. Suppose that neither x2 nor x3 is Pareto efficient. Then,
no agent ranks x2 or x3 at the top of his preference. Thus, for each i ∈ N, r1(Ri) = x1 or x4. Since the agents
do not agree on the best alternative, x2 Ri x3 Ri x4 for some i ∈ N, and x2 Rj x1 for some j ∈ N. Thus, x2 is
Pareto efficient, which is a contradiction.
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and x3 R3 x2 R3 x4 R3 x1, agent 1 may change the reported preference to R′
1 = R2 and can

manipulate the social choice from f (R) = x3 to f (R′
1, R−1) = x2.

Let us observe that f satisfies individual bounded response. By symmetry, we can focus
on the cases in which f (R) ∈ {x1, x2}. First, suppose that f (R) = x1. By definition,
r1(Ri) = x1 for each i ∈ N. By the assumption of the single-peaked domain, x1 Ri x2 Ri

x3 Ri x4 for each i ∈ N. The only flip available in D is exchanging x1 and x2. This flip
changes the social choice to x2. Therefore, individual bounded response holds in this case.

Next, suppose that f (R) = x2. Fix an agent i ∈ N and a preference R′
i ∈ L adjacent

to Ri, arbitrarily. If f (R′
i, R−i) = x1, then the flip between Ri and R′

i must be exchanging
x1 and x2. Thus, individual bounded response holds in this case. If f (R′

i, R−i) = x2 = f (R),
then individual bounded response is trivial. If f (R′

i, R−i) = x4, then x4 R′
i x3 R′

i x2 R′
i x1 and

x4 Rj x3 Rj x2 Rj x1 for each j ∈ N \ {i}. The only flip between Ri and R′
i available in D

is exchanging x3 and x4, and thus f (R) = x3. This contradicts the assumption f (R) = x2.
Thus, we assume f (R′

i, R−i) = x3. We consider three cases in order.
CASE 1: Suppose that either [x1 Ri x4 and x4 R′

i x1] or [x4 Ri x1 and x1 R′
i x4]. By the

assumption of the single-peaked domain, x1 and x4 are the bottom two alternatives at Ri

and R′
i. This implies that {r1(Ri), r2(Ri)} = {r1(R′

i), r2(R′
i)} = {x2, x3}. Thus, individual

bounded response holds in this case. Therefore, in the following cases, we assume that
either [x1 Ri x4 and x1 R′

i x4] or [x4 Ri x1 and x4 R′
i x1].

CASE 2: Suppose that
∣∣{j ∈ N | x1 Rj x4}

∣∣ ≥ (n + 1)/2, x3 is inefficient at R, and
x3 is efficient at (R′

i, R−i). If x4 Pareto dominates x3 at R, then x4 Rj x3 Rj x2 Rj x1 for
each j ∈ N. This contradicts f (R) = x2. If x1 Pareto dominates x3 at R, then x2 also
Pareto dominates x3 at R by the assumption of the single-peaked domain. Therefore, we
assume that x2 Pareto dominates x3 at R. Since x3 is efficient at (R′

i, R−i), x2 and x3 are
exchanged between Ri and R′

i, that is, x2 and x3 are consecutively ranked at Ri and R′
i.

Thus, individual bounded response holds in this case.
CASE 3: Suppose that

∣∣{j ∈ N | x1 Rj x4}
∣∣ ≤ (n − 1)/2, x2 is efficient at R, and x2 is

inefficient at (R′
i, R−i). If x1 Pareto dominates x2 at (R′

i, R−i), then x1 R′
i x2 R′

i x3 R′
i x4

and x1 Rj x2 Rj x3 Rj x4 for each j ∈ N \ {i}. This contradicts f (R′
i, R−i) = x3. If

x4 Pareto dominates x2 at (R′
i, R−i), then x3 also Pareto dominates x2 at (R′

i, R−i) by the
assumption of the single-peaked domain. Therefore, we assume that x3 Pareto dominates
x2 at (R′

i, R−i). Since x2 is efficient at R, x2 and x3 are exchanged between Ri and R′
i, that

is, x2 and x3 are consecutively ranked at Ri and R′
i. Thus, individual bounded response holds

in this case.
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4 Proof

In this section, we prove Lemma 3.3 which immediately implies Theorem 3.4. We divide
the proof into several steps. Namely, we prove three Lemmas 4.1, 4.2, and 4.3 as mile-
stones of the proof, and then show Lemma 3.3. Each of Lemmas 4.1, 4.2, and 4.3 states
that there exists a dictator i∗ in a certain special situation.

