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Abstract

We construct a neoclassical growth model with heterogeneous households that accounts

for the Pareto distributions of income and wealth in the upper tail. In an otherwise

standard Bewley model, we feature households’ business productivity risks and borrow-

ing constraints, which we find generate the Pareto distributions. Households with low

productivity rely on wages and returns from safe assets, while high productivity house-

holds choose not to diversify their business risks. The model can quantitatively account

for the observed income distribution in the U.S. under reasonable calibrations. Further-

more, we conduct several comparative statics to examine how changes in parameters

affect the Pareto distributions. In particular, we find that the change in the top tax

rates in the 1980s potentially accounts for much of the observed increase in top income

dispersion in the last decades. Our analytical result provides a coherent interpretation

for the numerical comparative statics.
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1. Introduction

The issue of national income and wealth distribution has become a prominent subject

of both scholarly inquiry and public discussion. Scholars investigating this topic, such as

Piketty and Saez [45], have been particularly concerned with understanding the share of

wealth held by the wealthiest individuals in the economy. It has been commonly observed

that the income and wealth of this segment follow Pareto distributions. An important

property of Pareto distributions is that they have a fat tail. In the real world, this means

that the wealthiest one percent of population possesses a substantially larger portion of

the national income and wealth than would be predicted by extrapolating the distribution

of middle income earners. Accordingly, greater understanding of the overall concentration

of income and wealth requires increased attention be paid to why the distributions of top

earners universally follow the Pareto distribution. Moreover, it is important to analyze

income distribution in a general equilibrium model, because many variables that influence

the distribution, such as wage rates, capital returns, or the aggregate capital level, are

endogenously determined, as emphasized by Jones [28].

The purpose of this paper is to construct a neoclassical growth model that accounts

for the observed Pareto distribution and examine what variables quantitatively affect the

distributions of income and wealth. For this purpose, we embed in an otherwise standard

Bewley model idiosyncratic risks on households’ business productivity. In the model,

each household is endowed with a “backyard” production technology. Households which

expect low productivity rely on wages and returns from safe assets, while households

which expect high productivity choose to take business risks and invest capital into
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their backyard technology. Thus, this model captures an economy wherein a fraction of

households choose to become entrepreneurs, while others choose to become workers.

We show that Pareto distributions of income and wealth obtain in the Bewley model

with (i) CRRA preferences and (ii) either a borrowing constraint or stochastic death, in

addition to (iii) business productivity risks. CRRA preferences lead to an asymptotically

constant marginal propensity to consume from wealth and an asymptotically constant

level of portfolio risk as wealth becomes large. Business productivity risk combined with

a linear savings function constitutes a multiplicative shock in the wealth accumulation

process, leading to the diffusion effect that generates the fat-tailed distribution. It is

well known that a stochastic process with a multiplicative shock generates a fat-tailed

distribution, but diverges indefinitely in the absence of an influx effect. The presence of

a borrowing constraint or stochastic death induces a net influx of households into the

high wealth group from below, which prevents the wealth distribution from diverging.

We obtain a closed-form formula for the Pareto exponent, the parameter that determines

the concentration of top income and wealth in the Pareto distribution, using a reduced-

form version of the model assuming a Solow-type consumption function. The formula

summarizes our main argument that the Pareto exponent is determined by two opposing

forces: business productivity risk that diffuses the wealth across households within the

high wealth group, and the influx of households at the lower end of the high wealth group.

Given the analytical result in the reduced-form model, we examine quantitative impli-

cations of our Bewley model where households optimally solve their savings and portfolio

problem. First, we check whether the model replicates the distribution characteristics

of income and wealth in the U.S., such as the Pareto exponent, the quintiles of income

distribution, the Gini coefficient, and the top income and wealth shares. Second, we con-

duct several comparative statics to examine how the income and wealth distributions are
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affected by changes in parameters such as idiosyncratic business productivity and labor

shock volatility, tax rates, borrowing constraints, and the exogenous growth rate. We

find that the change in the top tax rates in the 1980s potentially accounts for much of the

observed increase in top income dispersion in the last decades. We also find that loose

borrowing constraints increase top income dispersion. Consideration of the diffusion and

influx effects enables us to interpret our comparative statics results obtained through

numerical analysis of the Bewley model. In particular, we obtain that a stricter borrow-

ing constraint reduces wealth concentration through an increased influx effect, whereas

an increase in the top marginal tax rate reduces wealth concentration through both a

diminished diffusion effect and an augmented influx effect.

