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1 Introduction

Bubble-like price movements have recurred in financial markets throughout history. Many

of them followed a common pattern: upswings, triggered by technological innovation, are

eventually followed by dramatic downswings, leading to persistent economic downturns.1

The 2007–2009 financial crisis is no exception: the rise in the U.S. housing prices, fueled

by financial innovation (i.e., securitization), and the subsequent reversal are the key fac-

tors behind the global turmoil. Given their serious impacts on the real economy, it is

important to understand the mechanism of asset price swings. Especially, studying the

entire cycle—emergence of upswing, its overshoot, and eventual reversal—coherently in a

unified framework appears to be a critical task.

To tackle this problem, we develop a fully rational, dynamic asset-market equilibrium

model with delegated investment. We consider a market for a new and “innovative” asset,

whose average payoff is as-yet-unknown and subject to learning. Investors delegate their

investment to financial experts. We highlight the roles of (1) moral hazard in delegated

investment, and (2) investors’ learning about the asset’s average payoff. Despite full ratio-

nality of long-lived agents, the combination of these two elements generates endogenous

bubble-like price dynamics: gradual upswing, overshoot, and eventual downswing.

Specifically, we consider a discrete time model with finite horizon. There are one

risky asset and one riskless asset. Initially, the agents have large uncertainty about the

risky asset’s average payoff. Over time, they learn about it based on the asset’s payoff

history. This asset is interpreted as a financial asset backed by an unprecedented and/or

hard-to-understand technology—such as Internet stocks, biotech stocks, or sophisticated

structured products—whose underlying profitability is initially unknown to most investors

due to the lack of track record and background knowledge. There is a continuum of

investment funds, each with a financial expert and an investor. The investor can invest

1See Brunnermeier and Oehmke (2013) for a historical overview of bubbles and crises.
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directly in the riskless asset. However, investing in the risky asset requires that she

submits to the expert a purchase order that specifies the number of shares of the asset to

be purchased on her behalf. Each period, the expert earns a delegation fee proportional

to the order.

There are two items the investor cannot directly observe. First, the expert’s actual

purchase of the asset is unobservable. The expert can secretly renege on the investor’s

purchase order (at a cost) and boost the asset purchase by using leverage. An example

of such a fund can be a hedge fund adopting a flexible trading strategy that is not

communicated to investors. Second, although fund returns are (obviously) observable,

the periodic payoffs of the risky asset in the fund portfolio are unobservable.2 These

two layers of unobservability create a signal-jamming problem akin to Sato (2014). The

investor tries to learn about the risky asset’s average payoff from the observed fund returns:

the higher the fund returns, the better the investor’s assessment of the risky asset’s average

payoff, hence the larger her purchase orders (and thus fees). So the expert is inclined to

boost the expected fund return by secretly levering up and increasing the purchase of

the risky asset, inflicting excessive risk on the investor. The investor is not fooled in

equilibrium because she is rational; nevertheless, the expert still reneges and levers up

since otherwise his fund’s future prospect would be underestimated by the investor who

believes that the expert does renege secretly. The critical difference from Sato (2014)—

which is silent about the dynamic patterns of asset prices and trades—is that the expert’s

signal-jamming behavior and the investors’ optimal investments both change over time

according to the progress of learning about the innovative asset. This feature allows us

to study nonmonotonically time-varying equilibrium prices and trades.

In equilibrium, the risky asset’s price path exhibits a bubble-like pattern on average:

2An alternative—and perhaps more realistic—assumption yielding exactly the same results is that
each investor can directly observe the asset’s payoff by incurring a small effort cost ε > 0. Even if ε is very
close to 0, it would be optimal for the investors to not observe the payoff directly because, in equilibrium,
they learn it perfectly and costlessly from the fund return anyway.
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it rises gradually, surpasses the benchmark level that would be obtained in the case in

which the asset’s average payoff is fully known, and eventually falls and converges to the

benchmark level over time. Intuitively, these swings are caused by the combination of the

following two effects that have opposing pressures on the asset’s aggregate demand and

thus on its market-clearing price.

1. Learning effect. Initially, the investors’ estimate of the asset’s average payoff has low

precision. So, being risk averse, they hesitate to purchase the asset. The associated

demand for the asset is weak; thus, ceteris paribus, the initial price is low. But, as

the investors’ learning progresses over time, the precision of their estimate increases.

This leads them to increase purchase orders over time, having an upward pressure

on the asset’s demand and thus its price.

2. Leverage effect. Initially, the investors’ estimate of the asset’s average payoff has

low precision and hence is susceptible to the experts’ manipulation. This leads

the experts to renege on purchase orders and choose high leverage. The associated

aggregate demand is high; so, ceteris paribus, the initial price is high. But, as the

investors’ learning progresses, their estimate becomes precise and less subject to

manipulation. Accordingly, the experts deleverage over time, having a downward

pressure on the asset’s demand and hence its price.

In early periods, where the investors still have large uncertainty about the asset, the

learning effect dominates the leverage effect, initiating upswing in the price. On average,

the price overshoots the level of the benchmark case, in which neither of the above effects is

at work, because the experts’ use of leverage pushes up the asset’s aggregate demand and

its market-clearing price. As investors’ learning progresses, the learning effect weakens

and is dominated by the leverage effect, leading to downswing of the price. At some point,

the investors’ estimate becomes so precise that it is no longer worthwhile for the experts
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to attempt to manipulate it. The leverage effect disappears, and the price converges to

the benchmark level over time.

The up-and-down swings are pronounced if the investors’ initial estimate has low pre-

cision. This is because for these swings to occur we need both the learning and leverage

effects to be strong, which is the case when the investors’ estimate has very low precision.

Thus, the model predicts that swings and overshooting of prices are more pronounced

for new and innovative assets with highly uncertain payoff characteristics than for old-

economy assets already familiar in the market. This prediction is consistent with the

historical observation that bubble-like price movements tend to arise in times of techno-

logical change (e.g., railroads or the Internet) or financial innovation (e.g., securitization),

as noted by Brunnermeier and Oehmke (2013).

To study the evolution of funds’ holdings and trading volume over time, we extend the

model to accommodate two types of funds: hedge funds (HFs), which can secretly renege

on the investors’ orders, and other funds (OFs), which cannot do so due to statutory

disclosure requirements. Despite the same preferences and the same asset valuation,

these funds trade the asset over time: the OFs serve as trading counterparties to the HFs

who adjust holdings according to the evolution of the learning and leverage effects. We

show that the HFs tend to increase their holdings in the price upturn and then decrease

them in the downturn, consistent with the empirical finding of Brunnermeier and Nagel

(2004) that hedge funds were “riding” the 1998–2000 dot-com bubble. In contrast, the

OFs’ holdings are negatively related to those of the HFs over time because they are

counterparties to each other. This is consistent with Ang, Gorovyy, and van Inwegen

(2011) who document that hedge funds’ leverage was counter-cyclical to that of other

financial intermediaries during the 2007–2009 crisis.

Our paper is related to the theoretical literature on price anomalies such as bubbles

or momentum and reversal. Vayanos and Woolley (2013) also study momentum and re-
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versal in a model with delegated investment. As noted in their paper, however, delegated

investment is not essential for momentum and reversal to arise in Vayanos and Wool-

ley (2013): the driving force is delay in the reaction of fund flows to returns. We do

not assume delays in agents’ reactions; in our model, delegation and the associated moral

hazard problem are critical. The possibility that experts attempt to manipulate investors’

beliefs by deviating from their equilibrium strategies—which Vayanos and Woolley (2013)

exclude by assumption—is the key driver of price swings in our model. Like our paper,

Pastor and Veronesi (2009) develop a fully rational model and obtain bubble-like patterns

in the prices of “new-economy” assets. The key ingredients of their model are a time lag

between the introduction and adoption of a new technology and investors’ learning during

that lag. While investors’ learning plays a central role also in our model, we do not distin-

guish the introduction and adoption of a new technology; our results are driven by agency

relationship in delegated investment in which investors’ learning is potentially influenced

by experts. DeMarzo, Kaniel, and Kremer (2007) also study bubbles caused by techno-

logical innovation. While their model is static and focuses on bubbles in real investment,

our model studies dynamic bubble-like pattens—both upswings and reversals—in security

prices. Hong, Scheinkman, and Xiong (2003) is related in that they also study bubbles

stemming from the investor-expert relationship. They focus on the emergence of a bubble

and do not analyze its burst; moreover, their results rely on the assumption that some

investors are naive. In contrast, our purpose is to explain both upswing and downswing

of asset prices in a fully rational framework. Doblas-Madrid (2012) is related to our paper

as he also studies the endogenous price upswing and reversal. He extends the framework

of Abreu and Brunnermeier (2003) by endogeneizing the growing bubble price, with a key

assumption that investors’ endowments grow over time. In contrast, in our model the

upswing and overshooting are generated by investors’ learning and experts’ moral hazard.

Some theoretical works attribute price overshooting to moral hazard problems such
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as risk shifting in debt contracts (Allen and Gorton 1993; Allen and Gale 2000; Barlevy

2013). While we also highlight moral hazard, our key mechanism is not risk shifting but

signal jamming. Methodologically, our model is closely related to Sato (2014), which

also features signal jamming associated with portfolio delegation. However, the economic

questions and results are different. Sato (2014) studies the implications of opacity in

financial markets for the stationary level of asset prices. By contrast, we study up-and-

down dynamics of innovative assets’ prices, as well as the evolution of funds’ holdings and

trading volume behind such price swings. All of these are absent in Sato (2014).3

In recent years, a theoretical literature studying the equilibrium implications of dele-

gated portfolio management has been growing (Shleifer and Vishny 1997; Berk and Green

2004; Vayanos 2004; Cuoco and Kaniel 2011; Guerrieri and Kondor 2012; He and Krishna-

murthy 2012, 2013; Malliaris and Yan 2012; Kaniel and Kondor 2013). To our knowledge,

bubble-like price dynamics—upswing, overshoot, and reversal—are not yet discussed in

this literature. Our paper contributes to this literature by showing that, despite agents’

full rationality, portfolio delegation and the associated moral hazard generate such pat-

terns of equilibrium asset prices.4

The paper proceeds as follows. Section 2 presents the model. Section 3 characterizes

the equilibrium. Section 4 studies the price dynamics. Section 5 studies the evolution of

holdings and trading volume. Section 6 concludes. All proofs are in the Appendix.

3Moreover, our modeling approach is more standard and general than that of Sato (2014). While Sato
(2014) assumes overlapping generations of short-lived risk-neutral investors whose decisions stem from
a decreasing-returns-to-scale assumption à la Berk and Green (2004), we consider a standard dynamic
programming of long-lived risk-averse investors.