Lemma 4.1. Suppose that a SCF f satisfies flipping-wall and efficiency. For each R̄ ∈ L,
there exists an agent i∗ ∈ N such that for each R̄−i∗ ∈ Ln−1 satisfying r1(R̄j) = r2(R̄) and
rm(R̄j) = r1(R̄) for each j ∈ N \ {i∗}, we have f (R̄, R̄−i∗) = r1(R̄).

We utilize several figures which illustrate preference profiles. For example, the situ-
ation considered in the statement of Lemma 4.1 is illustrated by Figure 2, which is inter-
preted as follows. For each R̄ ∈ L, let x = r1(R̄), y = r2(R̄), and the cells with vertical dots
represent arbitrary alternatives. Then, Lemma 4.1 says that for each preference R̄ ∈ L,
there exists a dictator i∗ ∈ N when the top alternative in every other agent’s preference is
y, and the bottom alternative in every other agent’s preference is x. Since i∗ is the dictator
in this situation, the social choice is x. In Figure 2 and those in the subsequent proofs, the
square brackets indicate the social choice at the preference profile specified by the figure.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

y · · · y [x] y · · · y
... · · · ... y

... · · · ...
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

[x] · · · [x]
... [x] · · · [x]

Figure 2:

To show Lemma 4.1, we basically follow the proof strategy of Steps 1–4 in Reny (2001)
who proved the Gibbard–Satterthwaite theorem. Since some manipulation in Reny (2001)
is not applicable under individual bounded response, we focus on the top three alternatives
in steps 1–3, and then consider every alternative in X. In the following proof, the numbers
of the steps correspond to those in Reny (2001).

Proof of Lemma 4.1. Fix a preference R̄ ∈ L arbitrary. Let x = r1(R̄), y = r2(R̄), and
z = r3(R̄).

STEP 1: We start with a preference profile in which every agent’s preference is R ∈ L
such that r1(R) = x, r2(R) = z, r3(R) = y, and rk(R) = rk(R̄) for each k ≥ 4. By efficiency,
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the social choice is x. This setting is shown in Figure 3. Then, exchange x and z in agent

R · · · R R R · · · R

[x] · · · [x] [x] [x] · · · [x]
z · · · z z z · · · z
y · · · y y y · · · y
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 3:

1’s preference. By efficiency, the social choice is x or z. If it is x, exchange x and z in agent
2’s preference. If it is x, repeat the same procedure until for some i∗ ∈ N, the social choice
becomes z. We eventually obtain Figures 4 and 5.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

z · · · z [x] [x] · · · [x]
[x] · · · [x] z z · · · z
y · · · y y y · · · y
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 4:

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

[z] · · · [z] [z] x · · · x
x · · · x x [z] · · · [z]
y · · · y y y · · · y
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 5:

STEP 2: In Figure 5, exchange z and y in the preferences of agents i∗ + 1 to n. By
Definition 3.1 (b), the social choice is z or y, and by efficiency, the social choice must be z.
We have Figure 6. In Figure 6, exchange x and y in the preferences of agents 1 to i∗ − 1,

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

[z] · · · [z] [z] x · · · x
x · · · x x y · · · y
y · · · y y [z] · · · [z]
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 6:

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

[z] · · · [z] [z] y · · · y
y · · · y x x · · · x
x · · · x y [z] · · · [z]
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 7:

and also exchange x and y in the preferences of agents i∗ + 1 to n. By Definition 3.1 (a)
and (c), the social choice is neither x nor y, and by efficiency, the social choice must be z.
We have Figure 7.
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In Figure 7, exchange z and x in agent i∗’s preference. By Definition 3.1 (b), the social
choice must be x or z. We can show that it is x: If it is z, exchange y and x in the preferences
of agents i∗+ 1 to n, exchange y and x in the preferences of agents 1 to i∗− 1, and exchange
y and z in the preferences of agents i∗ + 1 to n. The social choice remains z in this process
because of efficiency and Definition 3.1. Since it returns to Figure 4 in which the social
choice is x, this is a contradiction. Therefore, we have Figure 8.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

z · · · z [x] y · · · y
y · · · y z [x] · · · [x]
[x] · · · [x] y z · · · z
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 8:

STEP 3: In Figure 8, exchange z and y in the preferences of agents 1 to i∗ − 1, and also
i∗. The social choice is neither z nor y by Definition 3.1 (a) and (c), and by efficiency, the
social choice remains x. We have Figure 9.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

y · · · y [x] y · · · y
z · · · z y [x] · · · [x]
[x] · · · [x] z z · · · z
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 9:

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

y · · · y [x] y · · · y
z · · · z y z · · · z
... · · · ... z

... · · · ...
... · · · ...