We derive our results by combining the literature on Bewley models with insights from

research on multiplicative idiosyncratic shocks and Pareto distributions. Idiosyncratic

business productivity shocks and an influx into the high wealth group from below, the two

elements that generate the Pareto distribution as discussed above, fit naturally into the

standard Bewley model. Following Quadrini [46] and Cagetti and De Nardi [11] in spirit,

and adopting the modeling strategy of Covas [17], Angeletos [3], and Panousi [43], we

construct an entrepreneurial economy, wherein households bear income risk by investing

physical capital in its own firm. Under CRRA preferences, the fraction of the risky asset

in the household portfolio is asymptotically constant among wealthy households. Thus,

the distribution of the wealth growth rate becomes independent of the wealth level—i.e.,

Gibrat’s law applies for the wealthy group. Hence, the wealth accumulation of the wealthy

households follows a multiplicative process that is driven by business productivity risks.

It is known that the multiplicative process generates the Pareto distribution, once

it is combined with stochastic death or inheritance (Wold and Whittle [55]; Dutta and

Michel [18]; Reed [49]; Benhabib, Bisin, and Zhu [8, 9]; Toda [54]). We note that the
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savings of households in the low and middle wealth groups also generate an influx effect

that prevents the multiplicative process from diverging. As shown by Carroll and Kim-

ball [13] and the papers cited therein, a household’s consumption function is generically

concave if the household with CRRA preferences faces a borrowing constraint or labor

income shocks. We feature such households in a Bewley model and show that the precau-

tionary savings induced by the borrowing constraint constitute an influx effect. The idea

of the influx effect for generating a power-law distribution is formulated by Kesten [31]

and used by Gabaix [22]. Nirei and Souma [42] apply this mechanism to the processes

of income and wealth and argue that rate-of-return shocks generate the Pareto distribu-

tion, while additive shocks in labor income generate exponential decay in the low and

middle incomes. This paper extends their result by incorporating idiosyncratic business

productivity shocks and earning shocks in the Bewley model, and obtains new testable

implications, such as that a strict borrowing constraint or greater risk in labor income

increases the Pareto exponent.

In our model, business productivity shocks mainly affect the top part of the income

distribution, while the low and middle parts of the distribution are shaped mostly by

labor income shocks, as in the previous Bewley models of income distribution. While

the previous studies are successful in accounting for the distribution of low and middle

incomes, they do not fully explain the distribution in the upper tail (Aiyagari [1]; Huggett

[27]; Quadrini and Ŕıos-Rull [48]; Castañeda, Dı́az-Giménez, and Rı́os-Rull [14, 15];

Panousi [43]). Benhabib et al. [10] recently derive a Pareto distribution in a Bewley

model. Their paper shows an asymptotically linear savings function under CRRA and

applies a generalized version of the Kesten processes that are used in Nirei and Souma [42].

The present paper differs from theirs in exploring the general equilibrium implications of

the Bewley model. In particular, we find that labor earnings play an important role in
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the tail distribution, contrary to their claim. This paper examines the impacts on tail

distributions of various parameters, such as borrowing limits, tax rates, the exogenous

growth rate, and shock volatilities, going beyond the working paper version (Nirei [41]).

The rest of the paper is organized as follows. Section 2 lays out the general envi-

ronment studied in this paper. Section 3 investigates a restricted version of the model

wherein households choose consumption and investment following a Solow-type consump-

tion function. With this model, we analytically show that the combination of idiosyncratic

business productivity shocks and a lower bound for household wealth generates a Pareto

distribution in the upper tail of the income and wealth distributions. Section 4 provides

a more elaborate Bewley model wherein households optimally choose savings and port-

folio. In Section 4.2, we study an analytically tractable case of the Bewley model. In

Section 5, we show that the Bewley model with all the elements, such as the borrowing

constraint for households, idiosyncratic business productivity and labor income shocks,

and progressive income taxes, can account for the observed properties in the top as well

as the remaining parts of the income distribution. Finally, Section 6 concludes.

2. General environment

In this section, we lay out all the model elements that we use in this paper. In

Sections 3 and 4, we work on restricted versions of the model in order to derive analytical

solutions. In Section 5, we investigate a full model with all of the ingredients.

Consider a continuum of households i ∈ [0, 1]. Household i is endowed with initial

physical capital ki,0, and a “backyard” production technology that is specified by a Cobb-

Douglas production function:

yi,t = kαi,t(ai,tli,t)
1−α, (1)

where li,t is the labor employed by i and ki,t is the detrended capital owned by i. The

6



labor-augmenting productivity of the production function ãi,t has a common trend γ > 1:

ãi,t = γtai,t, (2)

where ai,t is an idiosyncratic productivity shock which follows a Markov process. Because

of the common productivity growth γ, other variables such as output, consumption,

capital, bond holding, and the real wage will grow, on an average, at γ along the balanced

growth path. Thus, we employ the notation wherein these variables are detrended by γt.