4Our paper is also related to the literature on career concerns and asset prices (Dasgupta and Prat
2008; Guerrieri and Kondor 2012; Dasgupta, Prat, and Verardo 2011). In these papers, fund managers
seek to influence investor beliefs about their ability. In our paper, experts try to influence investor
expectations about the innovative asset’s future prospects.
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2 Model

Time t is discrete and finite: t = 0, ..., T + 1. Period T is the last period in which the

market is open and agents make decisions. In period T + 1, the agents just consume their

entire wealth. There is a single risky asset and a riskless asset. The riskless asset has an

infinitely elastic supply at an exogenous rate of return r > 0 and is freely accessible to all

agents. There are two classes of agents: investors and experts. The investors can purchase

the risky asset only through investment funds run by the experts. Each investor provides

capital to a fund, specifying the number of shares of the risky asset to be purchased on

her behalf. The expert can secretly lever up the investor capital and buy a larger number

of shares of the asset than asked by the investor. The experts’ leverage, the investors’

demand for the risky asset, and the asset’s price are determined in equilibrium.

2.1 Risky asset

In period t = 1, 2, ..., T + 1, the risky asset yields a per-share payoff δt = δ̄ + ut. The

transitory component ut is i.i.d. across time, normally distributed with mean 0 and vari-

ance 1/ηu, and unobservable to anyone. The average payoff δ̄ is a constant drawn by

nature in period 0 from a normal distribution with mean δ̂0 and variance 1/η0. The

agents do not observe δ̄ directly, and learn about it over time based on the payoff history

Ht ≡ {δτ}tτ=1. We denote the period-t estimate of δ̄ given Ht by δ̂t ≡ E[δ̄|Ht]. Parameter

η0 measures (the inverse of) the risky asset’s “innovativeness.” The asset with small η0 is

interpreted as an innovative asset whose cash flow is backed by an unprecedented and/or

hard-to-understand technology—such as Internet stocks, biotech stocks, or sophisticated

structured products—because most market participants initially have large uncertainty

about such an asset’s average payoff due to the lack of track record and background

knowledge. The investors cannot directly observe the realized payoff δt for all t, whereas
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the experts can do so. Although it is unobservable, as shown later, in equilibrium the

investors learn δt perfectly from the observed fund return.5

In period t = 0, ..., T , the asset is traded in the market at a publicly observable

market-clearing price, Pt. The asset’s supply S > 0 is constant over time. Let

Rt+1 ≡ δt+1 + Pt+1 − (1 + r)Pt (2.1)

denote the excess return on the risky asset per share. We denote the expected excess

return conditional on Ht by R̂t+1 ≡ E[Rt+1|Ht].

2.2 Delegated investment

There is a continuum with mass one of investment funds, each indexed by i ∈ [0, 1]. Fund

i consists of a risk-neutral expert and a risk-averse investor, who both live from t = 0 to

t = T + 1. For simplicity, we assume that investor i can neither invest in nor observe

activities in the other funds. This assumption eliminates the possibility that an expert

attracts an infinitely large amount of capital to have price impact in the asset market.

In each period t = 0, ..., T , investor i submits to expert i a purchase order, which

specifies the number of shares of the risky asset, yi,t ∈ [0,∞), that the expert is supposed

to purchase on behalf of the investor. On top of the capital needed for this purchase (Ptyi,t

dollars), the investor pays φyi,t dollars to the expert as the delegation fee, where the fee

rate φ > 0 is an exogenous parameter. The assumption of a proportionate fee is consistent

with Deli (2002), who finds that the compensation contracts in most investment funds

include a fixed percentage of fund assets.

After receiving capital and fee from the investor, the expert buys the asset. Despite

5As noted in footnote 2, we could alternatively assume that each investor can observe δt with a very
small effort cost ε > 0. However small ε is, the investors would choose not to observe δt because they
learn it perfectly and costlessly from the fund return.
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being asked to purchase only yi,t shares, the expert can renege and buy (1 + ξi,t)yi,t

shares of the asset, where ξi,t ∈ [0,∞) is the expert’s choice variable. We assume ξi,t is

unobservable to the investor and the expert cannot commit to his choice of ξi,t. Since the

expert has zero personal wealth, choosing ξi,t > 0 requires borrowing funds from outside

lenders. Thus, ξi,t is also a measure of the fund’s leverage. To choose ξi,t, the expert

incurs a nonpecuniary cost of reneging, κξi,t with κ > 0. This represents the cost of effort

to “cook the books” and/or manipulate the disclosure documents to make them look like

the expert adhered to the investor’s purchase order.6

In period t+ 1, the fund’s period-t investment yields the total proceeds of

Qi,t+1 ≡ Rt+1(1 + ξi,t)yi,t + (1 + r)Ptyi,t (2.2)

dollars.7 The investor can directly observe Qi,t+1.

2.3 Maximization problems

Each expert maximizes his expected lifetime utility, where his within-period utility is the

difference between the fee and the cost of reneging. That is, expert i’s problem in period

t = 0, ..., T , denoted by PEi,t, is to choose ξi,t ∈ [0,∞) to maximize

E

[
T−t∑
τ=0

βτ (φyi,t+τ − κξi,t+τ )
∣∣∣∣FEi,t

]
, (2.3)

6It is not important that we allow only nonnegative ξi,t. The reason for assuming ξi,t ≥ 0 is that
it is compatible with the proportional reneging cost, κξi,t. If we allow ξi,t < 0, we would need a cost
function of the form κ|ξi,t|. This would reduce tractability of analysis while the results remain unchanged
because, in equilibrium, the experts may choose ξi,t > 0 but never ξi,t < 0. An alternative cost function
accommodating ξi,t < 0 is a quadratic form, κξ2i,t/2. With this specification, the experts still do not
choose ξi,t < 0 in equilibrium and the model yields very similar results.

7Qi,t+1 is computed as follows. In period t, the investor invests Ptyi,t dollars in the fund. The
expert borrows Ptξi,tyi,t dollars from outside lenders and invests Pt(1 + ξi,t)yi,t dollars in the risky asset
(i.e., buys (1 + ξi,t)yi,t shares). In period t + 1, the fund receives δt+1(1 + ξi,t)yi,t dollars of payoff
from the asset, and obtains Pt+1(1 + ξi,t)yi,t dollars from selling the asset in the market. The expert
pays back (1 + r)Ptξi,tyi,t dollars to the lenders. Thus, the total proceeds from the fund’s investment is
Qi,t+1 = δt+1(1 + ξi,t)yi,t + Pt+1(1 + ξi,t)yi,t − (1 + r)Ptξi,tyi,t = Rt+1(1 + ξi,t)yi,t + (1 + r)Ptyi,t.
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where β ∈ (0, 1) is a discount factor common for all agents, and FEi,t = {Qi,τ , yi,τ , ξi,τ , Pτ , δτ :

τ ≤ t} is his information set in period t.

Investor i’s problem in period t = 0, ..., T , denoted by PIi,t, is to choose purchase order

yi,t and consumption ci,t to maximize her expected lifetime utility

−E

[
T−t∑
τ=0

βτ exp (−νci,t+τ )
∣∣∣∣F Ii,t

]
, (2.4)

where ν > 0 is the coefficient of absolute risk aversion and F Ii,t = {Qi,τ , yi,τ , Pτ : τ ≤ t} is

her information set in period t, subject to her dynamic budget constraint

Wi,t+1 = Qi,t+1 − φyi,t + (1 + r)(Wi,t − ci,t − Ptyi,t), (2.5)

where Wi,t is her wealth in period t. Constraint (2.5) states that the investor’s next-period

wealth is the sum of the proceeds from the delegated investment net of fee and her own

investment in the riskless asset. In the final period t = T + 1, in which there is no market

for the asset, she simply consumes her entire wealth: ci,T+1 = Wi,T+1.

2.4 Definition of equilibrium

The equilibrium consists of the price Pt, the investor’s purchase order yi,t, and the expert’s

leverage ξi,t for i ∈ [0, 1] such that, for all t = 0, ..., T ,

1. given Pt and the others’ actions, investor i solves PIi,t,

2. given Pt and the others’ actions, expert i solves PEi,t, and

3. the risky asset’s market clears:

∫ 1

0

(1 + ξi,t)yi,t di = S. (2.6)
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3 Analysis

This section characterizes the equilibrium of the model. We look for a linear equilibrium

such that Pt is linear in δ̂t. We follow the following steps to solve the model.

1. Characterize the evolution of the agents’ estimates of δ̄ (Section 3.1).

2. Conjecture a linear form of the equilibrium price. Also conjecture that the sequence

of each expert’s optimal leverage {ξ∗τ}Tτ=0 ≥ 0 is deterministic (Section 3.2).

3. Specify the investors’ out-of-equilibrium beliefs (Section 3.3).

4. Solve each investor’s problem (Section 3.4) for her optimal purchase order yi,t.

5. Solve each expert’s problem (Section 3.5). Verify that {ξ∗τ}Tτ=0 is indeed deterministic

as conjectured in step 2, and obtain ξ∗t as a function of R̂t+1 (Eq.(3.16)).

6. Impose market clearing (Section 3.6) and obtain R̂t+1 as a function of ξ∗t (Eq.(3.17)).

7. Solve Eqs. (3.16) and (3.17) for two unknowns ξ∗t and R̂t+1 (Section 3.6; Figure 1).

Verify that the resulting equilibrium price is indeed linear as conjectured in step 2.

3.1 Evolution of estimates

Since δ̄ is unobservable to anyone, all agents learn about it over time by Kalman filtering.

The experts, who observe Ht directly, update their period-t estimate δ̂t by

δ̂t = λtδ̂t−1 + (1− λt)δt, (3.1)

with the updating factor λt ∈ (0, 1) that increases over time deterministically according

to λt+1 = 1/(2− λt) from its initial value λ1 = η0/(η0 + ηu) (see Appendix A).
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The investors, who cannot observe Ht directly, estimate δ̄ based on the Ht that they

infer from the available information. LetHI
i,t ≡ {δIi,τ}tτ=1 denote the payoff history inferred

by investor i, where δIi,t is the value of δt inferred by her. Her period-t estimate of δ̄ is

denoted by δ̂Ii,t ≡ E[δ̄|F Ii,t], and her conditional expectation of the excess return is denoted

by R̂I
i,t+1 ≡ E[Rt+1|F Ii,t]. If she infers that δt is δIi,t, she updates δ̂Ii,t as

δ̂Ii,t = λtδ̂
I
i,t−1 + (1− λt)δIi,t, (3.2)

where δ̂Ii,0 = δ̂0 is exogenously given, and the updating factor λt is the same as that of

(3.1) (see Appendix A).

Importantly, the investor’s learning (3.2) potentially departs from (3.1) on off-the-

equilibrium paths because the experts can manipulate the investors’ inference by secretly

deviating from their equilibrium strategy (i.e., choosing ξi,t that is not anticipated by

the investors). However, on the equilibrium path the investors correctly anticipate ξi,t;

consequently HI
i,t = Ht holds, and thus (3.2) coincides with (3.1).

3.2 Conjectures

First, we propose and later verify the following conjecture about the equilibrium price.

