Fostering Entrepreneurship: Backing Founders or Investors?

Thomas Hellmann¹ Veikko Thiele²

¹Saïd Business School, University of Oxford

²Smith School of Business, Queen's University

Work in Progress – Comments Welcome!

Research Seminar, Keio University

April 22, 2016

Motivation

- Rising interest in entrepreneurship globally
 - Based on key role for economic growth
- Silicon Valley envy
 - Silicon Fen, Silicon Desert
- Alternative views on reasons for success
 - Smart gutsy entrepreneurs
 - Experienced investor ecosystem
 - Many other...
- Role of government
 - Should it play an active role?
 - If so, what policies?

Research Questions

- What are the intertemporal dynamics of an entrepreneurial ecosystem?
- What is the importance of experienced investors?
- How do you foster an entrepreneurial ecosystem?
- Should government policies back founders or investors?

Intergenerational Dynamics

- Innovative start-ups need support
 - Half-baked ideas
 - Daunting entrepreneurial process
- Innovative start-ups difficult to support
 - Have domain expertise
 - Understand entrepreneurial process
- Who can help?
 - Experienced investors and advisers
 - Serial entrepreneurs

Famous First Checks

- Andy Bechtolsheim cofounder of SUN Microsystems (1982)
 - Invested \$100,000 in Google (1998), now worth over \$360B
 - ullet One of most successful angel investors, with net worth \sim \$1.7B
- Peter Thiel cofounder of PayPal (1998)
 - Invested \$500,000 in Facebook (2004) in exchange for 10.2% of the company
 - Initial valuation:

$$V = \frac{\text{investment}}{\text{equity share}} = \frac{\$500,000}{0.102} = \$4,901,960.78$$

- Max Levchin cofounder of PayPal (1998)
 - Invested \$1,000,000 in Yelp (2004), now worth over \$2.5B

Famous Venture Capitalists

- Andreessen Horowitz cofounded by Marc Andreessen and Ben Horowitz (2009)
 - Marc Andreessen founded Netscape (1994) and Opsware (1999)
 - Ben Horowitz cofounded Opsware (1999)
 - Assets under management: \$4B
 - Investments include: Skype, Twitter, Facebook, Groupon, Zynga, Airbnb, Jawbone, Foursquare, Instagram
- Sequoia Capital founded by Don Valentine (1972)
 - Don Valentine cofounded National Semiconductor (1959)
 - Assets under management: \$2.7B
 - Investments include: Apple, Google, Oracle, PayPal, Stripe, YouTube, Instagram, Yahoo!, WhatsApp, Skyscanner

Intergenerational Dynamics

Evaluation of Government Policies

- Current research focus: evaluation of individual programs
- Missing: Frameworks for overall policy design
- Relative effectiveness of policies
- Main types of policies:
 - Demand-side policies: backing entrepreneurs
 - Supply-side policies: backing investors

Examples of Supply-side Policies

- Tax based policies
 - US: State-level tax credits for angel investing
 - Canada: Labor-sponsored funds, BC Angel tax credit
 - UK: EIS/SEIS tax credits
- Funding based policies
 - US: SBIC Subordinated funding of VC funds
 - Canada: VCAP funds of funds initiative
 - UK: British Business Bank programs

Examples of Demand-side Policies

- R&D subsidies
 - US: SBIR
 - Canada: SR&ED
 - UK: R&D tax relief
- Start-up help
 - Start-up grants
 - Entrepreneurship training programs
 - Accelerator support programs

Key Insights from Model (1)

- Ecosystems have intertemporal dynamics
- Importance of role switching: entrepreneurs become investors
- Experience only created over time
- No guarantee that ecosystem will emerge: multiple equilibria
- Need critical mass of successful entrepreneurs that become investors to next generation

Key Insights (2): Effect of Policies

- Demand-side policies that 'back founders'
 - Increase the number of entrepreneurs & investors
 - Reduce valuations
- Supply-side policies that 'back investors'
 - Increase the number of entrepreneurs & investors
 - Increase valuations
- Benchmark model without intergenerational dynamics
 - Equivalence result: both policies equally efficient
- Full model with intergenerational dynamics
 - Benefit of supply-side policies: create wealthy entrepreneurs