...
... · · · ...

[x] · · · [x]
... [x] · · · [x]

Figure 10:

STEP 4: In Figure 9, lower the positions of x to the bottom in the preferences of the
agents except for i∗. The social choice cannot be y by Definition 3.1 (b), and by efficiency,
the social choice remains x in this process. We have Figure 10.

In Figure 10, shuffle the alternatives in X \ {x, y} in the preferences except for agent i∗,
so that for each j ∈ N \ {i∗}, the preference of agent j becomes R̄j. By efficiency, the social
choice must be either x or y in the entire process of shuffling, and by Definition 3.1 (c),
the social choice cannot be y. Hence, the resulting social choice must be f (R̄, R̄−i∗) = x =

r1(R̄).

16



The above proof of Lemma 4.1 has followed the proof strategy of Steps 1–4 in Reny
(2001). The proof of Reny (2001) proceeds to his last step, which cannot be directly applied
to the setting with individual bounded response. We instead prove the next lemma which
states that for each preference R̄ ∈ L, there exists a dictator i∗ ∈ N under an assumption
that the bottom alternative in every other agent’s preference equals the top in i∗’s.

Lemma 4.2. Suppose that a SCF f satisfies flipping-wall and efficiency. For each R̄ ∈ L, there
exists an agent i∗ ∈ N such that for each R̄−i∗ ∈ Ln−1 satisfying rm(R̄j) = r1(R̄) for each
j ∈ N \ {i∗}, we have f (R̄, R̄−i∗) = r1(R̄).

Given Lemma 4.1, the above Lemma 4.2 says that in the situation of Figure 2, the
social choice remains the same if the position of y in the preference of agent j ∈ N \ {i∗}
is lowered while x stays at the bottom in the preference of j. If monotonicity is assumed
as in Reny (2001), Lemma 4.2 is immediate because the upper contour set of the social
choice is unchanged by such a manipulation. Under individual bounded response, however,
Lemma 4.2 is fairly nontrivial.

proof of Lemma 4.2. Fix R̄ ∈ L arbitrarily. Let x = r1(R̄) and y = r2(R̄). Let i∗ ∈ N be
the agent given in Lemma 4.1. For each preference profile R−i∗ ∈ Ln−1, let τ(R−i∗) =

∑j∈N\{i∗} ρRj(y).
We prove the lemma by induction. The following induction base is given by Lemma 4.1:

THE INDUCTION BASE: For each R̄−i∗ ∈ Ln−1, if rm(R̄j) = x for each j ∈ N \ {i∗}, and
τ(R̄−i∗) = n − 1, then f (R̄, R̄−i∗) = x.

The induction proceeds with the following hypothesis and step.

THE INDUCTION HYPOTHESIS: For each R̄−i∗ ∈ Ln−1, if rm(R̄j) = x for each j ∈ N \ {i∗},
and τ(R̄−i∗) = t (where n − 1 ≤ t ≤ (m − 1)(n − 1)− 1), then f (R̄, R̄−i∗) = x.

THE INDUCTION STEP: For each R̄−i∗ ∈ Ln−1, if rm(R̄j) = x for each j ∈ N \ {i∗}, and
τ(R̄−i∗) = t + 1, then f (R̄, R̄−i∗) = x.

Fix R̄−i∗ ∈ Ln−1 such that τ(R̄−i∗) = t+ 1, arbitrarily. We assume that f (R̄, R̄−i∗) ̸= x,
and derive a contradiction.

STEP 1: We show that f (R̄, R̄−i∗) ̸= y.
Assume f (R̄, R̄−i∗) = y. Since t + 1 ≥ (n − 1) + 1, there exist j ∈ N \ {i∗} and k ≥ 2
such that y = rk(R̄j). Let Rj ∈ L be the preference given by exchanging the ranks
of rk−1(R̄j) and y = rk(R̄j) in R̄j. Since x = rm(R̄j) ̸= rk−1(R̄j), by Definition 3.1 (b),
we have f (R̄, Rj, R̄−(i∗,j)) ̸= x. This contradicts the induction hypothesis because
τ(Rj, R̄−(i∗,j)) = t.
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STEP 2: We show that for each j ∈ N \ {i∗}, ρR̄j
(y) < ρR̄j

(
f (R̄, R̄−i∗)

)
.