Conjecture 1 (Price). The equilibrium price for t = 0, ..., T is of the form

Pt = atδ̂
I
t − bt with δ̂It ≡

∫ 1

0

δ̂Ii,t di, (3.3)

where

at ≡
T+1−t∑
τ=1

(
1

1 + r

)τ
(3.4)

is a riskless discount factor and {bτ}Tτ=0 > 0 is a deterministic sequence.

The first term of (3.3), atδ̂
I
t , is the present value of the average of all the investors’
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expectations about the asset’s future payoffs discounted at the riskless rate. The second

term, bt, involves risk premium. This term is time-varying because the premium demanded

by the investors changes together with their learning about δ̄. In the last period t = T+1,

the agents cannot sell the asset because there is no market; so we set PT+1 ≡ 0 (i.e.,

aT+1 ≡ 0 and bT+1 ≡ 0).

Second, we conjecture and later verify the expert’s equilibrium strategy as follows.

Conjecture 2 (Expert’s optimal strategy). There exists a deterministic sequence {ξ∗τ}Tτ=0 ≥

0 such that, for all i ∈ [0, 1], expert i optimally chooses ξi,t = ξ∗t in period t = 0, ..., T on

the equilibrium path and also on off-the-equilibrium paths where δ̂Ii,t 6= δ̂t.

Conjecture 2 states that the expert’s optimal leverage in each period t is deterministic,

irrespective of his potential deviations in the past, {ξi,τ}t−1
τ=0.

3.3 Out-of-equilibrium beliefs

As shown later, all investors infer Ht correctly on the equilibrium path and therefore

have the same estimate of δ̄. So, on the equilibrium path, each investor observes Pt and

confirms that the other investors’ average estimate δ̂It = Pt+bt
at

(computed from (3.3)) is the

same as her estimate based on her inferred payoff history HI
i,t. That is, E[δ̄|HI

i,t] = Pt+bt
at

for all i and t on the equilibrium path. However, on off-the-equilibrium paths where some

agents deviate from their equilibrium strategies, an investor may observe Pt and realize

that her estimate E[δ̄|HI
i,t] does not equal Pt+bt

at
. For such a case, we specify the following

out-of-equilibrium belief of investors.

If E[δ̄|HI
i,t] 6=

Pt + bt
at

then δ̂Ii,t = E[δ̄|HI
i,t]. (3.5)

That is, an investor whose estimate (based on her inferred history HI
i,t) disagrees with

the observed price Pt would stick with her own estimate.
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Remark (Comparison with REE models). One may argue that (3.5) is implausible

because, based on the rational-expectations equilibrium (REE) logic, each investor should

revise her belief in favor of the price. Such an argument does not apply to our model,

as the model setting and the nature of analysis are fundamentally different from those of

the standard REE models. In asymmetric information models à la Grossman and Stiglitz

(1980), uninformed investors should indeed revise their estimates in favor of the price

because it reflects informed investors’ superior signals. Also, in differential information

models à la Grossman (1976), investors should revise their estimates in favor of the price

because it aggregates all investors’ signals and smooths out their idiosyncratic noises. In

contrast, in our model, the price need not convey information superior to each investor’s

because no investor has information superior to other investors’ and no one has private

information that would be collectively useful. That is, each investor has no reason to

believe that the others’ average estimate is more informative than her own. On the

equilibrium path, all investors infer the same payoff history Ht and thus do not learn new

information from Pt: each of them just confirms that her own estimate E[δ̄|HI
i,t] is equal

to Pt+bt
at

(which equals δ̂It on the equilibrium path). If E[δ̄|HI
i,t] 6= Pt+bt

at
on an off-the-

equilibrium path, she may potentially attribute the discrepancy to the following events:

(1) her estimate E[δ̄|HI
i,t] is biased because expert i has deviated from the equilibrium

strategy, (2) the others’ average estimate δ̂It is biased because some other experts have

deviated, (3) Pt does not reflect δ̂It in the form of (3.3) because some other investors

have deviated, or a combination of these three. The investor cannot conduct a statistical

inference as to which of these three events is more likely than the others, because all of

them are supposed to occur with probability zero. The out-of-equilibrium belief (3.5)

states that each investor attributes the discrepancy to (2) or (3) instead of (1).8

8Moreover, note that (3.5) ensures that Pt reflects the unbiased estimate δ̂t on the equilibrium path.
Indeed, somewhat paradoxically, it is precisely because each investor would prioritize her own estimate
over Pt when there were a discrepancy between them that Pt reflects the unbiased δ̂t on the equilibrium
path. To see this point, suppose to the contrary that each investor would prioritize Pt over her own esti-
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3.4 Investor’s optimization

We conjecture and later verify that investor i’s value function in period t = 0, ..., T + 1

is, for all i,

Vt(Wi,t) = − exp (−AtWi,t −Bt) , (3.6)

where {Aτ}T+1
τ=0 and {Bτ}T+1

τ=0 are deterministic sequences obtained later. Function Vt(·) is

time-varying because the investor’s maximized expected utility changes over time as their

learning about δ̄ progresses. The Bellman equation is

Vt(Wi,t) = max
ci,t,yi,t

{
− exp(−νci,t) + βE

[
Vt+1(Wi,t+1)|F Ii,t

]}
. (3.7)

The following two lemmas characterize the investor’s optimization.

Lemma 1 (Investor’s value function). The investor’s value function (3.6) satisfies the

Bellman equation (3.7) if

At =
ν

1 + at
for t = 0, ..., T (3.8)

and AT+1 = ν, and

Bt =
T∑
s=t

(
s∏
k=t

ak
1 + ak

) − ln β + 1
2χs

(
νS

(1+r)as

)2
+ 1
as

ln
(

1
as

)
− 1+as

as
ln
(

1+as
as

)
 for t = 0, ..., T (3.9)

and BT+1 = 0, where

χt ≡
1

Vart[Rt+1]
=

ηuλt+1

(1 + at+1(1− λt+1))
2 (3.10)

mate (that is, consider the out-of-equilibrium belief of the form: if E[δ̄|HIi,t] 6= Pt+bt
at

then δ̂Ii,t = Pt+bt
at

).
Under such a belief, there would be infinitely many equilibrium prices of the form (3.3). Specifically,
Pt = atz− bt for an arbitrary number z would support an equilibrium because each investor observes Pt,
revises her estimate to δ̂Ii,t = z and forms demand on that basis, which then consistently translates into
the market-clearing price Pt = atz− bt even on the equilibrium path. The out-of-equilibrium belief (3.5)

eliminates this multiplicity and guarantees that Pt reflects only δ̂t on the equilibrium path.
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is the period-t precision of the risky asset’s excess return.

Lemma 2 (Investor’s purchase order). Given Pt, investor i asks the expert to buy

yi,t =
χt
(
R̂I
i,t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )

2
(3.11)

shares of the risky asset.

The investor’s optimal order (3.11) can be viewed as a mean-variance solution, stan-

dard in the CARA-normal setting. It is increasing in the after-fee expected fund return,

R̂I
i,t+1(1 + ξ∗t ) − φ, and is decreasing in the volatility of fund return, (1 + ξ∗t )

2/χt, and

the time-adjusted risk aversion, At+1. There are three points worth noting. First, yi,t

is increasing in the asset return precision χt, which measures how much the investor’s

learning has progressed. Over time, χt increases as the uncertainty about δ̄ is unraveled,

encouraging the risk-averse investor to increase yi,t. As shown later, this upward pressure

on yi,t generates upswing in the equilibrium price Pt. Second, yi,t depends on the term

(1+ ξ∗t ) because the investor anticipates that the expert will renege on her purchase order

and buy (1 + ξ∗t )yi,t shares. Importantly, it is the investor’s belief (ξ∗t ) about the expert’s

choice and not the choice itself (ξi,t) that affects yi,t, because ξi,t is unobservable. This is

the source of the expert’s moral hazard that is central to the following analyses. Third,

yi,t depends on the expected excess return from investor i’s point of view, R̂I
i,t+1, which

is not necessarily equal to R̂t+1 on some off-the-equilibrium paths. On the equilibrium

path, of course, R̂I
i,t+1 = R̂t+1 for all i and t because all the investors infer Ht correctly.

3.5 Expert’s optimization

The expert’s problem is solved in a similar fashion to Sato (2014). To verify that it is

indeed optimal for expert i to choose {ξ∗τ}Tτ=0 deterministically, we consider what would
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happen if he deviated from his equilibrium play and instead chose an arbitrary sequence

of leverage {ξi,τ}Tτ=0 6= {ξ∗τ}Tτ=0 even as investor i still believes that {ξ∗τ}Tτ=0 is played.

What would be investor i’s inference δIi,t+1 of the payoff δt+1 that is unobservable to

her? The value of δIi,t+1 solves

(
δIi,t+1 + Pt+1 − (1 + r)Pt

)
(1 + ξ∗t ) =

(
δt+1 + Pt+1 − (1 + r)Pt

)
(1 + ξi,t). (3.12)

The right-hand side (RHS) is Rt+1(1 + ξi,t), whose value is known to investor i who

observes Qi,t+1. It depends on the expert’s actual choice, ξi,t, and the true payoff, δt+1.

The left-hand side (LHS) is the decomposition of the RHS as inferred by investor i. It

depends on her incorrect belief about the expert’s action, ξ∗t , and her erroneous inferred

payoff, δIi,t+1. Rearranging (3.12), we have

δIi,t+1 = δt+1 +

(
ξi,t − ξ∗t
1 + ξ∗t

)
Rt+1. (3.13)

This implies that if the expert plays ξi,t > ξ∗t and if Rt+1 > 0, then the investor will

overshoot her inference, i.e., δIi,t+1 > δt+1.

The investor’s erroneous perception about δt+1 biases her learning subsequently. Specif-

ically, if δIi,t+1 > δt+1 then her estimates of δ̄ and asset return will be both biased upward

in future periods, i.e., δ̂Ii,t+τ > δ̂t+τ and R̂I
i,t+τ+1 > R̂t+τ+1 for τ = 1, 2, ..., T − t (see

Appendix C). When choosing ξi,t in period t, the expert takes into account the fact that

he can potentially inflate the investor’s perceived expected returns, R̂I
i,t+τ+1 (τ ≥ 1), and

therefore her purchase orders, yi,t+τ (τ ≥ 1), by choosing ξi,t > ξ∗t . Lemma 3 characterizes

his optimal choice in period t, both on and off the equilibrium path.

Lemma 3 (Expert’s leverage). Taking R̂t+1 and ξ∗t as given, the expert’s optimal choice
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of leverage ξi,t is as follows.

If
φΩtR̂t+1

1 + ξ∗t


> κ then ξi,t →∞,

= κ then ξi,t ∈ [0,∞) (indifferent),

< κ then ξi,t = 0,

(3.14)

where

Ωt ≡ (1−λt+1)
T−t∑
τ=1

βτ
χt+τ (1 + at+τ+1(1− λt+τ+1))

At+τ+1(1 + ξ∗t+τ )

(
t+τ∏
k=t+2

λk

)
for t = 0, ..., T−1 (3.15)

and ΩT = 0.

