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Abstract

This paper presents a model of business cycles driven by shocks to agents’ beliefs about eco-
nomic fundamentals. Agents are hit both by common and idiosyncratic shocks. Common shocks
act as confidence shocks, which cause economy-wide optimism or pessimism and consequently, ag-
gregate fluctuations in real variables. Idiosyncratic shocks generate dispersed information, which
prevents agents from perfectly inferring the state of the economy. Crucially, asymmetric informa-
tion induces the infinite regress problem, that is, agents need to forecast the forecasts of others.
We develop a method that can solve the infinite regress problem without approximation. Even
though agents face a complicated learning problem, the equilibrium policy can be represented by a
small number of state variables. Theoretically, we prove that the persistence of aggregate output
is increasing in the degree of information frictions and strategic complementarity, and there is
a hump-shaped relationship between the variance of output and the variance of the confidence
shock. Quantitatively, our model with confidence shocks can match a number of the key business
cycle moments.
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1 Introduction

Motivated by the Great Recession, there has been an increased interest in business cycles driven by
confidence shocks (Lorenzoni, 2009; Angeletos and La’O, 2013; Benhabib, Wang, and Wen, 2014).
A confidence shock can be understood as a shock to agents’ beliefs about the economic activities
that others are capable of. When this shock is correlated across agents, it induces economy-wide
optimism or pessimism, and therefore, aggregate fluctuations in the main macro variables. Intu-
itively, confidence is promising as a source of business cycle fluctuations since it is well known that
people’s perceptions of business conditions vary dramatically. However, there have been substantial
difficulties to incorporate confidence shocks into a rational expectations framework because of the in-
finite regress problem (Townsend, 1983). Namely, with asymmetric information and interconnection
between agents’ economic activities, agents’ payoffs depend on their beliefs about others’ actions,
and rationality requires agents to forecast the forecast of others. While it is necessary to allow for
some persistence in shocks for empirical relevance, rational agents have to keep all the information
learned from the past to forecast all higher order beliefs, which leads to an infinite-dimensional state
space. The goal of this paper is to overcome this technical difficulty, and to explore whether the
confidence shock could be an important factor in accounting for business cycles.

Our first contribution is to solve the infinite regress problem by applying our method developed in
Huo and Takayama (2014). It is widely believed that if a rational expectations model involves higher
order beliefs and persistent hidden states, the Kalman filter has to be applied to solve the signal
extraction problem and to keep track of an infinite number of state variables in order to forecast
all higher order beliefs. To short-circuit this problem, the existing literature typically assumes that
the information become public after a certain number of periods, or imposes a heterogeneous prior
formulation. Instead of modifying the original problem, we confront and solve the infinite regress
problem directly. We prove that for any linear rational expectations model with an ARMA signal
process, the equilibrium policy rule always allows a finite-state-variable representation.1 We also
provide a procedure to find these state variables and their laws of motion. By using a small set of
state variables, agents can perform their best inference in equilibrium, and economists can calibrate
or estimate the model as standard DSGE models with perfect information.

The idea is to find the true solution in the space spanned by the entire history of signals in the
first place. In this infinite-dimensional state space, we use the Wiener filter to handle the signal
extraction problem, as opposed to the standard Kalman filter. It turns out that if the signal process
follows an ARMA process, the equilibrium policy will inherit this property and also be of the ARMA
type. This implies that information can be summarized in a relatively compact way, and it allows

1The linearity may be obtained by log-linearization, and the ARMA process assumption is compatible with the
shock structure specified in most macroeconomic models.
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us to find a finite-state-variable representation of the equilibrium policy rule. In addition, after we
find this representation, the equilibrium is characterized by a simple linear system, and we no longer
need to solve any inference problems when simulating the economy.

Our second contribution is to formalize the idea of confidence shocks in a rational expectations model
and to apply our method to evaluate its quantitative importance. We first construct an illustrating
model with decentralized trading and information frictions, which is based on the structure specified
in Angeletos and La’O (2013). The economy consists of a continuum of islands, and the islands
differ in their productivity. At every period, each island is randomly matched with another island
and trades with it. Households value both domestic and foreign goods, resulting in the local output
increasing in their trading partner’s output. Information frictions prevent households from observing
their trading partner’s productivity, and households only receive a noisy signal of this productivity.
With a positive (negative) noise, islands tend to overestimate (underestimate) their trading partners’
productivity and output, and also to increase their own output due to strategic complementarity. If
the noise shock is correlated across islands, then it will cause economy-wide output fluctuations. We
label this shock a confidence shock.

When choosing the production level, agents need to infer their trading partner’s productivity level,
which is equivalent to inferring the confidence shock. However, this is not the end of the inference
problem. Note that different islands receive different signals over time, and they will form different
inferences about this confidence shock. As a result, agents also need to infer their trading partners’
inference of the confidence shock, and all other higher order beliefs. If the confidence shock is
persistent, the entire history of signals should be recorded since these signals contain information
about the current state of the economy. Even though this is a fairly complicated learning problem,
we manage to obtain a sharp analytic solution.

This model economy has two important properties. First, under the assumption that the confidence
shock follows an AR(1) process, the aggregate output also follows an AR(1) process. Interestingly,
the persistence of the aggregate output is increasing in the degree of strategic complementarity, the
value of which is a function of the deep parameters related to preferences and technology. With
a stronger interdependence, households respond more aggressively to signals, which magnifies the
effects of the confidence shock. The persistence of the aggregate output is also increasing in the
degree of information frictions, as it is more difficult to separate the confidence shock from a true
productivity shock. Secondly, the unconditional variance of the aggregate output is not monotonically
increasing in the variance of the confidence shock. On the one hand, if the variance of the confidence
shock is small, the variance of aggregate output is also small since confidence shocks are the only
exogenous disturbances. On the other hand, if the variance of the confidence shock is large, agents
understand that signals become less useful for information extraction, and they optimally respond
less to them. These two competing forces result in a hump-shaped relationship between the variance
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of output and the variance of the confidence shock. This nonlinearity is absent in standard DSGE
models without information friction.

Another important property is that the forecast error is persistent. Supposing the forecast error
is absent or there is no information friction, the equilibrium allocation is uniquely pinned down by
economic fundamentals, leaving no room for the confidence shock. If we aim to generate persistent
aggregate fluctuations, it is important to make sure that the forecast error is long-lasting. In our
model, the forecast error is indeed persistent, and agents can never perfectly infer the underlying
shocks. This is the result of our information structure, in which there are more shocks than signals,
and agents do not have enough information to recover the true state of the economy. By contrast, in
Kasa (2000) and Acharya (2013), the number of shocks equals the number of signals, and the forecast
error disappears quickly. To ensure the persistent effects of the confidence shock, the information
process has to be complicated enough to confuse agents for a relatively long time.

With these insights, we develop a quantitative business cycle model to examine the empirical rele-
vance of the confidence shock. Our quantitative model has three key features: a rich information
process, goods market frictions, and endogenous capital accumulation. (1) The rich information
process provides the flexibility to pin down the degree of information frictions, which is the key
factor in determining the performance of the model. The rational expectations framework allows us
to link the signal extraction problem faced by agents in the model with the micro-level data. We
set the variance and persistence of noise shocks to match the GDP forecast error in the Survey of
Professional Forecasters. (2) Introducing goods market frictions a la Bai, Ríos-Rull, and Storesletten
(2011) helps generate endogenous movements of the Solow residual. Goods market frictions create a
wedge between potential and realized output. As consumers increase their demand, the utilization
rate of potential output also increases, translating into a higher Solow residual. Without the endoge-
nous Solow residual, employment becomes the only driving force of output in the short run, and it
leads to the counter-factual prediction that the volatility of employment is much greater than that of
output. (3) Capital accumulation brings additional endogenous persistence into the model economy.
It also increases the complexity of the signal extraction problem substantially, which prevents us
from obtaining an analytic solution. However, we can still represent the equilibrium policy rule by a
small number of state variables.

In terms of quantitative performance, we find that the confidence shock alone accounts for much
business cycle volatility and co-movement. For example, the standard deviation of output is close to
80% of its data counterpart. The persistence of main aggregate variables is endogenously determined,
which represents about 50% of their data counterpart under our calibrations of information frictions.
The persistence of aggregate variables hinges on the persistence of forecast errors, which are only
modestly persistent in the data. This moment, the persistence of forecast errors, imposes an upper
bound on the degree of information frictions, and it prevents generating large persistence of aggregate
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variables in our model with confidence shocks. Compared with a standard RBC model driven by
TFP shocks, two differences stand out. First, our model driven by confidence shocks generates
strong counter-cyclical labor wedges, a moment emphasized by Chari, Kehoe, and McGrattan (2007).
Secondly, with confidence shocks, the standard deviation of employment is more than twice of that
in the RBC mode, and it is much closer to the data.

Related literature From a methodological point of view, our paper is related to the literature
that attempts to solve models with higher order beliefs. The most widely used method is truncating
the relevant state by assuming all shocks become public information after a finite time or only a finite
number of higher order beliefs matter for the equilibrium. With a finite number of state variables, the
standard Kalman filter can be applied. This line of literature includes Townsend (1983), Hellwig and
Venkateswaran (2009), Lorenzoni (2009), Bacchetta and Wincoop (2006), and Nimark (2008) among
others. Using these methods to solve our quantitative model with endogenous capital, the number of
state variables needed is fairly large to achieve reasonable accuracy, and it is even more difficult to
conduct calibration or estimation. The method we developed in Huo and Takayama (2014) provides
the true solution to the model, and it only requires a small number of state variables, which makes
calibration or estimation possible. Kasa (2000) and Acharya (2013) also solve models with higher
order beliefs without truncation, but in their environment, the number of signals is the same as the
number of shocks, and the forecast error is not persistent. Our method allows us to use a general
signal process when there are more shocks than signals, and the confidence shock has persistent
effects.2

Angeletos, Collard, and Dellas (2014) assume agents have heterogeneous prior. This assumption
avoids the difficult infinite regress problem, but as acknowledged by the authors, it also abstracts
from agents’ information extraction process. Under the common prior assumption, our method does
not increase the computational difficulty, but allows us to link the model with micro-data and to
pin down the degree of information frictions. The cross-sectional evidence on belief dispersion and
forecast errors imposes an upper bound on the persistence and volatility of output that can be
generated by confidence shocks.