By Step 1, this inequality is immediate if ρR̄j
(y) = 1. Assume that there exists j ∈

N \ {i∗} such that ρR̄j
(y) = k ≥ 2 and k ≥ ρR̄j

(
f (R̄, R̄−i∗)

)
. Let Rj ∈ L be the

preference given by exchanging the ranks of rk−1(R̄j) and y = rk(R̄j) in R̄j. Then
by Definition 3.1 (a) and (b), f (R̄, Rj, R̄−(i∗,j)) ̸= x (= rm(R̄j)). This contradicts the
induction hypothesis because τ(Rj, R̄−(i∗,j)) = t.

STEP 3: We derive a contradiction.
Since rm(R̄j) = x for each j ∈ N \ {i∗}, ρR̄j

(y) ≤ m − 1. By Step 2, ρR̄j
(y) <

ρR̄j

(
f (R̄, R̄−i∗)

)
for all j ∈ N \ {i∗}. Since we assumed f (R̄, R̄−i∗) ̸= x, we also have

ρR̄(y) < ρR̄
(

f (R̄, R̄i∗)
)
. These inequalities contradict efficiency.

Therefore, the induction step is shown. This completes the proof.

Next, we show the following lemma, which states that for each preference R̄ ∈ L,
agent i∗ given in Lemma 4.2 is the dictator when i∗’s preference is R̄.

Lemma 4.3. Suppose that a SCF f satisfies flipping-wall and efficiency. For each R̄ ∈ L, there
exists an agent i∗ ∈ N such that for each R̄−i∗ ∈ Ln−1, we have f (R̄, R̄−i∗) = r1(R̄).

Given Lemma 4.2, the above Lemma 4.3 says that the social choice remains the same
if the position of the bottom alternative, which equals the social choice, in the preference
of agent j ∈ N \ {i∗} is raised. If monotonicity is assumed as in Reny (2001), Lemma 4.3 is
immediate because the upper contour set of the social choice is reduced by such a change.
Under individual bounded response, however, Lemma 4.3 needs an elaborate proof.

proof of Lemma 4.3. Fix a preference R̄ ∈ L arbitrarily. Let x = r1(R̄). Let i∗ ∈ N be the
agent given in Lemma 4.2. For each R−i∗ ∈ Ln−1, let σ(R−i∗) = ∑j∈N\{i∗} ρRj(x).

We prove the theorem by induction. The following induction base is given by Lemma 4.2:

THE INDUCTION BASE: For each R̄−i∗ ∈ Ln−1, if σ(R̄−i∗) = (n − 1)m, then f (R̄, R̄−i∗) =

x.

The induction proceeds with the following hypothesis and step.

THE INDUCTION HYPOTHESIS: For each R̄−i∗ ∈ Ln−1, if σ(R̄−i∗) = t (where n ≤ t ≤
(n − 1)m), then f (R̄, R̄−i∗) = x.

THE INDUCTION STEP: For each R̄−i∗ ∈ Ln−1, if σ(R̄−i∗) = t − 1, then f (R̄, R̄−i∗) = x.
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Fix R̄−i∗ ∈ Ln−1 such that σ(R̄−i∗) = t − 1 arbitrarily. Let y = f (R̄, R̄−i∗). Let J1 =

{j ∈ N \ {i∗} | ρR̄j
(x) ≤ m − 2}, J2 = {j ∈ N \ {i∗} | ρR̄j

(x) = m − 1}, and J3 = {j ∈
N \ {i∗} | ρR̄j

(x) = m}. Since σ(R̄−i∗) = t − 1 < m(n − 1), J1 ∪ J2 ̸= ∅.
We assume that y ̸= x and derive a contradiction.

STEP 1: We show that for each j ∈ J1 ∪ J2, if x = rk(R̄j), then y = rk+1(R̄j).
Assume not. Then, there exist j ∈ J1 ∪ J2 and z ̸= y such that x = rk(R̄j), and

z = rk+1(R̄j). Let Rj be the preference given by exchanging the ranks of x and z in R̄j.
Then, f (R̄, Rj, R̄−(i∗,j)) ̸∈ {x, z} because of Definition 3.1 (a) and (c). This contradicts the
induction hypothesis because σ(Rj, R̄−(i∗,j)) = t.