Lemma 3 states that the expert chooses ξi,t by weighing the marginal gain from in-

fluencing the investor beliefs in future periods, φΩtR̂t+1/(1 + ξ∗t ), against the marginal

cost, κ. The deterministic variable Ωt measures the sensitivity of the expert’s expected

future gain to an increase in ξi,t. In t = 0, ..., T − 1, Ωt is positive because the expert

can potentially gain from influencing the investor’s future beliefs. However, ΩT is zero

because there is no “future” in period T : since the investor makes no decisions in period

T + 1, the expert has no benefit from influencing the investor’s belief in period T .

Note that Lemma 3 only characterizes the choice of ξi,t optimal from expert i’s personal

perspective, taking the equilibrium level ξ∗t as fixed. To determine ξ∗t , we need to ensure

that investor i’s belief about ξi,t is consistent with the expert’s optimal choice. As will

be shown in Section 3.6, R̂t+1 is a deterministic variable; thus, the investor’s belief is

consistent (that is, Conjecture 2 is correct) if and only if ξi,t = ξ∗t in (3.14), or

ξ∗t = max

{
0,
φΩtR̂t+1

κ
− 1

}
. (3.16)

Note that ξ∗t = 0 if Ωt is small enough. That is, the experts do not renege on the purchase
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orders if the benefit of manipulating investor beliefs is small. Indeed, in period T they will

surely choose ξ∗T = 0 because ΩT = 0. If Ωt is large enough, ξ∗t is positive and increases

with R̂t+1. This makes sense: a large R̂t+1 means a large marginal benefit for the experts

from influencing the future investor beliefs by reneging (i.e., the LHS of (3.14) is large),

inducing them to increase leverage ξ∗t . We will pin down the equilibrium values of ξ∗t and

R̂t+1 explicitly in Section 3.6 by imposing market clearing.

3.6 Equilibrium

The market-clearing condition (2.6) determines the asset’s expected return and the agents’

actions. Plugging the investor’s optimal policy (3.11) into (2.6), and noting that R̂I
i,t+1 =

R̂t+1 holds for all i in equilibrium, we obtain R̂t+1 as a function of ξ∗t :

R̂t+1 =
At+1S

χt
+

φ

1 + ξ∗t
. (3.17)

The first term on the RHS is the risk premium demanded by investors, which increases

with the degree of their risk aversion ν and decreases with the precision χt of asset return.

The second term φ/(1 + ξ∗t ) is the “fee premium,” i.e., the return that compensates

investors for the delegation fees they pay. Importantly, (3.17) implies that R̂t+1 decreases

with the expert’s leverage ξ∗t because the fee premium is decreasing in ξ∗t . Why does the

fee premium decrease with ξ∗t ? The reason is that the fee effectively serves as a fixed

cost of investment in the risky asset from the investors’ perspective. An increase in ξ∗t

lowers the average cost per share of the asset purchased, leading to a lower fee premium

demanded by investors. Note that the risk premium does not depend on ξ∗t despite the

fact that a rise in ξ∗t increases the risk borne by investors, all else equal. This is because

each investor responds to the higher ξ∗t by decreasing her purchase order yi,t so that the

total risk she bears remains the same.
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Figure 1: Determination of the risky asset’s expected excess return R̂t+1 and the fund
leverage ξ∗t

Given Ωt, the equilibrium levels of ξ∗t and R̂t+1 are obtained by solving the system of

equations (3.16) and (3.17). The solutions are

ξ∗t = max

0,
φΩt

2κ

At+1S

χt
+

√
A2
t+1S

2

χ2
t

+
4κ

Ωt

− 1

 and (3.18)

R̂t+1 = min

At+1S

χt
+ φ,

1

2

At+1S

χt
+

√
A2
t+1S

2

χ2
t

+
4κ

Ωt

 . (3.19)

Figure 1 illustrates the determination of (3.18) and (3.19). Panel (a) shows the case

with Ωt > κ/(φ(At+1S/χt+φ)). Since the experts have strong desire to influence investors’

future beliefs (i.e., Ωt is large), they choose high leverage given R̂t+1 (see (3.16)), leading

to ξ∗t > 0 in equilibrium. The equilibrium level of R̂t+1 decreases with Ωt for the following

reason. For a given R̂t+1, a rise in Ωt induces the experts to increase ξ∗t , which leads to

a higher aggregate demand (1 + ξ∗t )yt for the risky asset. Thus, R̂t+1 decreases (i.e., Pt

increases) to clear the market. Panel (b) is the case with Ωt ≤ κ/(φ(At+1S/χt + φ)).
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Here, Ωt is so small that the equilibrium leverage is ξ∗t = 0. The resulting small aggregate

demand for the asset accompanies a low market clearing price and a high R̂t+1.

Once R̂t+1 is identified, the equilibrium price is readily determined. Conjecture 1

implies that Pt can be written as Pt = atδ̂
I
t − (bt+1 + R̂t+1)/(1 + r).9 This implies that

Conjecture 1 is correct if and only if bt = (bt+1 + R̂t+1)/(1 + r), or

bt =
T+1−t∑
τ=1

(
1

1 + r

)τ
R̂t+τ . (3.20)

That is, bt is the present value of the future expected excess returns.

Proposition 1. There is a linear equilibrium in which

1. the risky asset’s excess return Rt+1 is, conditional on t, normally distributed with

mean R̂t+1 and precision χt, which are given by (3.19) and (3.10), respectively;

2. the risky asset’s price is Pt = atδ̂t−bt, where at and bt are given by (3.4) and (3.20),

respectively;

3. each expert’s leverage is ξi,t = ξ∗t , given by (3.18);

4. each investor asks the expert to buy yi,t = S/(1 + ξ∗t ) shares of the asset;

5. investor’s consumption in t = 0, ..., T is an affine function of wealth,

ci,t =
Wi,t

1 + at
+

1

ν

(
at

1 + at

)(
− ln β +

1

2χt

(
νS

(1 + r)at

)2

+Bt+1 + ln at

)
,

where Bt is given by (3.9); in the final period t = T + 1, she consumes her entire

wealth, i.e., ci,T+1 = Wi,T+1.

9This is shown as follows. From (C.7) in Appendix C, all investors’ average expected excess return is

R̂It+1 ≡
∫ 1

0
R̂Ii,t+1di = (1 + at+1(1− λt+1))

∫ 1

0
δ̂Ii,tdi+at+1λt+1δ̂

I
t −bt+1−(1+r)Pt = (1+at+1)δ̂It −bt+1−

(1+r)Pt. Rearranging this and noting that at = (1+at+1)/(1+r), we have Pt = atδ̂
I
t−(bt+1+R̂It+1)/(1+r).

Since R̂It+1 = R̂t+1 in equilibrium for all t, the result follows.
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Proposition 1 provides a characterization of the equilibrium in closed form. Although

it is costly to renege on the investor’s order, each expert chooses ξ∗t > 0 if it gives him

sufficiently large marginal benefit through manipulating the investor’s future beliefs (i.e.,

if Ωt is large enough). The investors understand the experts’ desire to fool them and hence

their beliefs are not manipulated on the equilibrium path; nonetheless, the experts still

renege on the investors’ orders and lever up. This is because, given the investors’ beliefs

that the experts will lever up, the experts indeed lever up optimally since otherwise the

funds’ future prospects would be underestimated by the investors. By itself, this over-

leverage result may not be surprising: it is in line with standard signal-jamming models

(Holmström 1999; Stein 1989). The primary purpose of this paper, which distinguishes

ours from existing works, is to examine the implication of the experts’ signal-jamming

behavior for the dynamics of security prices. We explore this issue in Section 4.

4 Dynamics: Asset Price Swings

This section studies the dynamics of Pt determined in Proposition 1. First, we show that

Pt on average exhibits a bubble-like pattern: gradual upswing, overshoot, and eventual

reversal. Second, we show that such a pattern is pronounced when the asset is innovative

in that its average payoff is highly uncertain when introduced to the market (i.e., low η0).

4.1 Price path

To obtain the sequence of Pt, first we need to obtain the sequences of Ωt, ξ
∗
t , and R̂t+1.

As shown in Appendix E, the deterministic sequence {Ωτ}T−1
τ=0 is obtained by solving the

following difference equation of Ωt, backward from the terminal values ΩT = 0 and ξ∗T = 0:

Ωt = β

(
Ωt+1 +

(
1− λt+2

λt+2

)
χt+1 (1 + at+2(1− λt+2))

At+2(1 + ξ∗t+1)

)
. (4.1)
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We already know the deterministic values of {λτ}T+1
τ=1 , {aτ}T+1

τ=0 , {Aτ}T+1
τ=0 , and {χτ}Tτ=0

from (A.5), (3.4), (3.8), and (3.10), respectively. Thus, together with (4.1), we can iden-

tify the deterministic values of {ξ∗τ}Tτ=0 and {R̂τ}T+1
τ=1 backward by (3.18) and (3.19),

respectively, which then determine the deterministic values of {bτ}T+1
τ=0 by (3.20). Gener-

ating a sequence of normal random payoffs {δτ}T+1
τ=1 , we compute the associated estimates

{δ̂τ}T+1
τ=1 by (3.1). Then we can simulate a path of the price, {Pτ}T+1

τ=0 , by Pt = atδ̂t + bt.

Panel (a) of Figure 2 plots a sample path of Pt (blue solid line). Here we assume that

the agents have the correct prior expectation in t = 0, i.e., δ̂0 = δ̄. So the obtained price

pattern is not driven by the agents’ incorrect prior about δ̄. We also plot the benchmark

price path, denoted by PB
t (red dashed line), which corresponds to a “noninnovative” asset

whose average payoff δ̄ is fully known in period 0 (i.e., δ̂0 = δ̄ and η0 =∞). Although we

set T = 1, 000, we present only the first 200 periods in the figure because our focus is on

the price dynamics of an innovative asset, whose δ̄ is highly uncertain to the investors.

For very large t, the asset is no longer “innovative” since the agents have already learned δ̄

with high precision. Also, the price paths in later periods are not interesting economically:

Pt simply converges to PB
t .10

The innovative asset’s price Pt is highly volatile in early periods. This makes sense.

Since the precision of the agents’ estimate δ̂t is low in the early phase of learning, they

update δ̂t drastically when having a new realization of stochastic payoff δt (that is, λt is

small in early periods), making the price volatile. But the price becomes less volatile over

time because, as learning progresses, the agents become more “confident” about their

estimate: they do not change δ̂t so much with a new realization of δt (that is, λt increases

10After the periods shown in the figure, the path of Pt approaches that of PBt and stays almost flat
for most of the remaining periods. When the final period approaches, both of these price paths start to
fall (around t = 900) and reach zero in the final period (t = 1, 001). This price fall occurs because there
is no market in the very last period t = T + 1—which is an inevitable assumption in this finite-period
setting—and thus the investors cannot sell the asset in that period (i.e., PT+1 = 0). We do not view
this price fall in the last periods as an economically relevant result because it is merely an artifact of the
finite-horizon assumption. Thus, we do not report it in the figure and focus on early periods.
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(a) Simulated price path.
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(b) Average of 50,000 simulated price paths.