Our quantitative application also complements the literature on aggregate fluctuations driven by
shocks to agents’ beliefs. In Lorenzoni (2009), Angeletos and La’O (2010), and Blanchard, L’Huillier,
and Lorenzoni (2013), there is a shock to aggregate TFP, but agents only observe aggregate TFP
contaminated by common noise. Even though this common noise can generate aggregate fluctuations,
its effects are bounded above by the variance of the TFP shock. As the variance of the TFP shock

2In Rondina and Walker (2013), the number of shocks is the same as the number of signals, but they assume that
the underlying shock process is not invertible, which leads to persistent forecast error. We think it is more natural to
introduce persistent forecast error by allowing more shocks than signals, a feature that is prevalent in signal extrication
problems.
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approaches zero, agents will not respond to the noise shock. Angeletos and La’O (2013) introduce
additional trading and communication frictions, and as a result, common noise can generate aggregate
fluctuations with aggregate fundamentals being fixed. Our model environment is similar to Angeletos
and La’O (2013), but we allow persistent common noise. Also, we highlight the role of higher order
beliefs in shaping aggregate output. Benhabib, Wang, and Wen (2014) propose another type of
environment in which sentiments can generate aggregate fluctuations without resorting to trading
or information frictions, and the variance of sentiment shocks is endogenously determined. Unlike
our model, agents do not need to solve the infinite regress problem. In Ilut and Schneider (2014),
confidence shocks affect agents’ perceived uncertainty, while in our framework, confidence shocks
change agents’ mean beliefs. Our paper is related to the literature on news shocks and uncertainty
shocks, such as Beaudry and Portier (2006), Jaimovich and Rebelo (2009), Barsky and Sims (2012),
Schmitt-Grohé and Uribe (2012), and Beaudry, Nam, and Wang (2011) among others.

The rest of the paper is organized as follows. Section 2 sets up a simple economy and describes how
the infinite regress problem arises in this environment. We obtain an analytic solution, and discuss
various properties of this economy. Section 3 considers the case when agents observe the signal
which contains endogenous information. We compare the equilibrium outcome with and without
endogenous information. Section 4 explores the quantitative performance of a full-blown model with
confidence shocks. Section 5 concludes.

2 An Analytic Model with Higher Order Beliefs

In this section, we present a simple island model to introduce confidence shocks which trigger ag-
gregate fluctuations. This model builds on Angeletos and La’O (2013), and we allow the signals to
be persistent over time. This is a natural extension to make this model empirically relevant, but it
induces the infinite regress problem which is difficult to solve. We apply the method developed in
Huo and Takayama (2014) to solve the model and obtain a sharp analytic solution.

2.1 Model Setup

The economy consists of a continuum of islands indexed by i ∈ [0, 1]. The total factor productivity
on island i is ai, which is drawn from a normal distribution N (0, σ2a) but fixed over time. Each island
is populated by a continuum of identical households. In each household, there is a producer and a
shopper. The producer decides how much to produce. The shopper then receives the output from
the producer and makes transaction and consumption plans.

Every period, island i is randomly matched with another island. Households value both local and
foreign goods, and they trade with the island they are matched with. There is no centralized market
in the economy and all the trading is decentralized. Let m(i, t) denote the index of island i’s trading
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partner in period t. With a slight abuse of notation, sometimes we will use j to denote m(i, t) as the
index of island i’s contemporary trading partner to simplify notation. It should be clear that island
i is matched and trades with a different island j at each period.

We assume that the production plan has to be made at the beginning of a period without perfect
knowledge of their trading partner’s productivity level. The producers receive noisy signals about
am(i,t) (which will be specified below), and choose their output level conditional on these signals.
After production, the two islands matched trade with each other.

The average productivity in the economy is fixed over time, but island i’s specific trading partner
changes every period. Even though households in each island understand that there is no aggregate
change of fundamentals, they still face uncertainty due to the decentralized trading arrangement and
the communication frictions. The need to infer their trading partner’s output and the lack of perfect
information leaves room for confidence shocks and also for higher order beliefs.

Timing and Information Each period has two stages: production and trade. At the beginning
of the production stage, island i is randomly matched with another island. Once the match is drawn,
producers on island i receive two signals. The first signal x1it is on their trading partner’s productivity,
but is corrupted by a common noise ξt

x1it = am(i,t) + ξt, (2.1)

where am(i,t) ∼ N (0, σ2a). Crucially, we assume that common noise ξt follows a persistent process

ξt = ρξt + ηt, (2.2)

where ρ ∈ (0, 1) and ηt ∼ N (0, σ2η). A positive (negative) realization of ξt makes all agents in the
economy overestimate (underestimate) their trading partner’s productivity. Therefore, we label this
common noise shock as a confidence shock.

The second signal x2it provides private information on the confidence shock

x2it = ξt + uit, (2.3)

where uit ∼ N (0, σ2u) is idiosyncratic noise. The variance of uit determines the degree of information
friction in the economy. If σ2u = 0, then the producers observe ξt perfectly, and can figure out their
trading partner’s productivity using the first signal without error. The learning problem is trivial
in this scenario. If σ2u > 0 but ρ = 0, the producers face a static learning problem, because the
information is independent of previous periods. If σ2u > 0 and ρ > 0, the producers face a persistent
learning problem, which is the focus of this paper.
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The producers’ information set on island i at time t includes all the signals received up to time t

Ωit =

{
ai, x

1
it, x

1
it−1, x

1
it−2, . . . , x2it, x

2
it−1, x

2
it−2, . . .

}
. (2.4)

To fix notation, we use Eit[·] to denote the expectation conditional on i’s information up to period t,
i.e., Eit[·] = E[·|Ωit]. Since trading histories and idiosyncratic noises differ across islands, producers on
different islands share heterogeneous information sets. It follows that Eit[·] 6= Ejt[·]. After observing
the signals, the producers decide the output level Yit, which completes the first stage of a period.

The second stage is the trade stage. Shoppers on island i receive output from their producers and
trade with shoppers from island m(i, t) in a competitive goods market. In this stage, shoppers can
observe the other island’s output and productivity. To prevent information from being fully revealed,
we assume that shoppers die after consumption and are replaced by new shoppers in the following
period. Effectively, shoppers cannot communicate with producers after the transaction stage.

Remark The assumption that shoppers die after they trade and consume is only a means to im-
plement the idea that the communication between producers and shoppers is not perfect. Supposing
we allow imperfect communication between producers and shoppers, producers will receive another
noisy signal on am(i,t) or ξt, but this is equivalent to setting the variance of uit to a smaller value.
Therefore, what is really important is how much producers can learn, but not exactly how they learn.

Shoppers’ Problem In the trade stage, goods markets are competitive and the prices for local
goods and foreign goods are Pi and Pj respectively.3 Shoppers receive the output Yi produced in the
first stage on their islands. The shoppers on island i solves the following static problem

max
Cii,Cij

(
Cii
ω

)ω ( Cij
1− ω

)1−ω

subject to

PiCii + PjCij = PiYi,

where Cii is local consumption goods and Cij is foreign consumption goods. We adopt a Cobb-
Douglas preference structure and use ω to denote the degree of home bias. The first order condition
for the shoppers’ problem is

Cii
Cij

=
ω

1− ω
Pj
Pi
,

3Because shoppers solve a static problem in the second stage, we use j to denote m(i, t) to simplify the notation.
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The goods market clearing condition in equilibrium is

Cii + Cji = Yi,

Cij + Cjj = Yj .

Combining the equilibrium condition and the first order condition for both islands, we have

C∗ii = ωYi,

C∗ij = (1− ω)Yj .

In equilibrium, local and foreign consumption are equal to a fixed fraction of local and foreign output,
thanks to the Cobb-Douglas preference. The terms of trade is

Pi
Pj

=
Yj
Yi
, (2.5)

which as expected, is increasing in foreign output. In addition, for producers on island i, the utility
value of 1 additional unit of local output is given by

Ui =

(
Cij
Cii

ω

1− ω

)1−ω
=

(
Pi
Pj

)1−ω
. (2.6)

Note that Ui only depends on the terms of trade, and is independent of individual producer’s output.

Producers’ Problem Producers choose how much to produce. They understand that in the
second period, the marginal value of their output is given by equation (2.6), which depends on their
trading partners’ output. If there is no information friction (σu = 0), the productivities on both
islands become common knowledge, and the output level on both islands will only be a function of
the fundamentals. When there are information frictions, the output level on island i is determined
by the expected output level on island m(i, t).

Because there is no capital, the producers’ problem on island i is choosing output Yit and labor Nit

to maximize their expected utility in the current period. Since production is a static choice, the only
intertemporal link in producers’ problem is through information.

max
Yit,Nit

Eit

[(
Pit

Pm(i,t)t

)1−ω
Yit −N1+γ

it

]

subject to

Yit = exp(ai) N
θ
it.
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Here, γ is the inverse of Frisch elasticity, and θ determines the labor share. Producers’ optimal
choice is equating the marginal utility of local output for the shoppers with the marginal disutility
of producing the output. When expected Ym(i,t)t increases, the terms of trade improves and the
marginal utility of local output also increases, which encourages producers on island i to produce
more output. In this sense, there is strategic complementarity between local and foreign output.
The first order condition is 4

Yit =

(
θ

1 + γ

) 1
1+γ
θ
−ω

exp

(
1

1− θ
1+γω

ai

)
Eit[Y 1−ω

m(i,t)t]
1

1+γ
θ
−ω . (2.7)

Standard parametrization ensures that γ > 0, θ ∈ (0, 1), and ω ∈ (0, 1). This implies that 1
1+γ
θ
−ω

,
and that the local output is increasing in the expected output Ym(i,t)t.

Log-Linearized Economy In this paper, we will work with log-linearzied model. Throughout, we
use small letters to denote the log deviation from a variable’s steady state value. The log-linearized
version of the producers’ decision rule (2.7) is

yit = α0ai + α1Eit[ym(i,t)t], (2.8)

where

α0 =
1

1− θ
1+γω

,

α1 =
1− ω

1+γ
θ − ω

.

As discussed before, α1 is positive, and yit is increasing in Eit[ym(i,t)t]. To guarantee a stable solution,
we also restrict our parameter values such that α1 < 1. From now on, we will focus on equation
(2.8). Note that the deep parameters related to preferences and technologies are all summarized by
α0 and α1.

Perfect Information Benchmark Supposing the variance of the idiosyncratic noise uit vanishes,
then agents on island i can use the two signals to figure out am(i,t) and ξt perfectly. In this case,
there is no information friction. The optimal policy rule (2.8) becomes

yit = α0ai + α1ym(i,t)t. (2.9)

4In the first order condition, we have already used the equilibrium condition that the individual output choice
coincides with the aggregate output level due to the representative agent assumption.
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As expected, the output on island i is completely determined by the economic fundamentals

yit =
α0

1− α2
1

ai +
α0α1

1− α2
1

am(i,t). (2.10)

By the law of large number, the aggregate output yt stays at its steady state

yt =

∫
yit = 0. (2.11)

The confidence shock ξt has no effect at all.

2.2 Infinite Regress Problem

When there are information frictions, agents have to infer their trading partners’ productivity and
output. Higher order beliefs become crucial in determining the production level. By equation (2.8),
to infer the output on island m(i, t), island i has to infer the productivity on island m(i, t), which
relies on i’s prediction of the confidence shock ξt. But the same logic also applies to island m(i, t).
Therefore, island i needs to infer island m(i, t)’s prediction of ξt. But so does island m(i, t). It turns
out that island i has to predict m(i, t)’s prediction of i’s prediction of ξt, and all other higher order
beliefs eventually.