Therefore, we have Figure 11. Since the choice of R̄−i∗ was arbitrary, we have shown
that for each j ∈ N \ {i∗} and each R−i∗ ∈ Ln−1 such that f (R̄, R−i∗) ̸= x and σ(R−i∗) =

t − 1, if there exists k ≤ m − 1 such that rk(Rj) = x, then rk+1(Rj) = f (R̄, R−i∗).

i∗ J1 J2 J3

x
... · · · ...

... · · · ...
... · · · ...

... x · · · ...
... · · · ...

... · · · ...
... [y] · · · x

... · · · ...
... · · · ...

...
... · · · [y]

... · · · ...
... · · · ...

...
... · · · ...

... · · · ...
... · · · ...

...
... · · · ... x · · · x

... · · · ...
...

... · · · ... [y] · · · [y] x · · · x

Figure 11:

i∗ J2 J3

x
... · · · ...

... · · · ...
...

... · · · ...
... · · · ...

... x · · · x
... · · · ...

... [y] · · · [y] x · · · x

Figure 12:

STEP 2: We show that J1 ̸= ∅.
Assume J1 = ∅. Since J1 ∪ J2 ̸= ∅, J2 ̸= ∅. We have Figure 12. For each j ∈ J3,

lower the rank of y to the second last position in agent j’s preference. By Definition 3.1 (a)
and (b), the social choice cannot be x in this process. Since J2 ̸= ∅, Step 1 shows that the
social choice remains y. By efficiency, r2(R̄) = y. Letting z = r3(R̄), we have Figure 13. In
Figure 13, exchange the ranks of y and z in the preference of agent i∗. By Definition 3.1 (b),
the social choice must be y or z, and by efficiency, the social choice is z. We have Figure 14.

In Figure 14, exchange the ranks of x and y in R̄j for some j ∈ J2. The resulting
social choice cannot be x by Definition 3.1 (a). Next, exchange the ranks of z and y in the
preference of agent i∗. The resulting social choice cannot be x by Definition 3.1 (b) and
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i∗ J2 J3

x
... · · · ...

... · · · ...

[y]
... · · · ...

... · · · ...
z x · · · x [y] · · · [y]
... [y] · · · [y] x · · · x

Figure 13:

i∗ J2 J3

x
... · · · ...

... · · · ...

[z]
... · · · ...

... · · · ...
y x · · · x y · · · y
... y · · · y x · · · x

Figure 14:

(c). This contradicts to the induction hypothesis because the value of σ is t after the these
manipulations. Therefore, J1 ̸= ∅ is shown.

STEP 3: We show that J2 = ∅ and there exists j∗ ∈ N \ {i∗} such that J1 = {j∗}
arbitrarily.

By Step 2, J1 ̸= ∅. Fix an agent j∗ ∈ J1. Let rk(R̄j∗) = x and w = rk+2(R̄j∗). We
have Figure 15, in which the left column in J1 presents agent j∗’s preference. In Figure 15,
exchange the ranks of y and w in R̄j∗ . By Definition 3.1 (b), the social choice is y or w,
and by Step 1, the social choice must be w. Assume that (J1 ∪ J2) \ {j∗} ̸= ∅, and fix
j ∈ (J1 ∪ J2) \ {j∗}. Since the social choice is not y, this contradicts Step 1. Therefore,
J1 = {j∗} and J2 = ∅. We have Figure 16.

i∗ J1 J2 J3

x
... · · · ...

... · · · ...
... · · · ...

... x · · · ...
... · · · ...

... · · · ...
... [y] · · · x

... · · · ...
... · · · ...

... w · · · [y]
... · · · ...

... · · · ...
...

... · · · ... x · · · x
... · · · ...

...
... · · · ... [y] · · · [y] x · · · x

Figure 15:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... [y]

... · · · ...
... w

... · · · ...
...

...
... · · · ...

...
... x · · · x

Figure 16:

STEP 4: We derive a contradiction.
In Figure 16, raise the rank of y until the rank of y exceed the rank of w = rk+2(R̄j∗) in

the preference of each j ∈ J3. (If y’s rank exceeds w’s rank in the initial preference, then do
nothing.) By Step 1, the social choice is y or x in this process, and by Definition 3.1 (a) and
(b), the social choice must be y. Next, lower the rank of w to the second last position in the
preference of each j ∈ J3. By Definition 3.1 (a), the social choice cannot be x during this
process. Step 1 implies that the social choice remains y. As a result, we have Figure 17.
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i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... [y]

... · · · ...
... w

... · · · ...
...