Key Insights (3): Multiple Equilibria

- Steady-state policies
 - To increase level of entrepreneurship in high steady-state equilibrium
- Catalyst policies
 - To reach high steady-state equilibrium
 - Temporary policies
 - Unleash dynamic market forces
- International boundary policies
 - Two-country model with one high and one low steady state equilibrium
 - · Capital inflows from high to low
 - Brain drain from low to high

Prior Literatures

- Josh Lerner (2012): 'Boulevard of Broken Dreams'
- Cross-country evidence on government VC
 - Brander, Du, Egan and Hellmann (2010)
- Specific program evaluations
 - SBIR: Lerner, Gans and Stern
 - R&D: Zhao and Ziedonis
- Much broader literature on agglomeration, growth & taxation

Overview

- Base Model
 - Benchmark: no intergenerational dynamics
 - Dynamic model with angel investors
- Alternative Policies
 - Catalyst policies
 - International boundaries
 - Alternative steady-state policies
- Conclusion

Economic Environment

- Overlapping generations model with risk-neutral parties
 - Discount factor δ
- Measure of entrepreneurs (E) in each period: n_E
 - Cost of starting business: I ∈ [0, 1/µ_E], drawn from uniform distribution Γ_E(I)
- Each entrepreneurs lives for three periods:
 - Period 1: active founder (start-up)
 - Period 2: wealthy investor if start-up was successful
 - Period 3: retirement: consumption of entire wealth

Period 1: Active Entrepreneur

- Start-up requires investment $\phi > 0$
 - Provided by investor(s) in exchange for equity α
- Venture succeeds with probability ρ , generating payoff y > 0
- Venture fails with probability 1ρ , generating a zero payoff
 - Extension (TBD): ρ depends on entrepreneur's private effort

Period 2: Wealthy Investor

Wealth comes from successful start-up (previous period):

$$\mathbf{w} = (\mathbf{1} - \alpha_{-1}) \mathbf{y}$$

- Investment options:
 - (i) Invest $k_A \le w$ in start-ups \Rightarrow angel investor (A)
 - (ii) Invest remaining $w k_A$ in safe asset with return r > 0
- Angel investment requires essential skills
 - Successful founder develops skills with probability λ_A
- Proportional cost of angel investment: θk_A
 - $\theta \in [0, 1/\mu_I]$ drawn from uniform distribution $\Gamma_I(\theta)$
 - . E.g. legal costs, screening costs etc.

Capital Supply

- Perfect competition: investors take valuation $V = \phi/\alpha$ as given
- Types of investors:
 - Formerly successful entrepreneurs (angels)
 - Measure of angels: $n_A = \lambda_A \rho n_{E-1}$
 - Available wealth w for investment k_A is endogenous
 - General investors with total capital $G \equiv N\widetilde{w}$
 - ullet N is measure of general investors, each having wealth \widetilde{w}

Benchmark: No Intergenerational Dynamics

- Benchmark: only general investors ($\lambda_A = 0$)
- General investor expected utility:

$$EU_{G}(k_{G}) = \delta \rho \frac{k_{G}}{V} y - \theta k_{G} + \delta (1 + r) (\widetilde{w} - k_{G})$$

- Optimal investment decision:
 - $k_G^* = \widetilde{w}$ if $\theta \leq \widetilde{\theta} \Rightarrow$ invests entire wealth in start-ups
 - $k_G^* = 0$ if $\theta > \widetilde{\theta} \Rightarrow$ invests entire wealth in safe asset
- Marginal investor:

$$\widetilde{\theta} = \delta \left[\rho \frac{1}{V} y - (1+r) \right]$$

• Capital supply from general investors: $I_G = \Gamma_I(\widetilde{\theta})G$

Market Equilibrium

- Each entrepreneur retains equity stake (1α) , with $\alpha = \phi/V$
- Entrepreneur expected utility:

$$EU_E = \delta^2 \rho \left(1 - \frac{\phi}{V} \right) y (1 + r)$$

- Unique market equilibrium (n_E^*, V^*) defined by
 - (i) Entry condition for entrepreneurs:

$$n_E = \Gamma_E(EU_E)$$

(ii) Market clearing condition:

$$n_{E}\phi = \Gamma_{I}\left(\widetilde{\theta}\right)G$$

Demand-side Policy

• Entry-subsidy s_E for entrepreneurs

- Effects:
 - Increases number of start-ups: $dn_E^*/ds_E > 0$
 - Reduces valuations: dV*/ds_E < 0