Proposition 2.1. When α1 ∈ (0, 1), the optimal output rule is given by 5

yit =
α0

1− α2
1

ai +
α0α1

1− α2
1

am(i,t) +
α0

1 + α1

∞∑
k=1

αk1(ξt − Ekit[ξt]) (2.12)

where

E1
it[ξt] = Eit[ξt]

E2
it[ξt] = EitEm(i,t)t[ξt]

Ekit[ξt] = EitEm(i,t)tEk−2it [ξt], for k = 3, 4, 5 . . .

Proof. See Appendix A.1 for the proof.

Because islands differ in their information sets, the law of iterated expectation does not apply.
Confidence shocks have real effects on the economy. More specifically, the effects of confidence shock

5Note that in equation (2.12), agents cannot observe am(i,t) directly. If we sum up α0α1

1−α2
1
am(i,t) and α0

1+α1

∑∞
k=1 α

k
1ξt,

it will give α0α1x
1
it

1−α2
1

, which is a function of agents’ first signal.
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on island i are captured by the last term of equation (2.12)

α0

1 + α1

∞∑
k=1

αk1(ξt − Ekit[ξt]), (2.13)

and the aggregate output is

yt =
α0

1 + α1

∞∑
k=1

αk1

(
ξt −

∫
Ekit[ξt]

)
. (2.14)

Note that the higher order beliefs Ekit[ξt] for k = {1, 2, . . .} are different from ξt itself in general, which
is the reason why the confidence shock can trigger aggregate fluctuation. If ξt is underestimated, then
islands tend to overestimate their trading partners’ productivities. By strategic complementarity,
all the islands increase their own output because they expect a higher output from their trading
partners, and a boom occurs.

The difficulty lies in computing the equilibrium policy rule of yit. By Proposition 2.1, yit depends on
all the higher order beliefs Ekit[ξt], but computing all the higher order beliefs is a fairly complicated
task. The number of state variables needed to infer higher order beliefs is increasing in the order of
the belief.

Proposition 2.2. Given the signal process (2.1) to (2.3), the forecast of
{
E1
m(i,t)t[ξt],E

2
m(i,t)t[ξt], . . . ,

Ekm(i,t)t[ξt]

}
requires k + 1 state variables.

The state variables in this proposition are the priors of these higher order beliefs. To spell out all
the higher order beliefs, island i needs to keep track of an infinite number of state variables, which
is the infinite regress problem. In the next section, we define the equilibrium and use the method
developed in Huo and Takayama (2014) to solve the infinite regress problem. It turns out that the
geometric sum of all higher order beliefs follows a simple ARMA process, and a finite number of
state variables is sufficient for agents to choose the optimal output yit.

2.3 Equilibrium

The information set of producers on island i is Ωit = (ai, {x1it−τ}∞τ=0, {x2it−τ}∞τ=0). Therefore, island
i’s policy rule belongs to the space spanned by square-summable linear combinations of current and
past realizations of x1it, x

2
it, and also by the time independent local productivity ai

yit = haai + h1(L)x1it + h2(L)x2it,
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where ha ∈ R, h1(L) and h2(L) are lag polynomials

h1(L) =
∞∑
τ=0

h1τL
τ ,

h2(L) =

∞∑
τ=0

h2τL
τ .

The infinite sequences {h1τ}∞τ=0 and {h2τ}∞τ=0 belong to the square-summable space `2, which guar-
antees that yit is a covariance-stationary process. The equilibrium is defined as follows

Definition 2.1. Given the signal process (2.1) to (2.3), the equilibrium of model (2.8) is a policy
rule h = {ha, h1, h2} ∈ R× `2 × `2, such that

yit = α0ai + α1 Eit[ym(i,t)t],

where

yit = haai + h1(L)x1it + h2(L)x2it.

The equilibrium policy rule is given by the following theorem.

Theorem 1. Assume that α1 ∈ (0, 1). Given the signal process (2.1) to (2.3), the equilibrium policy
rule is given by

ha =
α0

1− α2
1ϕ1

, (2.15)

h1(L) =
haα1(ϕ1 − ϑL)

1− ϑL
, (2.16)

h2(L) = −haα1ϕ2

1− ϑL
, (2.17)

where
ϕ1 =

ρτ1 + ϑτ2
ρ(τ1 + τ2)

, ϕ2 =
τ1(ρ− ϑ)

ρ(τ1 + τ2)
, (2.18)

ϑ =
1

2

(1

ρ
+ ρ+

(1− α1)(τ1 + τ2)

ρτ1τ2

)
−

√(
1

ρ
+ ρ+

(1− α1)(τ1 + τ2)

ρτ1τ2

)2

− 4

 , (2.19)

and

τ1 =
σ2a
σ2η
, τ2 =

σ2u
σ2η
.
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The aggregate output follows

yt = ϑyt−1 +
haα1ϑ

ρ
ηt. (2.20)

Proof. See Appendix A.2 for proof.

Even though agents face a fairly complicated learning problem, the equilibrium policy rule is simple.
h1(L) is an ARMA(1,1) process and h2(L) is an AR(1) process. The aggregate output follows an
AR(1) process. To understand the equilibrium policy rule, we discuss the following: the persistence
of yt, the unconditional variance of yt, and the forecast error of yt.

2.4 Characterization

Endogenous Persistence of yt Crucially, the persistence of yt is given by ϑ in equation (2.19),
which also determines the persistence of the effects of the confidence shock. We have derived the
following properties for ϑ.

Proposition 2.3. Assume that α1 ∈ (0, 1), ρ ∈ (0, 1), τ1 > 0 and τ2 > 0. Then ϑ satisfies

1. 0 < λ < ϑ < ρ, where

λ =
1

2

τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ−

√(
τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ

)2

− 4

 . (2.21)

2. ϑ is increasing in α1 and
lim
α1→1

ϑ = ρ

lim
α1→0

ϑ = λ

3. ϑ is increasing in τ1, τ2 and ρ.

Proposition 2.3 states that ϑ is bounded from above by the persistence of the confidence shock ρ.
Intuitively, agents gradually learn ξt from the signals and once they can infer ξt relatively accurately,
we return to the perfect information benchmark and the confidence shock will have little effect on
output. Consequently, the persistence of output is always smaller than the confidence shock. At the
same time, ϑ is also bounded from below by λ. Here, λ controls the persistence of the forecast of ξt,
Eit[ξt]. If we use the Kalman filter, it follows that

Eit[ξt] = λEit−1[ξt−1] + k1x
1
it + k2x

1
it (2.22)
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where k1 and k2 are the corresponding Kalman gains. To put it differently, λ determines the speed
at which information is revealed, and it serves as the lower bound for the persistence of yt.

Given the information related parameters ρ, σ2ε , σ2u, and σ2η, ϑ is increasing in α1. As α1 increases,
there is stronger strategic complementarity. Agents respond more aggressively to possible good (bad)
trading opportunities. As a result, the effects of confidence shocks last longer. In the extreme case,
as α1 approaches 1, the persistence of yt approaches the persistence of ξt itself. Even though the
information obtained by agents does not vary with α1, the persistence of output chosen by individual
agent varies with α1 because of strategic complementarity.

It is not surprising that the persistence is increasing in τ1 and τ2, because the values of these two
determine the degree of information frictions. Given the variance of innovation to the confidence
shock σ2η, as σ2a or σ2u increases, it becomes more difficult to infer the confidence shock ξt, and the
effects of the confidence shock last longer. Similarly, given the magnitude of idiosyncratic noise, the
persistence of output decreases in σ2η.

Unconditional Variance of yt The following proposition characterizes several properties of the
variance of aggregate output:

Proposition 2.4. Assume that α1 ∈ (0, 1), ρ ∈ (0, 1), τ1 > 0 and τ2 > 0. The unconditional variance
of output yt is given by

Var(yt) =
1

1− ϑ2

(
haα1ϑ

ρ

)2

σ2η, (2.23)

and it has the following properties:

1. There is a hump-shaped relationship between Var(yt) and the variance of confidence innovation
σ2η. Furthermore,

lim
σ2
η→0

Var(yt) = 0

lim
σ2
η→∞

Var(yt) = 0

2. Var(yt) is increasing in α1, σ2a, σ2u and ρ.

Note that in equation (2.23), ha and ϑ are also functions of ση. As discussed in the introduction,
there are two competing forces that determine the variance of output. The volatility of output tends
to increase with σ2η because there are stronger exogenous disturbances. At the same time, with a
larger σ2η, agents attenuate their response to signals because they understand that signals are less
useful for information extraction. We can also define the maximum amount of volatility that can be
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generated by confidence shocks given certain information frictions

max Var(yt) = max
σ2
η

1

1− ϑ2

(
haα1ϑ

ρ

)2

σ2η. (2.24)

The left graph in Figure 1 shows an example of how the variance of output changes with the variance
of ηt, which displays a hump-shaped relationship. The right graph in Figure 1 shows that the
maximum of the variance of output is increasing in the variance of idiosyncratic noise, but it is also
bounded from above. The upper bound is determined by the underlying productivity dispersion
across islands. This graph clearly illustrates that there exists a limit for the effects of confidence
shocks on the aggregate economy.

Figure 1: Illustration of Proposition 2.4
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Proposition 2.4 has two implications for our quantitative exercise in the next section. First, given
the degree of information frictions, there is an upper bound for the variance of aggregate output by
varying the variance of the confidence shock. If the degree of information frictions is relatively low,
we may not be able to generate enough volatility of output. Second, there are two different values of
variance of the confidence shock which can generate the same volatility of output. These two choices
of ση will imply different degrees of information frictions and consequently, different magnitudes
of forecast errors. Both of these implications indicate that it is crucial to discipline the degree of
information frictions in order to evaluate the quantitative importance of the confidence shock.

Persistent Forecasting Error An important feature of the learning problem in this model is
that the forecast error is persistent. In Kasa (2000) and Acharya (2013) where the number of signals
equals the number of shocks, the forecast error only exists in one period and agents can learn the
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true state fairly quickly. The reason is that there are enough signals for agents to figure out the true
state of the economy. In our economy, there are more shocks than signals. Agents can never infer the
state of the economy perfectly and the forecast error is long lasting. This is crucial in generating the
persistent effects of the confidence shock, because once the forecast error disappears, the economy
returns to the perfect information case and the confidence shock no longer plays a role.

We look in particular at differences between the aggregate output and the average predicted aggregate
output, since this statistic is important in the calibration of the quantitative model. The inference
of the aggregate output by producers on island i is given by

Eit[yt] = Eit[h1(L)ξt + h2(L)ξt] =
haα1ϑλ

ρ2(1− ϑλ)

1− ρL
(1− λL)(1− ϑL)

(
1

τ1
x1it +

1

τ2
x2it

)
. (2.25)

The mean forecast error is then

yt −
∫

Eit[yt] = haα1ϑ
1− λ(τ1+τ2)

ρτ1τ2(1−ϑλ) − λL
ρ(1− λL)(1− ϑL)

ηt, (2.26)

which follows an ARMA(2,1) process. Clearly, the forecast error is persistent over time.