... w · · · w
...

... x · · · x

Figure 17:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... [y]

... · · · ...
... w

... · · · ...
...

... x · · · x
...

... w · · · w

Figure 18:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... w

... · · · ...
... [y]

... · · · ...
...

... x · · · x
...

... w · · · w

Figure 19:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... w

... · · · ...
... y

... · · · ...
...

... w · · · w
...

... x · · · x

Figure 20:

In Figure 17, for each j ∈ J3, exchange the ranks of w and x in the preference of j. By
Definition 3.1 (a), the social choice cannot be x or w. We can show that it is y: Suppose that
the social choice changes to some alternative distinct from y. Then, exchange the ranks
of x and y in R̄j∗ . The social choice cannot be x by Definition 3.1 (a) and (c), and cannot
be w by efficiency. Exchange the ranks of w and x in the preference of each j ∈ J3. By
Definition 3.1 (a), the social choice cannot be x. This contradicts the induction hypothesis.
Thus, the social choice must be y after the above changes. We have Figure 18.

In Figure 18, exchange the ranks of y and w in R̄j∗ . By Definition 3.1 (b), the social
choice is y or w, and by efficiency, the social choice must be y. We have Figure 19. In Fig-
ure 19, for each j ∈ J3, exchange the ranks of x and w in the preference of j. The resulting
social choice should not be x or w because of Definition 3.1 (b). We have Figure 20. Since
the value of σ in the preference profile presented in Figure 20 is t − 1, this contradicts
Step 1.

Hence, we have y = x.

Finally, we prove Lemma 3.3.

Proof of Lemma 3.3. By Lemma 4.3, for each R̄ ∈ L, there exists a dictator i∗ ∈ N at R̄, i.e.,
there exists an agent i∗ ∈ N such that f (R̄, R−i∗) = r1(R̄) for each R−i∗ ∈ Ln−1. We show
that such an agent i∗ is determined independent of the choice of R̄.

Suppose that i∗ ∈ N is the dictator at R̄ ∈ L, and j∗ ∈ N is the dictator at R ∈ L.
Assume i∗ ̸= j∗. Then for each R−(i∗,j∗) ∈ Ln−2, f (R̄, R, R−(i∗,j∗)) = r1(R̄) because i∗ is the
dictator, and also f (R̄, R, R−(i∗,j∗)) = r1(R) because j∗ is the dictator. Thus, r1(R̄) = r1(R).
Take a preference R′ ∈ L such that r1(R′) ̸= r1(R̄), and suppose that agent k∗ ∈ N
is the dictator at R′. Since r1(R′) ̸= r1(R̄), it must be that k∗ = i∗, and also because
r1(R′) ̸= r1(R), it must be that k∗ = j∗. This contradicts the assumption i∗ ̸= j∗.

Therefore, f is dictatorship.
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5 Concluding remarks

We have introduced a new axiom called individual bounded response, and proved that indi-
vidual bounded response and efficiency imply dictatorship. Since individual bounded response
follows from strategy-proofness, the Gibbard–Satterthwaite theorem is shown as a corollary
of our impossibility result. This result also suggests that even if profitable misrepresen-
tation is permitted, the impossibility is inevitable as long as the degree of the profit is
restricted.

On the universal domain, strategy-proofness is not a useful condition of nonmanipula-
bility in the sense that no plausible SCF satisfies it. As we mentioned in the Introduction,
there are recent researches investigating the result of weakening strategy-proofness in some
natural or interesting ways. Our result shows that as long as we want a deterministic SCF
on the universal domain, unfortunately, it is hard to find a useful nonmanipulability con-
dition except for some extreme ones.7 On the one hand, this might imply that we have
to be satisfied with SCFs satisfying necessary conditions for strategy-proofeness which are
not usually considered as nonmanipulability conditions. Examples of such conditions are
unanimity, efficiency, and weak monotonicity. On the other hand, this might imply the limit
of the classical social choice framework, and invite us to consider other models in which
the possibility of constructing nonmanipulable SCFs is not investigated very much. For
example, let us assume that agents have rankings over alternatives and evaluations, ei-
ther “acceptable” or “unacceptable”. This is the preference-approval model by Brams
and Sanver (2006). Among few papers considering nonmanipulability in the preference-
approval model, Erdamar et al. (2016) find some plausible rules satisfying an axiom called
evaluationwise strategy-proofness.
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