Figure 2: Price dynamics. We plot the time paths of Pt obtained in Proposition 1 and
the benchmark price PB

t that would be obtained in the case in which δ̄ is fully known in
t = 0. Panel (a) plots a simulated path. Panel (b) plots the average of 50,000 simulated
paths. The parameter values are r = 0.04, φ = 0.11, κ = 1.2, ν = 0.2, β = 1/(1 + r),
S = 10, ηu = 5, δ̄ = 0.14, δ̂0 = 0.14, and T = 1, 000. We set η0 = 50 for Pt and η0 = ∞
for PB

t .
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Figure 3: Time paths of the risky asset’s return precision χt ≡ 1/Vart[Rt+1] and the
expert’s equilibrium leverage ξ∗t . The parameter values are the same as those of Figure 2.

over time). Indeed, the conditional price volatility Vart[Pt+1] = a2t+1(1 − λt+1)
2/(ηuλt+1)

decreases with t. By contrast, if the asset is noninnovative the agents do not update their

estimate (i.e., δ̂t = δ̄ for all t), and hence PB
t is deterministic and almost flat in early

periods.

To see the overall trend of the price dynamics more clearly, we plot the average of

50,000 simulated price paths in panel (b) of Figure 2. The innovative asset’s price

Pt exhibits bubble-like dynamics on average: it rises gradually (“upswing”), surpasses

the noninnovative-asset benchmark PB
t (“overshoot”), and then falls gradually (“down-

swing”). Around t = 130, it starts increasing again and converges to PB
t over time.

Intuitively, the initial up-and-down swings in Pt are caused by the combination of the

following two effects that have opposing pressures on the asset’s aggregate demand and

therefore its market-clearing price.

1. Learning effect. Initially, the investors’ estimate of the asset return has low precision;

i.e., χt is small for small t. So, being risk averse, they hesitate to purchase the asset.

Thus, ceteris paribus, the associated aggregate demand is weak and the price is low.
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But, as time goes on, the investors learn about δ̄ and thus χt increases (Figure 3(a)).

This encourages them to increase yi,t over time, having an upward pressure on the

aggregate demand and thus the price.

2. Leverage effect. Initially, the investors’ estimate δ̂Ii,t has low precision and is suscep-

tible to manipulation; i.e., λt is small for small t. So Ωt is large, leading the experts

to choose high leverage ξ∗t . Thus, ceteris paribus, the associated aggregate demand

is high and the price is high. But, as time goes on, the investors learn about δ̄

and thus δ̂Ii,t becomes precise, lowering the experts’ desire to manipulate it (i.e., Ωt

decreases). Accordingly, the experts deleverage over time (Figure 3(b)), having a

downward pressure on the aggregate demand and thus the price.

In sum, due to the learning (leverage) effect, the price tends to be low (high) initially

and then increases (decreases) over time; the combination of these two effects generates the

inverse-U pattern of Figure 2(b). In the noninnovative-asset benchmark, neither of these

effects exists because the agents do not conduct learning (i.e., χt = ηu ∀t) and the experts

do not use leverage (i.e., ξ∗t = 0 ∀t). For the parameter values used in Figures 2 and 3,

the learning effect dominates the leverage effect in early periods, initiating the upswing in

Pt. It even surpasses PB
t . This overshoot is caused by the experts’ use of leverage: higher

ξ∗t is associated with larger aggregate demand for the risky asset, pushing up the market-

clearing price Pt. As learning unravels δ̄ over time, the learning effect fades out because

the incremental increase in χt diminishes over time towards 0; that is, χt approaches ηu

asymptotically (Figure 3(a)). At some point, the leverage effect dominates the weakened

learning effect, leading to downswing in the average Pt (around t = 30 in Figure 2(b)).

Eventually, the investors’ estimate becomes so accurate that it is no longer beneficial for

the experts to use leverage to influence investor beliefs. That is, ξ∗t reaches 0 and the

leverage effect disappears (around t = 130 in Figures 2(b) and 3(b)). Afterwards, the

average Pt increases over time due to the learning effect (which is weakened but still at
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work), and converges to PB
t as χt converges to ηu.

Remark (Is this a bubble?). Figure 2 resembles bubble-like price movements observed

in reality. Is it a “bubble”? The answer depends on how we define a bubble. Some existing

works define it as a situation in which an asset is overpriced even though investors are

contemporaneously aware that the price is too high (Allen, Morris, and Postlewaite 1993;

Abreu and Brunnermeier 2003). Taking this somewhat narrow definition, the price pattern

in Figure 2 is not a bubble. The reason is as follows. The fact that Pt overshoots PB
t

on average means that all agents know at t = 0 that Pt > PB
t is likely to occur in the

near future. Also, the agents are likely to realize ex post, after they have learned δ̄ with

a high precision, that Pt > PB
t in early periods. However, when they are actually making

investment decisions in early periods, they are not sure whether Pt > PB
t or Pt < PB

t

because they do not know the benchmark level PB
t that depends on δ̄ they are still learning

about. Indeed, while Figure 2(a) reports a typical sample path in which overshoot occurs,

it is possible to obtain (rare) simulated paths such that Pt < PB
t for all t.

4.2 Effect of asset’s innovativeness

Under what circumstances are price swings pronounced? This section examines how

the price dynamics change in response to a change in η0 (inverse of the risky asset’s

innovativeness). Figure 4 plots the average of 50,000 simulated paths of Pt for different

levels of η0. The average price exhibits up-and-down swings only if η0 is small enough

(η0 ≤ 50 in the figure), i.e., only if the agents have sufficiently large uncertainty about

δ̄ initially. For large η0 (η0 ≥ 300 in the figure), the learning effect is so weak that it is

already dominated by the leverage effect in t = 0, and thus the initial upswing does not

occur. Moreover, if η0 is very large (η0 ≥ 600), the experts’ leverage ξ∗t is so low that even

overshoot does not occur on average. As η0 increases further, the price swings are toned
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Figure 4: The average of 50,000 sample price paths for different levels of η0 (inverse of the
risky asset’s innovativeness). The parameter values other than η0 are the same as those
of Figure 2.

down and the path converges to that of the benchmark PB
t as η0 →∞.

Thus, the model predicts that swings and overshooting of prices are more pronounced

for new and innovative assets with highly uncertain payoff characteristics than for old-

economy assets already familiar in the market. This prediction is consistent with the

historical observation that bubble-like price movements tend to arise in times of techno-

logical change (e.g., railroads or the Internet) or financial innovation (e.g., securitization),

as noted by Brunnermeier and Oehmke (2013).

Note that price swings are pronounced with small η0 because both the learning and

leverage effects are large when η0 is small. The intuition is as follows. Suppose that a

financial asset backed by an unprecedented and/or hard-to-understand technology—such

as Internet stocks, biotech stocks, or structured products—is newly introduced to the

market. The investors have large uncertainty about such an asset’s average payoff due to

the lack of track record and background knowledge (i.e., η0 is small). On the one hand, the

investors, being risk averse, hesitate to purchase such an asset initially; but they increase
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demand gradually as learning progresses, generating a gradual upswing in the price (the

learning effect). On the other hand, the experts, being motivated by career concerns, try

to exploit the as-yet-unknown nature of the asset. Initially, they take on high leverage and

invest in the asset aggressively in an effort to trick investors into believing that the asset

is more profitable than it really is, causing the price overshoot; however, as the asset’s

true nature becomes known to investors, experts lose their desire to influence the investor

beliefs and thus deleverage, causing a downswing in the price (the leverage effect).

5 Holdings and Trading Volume

The model of Section 2 provides an explanation of bubble-like price swings by shedding

light on the role of leveraged, opaque financial companies such as hedge funds. However,

the model is silent about how such funds’ stock holdings evolve over time behind the

price swings. Indeed, since all the funds are identical and the asset’s supply is fixed at

S shares, every fund’s asset holding in equilibrium is constant at S for all t and thus the

trading volume is zero for t ≥ 1. This is clearly counterfactual. The empirical literature

documents that hedge funds actively adjust their holdings in times of large price swings,

and their trading activities in such times are different from other players in the market.

Brunnermeier and Nagel (2004) find that hedge funds increased their holdings of the

technology stocks during the upturn of the 1998–2000 dot-com bubble, but they decreased

them before the bubble collapsed. Ang, Gorovyy, and van Inwegen (2011) report that

hedge funds’ leverage was counter-cyclical to that of other market participants during

the 2007–2009 crisis. This section attempts to explain these empirical observations by

rationalizing time-varying holdings of the asset.
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5.1 Setup

We make a single modification to the model of Section 2. There are two types of funds:

hedge funds (HFs), indexed by i ∈ [0, γ], and other funds (OFs), indexed by i ∈ (γ, 1].

The proportion γ of HFs is exogenous. The HFs are the same as the funds of Section 2,

whereas the OFs’ experts cannot renege on the investors’ purchase orders. That is, the

only difference between these types is that HF experts can choose ξi,t ≥ 0 while OF experts

cannot.11 The OFs can be viewed as representing various financial institutions subject

to statutory disclosure requirements, such as mutual funds, banks, or investment banks.

Alternatively, since the OF experts just take the investors’ orders passively with no agency

frictions stemming from ξi,t, the OFs can also be interpreted as individual investors, each

of whom incurs a cost (such as a brokerage fee) of φ per share she purchases on her own.12

For notational clarity, we append a tilde to the variables related to the OFs. We look for

an equilibrium in which, for all t, every agent is optimizing and the risky asset’s market

clears, i.e.,
∫ γ
0

(1 + ξi,t)yi,tdi+
∫ 1

γ
ỹi,tdi = S, where ỹi,t is OF investor i’s purchase order.

5.2 Equilibrium

The equilibrium of this economy is derived following steps similar to those in Section 3

(see Appendix F for details).

Proposition 2. There is a linear equilibrium in which

1. the risky asset’s excess return Rt+1 is, conditional on t, normal with mean

R̂t+1 = min

At+1S

χt
+ φ,

1

2

At+1S

χt
+ (1− γ)φ+

√(
At+1S

χt
+ (1− γ)φ

)2

+
4γκ

Ωt


11An alternative assumption yielding the same results is that each OF’s expert can choose ξi,t ≥ 0 but

his choice is observable to the investor. In such a case, the OFs’ experts choose ξi,t = 0 for all t because
ξi,t > 0 would not influence the investors’ behavior and yet is costly to choose.