Forecast Dispersion Another interesting and relevant statistic to look at is the forecast disper-
sion. Based on equation (2.25), the forecast dispersion can be derived as

Var(Eit[yt]) (2.27)

=

∫ (
Eit[yt]−

∫
Eit[yt]

)2

=

(
haα1ϑλ

ρ2(1− ϑλ)

)2

Var

(
1− ρL

(1− λL)(1− ϑL)τ1
am(i,t)

)
+

(
haα1ϑλ

ρ2(1− ϑλ)

)2

Var

(
1− ρL

(1− λL)(1− ϑL)τ2
uit

)
≡Va + Vu (2.28)

As expected, the forecast dispersion can be decomposed into two components: the part related to
the dispersion of productivity am(i,t) and that related to the dispersion of idiosyncratic noise uit. It
should be clear that Va and Vu depend on both the variances of the idiosyncratic shocks and the
persistence of the confidence shock.

Figure 2 presents how Var(Eit[yt]), Va, and Vu vary with the variance of idiosyncratic noise and the
persistence of the confidence shock. First, the forecast dispersion is monotonically increasing in σ2u.
However, the part due to the variance of idiosyncratic noise Vu displays a hump-shaped relationship
with σ2u. The reason is that as σ2u increases, agents also optimally respond less to the second signal.
Second, the forecast dispersion is also monotonically increasing in ρ. The change of ρ have similar
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effects on Va and Vu, and therefore both components are monotonically increasing in ρ.

Figure 2: Forecast Dispersion
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2.5 Example

In this section, we provide an example to show how the simple economy responds to a confidence
shock. We choose parameters exogenously and they are summarized in Table 1. The impulse response
to confidence shocks is shown in Figure 3. At the beginning, agents underestimate the confidence
shock on average and consequently, they overestimate their trading partners’ productivity and output.
Due to strategic complementarity, their best response is to increase their own output, resulting in
an increase in aggregate output. The confusion will not be resolved immediately. Agents gradually
learn the true state of the economy, and during this process, the output remains above its steady
state. Meanwhile, the aggregate output forecast error is persistent, and it resembles the pattern of
the actual output.

Higher Order Beliefs By Proposition 2.1, the aggregate output can also be written in the form
of higher order beliefs

yt =
α0

1 + α1

∞∑
k=1

αk1

(
ξt −

∫
Ekit[ξt]

)
. (2.29)

The effects of the confidence shock depend on the difference between the confidence shock and the
higher order beliefs about the confidence shock. Figure 4 plots the the impulse response of the higher
order beliefs. Initially, all the higher order beliefs are smaller than the true ξt, which implies that
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Table 1: Parameters for the Simple Economy

Primitive Description Value
ω Home bias 0.70
1
γ Frisch elasticity 0.55

θ Labor share 0.68

ρ Persistence of confidence shock 0.95

ση Std of confidence shock 1.00

σa Std of productivity distribution 4.00

σu Std of noise shock 4.00

Implied Description Value
α0 Response to own productivity 1.20

α1 Strategic complementarity 0.09

ϑ Endogenous persistence of output 0.70

ξt −
∫
Ekit[ξt] > 0 and the output yt will be high in the short run. Gradually, all the higher order

beliefs converge to ξt, and the output yt returns to its steady state value. As the order of the beliefs
increases, the difference between ξt and Ekit[ξt] also becomes greater. However, the effects of these
higher order beliefs decay at rate α1, meaning that as k approaches infinity, the effects of Ekit[ξt]
become zero. This intuition is discussed extensively in Nimark (2011).

Heterogeneous Prior In Angeletos and La’O (2013) and Angeletos, Collard, and Dellas (2014), a
heterogeneous-prior formulation is applied to avoid the infinite regress problem. The heterogeneous
prior assumption works as follows. Assume that agents on island i observe both ξt and am(i,t)t

perfectly. However, they believe agents on island m(i, t) observe ai with bias ξt. If agent i’s policy
rule is

yit = f1ai + f2am(i,t) + f3ξt,

then agent i believes that her trading partner’s output is

ym(i,t)t = f1am(i,t) + f2(ai + ξt) + f3ξt.

In equilibrium,
yit = α0ai + α1Eit[ym(i,t)t],
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Figure 3: Impulse Response to a Confidence Shock in the Simple Economy
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which leads to

yit =
1

1− α2
ai +

α

1− α2
am(i,t) +

α2
1

(1− α2
1)(1− α)

ξt (2.30)

yt =
α2

(1− α2)(1− α)
ξt (2.31)

By assuming heterogeneous prior beliefs, yt is perfectly correlated with ξt, since the belief process
is exogenously given. In Figure 5, we show how the persistence and variance of output vary with
the variance of the confidence shock and the variance of idiosyncratic noise. With common prior, as
we increase the variance of the confidence shock, τ1 and τ2 both decrease, and by Proposition 2.3,
the persistence of output also decreases. By Proposition 2.4, there is a hump-shaped relationship
between the variance of output and the variance of the confidence shock. In terms of information
frictions, both of the persistence and variance of output are monotonically increasing in the variance
of idiosyncratic noise σ2u. With heterogeneous prior, the persistence of output is independent of the
variance of the confidence shock, and the variance of output is monotonically increasing with the
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Figure 4: Impulse Response of Higher Order Beliefs to the Confidence Shock
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Figure 5: Common Prior v.s. Heterogeneous Prior
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variance of the confidence shock. In addition, both of these two statistics are independent of the
degree of information frictions.
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3 Endogenous Information

In the previous section, the signal process was exogenously determined and independent of agents’
actions. An important theme in the literature on dispersed information and higher order beliefs is
the role of an endogenous signal in coordinating beliefs and revealing information.6 In this section,
we allow agents to observe signals that contain a variable which is endogenously determined in
equilibrium.

More specifically, we allow agents to observe two signals. The first signal is the same as before, which
is their trading partner’s productivity plus the confidence shock. The second signal is the aggregate
output with an idiosyncratic noise. The aggregate output is endogenously determined by agents’
output choice, but at the same time it serves as a signal for agents to infer the state of the economy.
Agents understand that ηt is the underlying shock that drives the confidence shock and the aggregate
output. Hence, observing the noisy signal of aggregate output will help them predict ηt and in turn
the confidence shock. Formally, the equilibrium with endogenous information is defined as follows.

Definition 3.1. The equilibrium is an endogenous stochastic process Ωit, a policy rule for individual
agents φ = {φa, φ1, φ2, φ3} ∈ R× `2× `2× `2 and the law of motion for aggregate output Φ ∈ `2, such
that

1. Information process generating Ωit is given

x1it = am(i,t) + ξt, (3.1)

x2it = yt + uit, (3.2)

where

ξt =
1

1− ρL
ηt, (3.3)

yt = Φ(L)ηt. (3.4)

2. Individual rationality
yit = α0ai + α1Eit[ym(i,t)], (3.5)

where

yit = φaai + φ1(L)am(i,t) + φ2(L)uit + φ3(L)ηt. (3.6)

6See Kasa (2000), Hellwig and Venkateswaran (2011), and Rondina and Walker (2013) for example.
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3. Aggregate consistency
Φ(L) = φ3(L). (3.7)

The policy rule in this definition is in terms of the underlying shocks. As proved in Huo and Takayama
(2014), there is a one-to-one mapping between the policy defined in terms of signals and shocks. With
endogenous information, it is more convenient to express the policy rule in terms of shocks, because
it clearly separates the idiosyncratic components from the aggregate components. The equilibrium
with endogenous information involves two fixed points. The first fixed point is individual rationality.
Given the signal process, all islands choose the same policy rule φ that solves their optimization
problem. Agents need to infer higher order beliefs, and the infinite regress problem still exists. The
second fixed point is absent in the equilibrium with exogenous information. It requires that the
perceived law of motion for aggregate output be the same as the law of motion for actual aggregate
output. This can be viewed as the cross-equation restriction in the sense that agents perceptions are
in line with the reality generated by their own actions.

Since there are more shocks than signals, agents cannot infer the shocks perfectly. The information
role of output depends on the volatility of output. If the aggregate output is very volatile, then
the second signal will be very informative about the confidence shock. However, once agents can
learn quickly the state of the economy from aggregate output, the effects of the confidence shock will
be very limited, which implies that the aggregate output can not respond to the confidence shock
aggressively. Conversely, if there is little movement of aggregate output, then agents will pay little
attention to the second signal and attribute a big portion of the confidence shock to their trading
partner’s productivity. Under this scenario, the confidence shock will generate large movements
of aggregate output, which is a contradiction. The argument above provides the intuition for the
existence of the equilibrium: there exists a point such that the volatility of aggregate output is
neither too large nor too small.

Theorem 2. If α1 ∈ (0, 1), then there exists a unique equilibrium of the model in Definition 3.1.

Proof. See Appendix A.3 for the proof.

As shown in Huo and Takayama (2014), even though there exists a unique equilibrium, aggregate
output follows an infinite-order process. As a result, no analytic solution is possible any more. We
use the method discussed in Huo and Takayama (2014), and approximate the aggregate output by
an ARMA (3,2) process. This approximation is close enough to the true solution.

Figure 6 compares the impulse response of the aggregate output to the confidence shock under
endogenous information with the one under exogenous information. It can be seen that the output
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Figure 6: Endogenous Information versus Exogenous Information
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under endogenous information is more responsive to the confidence shock. To understand the results,
we need to highlight the information role of the aggregate output. Since α1 is small in our example,
the force of strategic complementarity is weak, and hence the aggregate output is not very volatile.
As a result, the endogenous signal x2it = yt +uit conveys less information about the confidence shock
compared with the exogenous signal x2it = ξt + uit. Note that in Figure 6 the prediction of the
confidence shock is indeed less accurate with endogenous information. Therefore, when α1 is small,
the effects of the confidence shock are greater under endogenous information than under exogenous
information. Conversely, if we set α1 to a large number, the aggregate output will be more volatile
than ξt itself. It follows that the endogenous signal x2it = yt +uit will contain more information than
the exogenous signal x2it = ξt + uit. Consequently, the effects of the confidence shock will be greater
with exogenous information.

This example illustrates that whether agents observe exogenous signals or endogenous signals does
not really matter. What matters is how much information agents can learn about the underlying
state of the economy. At the end of the day, individual agents treat all signals as exogenously given,
and we can change the size of the noise shocks to control the amount of information agents can
extract. Based on this observation, in our quantitative model, we assume all information follows
an exogenous process, but it should be noted that this assumption is not crucial to the purpose of
evaluating the role of confidence shocks.