Tax credit s_l for investors

• Effects:

- Increases number of start-ups: $dn_E^*/d(s_l\phi) > 0$
- Increases valuations: $dV^*/d(s_l\phi) > 0$

Demand-side vs. Supply-side Policies

Equivalence result: both policies are equally efficient, i.e.,

$$n_E^*(s_E) = n_E^*(s_I\phi) \quad \forall \ s_E = s_I\phi$$

• But: supply-side policy implies 'richer' entrepreneurs, i.e.,

$$V^*(s_E) < V^*(0) < V^*(s_I\phi) \quad \forall \ s_E = s_I\phi > 0$$

Dynamic Model with Angels

- Now: successful founders can become angel investors ($\lambda_A > 0$)
- Marginal angel:

$$\widehat{\theta} = \delta \left[\rho \frac{1}{V} y - (1+r) \right]$$

Capital supply from angels:

$$I_{A} = \underbrace{\Gamma_{I}(\widehat{\theta})\lambda_{A}\rho n_{E-1}}_{\text{# of angels}} \underbrace{\left(1 - \frac{\phi}{V_{-1}}\right)y}_{\text{wealth }(w)}$$

Entrepreneurs – expected utility:

$$EU_{E} \quad = \quad \rho \delta \underbrace{\left(1 - \frac{\phi}{V}\right) y}_{\text{TW}} \left[\lambda_{A} \left(\int_{0}^{\widehat{\theta}+1} \left(\delta \rho \frac{1}{V_{+1}} y - \theta \right) d\Gamma_{I}(\theta) + \int_{\widehat{\theta}+1}^{\widehat{\theta}} \delta(1 + r) d\Gamma_{I}(\theta) \right) + (1 - \lambda_{A}) \delta (1 + r) \right]$$

Market Equilibrium

- Dynamic market equilibrium defined by
 - (i) Entry condition for entrepreneurs:

$$n_E = \Gamma_E(EU_E)$$

(ii) Market clearing condition:

$$\underbrace{n_{E}\phi}_{\text{demand}} = \underbrace{\Gamma_{I}\left(\widehat{\theta}\right)\lambda_{A}\rho n_{E-1}\left(1-\frac{\phi}{V_{-1}}\right)y}_{\text{angel capital supply}} + \underbrace{\Gamma_{I}\left(\widehat{\theta}\right)G}_{\text{general capital supply}}$$

- Stable vs. unstable steady-state equilibria
- For now consider special case with G = 0

One Steady-State Equilibrium $(\phi > \widehat{\phi})$

Two Steady-State Equilibria ($\phi = \widehat{\phi}$)

Three Steady-State Equilibria $(\phi < \widehat{\phi})$

Dynamics with General Investors (G > 0)

Demand-side Policy

- Focus on stable steady-state equilibrium $n_E^*(V''') = n_{E-1}^*(V''')$
- Suppose government provides (permanent) entry subsidy $s_E>0$ to entrepreneurs
 - E.g. investment in education, access to accelerators & incubators
- New entry condition: $n_E(s_E) = \Gamma_E(EU_E + s_E)$
- Effects of s_E :
 - Increases number of start-ups: dn_E^{*}/ds_E > 0
 - Reduces valuations: dV*/ds_E < 0
 - ⇒ 'poorer' entrepreneurs ⇒ 'poorer' angels
- Total cost for government: $C(s_E) = \frac{1}{1-\delta} s_E n_E^*(s_E)$

- Suppose government provides tax credit $s_l k > 0$ to investors
 - E.g. angel tax credit in British Columbia
- New dynamic market equilibrium defined by
 - (i) Entry condition for entrepreneurs:

$$n_E = \Gamma_E(EU_E(s_l))$$

(ii) Market clearing condition:

$$n_{E}\phi = \Gamma_{I}\left(\widehat{\theta} + s_{I}\right)\left[\lambda_{A}\rho n_{E-1}\left(1 - \frac{\phi}{V_{-1}}\right)y + G\right]$$

- Tax credit affects demand- and supply-side!
- Total cost for government: $C(s_l) = \frac{1}{1-\delta} s_l \phi n_E^*(s_l)$