In each period, a household maximizes its profit from physical capital, πi,t = yi,t−wtli,t,

subject to the production function (1). Labor can be hired at wage wt after the realization

of ai,t. Using the optimal level of labor input, we obtain the goods supply function:

yi,t = ((1− α)ai,t/wt)
(1−α)/αki,t. (3)

Then, we obtain πi,t = αyi,t and wtli,t = (1 − α)yi,t. Detrended aggregate output and

capital are denoted as Yt ≡
∫ 1

0
yi,tdi and Kt ≡

∫ 1

0
ki,tdi, respectively. The labor share of

income is constant:

wt/Yt = 1− α. (4)

In contrast to labor, capital is installed before the realization of ai,t. Thus, there is

idiosyncratic risk in capital investment, which we refer to as business productivity risk.

Household i inelastically supplies ei,t units of labor, which follows an exogenous au-

toregressive process: ei,t = 1 − ζ + ζei,t−1 + εi,t. The unconditional mean of individual

labor supply, and thus the aggregate labor supply at the steady state, is normalized to 1.

Household i can hold assets in the form of physical capital ki,t and bonds bi,t. At the

optimal labor hiring li,t, the return to physical capital is defined as

r(ai,t) ≡ πi,t/ki,t + 1− δ = α(1− α)(1−α)/α(ai,t/wt)
(1−α)/α + 1− δ. (5)
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There is no market for physical capital in this model. The bond bears risk-free interest Rt.

The households can engage in lending and borrowing through bonds, but the borrowing

amount (detrended) must not exceed the borrowing limit φ, that is, bi,t+1 > −φ. Because

there is no insurance market for idiosyncratic business productivity shocks ai,t and labor

shocks εi,t, households accommodate these risks by self-insurance through own savings.

Each household lineage is discontinued with a small probability µ in each period. In

this event, a new household is formed at the same index i with no wealth. Following the

perpetual youth model, we assume that the households participate in a pension program.

The households contract all the non-human wealth to be confiscated by the pension

program at the discontinuation of the lineage, and they receive in return a premium at rate

p per unit of wealth they own in each period of continued lineage. The pension program

is a pure redistribution system, and must satisfy the zero-profit condition (1− µ)p = µ.

Thus, the pension premium rate is determined as

p = µ/(1− µ). (6)

We will incorporate progressive income taxation using a variation of Bénabou’s [7]

specification. The net tax payment is a function of household income Ii,t ≡ (r(ai,t) −

1)ki,t + (R− 1)bi,t + wtei,t as follows:

Ti,t =

 Ii,t − τ0I
1−τ1
i,t if Ii,t < I∗

I∗ − τ0I
∗1−τ1 + τ2(Ii,t − I∗) if Ii,t ≥ I∗.

(7)

The first convex part and the second linear part smoothly join at I∗ ≡ (τ0(1− τ1)/(1−

τ2))1/τ1 with derivative τ2, which denotes the highest marginal tax rate applied to the

highest income bracket. We assume that the tax proceeds are spent on unproductive

government purchase of goods.

8



3. Analytical results in a simple model

3.1. Solow model with idiosyncratic business productivity risk

In this section, we restrict the general environment in order to derive the Pareto

distribution analytically. Specifically, we assume: (i) productivity and labor shocks are

i.i.d., (ii) income tax Ti,t and risk-free bond bi,t are abstracted from, (iii) households are

infinitely living (µ = 0), and (iv) household’s savings rate is exogenously fixed. Because

of the exogenous savings rate, this model may be viewed as a Solow growth model with

heterogeneous households who face uninsurable idiosyncratic business productivity risk.

At the expense of these restrictions, the Solow model is analytically tractable for deriving

the Pareto exponent. These assumptions are relaxed in Section 4 where we study the

Bewley model, wherein the savings rate is optimally chosen by households. With the

Bewley model, we will argue that the Pareto exponent is affected by factors such as a

borrowing constraint and a marginal tax rate as well as the volatilities of productivity

and labor shocks. How those factors affect the Pareto exponent will be explained by

using the analytical results obtained in the Solow model.

Households inelastically supply labor ei,t, which is an i.i.d. random variable over i and

t. The savings rate is exogenously fixed at s. The capital of household i, detrended by

γt, accumulates as follows:

γki,t+1 = (1− δ)ki,t + s(πi,t + wtei,t) (8)

where πi,t is the stochastic profit from production and πi,t +wtei,t is the income of house-

hold i.