4 Quantitative Model

In this section, we present the full-blown business cycle model driven by confidence shocks. To
evaluate its quantitative performance and confront the model with data, several issues need to be
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addressed. First, the confidence shock itself and the idiosyncratic noises cannot be observed, but
we need to pin down the degree of information frictions. Second, because the confidence shock does
not affect aggregate technology, the Solow residual remains constant. As a result, all the short-run
fluctuations are driven by changes in labor, which is at odds with data. Third, aggregate investment
is important in shaping business cycles, and agents constantly make inter-temporal decisions. Based
on these considerations, we extend the simple model presented in Section 2 along three dimensions:
(1)we adopt a more flexible matching process and information structure, which allows us to link the
model with the survey data in order to discipline information frictions; (2)we introduce competitive
search in the goods market à la Bai, Ríos-Rull, and Storesletten (2011)), which generates endogenous
movements of the Solow residual; (3) we allow households to accumulate capital.

4.1 Model

Matching and Information In the simple model, we assume that the matching follows an i.i.d.
process, that is, the quality of island i’s trading partner in period t is completely independent of
its trading partner in period t − 1. This assumption is convenient for deriving analytic results, but
it is far from being realistic. If we interpret an island as an establishment, a firm, or a region, the
output or revenue of these entities is typically correlated over time. Meanwhile, the exact form of
the matching process is also related to the degree of information frictions. Therefore, we allow the
matching process to be persistent. Namely, if island i is matched with a good trading partner today,
it is more likely that island i is also matched with a good trading partner tomorrow. Recall that
we denote the index of island i’s trading partner in period t as m(i, t), and we now assume that the
productivity of m(i, t) follows an AR(1) process

am(i,t) = ρaam(i,t−1) + εit, (4.1)

where εit ∼ N (0, σ2ε ) and σ2ε = (1 − ρ2a)σ2a. Note that the choice of σ2ε guarantees that the uncon-
ditional variance of am(i,t) is consistent with σ2a. If we set ρa = 0, it collapses to the original i.i.d.
matching process. The following proposition proves the existence of the persistent matching process.

Proposition 4.1. Let m(i, t) be island i’s trading partner at time t and am(i,t) be its productivity.
There exists a stochastic process such that, for all i ∈ [0, 1),

am(i,t) = ρaam(i,t−1) + εit,

εit ∼ N (0, σ2ε )

where ρa ∈ (0, 1).

Proof. See Appendix A.4 for the proof.
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The signal process is almost the same as the simple model. At the beginning of each period, we
still assume that producers receive two signals. The first signal concerns their trading partner’s
productivity, but it is contaminated by the common confidence shock

x1it = am(i,t) + ξt. (4.2)

The process of am(i,t) is specified in equation (4.1). The confidence shock ξt follows the same AR(1)
process as the simple model

ξt = ρξt + ηt, (4.3)

where ρ ∈ (0, 1) and ηt ∼ N (0, σ2η).

The second signal is the confidence shock plus an idiosyncratic noise.

x2it = ξt + uit, (4.4)

The information set, up to time t, is

Ωit =

{
ai, x

1
it, x

1
it−1, x

1
it−2, . . . , x2it, x

2
it−1, x

2
it−2, . . .

}
.

Competitive Search and Shoppers’ Problem In the simple model, the goods market between
the two trading partners is frictionless. Shoppers from the two islands meet in a centralized market,
and the prices Pi and Pj clear the goods market. Since the distribution of productivity is fixed, there
is no change of aggregate TFP.

To introduce endogenous TFP movement, we assume there exist goods market frictions as in Bai,
Ríos-Rull, and Storesletten (2011). The basic idea is simple. Shoppers have to search for goods before
they can consume them, and goods have to be found before they can be sold. A standard matching
friction prevents standard market clearing. The probability that goods can be sold is determined
by the amount of search effort exerted by shoppers. As a result, the search effort creates a wedge
between potential output and actual output, which corresponds to the measured Solow residuals.
Crucially, the amount of search effort exerted by shoppers depend on the level of production in the
first period, which induces the Solow residuals move with business cycles.

Now we describe the implementation of goods market frictions. In the second stage, shoppers serve
both as buyers and sellers. As sellers, each shopper is endowed with a unit measure of location
and they can choose in which market to sell the goods inherited from their producers. As buyers,
shoppers have to consume the goods produced by others but not by themselves, similarly to Trejos
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and Wright (1995). Goods market frictions require buyers to exert search effort to find the locations
of others.

Different markets are indexed by their price and market tightness (P,Q), where market tightness is
defined as the ratio of the measure of location to the measure of search effort. Exerting one unit
of search effort in market (P,Q), a buyer expects to find a location with probability Ψd(Q) at price
P . At the same time, a seller in in market (P,Q) expects to sell her goods with probability Ψf (Q)

at price P . In equilibrium, not all markets are active. In fact, it is understood that there is an
equilibrium-determined expected revenue per unit of good, ζ = P Ψf (Q), that active markets have
to satisfy.

Because there are two different types of goods, local goods Yi and foreign goods Yj , there are two
equilibrium-determined expected revenues ζi and ζj . Buyers on island i choose the local market
(Pii, Qii) and foreign markets (Pij , Qij), while buyers on island j choose (Pjj , Qjj) and (Pji, Qji). In
equilibrium, sellers have to be indifferent between allocating their locations to domestic customers
and foreign customers, resulting in

PiiΨ
f (Qii) = PjiΨ

f (Qji) = ζi, (4.5)

PjjΨ
f (Qjj) = PijΨ

f (Qij) = ζj . (4.6)

It is important to note that not all goods can be sold and the produced goods Yi and Yj are only
potential output. The realized output depends on the probability Ψf that goods are purchased,
which is determined by the amount of search effort. This probability Ψf can be understood as the
utilization rate, and we will show that it increases with the production level of Yi and Yj . When the
production level changes, the amount of search effort and the utilization rate also change, generating
endogenous movements of the measured Solow residual.

The shoppers’ problem on island i can be written as

max
Cii,Cij ,Iii,Iij ,
Qii,Qij ,Dii,Dij

(
Cii
ω

)ω ( Cij
1− ω

)1−ω
− χdDi (4.7)

subject to

Pii(Cii + Iii) + Pij(Cij + Iij) = ζiYi, (4.8)

Cii + Iii = DiiΨ
d(Qii)Yi, (4.9)

Cij + Iij = DijΨ
d(Qij)Yj , (4.10)

PiiΨ
f (Qii) = ζi, (4.11)
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PijΨ
f (Qij) = ζj , (4.12)

Ii =

(
Iii
ω

)ω ( Iij
1− ω

)1−ω
, (4.13)

Di = Dii +Dij . (4.14)

This calls for several comments. (1) Producers now determines both the level of production Yi and
the level of capital investment Ii in the first stage. As a result, they not only transfers the output Yi
to shoppers, but also require shoppers to purchase the investment good such that the composite of
Iii and Iij satisfies producers’ investment demand Ii. (2) The search effort Di is the new element in
the shoppers’ problem, and the variation in Di leads to changes in the utilization rate. (3) Related
to the search effort, as discussed in Huo and Rios-Rull (2014), shoppers with different income levels
choose markets with different prices and search intensities.

The equilibrium conditions include

Qii =
Tii
Dii

, Qij =
Tji
Dij

, Qji =
Tij
Dji

, Qjj =
Tjj
Djj

, (4.15)

Tii + Tij = 1, Tji + Tjj = 1, (4.16)

ζi = PiiΨ
f (Qii) = PjiΨ

f (Qji), (4.17)

ζj = PjjΨ
f (Qjj) = PijΨ

f (Qij). (4.18)

Implicitly, shoppers also choose the allocation of their locations Tii and Tij to local and foreign
markets, but they are indifferent since they will obtain the same expected revenue ζi.

We assume that the matching function in the goods market is of Cobb-Douglas form

Ψd(Q) = νQ1−µ, (4.19)

Ψf (Q) = νQ−µ, (4.20)

where µ is the matching elasticity and ν is a constant that determines the average matching proba-
bility. The equilibrium allocations satisfy

C∗ii = ων

(
µν

χd

) µ
1−µ

Y
1−µ+µω

1−µ
i Y

µ(1−ω)
1−µ

j − ω
(
Yi
Yj

)1−ω
Ii, (4.21)

C∗ij = (1− ω)ν

(
µν

χd

) µ
1−µ

Y
µω
1−µ
i Y

1−µω
1−µ

j − (1− ω)

(
Yi
Yj

)−ω
Ii, (4.22)

D∗i =

(
µν

χd
Y ω
i Y

1−ω
j

) 1
1−µ

. (4.23)
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As the production level increases, shoppers purchase more consumption goods. At the same time,
they also exert more search efforts. Because the total measure of locations is fixed, more search
effort translates into a higher utilization rate and the matching elasticity µ determines the percentage
increase of the utilization rate.

Similar to the simple model, we can derive the the utility value of 1 additional unit of local output

Ui = νg

(
µνg
χ

) µ
1−µ

Y
µ−η
1−µ
i Y

η
1−µ
j . (4.24)

Note that Ui only depends on the aggregate output Yi and Yj , and individual producer takes it as
given. It can also be shown that the utility value for shoppers by decreasing 1 unit of local investment
demand is simply 1.

Producers’ Problem Compared to the simple model, the complication of the producers’ problem
is the addition of investment choice. Instead of a static decision problem, the producers’ problem
becomes choosing a state contingent plan for Yit, Kit+1 and Nit to maximize their expected present
value.

max
Yit,Nit,Kit+1,Iit

Ei0
∞∑
t=0

βt
[UitYit − Iit − χnN1+γ

it ]1−σ

1− σ
(4.25)

subject to

Yit = exp(ai) K
1−θ
it N θ

it, (4.26)

Kit+1 = (1− δ)Kit + Iit − Ξ(Iit,Kit). (4.27)

We assume that the investment is subject to a standard capital adjustment cost Ξ(Iit,Kit) with the
following functional form

Ξ(Iit,Kit) =
ϕ

2

(
Iit
Kit
− δ
)2

Kit. (4.28)

To derive the first order conditions, we first substitute the production function into the objective
function and define

V(Yit, ai,Kit) = χn

(
Yit

exp(ai) K
1−θ
it

) 1+γ
θ

. (4.29)

The first order condition with respect to Yit is

Eit
[
[UitYit − Iit − χnN1+γ

it ]−σ (Uit − Vyit)
]

= 0 (4.30)

The first order condition with respect to Kit+1 is
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Eit
[
[UitYit − Iit − χnN1+γ

it ]−σ
]

1− Ξi(Kit, Iit)
= βEit

[
[Uit+1Yit+1 − Iit+1 − χnN1+γ

it+1]−σ(
Uit+1(1− θ) exp(ai)K

−θ
it+1N

θ
it+1 +

1− δ − Ξk(Kit+1, Iit+1)

1− Ξi(Kit+1, Iit+1)

)]
(4.31)

These two first order conditions are quite similar to those in standard stochastic growth models,
except marginal returns to production depend on producers’ expectation of their trading partners’
output level. As in a two-country business cycle model, the output and investment decisions both
increase with their trading partners’ output level.