- Effects of $s_l \phi$:
 - Increases number of start-ups: $dn_E^*/d(s_l\phi) > 0$
 - Leads to higher valuations: $dV^*/d(s_l\phi) > 0$ if

$$\mu_{l}^{2}\left(\widehat{\theta}+s_{l}\right)^{3}G<\phi\frac{1}{\lambda_{A}}\mu_{E}\rho\delta\left(1-\frac{\phi}{V}\right)y\left[1+\frac{1}{2}\lambda_{A}\mu_{l}\left(\widehat{\theta}+s_{l}\right)^{2}\right]^{2}$$

- ⇒ 'richer' entrepreneurs ⇒ 'richer' angels
- Two opposite effects on valuation:
 - $s_I \phi > 0$ implies more capital supply $\Rightarrow V \uparrow$
 - $s_l \phi > 0$ makes future angel investment more attractive \Rightarrow more E-entry \Rightarrow $V \downarrow$

Demand-side vs. Supply-side Policies

- Demand-side policy (s_E) : $n_E^* \uparrow$ and $V^* \downarrow$
- Supply-side policy (s_l) : $n_E^* \uparrow$ and, in general, $V^* \uparrow$
- ⇒ Which policy is more efficient?
 - Without dynamics ($\lambda_A = 0$): both are equally efficient, i.e.,

$$n_E^*(s_E, \lambda_A = 0) = n_E^*(s_I \phi, \lambda_A = 0) \quad \forall \ s_E = s_I \phi$$

- With dynamics ($\lambda_A > 0$): when $dV^*/d(s_I\phi) > 0$, supply-side policy is more efficient
 - Proof still incomplete!
- Dynamic feedback loop: supporting investors creates wealthier entrepreneurs ⇒ improves future funding supply
- Lower cost to achieve same outcome: $C(\overline{n}_E(s_I\phi)) < C(\overline{n}_E(s_E))$

Alternative Policies

- Policies that affect equilibrium choice
 - Catalyst policies
- International boundaries
 - Capital inflow
 - Brain drain
- Alternative steady-state policies
 - Matching funds
 - Capital gains

Catalyst Policies

- Suppose there are two stable steady-state equilibria: n_E' and n_E'''
 - Unstable steady-state equilibrium: $n_E^{\prime\prime}$, with $n_E^{\prime} < n_E^{\prime\prime\prime} < n_E^{\prime\prime\prime}$
- Temporary policies:
 - If $n_E^* < n_E''$: 'push market' to n_E''
 - \Rightarrow use dynamic market forces to reach $n_E^{\prime\prime\prime}$
 - If $n_E^* > n_E''$: boost dynamic adjustment to n_E'''

Catalyst Policies

Two-Country Model

Capital Inflow - Country B

Low equilibrium supported by foreign investors

Brain Drain – No General Investors (G = 0)

Brain Drain – Few General Investors (*G* small)

Brain Drain – Many General Investors (*G* large)

Alternative Policies – Matching Funds

- Suppose government invests η for each dollar invested in start-ups
- New market clearing condition:

$$n_{E}\phi = (1 + \eta) \Gamma_{I}(\widehat{\theta}) \left[\lambda_{A}\rho n_{E-1} \left(1 - \frac{\phi}{V_{-1}} \right) y + G \right]$$

- Focus on high steady-state equilibrium
- Effects of η :
 - Increases number of start-ups: $dn_E^*/d\eta > 0$
 - Increases valuations: $dV^*/d\eta > 0$
- Matching funds behave like investor tax credits!
 - Implies wealthier entrepreneurs ⇒ more future angel supply

Alternative Policies – Capital Gains Tax

- ullet Suppose government taxes capital gains at rate au
- Marginal investor:

$$\widehat{\theta}(\tau) = \delta (1 - \tau) \left[\rho \frac{1}{V} y - (1 + r) \right]$$

- Effect of reducing τ:
 - Increases number of start-ups: $dn_E^*/d au < 0$
 - Leads to higher valuations: $dV^*/d\tau < 0$
 - Messy condition needs more work...
- Similar effect as investor tax credit
 - But: part of tax relief goes into safe asset ⇒ less effective

Conclusion

- Ecosystem model where entrepreneurs become investors
 - Role of entrepreneurial wealth and valuations
- Framework for examining demand- versus supply-side policies
 - Equivalence in static model
 - Valuation effects in dynamic ecosystems model
- Future research
 - Complete current analysis
 - Alternative policies
 - Alternative ecosystem channels