12It is not important that the cost φ is the same for both types of funds. Allowing for different values
of φ does not change the main results.
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and precision χt, where At, χt, and Ωt are given by (3.8), (3.10), and (3.15), re-

spectively;

2. the risky asset’s price is Pt = atδ̂t−bt, where at and bt are given by (3.4) and (3.20),

respectively;

3. each HF expert’s leverage is, for all i ∈ [0, γ], ξi,t = ξ∗t with

ξ∗t = max

0,
φΩt

2κ

At+1S

χt
+ (1− γ)φ+

√(
At+1S

χt
+ (1− γ)φ

)2

+
4γκ

Ωt

− 1

 ;

4. each HF investor asks the expert to buy yi,t = S
1+ξ∗t

+
φ(1−γ)χtξ∗t
At+1(1+ξ∗t )

2 shares of the asset,

and each OF investor asks the expert to buy ỹi,t = S− φγχtξ∗t
At+1(1+ξ∗t )

shares of the asset;

5. HF investor’s value function is Vt(Wi,t) = − exp(−AtWi,t −Bt) with

Bt =
T∑
s=t

(
s∏
k=t

ak
1 + ak

) − ln β + 1
2χs

(
νS

(1+r)as
+ (1−γ)φχsξ∗s

1+ξ∗s

)2
+ 1
as

ln
(

1
as

)
− 1+as

as
ln
(

1+as
as

)
 for t = 0, ..., T

and BT+1 = 0, and OF investor’s value function is Ṽt(W̃i,t) = − exp(−AtW̃i,t − B̃t)

with

B̃t =
T∑
s=t

(
s∏
k=t

ak
1 + ak

) − ln β + 1
2χs

(
νS

(1+r)as
− γφχsξ∗s

1+ξ∗s

)2
+ 1
as

ln
(

1
as

)
− 1+as

as
ln
(

1+as
as

)
 for t = 0, ..., T

and B̃T+1 = 0;

6. each HF investor’s consumption is

ci,t =
Wi,t

1 + at
+

1

ν

(
at

1 + at

)(
− ln β +

1

2χt

(
νS

(1 + r)at
+

(1− γ)φχtξ
∗
t

1 + ξ∗t

)2

+Bt+1 + ln at

)
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for t = 0, ..., T and ci,T+1 = Wi,T+1, and each OF investor’s consumption is

c̃i,t =
W̃i,t

1 + at
+

1

ν

(
at

1 + at

)(
− ln β +

1

2χt

(
νS

(1 + r)at
− γφχtξ

∗
t

1 + ξ∗t

)2

+ B̃t+1 + ln at

)

for t = 0, ..., T and c̃i,T+1 = W̃i,T+1.

Proposition 2 characterizes the equilibrium in closed form, nesting Proposition 1 as

a special case with γ = 1. Panel (a) of Figure 5 plots the average of 50,000 paths of

Pt. It exhibits a bubble-like pattern similar to that of Figure 2(b) of Section 4. This

is not surprising, as there is a significant fraction (γ = 0.3) of HFs, whose learning

effect and leverage effect jointly shape the inverse-U dynamics of Pt as in Section 4. The

primary purpose of this section is to study how the funds’ holdings—and the associated

trading volume—evolve over time behind such swings in Pt. The key to understanding

it is the relationship between the HF leverage ξ∗t and the purchase orders, yi,t and ỹi,t.

Statement 4 of Proposition 2 implies that not only the HF investors’ yi,t but also the OF

investors’ ỹi,t depend on ξ∗t because these investors’ decisions depend on Pt that reflects ξ∗t

in equilibrium. Thus, both funds’ holdings evolve over time depending on ξ∗t , as presented

in the following corollary.

Corollary 1. The HFs’ aggregate holding is Θt ≡
∫ γ
0

(1 + ξi,t)yi,tdi = γS + Πt, and the

OFs’ aggregate holding is Θ̃t ≡
∫ 1

γ
ỹi,tdi = (1− γ)S − Πt, where Πt ≡ γ(1−γ)φχtξ∗t

At+1(1+ξ∗t )
≥ 0.

Corollary 1 states that the HFs’ holding Θt is the sum of the “stationary” level γS

and a time-varying component Πt, whereas the OFs’ holding Θ̃t is the stationary level

(1−γ)S subtracted by Πt. Here, Πt increases with χt and ξ∗t , reflecting the HFs’ learning

effect and leverage effect, respectively. Panel (b) of Figure 5 presents the dynamics of

Θt and Θ̃t for the same parameter values as panel (a). For comparison, we also plot the

benchmark case with a noninnovative asset (i.e., η0 = ∞), where Πt = 0 because ξ∗t = 0

for all t. The following two points are worth noting.
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First, the evolution of the HFs’ holding Θt is positively related to that of the average

price Pt of panel (a). That is, the HFs tend to increase their asset holdings together with

the price that is growing beyond its benchmark level, and reduce them with the price

downturn. This result is consistent with Brunnermeier and Nagel (2004), who find that

hedge funds were “riding” the 1998–2000 technology bubble: their stock holdings were

heavily tilted toward the technology stocks when their prices were rising, but they cut

back their holdings before the prices collapsed. Brunnermeier and Nagel (2004) argue that

their empirical finding is consistent with the model of Abreu and Brunnermeier (2003),

in which rational arbitragers such as hedge funds ride a bubble that emerges and grows

exogenously due to “irrationally exuberant” behavioral traders. Our result complements

their argument and offers an additional insight: hedge funds may not only ride/avoid

the upturn/downturn of asset prices but also cause these price swings. Indeed, in our

model, the up-and-down dynamics of Pt reflect the evolution of the HFs’ demand. In

early periods, the HFs increase holdings as their investors increase yi,t together with the

return precision χt. But, as the investor learning progresses, they lower ξ∗t and decrease

their holdings. In Section 4.1 where there are only HFs, the learning and leverage effects

are entirely absorbed by the movement of Pt and are not reflected on their holdings, as

market clearing requires the equilibrium holdings to equal S for all t. In contrast, in this

section, those two effects are also reflected on the HFs’ holdings because they are partly

absorbed by the holdings of the OFs who act as the HFs’ trading counterparties.

Second, the evolution of the HFs’ holding Θt is negatively related to that of the OFs’

holding Θ̃t. While the HFs adjust their holdings to the same direction of the average

Pt, the OFs alter them to the opposite direction. The OFs’ holding is largest when the

HFs have finished unloading the asset and ξ∗t hits zero (around t = 330). This result

is consistent with Ang, Gorovyy, and van Inwegen (2011), who report that hedge funds’

leverage was counter-cyclical to that of other financial intermediaries during the 2007–
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2009 crisis: hedge fund leverage decreased before the crisis and was lowest in early 2009

when financial sector leverage was highest. Mathematically, the result is trivial because

market clearing requires Θt + Θ̃t = S and thus ∆Θt = −∆Θ̃t. Economically, the result

follows because the OFs serve as trading counterparties to the HFs that alter holdings

over time due to their agency frictions. In early periods, each HF expert is bidding up

the price to cater to growing purchase orders yi,t as well as the leveraged purchase ξ∗t yi,t.

For such a high price, the OFs—which are not subject to agency frictions—optimally sell

the asset to the HFs, reducing their holdings over time. At some point, the HFs’ leverage

effect surpasses the learning effect and the HFs start to unload the asset. They deleverage

and push down the price over time, to which the OFs respond by increasing their holdings.

After the HF leverage ξ∗t reaches zero, their holdings stay at the stationary levels.

Panel (c) of Figure 5 shows the dynamics of trading volume, defined as the number

of shares traded in the market, i.e., |∆Θt| (which equals |∆Θ̃t|). In the benchmark case

with a noninnovative asset (the red dashed line), the volume is zero for all t ≥ 1 because

all the funds trade only in t = 0 and keep the stationary levels of holdings for the rest

of the time horizon. In the innovative asset case (the blue solid line), there is a “trading

frenzy” right after the asset is introduced to the market: the trading volume is large

when t is very small where the investors are highly uncertain about the asset, as the

HFs aggressively buy it from the OFs. Intuitively, the volume is largest in the beginning

because the speed of investor learning is fastest in the beginning in the sense that the

return precision χt is concave in t (see Figure 3(a)), and thus the learning effect is strongest

in the beginning. The HFs continue increasing the holdings (at a diminishing speed) until

around t = 60, where they switch to selling the asset to the OFs.13 Afterwards, the

trading volume increases over time because the HFs unload the asset more and more

aggressively, reflecting the fact that the learning effect is fading out over time and hence

13In the figure, it looks like the volume hits zero at the turning point around t = 60; but it actually
stays positive at a low level.
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the leverage effect becomes pronounced relatively. After the HF leverage ξ∗t reaches zero,

the trading volume is zero since the funds keep their stationary levels of holdings.

6 Conclusion

This paper develops a dynamic asset-market equilibrium model in which (1) a new and in-

novative asset with as-yet-unknown average payoff is traded (e.g., Internet stocks, biotech

stocks, or sophisticated structured products), and (2) investors delegate investment to

experts. Over time, investors learn about the asset’s average payoff from fund returns.

Experts can secretly renege on investors’ purchase orders and take on leveraged positions

in the asset in an attempt to manipulate investors’ beliefs, thereby attracting more orders

and thus more fees. Despite full rationality of long-lived agents, the asset’s equilibrium

price exhibits bubble-like dynamics on average: gradual upswing, overshoot, and even-

tual reversal. The up-and-down swings are caused by the combination of (1) the learning

effect—an upward pressure on the price as the investors’ learning unravels the asset’s

uncertainty over time, and (2) the leverage effect—a downward pressure on the price as

the experts deleverage over time. The price tends to overshoot because the experts’ use

of leverage pushes up the asset’s aggregate demand and thus its market-clearing price.

The model predicts that swings and overshooting of prices are more pronounced for new

and innovative assets with highly uncertain payoff characteristics than for old-economy

assets already familiar in the market. Consistent with empirical evidence, hedge funds

increase holdings during the bubble-like price upturn but decrease them in the downturn,

counter-cyclically to other market participants’ holdings. Innovative assets have high

trading volume when investors have large uncertainty about the assets.