Log-Linearized Economy Equation (4.30) and (4.31) summarize the producers’ decisions. The
log-linearized version of these two equations is:

Γ1ai + Γ2yit + Γ3kit + Γ4Eit[ym(i,t)t] = 0, (4.32)

Υ1kit + Υ2kit+1 + Υ3Eit[ym(i,t)t] + Υ4Eit[yit+1] + Υ5Eit[kit+2] + Υ6Eit[ym(i,t+1)t+1] = 0, (4.33)

where {Γ1, . . . ,Γ4} and {Υ1, . . . ,Υ6} are functions of the deep parameters. Similarly to the simple
model, the equilibrium is defined as:

Definition 4.1. Given the signal process (4.1) to (4.4), the equilibrium is policy rules hy = {hya, hy1, h
y
2} ∈

R× `2 × `2 and hk = {hka, hk1, hk2} ∈ R× `2 × `2

yit = hyaai + hy1(L)x1it + hy2(L)x2it, (4.34)

kit+1 = hkaai + hk1(L)x1it + hk2(L)x2it, (4.35)

such that equations (4.32) and (4.33) are satisfied.

To solve for the equilibrium, we apply the method developed in Huo and Takayama (2014). The
details of the computation can be found in our online appendix.

4.2 Calibration and Estimation

The model period is a quarter. We separate the parameters into two groups: those in the first group
(shown in Table 2) are determined exogenously, and those in the second group (shown in Table 3)
are jointly determined by solving a large system: the equations require that the steady-state model
statistics equal the targets, and the parameters are the unknowns. In addition, we also estimate the
variance of the idiosyncratic noises and innovation to confidence shock to match the forecast error
data.

Many parameters of preferences and technology are standard, and we choose them to reflect com-
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monly used values. We set the discount rate β to 0.99, which implies that the rate of return is
4%. We set the risk aversion σ to 1. We choose the Frisch elasticity to be 1

γ = 0.55, which lies
between the micro and macro estimates. We choose the labor share θ = 0.68, in line with Ríos-
Rull and Santaeulalia-Llopis (2010). The home bias parameter matters for the degree of strategic
complementarity. We set ω = 0.7 as our benchmark value.

Turning to the matching process. If we interpret each island as a firm, the persistence of the
matching process directly translates into the persistence of the measured firms’ profit or productivity
even though their technology is unchanged. The empirical estimate of the persistence of the firms’
productivity varies in the literature, ranging from 0.5 (Abraham and White, 2006) to 0.8 (Foster,
Haltiwanger, and Syverson, 2008) for the United States, and it varies even more when examining
other countries (Collard-Wexler, Asker, and Loecker, 2011). We set ρa = 0.7 and σ2ε = 0.01, which
lie in the middle of various estimates. Note that σ2a is determined residually by σ2a = σ2

ε
1−ρ2a

.

The matching elasticity is particularly important in shaping the endogenous Solow residual. The
realized aggregate output is:

y =

∫
Ψf (qii) +

∫
yi = z + y

Here, we use y to denote the aggregate output, or realized sales, y to denote the potential output, or
produced goods, and z to denote the measured Solow residual. Using equation (4.23), the measured
Solow residual is proportional to the potential output

z =

∫
Ψf (qii) ∝

µ

1− µ

∫
di ∝

µ

1− µ
y = µy

Therefore, the matching elasticity µ determines the portion of the output fluctuations which can be
attributed to the Solow residual. We set µ = 0.4, which imply that 40% of output fluctuations are
due to Solow residual.

In terms of the endogenously determined parameters, we associate the parameters with the targets
for which they are most directly responsible, even though these parameters are eventually determined
simultaneously. We choose χn to target the average working time to be 0.4 which only serves as a
normalization. We target the capital-output ratio to be 2, which pins downs the capital depreciation
rate δ. Two parameters are related to goods market frictions: the units of search costs ξd and the
matching efficiency ν. We choose the values for them so that the average occupation rate is 81%
and the average market tightness is 1. We set the capital adjustment cost ψ to match the relative
volatility of investment to output.
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Table 2: Exogenously Determined Parameters

Parameter Description Value

β Discount rate 0.99

σ Risk aversion 1.00

ω Home bias 0.70
1
γ Frisch elasticity 0.55

θ Labor share 0.64

µ Matching elasticity 0.40

ρ Persistence of confidence shock 0.95

ρa Persistence of matching quality 0.70

σa Std of island specific productivity 0.14

An important part of the calibration is to discipline the confidence shock process (the persistence
ρ and the standard deviation of confidence innovation ση), and the size of idiosyncratic noises, σu.
We choose these parameters to match the mean forecast error of real output and also the average
standard deviation of cross-sectional forecasts (forecast dispersion) in the Survey of Professional
Forecasters (SPF). The mean forecast error and the forecast dispersion are jointly determined by
these three parameters. We set ρ to match the forecast dispersion and estimate ση and σu using
Bayesian method, to match the mean forecast error of real output growth rate (from 1969 Q1 to
2014 Q2). Table 4 shows the choice of prior distributions, the estimated posterior mode obtained by
maximizing the log of the posterior distribution with respect to the parameters, the posterior mean,
and also the 10 and 90 percentile of the posterior distribution of the parameters obtained through
the Metropolis-Hastings sampling algorithm.

In a standard log-linearized DSGE model, the standard deviation of a shock is independent of
policy rules. By contrast, in our model with information frictions, the relative volatility of various
shocks, i.e., σ

2
ε
σ2
η
and σ2

u
σ2
η
, does have direct effects on the policy rules, and ση have non-linear effects on

aggregate variables. When we choose ση, it is not only a normalization. As shown in subsection 2.4,
the volatility of output is not monotonically increasing in ση.

It should be noted that the survey participants have formal, advanced training in economic theory.
These survey forecasts are generally better than forecasts generated by econometric models. Agents
in the model are interpreted as normal households and firms, who have less information compared
with the professional forecasters in the SPF in general.
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Table 3: Endogenously Determined Parameters

Parameter Value Target Value Model

χn 1.02 Average labor 0.40 0.40

χd 0.68 Average market tightness 1.00 1.00

ν 0.81 Average utilization rate 0.81 0.81

δ 0.02 Capital-to-output ratio 2.00 2.00

ψ 24.00 Ratio of Std of investment to output 4.00 3.92

ρ 0.91 Average Std of cross-sectional forecasts 0.00 3.92

Table 4: Estimated Parameters in the Baseline Model

Prior Posterior

Distribution Mean Std Mode Mean 90% HPD

ση Inv Gamma 0.30 3.00 0.25 0.28 [0.20, 0.39]

σu Inv Gamma 0.30 3.00 0.34 0.37 [0.31, 0.42]

4.3 Results

Baseline model with confidence shocks Figure 7 shows the impulse response of the main
aggregate variables to the confidence shock.7 At the beginning, agents underestimate the confidence
shock and attribute a part of the confidence shock to a good realization of the matching process.
As a result, producers believe that their trading partners’ output is higher than average, and it
will be so for a while due to the fact that the matching process is persistent. Because of strategic
complementarity, believing that there is higher output on other islands leads to a higher output and
investment level on their own islands, and thereby to a high aggregate output and investment. This
belief is partially true, since the output on other islands is indeed higher than average. However,
it is not because the productivity is higher, but because all the islands are optimistic. After a
confidence shock, agents on average overestimate their trading partners’ output and underestimate
the aggregate output in the short run.

Table 5 compares the business cycle statistics from the data and our model driven by confidence
7In Figure 7, we choose the size of the confidence innovation such that the initial response of output is 1.
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Figure 7: Impulse Response to the Confidence Shock
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shocks (Baseline model with ξ shock). The confidence shock model can produce reasonable aggregate
volatility. From the demand side, the standard deviation of investment is approximately 4 times
larger than that of output, similarly to the data. The volatility of consumption is smaller than the
volatility of output, but it is less volatile compared with the data. From the supply side, the change
in the output can be decomposed into the change in labor and the change in the measured Solow
residual. The standard deviation of labor is close to 60% of its data counterpart, which we think
is acceptable given that we choose a relatively low Frisch elasticity. Recall that there is no change
in aggregate TFP, the changes in the measured Solow residual are entirely endogenous, driven by
shoppers’ searching activities. We have chosen the matching elasticity µ = 0.4, which implies that
when total output increases by 1%, the measured Solow residual increases by 0.4%.

The model cannot generate the same persistence of aggregate variables as in the data. The basic
mechanism of the model is that the behavior output mirrors the behavior of forecast errors. In the
data, the forecast errors are only modest persistent, which implies that the persistent of output in
the model cannot be too high. Even though capital introduces additional persistence, this effect is
not strong enough to allow the model to achieve the same persistence as in the data. To match the
autocorrelation in the data, it seems necessary to include other more persistent real shocks.
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Table 5: Business Cycle Statistics

Data Baseline model RBC model Hetero-prior model

ξ shock ξ and TFP shcok TFP shock ξ shock

Std. deviation
Y 1.54 1.19 1.63 1.16 1.54
C 1.26 0.62 1.04 0.62 0.96
I 6.87 4.72 5.89 4.49 4.24
N 1.86 1.06 1.04 0.41 2.20
Z 1.24 0.47 1.03 0.88 —

LW1 4.87 2.39 2.19 — 2.71
LW2 3.96 1.79 1.59 — 1.76

Corr with Y
Y 1.00 1.00 1.00 1.00 1.00
C 0.88 0.99 0.91 0.99 0.99
I 0.91 0.99 0.89 0.99 0.99
N 0.86 1.00 0.90 1.00 1.00
Z 0.77 1.00 0.95 1.00 —

LW1 -0.84 -0.99 -0.93 — -1.00
LW2 -0.75 -0.99 -0.64 — -1.00

Autocorrelation
Y 0.87 0.42 0.64 0.74 0.70
C 0.88 0.45 0.70 0.75 0.71
I 0.83 0.42 0.56 0.73 0.69
N 0.92 0.42 0.56 0.74 0.69
Z 0.81 0.42 0.67 0.73 —

LW1 0.92 0.41 0.58 — 0.70
LW2 0.91 0.41 0.53 — 0.69

Note: All variables are HP-filtered logarithms of the original series. The standard deviations are multiplied by 100.
LW1 is the labor wage defined by the standard separable utility function U(C,N) = logC− N1+γ

1+γ
, and LW1 = log( Y

N
)−

log(CNγ). LW2 is the labor wage defined by the GHH utility function in this paper, and LW2 = log( Y
N
)− log(Nγ).

Comparison with RBC Model without goods market search Now we compare our baseline
model driven by confidence shocks with the RBC model driven only by TFP shocks. The RBC model
we use is the same as our quantitative model presented in Section 4.1 except for three differences:
(1)there is no competitive search in the goods market and hence no endogenous Solow residual;
(2)there are exogenous shocks to aggregate TFP; and (3) there is no information friction.
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We assume that the aggregate TFP shock follows an AR(1) process

zt = ρzzt−1 + ςt, (4.36)

where ςit ∼ N (0, σ2ς ). After subtracting a linear trend, we estimate process (4.38) and obtain
ρz = 0.96 and σς = 0.0078. With the aggregate TFP shock, the productivity of an individual
island’s follows

zit = ai + zt. (4.37)

That is, the productivity in each island equals the sum of the island specific productivity and the
aggregate TFP. Note that producers now can observe their trading partners’ productivity perfectly.

We set the same exogenously determined parameters as before and calibrate the endogenously de-
termined parameters to the same targets. As can be seen in Table 5, the two models have similar
performances in matching the volatility of consumption and investment. The model with confidence
shocks is more successful in accounting for the volatility of labor, a variable that the RBC model
has difficulty matching. The RBC model with TFP shocks outperforms the model with confidence
shocks in accounting for the Solow reisdual, but this is mainly due to the exogenously assumed TFP
shock process.

As emphasized by Chari, Kehoe, and McGrattan (2007), standard RBC models fail to capture the
pattern of labor wedges. In our model with confidence shocks, the labor wedge is highly counter-
cyclical. The reason is that agents increase or decrease their labor supply not because there is a real
change in labor productivity, but because they believe the demand from other islands is high thanks
to information frictions. The confidence shock creates a wedge between labor productivity and the
marginal rate of substitution.

Baseline model with both confidence shock and TFP shock The baseline model driven
only by confidence shocks does not generate enough persistence compared with data, and now we
add exogenous aggregate TFP shock into the baseline model. The aggregate TFP shock process also
follows

zt = ρzzt−1 + ςt, ςit ∼ N (0, σ2ς ), (4.38)

but because of the existence of goods market search frictions, the measured Solow residual will not
be the same as the exogenous aggregate TFP shock. We jointly estimate the TFP shock process
and the confidence shock process using Bayesian method, to match the real output growth rate
and the mean forecast error. The estimation results are shown in Table 6. Because goods market
frictions generate endogenous movement of Solow residual, the estimated standard deviation of TFP
innovation is smaller than that in the standard RBC model.
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Table 6: Estimated Parameters in the Baseline Model with Confidence and TFP shock

Prior Posterior

Distribution Mean Std Mode Mean 90% HPD

ση Inv Gamma 0.30 3.00 0.15 0.14 [0.12, 0.17]

σu Inv Gamma 0.30 3.00 0.38 0.38 [0.32, 0.43]

ρz Beta 0.50 0.20 0.25 0.93 [0.89, 0.96]

σς Inv Gamma 0.10 2.00 0.34 0.37 [0.31, 0.38]

Table 5 compares the business cycle statistics of baseline model with and without TFP shocks.
First, the model with both shocks improve the match of aggregate volatility. Second, the model
with both shocks brings the persistence closer to the data, which can be viewed as a weighted
average of the baseline model with only confidence shock and the RBC model with only TFP shock.
Figure 8 displays the fraction of volatility that can be attributed to confidence shocks in a variance
decomposition analysis. It can be seen that after adding TFP shocks, the confidence shock still plays
an important role in accounting for aggregate fluctuations, especially in the short to medium term.

Figure 8: Variance Decomposition: Fraction Due to Confidence Shocks
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Comparison with the Heterogeneous-Prior Formulation To compare with the heterogeneous-
prior formulation, we use the baseline model in Angeletos, Collard, and Dellas (2014).8 In this
formulation, the persistence and variance of output are independent of information frictions. With

8The details of the model specification can be found on our online appendix.
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the same confidence shock process, the persistence of various aggregate variables is sympathetically
higher than the one in our common-prior formulation. Unlike our common-prior model in which
there is an upper bound for the variance of output, one can obtain any variance of output with
heterogeneous-prior formulation. To capture the effects of information frictions, Angeletos, Collard,
and Dellas (2014) choose a relatively low persistence of the confidence shock. Our paper implements
this notion by solving the common-prior model and examining whether the forecast errors in the
model match the micro data.

5 Conclusion

In this paper, we study a business cycle model in which aggregate fluctuations are driven by confi-
dence shocks. Because of asymmetric information, higher order beliefs are crucial in shaping equi-
librium outcomes, and the infinite regress problem arises. We use our method developed in Huo
and Takayama (2014) to solve the infinite regress problem without approximation. It turns out that
the persistence aggregate output is increasing in the degree of information frictions and strategic
complementarity. Also, there is an upper bound for the volatility of output that can be obtained
by confidence shocks. In our quantitative model, we calibrate the parameters that determine in-
formation frictions to match micro-level data. We find that our model with confidence shocks can
match a number of salient features of business cycles. However, the confidence shock itself does not
generate enough persistence of aggregate variables. These results imply that confidence shocks or
other non-fundamental shocks could play an important role in accounting for business cycles, but
more persistent real shocks are also necessary. We believe the method and the insights discussed in
this paper can also be applied to a broad class of models with higher order beliefs.
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Appendix

A Proof of Theorems and Propositions

A.1 Proof of Proposition 2.1

Proof. Let j denote m(i, t). With the optimal output rule (2.8), successive iteration leads to

yit = α0ai + α1Eit [yjt]

= α0ai + α1Eit [α0aj + α1Ejt [yit]]

= α0ai + α0α1Eit [aj ] + α2
1EitEjt[yit]

= α0ai + α0α1Eit [aj ] + α2
1EitEjt[α0ai + α1Eit [yjt]]

= α0ai + α0α
2
1EitEjt[ai] + α0α1Eit [aj ] + α3

1EitEjtEit[yjt]

= α0ai + α0α
2
1EitEjt[ai] + α0α1Eit [aj ] + α0α

3
1EitEjtEit[aj ] + α4

1EitEjtEitEjt[yit]
...

= α0

∞∑
k=0

α2k
1 E2k

it [ai] + α0

∞∑
k=0

α2k+1
1 E2k+1

it [aj ].

Given that α1 ∈ (0, 1) and the modulus of the expectation is bounded from above, the summation in the last line is well
defined. The expectation operator Ekit stands for higher order beliefs and is given by

E0
it[ai] = ai

E1
it[aj ] = Eit[aj ]

Ekit[ai] = EitEjtEk−2
it [ai], for k = 2, 4, 6 . . .

Ekit[aj ] = EitEjtEk−2
it [aj ], for k = 3, 5, 7 . . .

We can derive Ekit[ai] or Ekit[aj ] in the following way recursively

Eit[aj ] = x1
it − Eit[ξt]

E2
jt[ai] = Eit[x1

jt − Ejt[ξt]] = ai + Eit[ξt]− EitEjt[ξt]

E3
it[aj ] = Eit[aj + Ejt[ξt]− EjtEit[ξt]] = Eit[aj ] + EitEjt[ξt]− EitEjtEit[ξt]

E4
it[ai] = Eit[Ejt[ai] + EjtEit[ξt]− EjtEitEjt[ξt]] = EitEjt[ai] + EitEjtEit[ξt]− EitEjtEitEjt[ξt]

More compactly,

Ekit[ai] = ai −
k∑

n=1

(−1)nEnit[ξt], for k = 0, 2, 4, 6 . . .

Ekit[aj ] = x1
it +

k∑
n=1

(−1)nEnit[ξt], for k = 1, 3, 5, 7 . . .
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The the output in island i is

yit = α0

∞∑
k=0

α2k
1 E2k

it [ai] + α0

∞∑
k=0

α2k+1
1 E2k+1

it [aj ]

=
α0

1− α2
1

ai +
α0α1

1− α2
1

x1
it −

α0

1 + α1

∞∑
k=1

αk1Ekit[ξt]

=
α0

1− α2
1

ai +
α0α1

1− α2
1

aj +
α0α1

1− α2
1

ξt −
α0

1 + α1

∞∑
k=1

αk1Ekit[ξt]

=
α0

1− α2
1

ai +
α0α1

1− α2
1

aj +
α0

1 + α1

∞∑
k=1

αk1(ξt − Ekit[ξt])

A.2 Proof of Theorem 1

Proof. The signal process in our simple economy can be written as

xit =

[
x1
it

x2
it

]
=

[
σa 0 1

1−ρL
0 σu

1
1−ρL

]âm(i,t)

ûit

η̂t

 = M̂(L)ŝit,

where we have normalized the shock process to be with unit variance. By the Canonical Factorization Theorem discussed
in Huo and Takayama (2014), the matrices for the fundamental representation are

B(z) =
1

1− ρz

[
1− τ1ρ+λτ2

τ1+τ2
z τ1ρ−λτ1

τ1+τ2
z

τ2ρ−λτ2
τ1+τ2

z 1− τ2ρ+λτ1
τ1+τ2

z

]
,

V −1 =
1

ρ(τ1 + τ2)

[
τ1ρ+λτ2

τ1
λ− ρ

λ− ρ τ2ρ+λτ1
τ2

]
,

where τ1 =
σ2
a

σ2
η
and τ2 =

σ2
u

σ2
η
. τ1 and τ2 are the relative variance of idiosyncratic shocks to the confidence shock.9 λ is given

by

λ =
1

2

τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ−

√(
τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ

)2

− 4

 .
In equilibrium

yit = α0ai + α1Eit[ym(i,t)t].

We are looking for policy rule

yit = haai + h1(L)x1
it + h2(L)x2

it

9Since we assume ση = 1, it follows that τ1 = σ2
a and τ2 = σ2

u.
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such that the equilibrium condition is satisfied. To predict ym(i,t)t, it is equivalent to forecast

ym(i,t)t = haam(i,t) + h1(L)

(
am(m(i,t),t) +

1

1− ρL
ηt

)
+ h2(L)

(
um(i,t)t +

1

1− ρL
ηt

)
.

Note that Eit[am(m(i,t),τ)] = ai for τ = t and Eit[am(m(i,t),τ)] = 0 for τ 6= t. Also, Eit[um(i,t)τ ] = 0 for all τ . The
Wiener-Hopf prediction formula gives

Eit[am(i,t)] =
1

1− λL

[
τ1ρ+τ2λ
ρ(τ1+τ2) − λL

τ1(λ−ρ)
ρ(τ1+τ2)

]′ [
x1
it

x2
it

]
,

Eit
[
h1(L) + h2(L)

1− ρL
ηt

]
=

1

1− λL

 λ
ρτ1(L−λ)

(
L[h1(L) + h2(L)]− λ[h1(λ) + h2(λ)] 1−ρL

1−ρλ

)
λ

ρτ2(L−λ)

(
L[h1(L) + h2(L)]− λ[h1(λ) + h2(λ)] 1−ρL

1−ρλ

)[x1
it

x2
it

]
.