For future research, it would be interesting to extend this model to settings with im-

perfectly competitive and/or illiquid markets, because in reality a significant amount of
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innovative financial assets are traded in OTC markets (e.g., Duffie, Gârleanu, and Peder-

sen 2005) or thin markets with price impact (e.g., Kyle 1989). Studying the equilibrium

relation between delegated investment and price dynamics in such settings may yield fur-

ther economic insights and policy implications.
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Appendix

A Evolution of Estimates

Let ηt ≡ 1/Var[δ̄|Ht] be the precision of the experts’ period-t estimate of δ̄. By standard Kalman filtering,

a new observation of δt will update the estimate of δ̄ and its precision as follows:

δ̂t = λtδ̂t−1 + (1− λt)δt for λt ≡
ηt−1
ηt

, (A.1)

where

ηt = ηt−1 + ηu. (A.2)

The initial value of δ̂t, δ̂0 > 0, and the initial value of ηt, η0 > 0, are exogenously given. The initial value

of λt is λ1 = η0/η1 = η0/(η0 + ηu). From (A.1) and (A.2), we have

λt+1 =
ηt
ηt+1

=
ηt

ηt + ηu
(A.3)

and

λt =
ηt−1
ηt

=
ηt − ηu
ηt

⇐⇒ ηt =
ηu

1− λt
. (A.4)

Plugging (A.4) into (A.3) yields

λt+1 =

ηu
1−λt

ηu
1−λt + ηu

=
1

2− λt
. (A.5)

The updating factor λt is the same for (3.1) and (3.2). This is shown as follows. Let ηi,t ≡ 1/Var[δ̄|HIi,t]

be the precision of investor i’s estimate of δ̄. As in (A.2), ηi,t evolves as

ηi,t = ηi,t−1 + ηu. (A.6)

Since H0 and HIi,0 are both empty sets, ηi,0 = η0 for all i. Thus, (A.2) and (A.6) imply that ηi,t = ηt for

all i and t. So we have ηi,t−1/ηi,t = ηt−1/ηt = λt, as required.
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B Proof of Lemmas 1 and 2

First, we derive the period-t precision of asset return, χt ≡ 1/Vart[Rt+1]. To do so, it is useful to compute

the conditional volatility of δt+1:

Vart[δt+1] = Vart[δ̄ + ut+1] =
1

ηt
+

1

ηu
=

1

ηu

(
1

λt+1
− 1

)
+

1

ηu
=

1

ηuλt+1
. (B.1)

Plugging the price conjecture (3.3) into the definition of Rt+1 and using the investor’s learning rule (3.2),

the excess asset return is

Rt+1 ≡ δt+1 + Pt+1 − (1 + r)Pt

= δt+1 + at+1δ̂
I
t+1 − bt+1 − (1 + r)Pt

= δt+1 + at+1

∫ 1

0

δ̂Ii,t+1di− bt+1 − (1 + r)Pt

= δt+1 + at+1

∫ 1

0

(
λt+1δ̂i,t + (1− λt+1)δt+1

)
di− bt+1 − (1 + r)Pt

= δt+1 + at+1λt+1δ̂
I
t + at+1(1− λt+1)δt+1 − bt+1 − (1 + r)Pt

= (1 + at+1(1− λt+1)) δt+1 + at+1λt+1δ̂
I
t − bt+1 − (1 + r)Pt. (B.2)

From (B.2) and (B.1), we have

Vart[Rt+1] = (1 + at+1(1− λt+1))
2

Vart[δt+1]

=
(1 + at+1(1− λt+1))

2

ηuλt+1
, (B.3)

which yields χt as in (3.10).

Now, we derive the investor’s value function and investment policy. In the final period t = T + 1,

the investors do not have optimization problems. Each of them just consumes her entire wealth, i.e.,

ci,T+1 = Wi,T+1. Thus, AT+1 = ν and BT+1 = 0. The investor’s problem in period t = 0, ..., T is solved

as follows. Using dynamic budget constraint (2.5) and conjectured value function (3.6), we have

E
[
Vt+1(Wi,t+1)|FIi,t

]
= − exp

 −At+1

(
R̂Ii,t+1(1 + ξ∗t )yi,t − φyi,t + (1 + r)(Wi,t − ci,t)

− 1
2At+1(1 + ξ∗t )2y2i,t

1
χt

)
−Bt+1

 . (B.4)
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From (B.4) and Bellman equation (3.7), the first-order condition (FOC) for yi,t is

R̂Ii,t+1(1 + ξ∗t )− φ−At+1(1 + ξ∗t )2yi,t
1

χt
= 0 ⇐⇒ yi,t =

χt
(
R̂Ii,t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )2

. (B.5)

From (B.4) and (B.5),

E
[
Vt+1(Wi,t+1)|FIi,t

]
= − exp

(
−1

2
A2
t+1(1 + ξ∗t )2y2i,t

1

χt
−At+1(1 + r)(Wi,t − ci,t)−Bt+1

)
. (B.6)

Market clearing implies yi,t = S/(1 + ξ∗t ) in equilibrium. Plugging this into (B.6),

E
[
Vt+1(Wi,t+1)|FIi,t

]
= − exp

(
−1

2
A2
t+1S

2 1

χt
−At+1(1 + r)(Wi,t − ci,t)−Bt+1

)
. (B.7)

Thus, Bellman equation (3.7) is rewritten as

Vt(Wi,t) = max
ci,t
{− exp(−νci,t)− exp (−ψt −At+1(1 + r)(Wi,t − ci,t))} , (B.8)

where ψt ≡ − lnβ +
1

2
A2
t+1S

2 1

χt
+Bt+1. (B.9)

The FOC for ci,t is

ν exp(−νci,t)− exp(−ψt)At+1(1 + r) exp (−At+1(1 + r)(Wi,t − ci,t)) = 0

⇐⇒ ln ν − νci,t = −ψt + ln (At+1(1 + r))−At+1(1 + r)(Wi,t − ci,t)

⇐⇒ ψt + ln

(
ν

At+1(1 + r)

)
+At+1(1 + r)Wi,t = (α+At+1(1 + r)) ci,t

⇐⇒ ci,t =
At+1(1 + r)

ν +At+1(1 + r)
Wi,t +

1

ν +At+1(1 + r)

(
ψt + ln

(
ν

At+1(1 + r)

))
. (B.10)

Plugging (B.10) back into (B.8), we have

Vt(Wi,t) =− exp

(
− νAt+1(1 + r)

ν +At+1(1 + r)
Wi,t −

ν

ν +At+1(1 + r)

(
ψt + ln

(
ν

At+1(1 + r)

)))
=− exp

(
− νAt+1(1 + r)

ν +At+1(1 + r)
Wi,t −

ν

ν +At+1(1 + r)
ψt

)
×

( (
At+1(1 + r)

ν

)− At+1(1+r)

ν+At+1(1+r)
(

1 +
At+1(1 + r)

ν

) )
. (B.11)
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Taking log to (B.11),

−AtWi,t −Bt =− νAt+1(1 + r)

ν +At+1(1 + r)
Wi,t −

ν

ν +At+1(1 + r)
ψt

− At+1(1 + r)

ν +At+1(1 + r)
ln

(
At+1(1 + r)

ν

)
+ ln

(
1 +

At+1(1 + r)

ν

)
. (B.12)

From (B.12) we have

At =
νAt+1(1 + r)

ν +At+1(1 + r)
(B.13)

and

Bt =
ν

ν +At+1(1 + r)
ψt +

At+1(1 + r)

ν +At+1(1 + r)
ln

(
At+1(1 + r)

ν

)
− ln

(
1 +

At+1(1 + r)

ν

)
. (B.14)

Using (B.9), (B.14) is rearranged as

Bt =
ν

ν +At+1(1 + r)

 Bt+1 − lnβ + 1
2A

2
t+1S

2 1
χt

+At+1(1+r)
ν ln

(
At+1(1+r)

ν

)
− ν+At+1(1+r)

ν ln
(
ν+At+1(1+r)

ν

)
 . (B.15)

Solving (B.13) backward from the terminal value AT+1 = ν, we have

At =ν

(
1 +

(
1

1 + r

)
+

(
1

1 + r

)2

+ · · ·+
(

1

1 + r

)T+1−t
)−1

=
ν

1 + at
. (B.16)

Using (B.16), (B.15) is rewritten as

Bt = mt(Bt+1 + nt), (B.17)

where mt ≡
at

1 + at
, (B.18)

nt ≡ − lnβ +
1

2

(
νS

(1 + r)at

)2
1

χt
+

1

at
ln

(
1

at

)
− 1 + at

at
ln

(
1 + at
at

)
. (B.19)
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Solving (B.17) backward from the terminal value BT+1 = 0, we have

Bt =mtnt +mtmt+1nt+1 +mtmt+1mt+2nt+2 + · · ·+mtmt+1 · · ·mTnT

=

T∑
s=t

(
s∏
k=t

mk

)
ns, (B.20)

which is equivalent to (3.9) in the main text.

C Proof of Lemma 3

First, we determine investor i’s purchase order on an arbitrary off-the-equilibrium path where expert i is

deviating from his equilibrium strategy.

Lemma 4. If expert i plays (ξi,0, ..., ξi,T ) when investor i believes that he plays (ξ∗0 , ..., ξ
∗
T ), then investor

i’s purchase order in period t = 1, ..., T is

yi,t = yt + y+i,t, (C.1)

where yt ≡
χt
(
R̂t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )2

(C.2)

and y+i,t ≡
χt (1 + at+1(1− λt+1))

At+1(1 + ξ∗t )

t∑
s=1

(
t∏

k=s+1

λk

)
(1− λs)

(
ξi,s−1 − ξ∗s−1

1 + ξ∗s−1

)
Rs.

14 (C.3)

Proof of Lemma 4: In order to prove Lemma 4, we prove the following two claims.

Claim C.1. If investor i believes that the payoff history up to period t is HIi,t = (δIi,1, ..., δ
I
i,t), her estimate

of δ̄ in an arbitrary period t is

δ̂Ii,t = δ̂t +

t∑
s=1

(
t∏

k=s+1

λk

)
(1− λs)(δIi,s − δs). (C.4)

Proof of Claim C.1: See Appendix C of Sato (2014). (End of proof of Claim C.1.)

Claim C.2. Investor i’s expected excess asset return is

R̂Ii,t+1 = R̂t+1 + (1 + at+1(1− λt+1)) (δ̂Ii,t − δ̂t). (C.5)

14In (C.3), we abuse notation and set
∏t
k=t+1 λk ≡ 1.

45



Proof of Claim C.2: From (B.2), the expected excess return conditional on the true history Ht is

R̂t+1 ≡ E[Rt+1|Ht] = (1 + at+1(1− λt+1)) δ̂t + at+1λt+1δ̂
I
t − bt+1 − (1 + r)Pt. (C.6)

The expected excess return from investor i’s perspective (conditional on her inferred history HIi,t) is

R̂Ii,t+1 ≡ E[Rt+1|FIi,t] = (1 + at+1(1− λt+1)) δ̂Ii,t + at+1λt+1δ̂
I
t − bt+1 − (1 + r)Pt. (C.7)

From (C.6) and (C.7) we obtain (C.5). (End of proof of Claim C.2.)

Now Claims C.1 and C.2 can be used to rearrange the investor’s order (3.11) as follows:

yi,t =
χt
(
R̂Ii,t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )2

=
χt
(
R̂t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )2

+
χt

At+1(1 + ξ∗t )
(R̂Ii,t+1 − R̂t+1)

=
χt
(
R̂t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )2

+
χt (1 + at+1(1− λt+1))

At+1(1 + ξ∗t )

t∑
s=1

(
t∏

k=s+1

λk

)
(1− λs)(δIi,s − δs). (C.8)

Substituting (3.13) into (C.8) then yields

yi,t =
χt
(
R̂t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )2

+
χt (1 + at+1(1− λt+1))

At+1(1 + ξ∗t )

t∑
s=1

(
t∏

k=s+1

λk

)
(1− λs)

(
ξi,s−1 − ξ∗s−1

1 + ξ∗s−1

)
Rs

=yt + y+i,t,

as required. (End of proof of Lemma 4.)