Using the equilibrium condition, the following system has to be true

haai + h1(L)x1
it + h2(L)x2

it

= α0ai

+ α1ha

 τ1ρ+τ2λ

ρ(τ1+τ2)
−λL

1−λL
τ1(λ−ρ)
ρ(τ1+τ2)

1
1−λL

′ [x1
it

x2
it

]
+ α1h1(0)ai

+ α1

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+ α1

[
λ
ρτ1

z
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρz

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]

By the Reise-Fisher Theorem, the following system in the analytic function space has to be true

C(z)

[
h1(z)

h2(z)

]
= d[z, h1(λ) + h2(λ)]

where

C(z) =

1− α1
λ
ρτ1

z
(1−λz)(z−λ) −α1

λ
ρτ1

z
(1−λz)(z−λ)

−α1
λ
ρτ2

z
(1−λz)(z−λ) 1− α1

λ
ρτ2

z
(1−λz)(z−λ)



d(z) =

 haα1

τ1ρ+τ2λ

ρ(τ1+τ2)
−λz

1−λz − α1
λ2

ρτ1
1

1−ρλ
1−ρz

(1−λz)(z−λ) [h1(λ) + h2(λ)]

haα1
τ1(λ−ρ)
ρ(τ1+τ2)

1
1−λz − α1

λ2

ρτ2
1

1−ρλ
1−ρz

(1−λz)(z−λ) [h1(λ) + h2(λ)]


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To solve for h1(z) and h2(z), we use Cramer’s rule, which requires the determinant of C(z).

detC(z) = 1− α1

[
λ(τ1 + τ2)

ρτ1τ2

z

(1− λz)(z − λ)

]
=

ρτ1τ2(1− λz)(z − λ)− α1λ(τ1 + τ2)z

ρτ1τ2(1− λz)(z − λ)

=
−λ
[
z2 −

(
1
λ + λ− α1(τ1+τ2)

ρτ1τ2

)
z + 1

]
(1− λz)(z − λ)

.

The determinant of C(z) has two roots which are reciprocal for each other. The inside root is

ϑ =

(
1
ρ + ρ+ (1−α1)(τ1+τ2)

ρτ1τ2

)
−
√(

1
ρ + ρ+ (1−α1)(τ1+τ2)

ρτ1τ2

)2

− 4

2

Therefore

detC(z) =
λ
ϑ (z − ϑ)(1− ϑz)
(1− λz)(z − λ)

Using Cramer’s rule,

h1(z) =

det

d1(z) −α1
λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α1
λ
ρτ2

z
(1−λz)(z−λ)


detC(z)

To make sure h1(z) does not have poles in the unit circle, we need to choose h1(λ) + h2(λ) to remove the pole at ϑ, which
requires

det

d1(ϑ) −α1
λ
ρτ1

ϑ
(1−λϑ)(ϑ−λ)

d2(ϑ) 1− α1
λ
ρτ2

ϑ
(1−λϑ)(ϑ−λ)

 = 0

Note that evaluating z at ϑ, we have
d1(ϑ) + d2(ϑ) = 0.

We can then solve for h1(λ) + h2(λ) as a function of ha.

h1(λ) + h2(λ) =
ha(ϑ− λ)

(
λ
ρ − λϑ

)
λ2

ρ
1

1−ρλ (1− ρϑ)( 1
τ1

+ 1
τ2

)
=
ha(ϑ− λ)(1− ρλ)τ1τ2

λ(τ1 + τ2)
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Using this result, it follows that

det

d1(z) −α1
λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α1
λ
ρτ2

z
(1−λz)(z−λ)


=

1

(1− λz)(z − λ)
α1h

y
a(−λ)(z − ϑ)

(
z − ρτ1 + ϑτ2

(τ1 + τ2)ϑρ

)
.

Therefore,

h1(z) =
α1haϑ

(
ρτ1+ϑτ2

(τ1+τ2)ϑρ − z
)

1− ϑz
.

Similarly, we can solve for h2(z) as

h2(z) = −
α1ha

τ1(ρ−θ)
ρ(τ1+τ2)

1− ϑz
.

Finally, ha can be obtained by solving the following linear equation

ha = α0 + α1h1(0) = α0 + α2
1ha

ρτ1 + ϑτ2
(τ1 + τ2)ρ

=
α0

1− α2
1
ρτ1+ϑτ2
(τ1+τ2)ρ

.

A.3 Proof of Theorem 2

Proof. Let φ = {φa, φ1, φ2, φ3} ∈ R× `2 × `2 × `2. The norm of φ can de defined as

‖φ‖ =

√√√√σ2
aφ

2
a + σ2

a

∞∑
i=0

φ2
1i + σ2

u

∞∑
i=0

φ2
2i + σ2

η

∞∑
i=0

φ2
3i.

Given an arbitrary φ, let
Φ(L) = φ3(L)

Then the signal process is well defined.Let

yφit = φaai + φ1(L)am(i,t) + φ2(L)uit + φ3(L)ηt,

and the optimal linear forecast is given by

Eit[yφm(i,t)t] = φ̂aai + φ̂1(L)am(i,t) + φ̂2(L)uit + φ̂3(L)ηt.

If yφit = α1ai + α1Eit[yφm(i,t)t], then φ and Φ consist an equilibrium.

Define the operator T : R× `2 × `2 × `2 → R× `2 × `2 × `2 as

T (φ) = T ({φa, φ1, φ2, φ3}) = ({α0 + α1φ̂a, α1φ̂1, α1φ̂2, α1φ̂3}).
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The equilibrium is a fixed point of the operator T . If we can show that T is a contraction mapping, it is sufficient to prove
the theorem.

Let φ ∈ R× `2 × `2 × `2 and ψ ∈ R× `2 × `2 × `2. The distance between φ and ψ is

‖φ− ψ‖ =

√√√√σ2
a(φa − ψa)2 + σ2

a

∞∑
i=0

(φ1i − ψ1i)2 + σ2
u

∞∑
i=0

(φ2i − ψ2i)2 + σ2
η

∞∑
i=0

(φ3i − ψ3i)2.

The distance between T (φ) and T (ψ) is

‖T (φ)− T (ψ)‖ = |α1|

√√√√σ2
a(φ̂a − ψ̂a)2 + σ2

a

∞∑
i=0

(φ̂1i − ψ̂1i)2 + σ2
u

∞∑
i=0

(φ̂2i − ψ̂2i)2 + σ2
η

∞∑
i=0

(φ̂3i − ψ̂3i)2.

Note that the variance of a variable is always larger than the variance of its predictor

Var[yφ−ψm(i,t)t]

=Var[(φa − ψa)am(i,t) + (φ1(L)− ψ1(L))am(m(i,t),t) + (φ2(L)− ψ2(L))um(i,t)t + (φ3(L)− ψ3(L))ηt]

=σ2
a(φa − ψa)2 + σ2

a

∞∑
i=0

(φ1i − ψ1i)
2 + σ2

u

∞∑
i=0

(φ2i − ψ2i)
2 + σ2

η

∞∑
i=0

(φ3i − ψ3i)
2

=‖φ− ψ‖2

≥Var[Eit[yφ−ψjt ]]

=Var[(φ̂a − ψ̂a)ai + (φ̂1(L)− ψ̂1(L))am(i,t) + (φ̂2(L)− ψ̂2(L))uit + (φ̂3(L)− ψ̂3(L))ηt]

=σ2
a(φ̂a − ψ̂a)2 + σ2

a

∞∑
i=0

(φ̂1i − ψ̂1i)
2 + σ2

u

∞∑
i=0

(φ̂2i − ψ̂2i)
2 + σ2

η

∞∑
i=0

(φ̂3i − ψ̂3i)
2

=‖T (φ)− T (ψ)‖2 1

|α1|2
.

Therefore, ‖T (φ)−T (ψ)‖ ≤ α1‖φ−ψ‖ when α1 ∈ (0, 1). The operator T is a contraction mapping. There exists a unique
fixed point.

A.4 Proof of Proposition 4.1

Proof. Let m(i, t) be island i’s partner at time t and am(i,t) be its productivity. We want to guarantee that there exists
stochastic process such that, for all i ∈ [0, 1),

am(i,t) = ρam(i,t−1) + εt,

εt ∼ N (0, σ2)

where ρ ∈ (0, 1).

Without loss of generality, we can assume that at some t every island x ∈ [0, 1
2 ) meets an island m(x, t) = x+ 1

2 and vice

47



versa. Define a shift operator as

a⊕ b ≡ a− 1

2
+ b− 1

2

⌊
2(a− 1

2
+ b)

⌋
,

where bcc is the largest integer not exceeding c. Then, for all n ∈ Z+, for all x ∈ [0, 1
2 ), let

m(x, t+ n+ 1) = m(x, t+ n)⊕∆,

where ∆ ∈ R, and ∆ /∈ Q. As for x ∈ [ 1
2 , 1), vice versa. In a discrete analog with countably infinite islands, the next

partner island is obvious e.g. its neighbor to the left or right. Here, however, there is no naturally next number to x, and
hence we need to guarantee that there exists a step size ∆ such that, for all x ∈ [ 1

2 , 1),

ax⊕∆ − ρax ∼ N (0, σ2),

and similarly for x ∈ [0, 1
2 ). This is not an obvious task.

Now, there exists an Ornstein-Uhlenbeck process {Zx} obeying

dZx = −ρ̂Zx + σ̂dWx,

Cov[Zy, Zx] =
σ̂2

2ρ̂
exp(−ρ̂|y − x|),

where {Wx} is the Wiener process and its discrete analog (an AR(1) process) is written as

zn = κNzn−1 +
√

1− κ2
N ε̂n,

κN = exp(− ρ̂X
N

),

ε̂n ∼ N (0,
σ̂2

2ρ̂
),

where n = 1, ..., N and N is a large number10. Then, let

X =
1

2

∆ =
X

N
,

ρ = κN ,

σ = σ̂

√
∆(ρ2 − 1)

2 log ρ
.

It follows that

zn = ρzn−1 +
√

1− ρ2ε̂n,

= ρxn−1 + εn,

10Finch, Steven (2004) “Ornstein-Uhlenbeck Process, ” mimeo.
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and this can be interpreted as a discrete analog of ax. The corresponding Ornstein-Uhlenbeck process is rewritten as

dZx =
log ρ

∆
Zx + σ

√
2 log ρ

∆(ρ2 − 1)
dWx,

and hence

Cov[Zx+∆, Zx] =
ρσ2

1− ρ2
.

Note this is identical to the first auto-correlation of the discrete analog and Wx is normally distributed so is the sum of
innovation of Zx between x + ∆ and x. Therefore, if we assume ax = Zx− 1

2
for x ∈ [ 1

2 , 1) and similarly for x ∈ [0, 1
2 )

(with another identical stochastic process), the step size we want is ∆, given no wrap-around happens at x = 1, and the
wrap-around can be ignored when ∆→ 0.

49


	Introduction
	An Analytic Model with Higher Order Beliefs
	Model Setup
	Infinite Regress Problem
	Equilibrium
	Characterization
	Example

	Endogenous Information
	Quantitative Model
	Model
	Calibration and Estimation
	Results

	Conclusion
	Proof of Theorems and Propositions
	Proof of Proposition 2.1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 4.1