Now we prove Lemma 3. To simplify the expert’s period-t objective, note the following points.

• The fee on the current order, φyi,t, can be omitted from the original objective function (2.3)

because, from (3.11), yi,t is independent of the expert’s actual choice of ξi,t.

• By Lemma 4, the future order yi,t+τ (τ = 1, 2, ..., T − t) is linear in yt+τ and y+i,t+τ . Since (2.3)

is linear in yi,t+τ , it follows that (2.3) is linear in yt+τ and y+i,t+τ . This implies that yt+τ can be

omitted from (2.3) because the expert cannot influence yt+τ by his choice of ξi,t. That is, only

y+i,t+τ is relevant for his choice of ξi,t.

• Conjecture 2—which is verified later—implies that the expert’s current action (ξi,t) does not affect

his own future actions (ξi,t+1, ..., ξi,T ) both on and off the equilibrium path. Thus, his costs of
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reneging in future periods can be omitted from (2.3).

Taking these points into account, the expert’s period-t maximization problem reduces to

max
ξi,t∈[0,∞)

−κξi,t + E

[
T−t∑
τ=1

βτφy+i,t+τ

∣∣∣∣FEi,t
]
,

where y+i,t+τ ≡
χt+τ (1 + at+τ+1(1− λt+τ+1))

At+τ+1(1 + ξ∗t+τ )

t+τ∑
s=1

(
t+τ∏

k=s+1

λk

)
(1− λs)

(
ξi,s−1 − ξ∗s−1

1 + ξ∗s−1

)
Rs. (C.9)

Since y+i,t+τ is a linear function of (ξi,0, ..., ξi,t+τ−1), the marginal effect of the expert’s current action

ξi,t on y+i,t+τ is independent of his actions in other periods, (ξi,0, ..., ξi,t−1, ξi,t+1, ..., ξi,t+τ−1). Hence, in

y+i,t+τ given by (C.9), only the term corresponding to s = t+ 1 is relevant for the choice of ξi,t. Thus, an

equivalent problem is

max
ξi,t∈[0,∞)

−κξi,t+E

[
T−t∑
τ=1

βτφ
χt+τ (1 + at+τ+1(1− λt+τ+1))

At+τ+1(1 + ξ∗t+τ )

(
t+τ∏
k=t+2

λk

)
(1− λt+1)

(
ξi,t − ξ∗t
1 + ξ∗t

)
Rt+1

∣∣∣∣FEi,t
]
.

This is rewritten as

max
ξi,t∈[0,∞)

−κξi,t + φ

(
ξi,t − ξ∗t
1 + ξ∗t

)
ΩtR̂t+1, (C.10)

where Ωt ≡ (1− λt+1)

T−t∑
τ=1

βτ
χt+τ (1 + at+τ+1(1− λt+τ+1))

At+τ+1(1 + ξ∗t+τ )

(
t+τ∏
k=t+2

λk

)
for t = 0, ..., T − 1

and ΩT ≡ 0. Choosing ξi,t ≥ 0 to maximize (C.10), the FOC is given by (3.14) in the main text.

D Proof of Proposition 1

Statements 1–5 are proved in the main text. Statement 6 follows by rearranging (B.10) with (B.16).

E Dynamics of Ωt

For t = T , we have ΩT = 0. For t = 0, ..., T − 1, from (3.15) we have

Ωt = (1− λt+1)

T−t∑
τ=1

βτ
( t+τ∏
k=t+2

λk

)
Mt+τ , where Mt+τ ≡

χt+τ (1 + at+τ+1(1− λt+τ+1))

At+τ+1(1 + ξ∗t+τ )
.
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Let us denote
∏t+1
k=t+2 λk ≡ 1 (by abuse of notation). Then we have

Ωt
1− λt+1

=βMt+1 + β2λt+2Mt+2 + β3λt+2λt+3Mt+3 + · · ·+ βT−tλt+2λt+3 · · ·λTMT ,

Ωt+1

1− λt+2
=βMt+2 + β2λt+3Mt+3 + β3λt+3λt+4Mt+4 + · · ·+ βT−t−1λt+3λt+4 · · ·λTMT .

These two equations yields the difference equation of Ωt for t = 0, ..., T − 1:

Ωt
1− λt+1

= βMt+1 + β
λt+2

1− λt+2
Ωt+1. (E.1)

Note that (A.5) implies 1− λt+1 = (1− λt+2)/λt+2. Using this, (E.1) is rewritten as

Ωt = β

(
Ωt+1 +

(
1− λt+2

λt+2

)
χt+1 (1 + at+2(1− λt+2))

At+2(1 + ξ∗t+1)

)
. (E.2)

From (E.2) and the terminal value ΩT = 0, we obtain {Ωt}Tt=0 by backward induction.

F Proof of Proposition 2

The conjectures about the equilibrium price and the HF expert’s strategy remain the same as Conjecture

1 and Conjecture 2 of Section 3, respectively. The investors’ out-of-equilibrium belief is still (3.5).

HF investor i chooses yi,t and ci,t to maximize −E
[∑T−t

τ=0 β
τ exp (−νci,t+τ ) |FIi,t

]
, subject to the

dynamic budget constraint Wi,t+1 = Qi,t+1 − φyi,t + (1 + r)(Wi,t − ci,t − Ptyi,t). Guess and later verify

that her value function is Vt(Wi,t) = − exp(−AtWi,t − Bt), where At is given by (3.8) and Bt is a

deterministic variable. Using the dynamic budget constraint and conjectured value function, we have

E
[
Vt+1(Wi,t+1)|FIi,t

]
= − exp

 −At+1

(
R̂Ii,t+1(1 + ξ∗t )yi,t − φyi,t + (1 + r)(Wi,t − ci,t)

− 1
2At+1(1 + ξ∗t )2y2i,t

1
χt

)
−Bt+1

 . (F.1)

From (F.1) and the Bellman equation, the FOC for yi,t is

R̂Ii,t+1(1 + ξ∗t )− φ−At+1(1 + ξ∗t )2yi,t
1

χt
= 0 ⇐⇒ yi,t =

χt
(
R̂Ii,t+1(1 + ξ∗t )− φ

)
At+1(1 + ξ∗t )2

. (F.2)
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From (F.1) and (F.2),

E
[
Vt+1(Wi,t+1)|FIi,t

]
= − exp

(
−1

2
A2
t+1(1 + ξ∗t )2y2i,t

1

χt
−At+1(1 + r)(Wi,t − ci,t)−Bt+1

)
. (F.3)

OF investor i chooses ỹi,t and c̃i,t to maximize −E
[∑T−t

τ=0 β
τ exp (−νc̃i,t+τ ) |F̃Ii,t

]
, subject to the

dynamic budget constraint W̃i,t+1 = Rt+1ỹi,t − φỹi,t + (1 + r)(W̃i,t − c̃i,t). Guess and later verify that

her value function is Ṽt(W̃i,t) = − exp(−AtW̃i,t− B̃t), where B̃t is a deterministic variable. Since the OF

expert never reneges on the investor’s order, the investor correctly infers δt always, both on and off the

equilibrium path. Thus, R̂Ii,t+1 = R̂t+1 holds always. Hence,

E
[
Ṽt+1(W̃i,t+1)

∣∣F̃Ii,t] = − exp

(
−At+1

(
R̂t+1ỹi,t − φỹi,t + (1 + r)(W̃i,t − c̃i,t)−

1

2
At+1ỹ

2
i,t

1

χt

)
− B̃t+1

)
.

(F.4)

From (F.4) and the Bellman equation, the FOC for ỹi,t is

R̂t+1 − φ−At+1ỹi,t
1

χt
= 0 ⇐⇒ ỹi,t =

χt(R̂t+1 − φ)

At+1
. (F.5)

From (F.4) and (F.5),

E
[
Ṽt+1(W̃i,t+1)

∣∣F̃Ii,t] = − exp

(
−1

2
A2
t+1ỹ

2
i,t

1

χt
−At+1(1 + r)(W̃i,t − c̃i,t)− B̃t+1

)
. (F.6)

In equilibrium, R̂Ii,t+1 = R̂t+1 for all i. So plugging (F.2) and (F.5) into the market clearing condition,

∫ γ

0

(1 + ξi,t)yi,tdi+

∫ 1

γ

ỹi,tdi = S

⇐⇒ γχt(R̂t+1(1 + ξ∗t )− φ)

At+1(1 + ξ∗t )
+

(1− γ)χt(R̂t+1 − φ)

At+1
= S

⇐⇒ R̂t+1 =
At+1S

χt
+

γφ

1 + ξ∗t
+ (1− γ)φ. (F.7)

Plugging (F.7) into (F.2) and (F.5), we have

yi,t =
S

1 + ξ∗t
+

φ(1− γ)χtξ
∗
t

At+1(1 + ξ∗t )2
(F.8)

and ỹi,t = S − φγχtξ
∗
t

At+1(1 + ξ∗t )
. (F.9)
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Plugging (F.8) into (F.3), and (F.9) into (F.6), we have

E
[
Vt+1(Wi,t+1)|FIi,t

]
= − exp

(
− 1

2χt

(
At+1S +

φ(1− γ)χtξ
∗
t

1 + ξ∗t

)2

−At+1(1 + r)(Wi,t − ci,t)−Bt+1

)
(F.10)

and E
[
Ṽt+1(W̃i,t+1)

∣∣F̃Ii,t] = − exp

(
− 1

2χt

(
At+1S −

φγχtξ
∗
t

1 + ξ∗t

)2

−At+1(1 + r)(W̃i,t − c̃i,t)− B̃t+1

)
.

(F.11)

Thus, (F.10) implies that the Bellman equation for each HF investor is

Vt(Wi,t) = max
ci,t
{− exp(−νci,t)− exp (−ψt −At+1(1 + r)(Wi,t − ci,t))} (F.12)

with ψt ≡ − lnβ +
1

2χt

(
At+1S +

φ(1− γ)χtξ
∗
t

1 + ξ∗t

)2

+Bt+1, (F.13)

and (F.11) implies that the one for each OF investor is

Ṽt(W̃i,t) = max
c̃i,t

{
− exp(−νc̃i,t)− exp

(
−ψ̃t −At+1(1 + r)(W̃i,t − c̃i,t)

)}
(F.14)

with ψ̃t ≡ − lnβ +
1

2χt

(
At+1S −

φγχtξ
∗
t

1 + ξ∗t

)2

+ B̃t+1. (F.15)

Now, following the same steps in Appendix B (from (B.8) to (B.20)), we obtain the values of Bt and B̃t

as well as consumptions ci,t and c̃i,t as presented in Proposition 2.

Each HF expert’s optimization problem is identical to Section 3.5. The equilibrium ξ∗t given R̂t+1 is

given by (3.16). Solving the system of equations (F.7) and (3.16) for two unknown R̂t+1 and ξ∗t yields

their values presented in Proposition 2. Having obtained R̂t+1, the price Pt is readily obtained following

the same steps in Section 3.6.
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