Substituting (4) into (3) and integrating, we obtain an aggregate relation:

Yt = AKα
t , (9)
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where A ≡
(

E
(
a

(1−α)/α
i,t

))α
is constant under the i.i.d. assumption through which ai,t is

independent of ki,t. By aggregating the capital accumulation equation (8) across house-

holds, and by using (9), we reproduce the equation of motion for aggregate capital in the

Solow model,

γKt+1 = (1− δ)Kt + sAKα
t . (10)

Equation (10) shows that Kt follows deterministic dynamics with steady state K̄, which

is stable and uniquely solved in the domain K > 0 as

K̄ =

(
sA

γ − 1 + δ

)1/(1−α)

. (11)

Thus, the model preserves the standard implications of the Solow model on the aggregate

characteristics of the balanced growth path. The long-run output-capital ratio Y/K is

equal to (γ − 1 + δ)/s. The golden-rule savings rate is equal to α.

3.2. Deriving the Pareto distribution

Equations (2,3,4,8,9,10) and πi,t = αyi,t define the dynamics of (ki,t, Kt). As is shown

above, Kt deterministically converges to K̄. At K̄, the dynamics of individual capital ki,t

follows

ki,t+1 = gi,tki,t + zei,t, (12)

where

gi,t ≡
1− δ
γ

+
αs

γ

( ai,t
AK̄α

)(1−α)/α

, (13)

z ≡ (1− α)sAK̄α

γ
. (14)

The additive term zei,t is the savings from detrended labor income, swtei,t/γ, and strictly

positive. The multiplicative term gi,t is the return to detrended capital (1−δ+sπi,t/ki,t)/γ.

10



The stochastic process (12) is stationary because E(gi,t) = α+ (1−α)(1− δ)/γ < 1 holds

from (13).

Equation (12) is called a Kesten process, which is a stochastic process with a multi-

plicative shock and an additive positive shock. It is known that a Kesten process has a

stationary distribution with a power-law tail. Hence, we obtain the following proposition.

Proposition 1. If the probability for gi,t > 1 is strictly positive, the household’s de-
trended capital ki,t has a stationary distribution whose tail follows a Pareto distribution:

Pr(ki,t > k) ∝ k−λ, (15)

where the Pareto exponent λ is determined by the condition

E
(
gλi,t
)

= 1. (16)

The power-law tail distribution (15) and the condition for λ (16) are obtained by the

theorem shown by Kesten [31] (see also Levy and Solomon [34] and Gabaix [22]). Because

capital income πi,t is proportional to ki,t, the household’s income πi,t + wtei,t follows the

same tail distribution as ki,t, if ei,t has a thin tail bounded by e−λ−1
i,t . Note that the

condition Pr(gi,t > 1) > 0 is required for (16) to have a solution for λ. In our Solow

model, this condition is satisfied when αa
(1−α)/α
max > E(a

(1−α)/α
i,t ).

Proposition 1 shows that idiosyncratic business productivity shocks generate a “top

heavy” distribution. The Pareto distribution is top heavy in that a sizable fraction of

the total income is possessed by the richest few. Under the Pareto distribution with

λ > 1, the richest P fraction of the population owns fraction P 1−1/λ of the total income

(Newman [38]). This formula applies only when the entire distribution follows a Pareto

distribution, whereas in empirical income distributions only the right tail above the 99th

percentile is fitted well by a Pareto distribution. Nonetheless, estimates of historical

Pareto exponents match well with historical top income shares through this formula, as
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Figure 1: Top 1% income shares and 0.011−1/λ evaluated at Pareto exponent λ estimated with historical

U.S. income distributions. Source for shares and λ is the World Top Incomes Database [2].

can be seen in Figure 1. This agreement suggests that factors that determine the Pareto

exponent may explain the shifts in top income shares.

3.3. Determination of the Pareto exponent and comparative statics

We further characterize λ by assuming that the productivity shock follows a log-

normal distribution. We assume that a
(1−α)/α
i,t follows a log-normal distribution with

log-mean −σ2/2 and log-variance σ2. We choose this specification so that A = 1 for any

σ. We first show that λ is decreasing in σ and bounded below by 1.

Proposition 2. The Pareto exponent λ is uniquely determined by Equation (16) for any
σ. The Pareto exponent always satisfies λ > 1 and the stationary distribution has a finite
mean. Moreover, λ is decreasing in σ.

The proofs for the propositions in this section are deferred to Appendix A. Proposition

2 provides a comparative static of λ with respect to σ. In the proof, we show that E(gλi,t)
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is strictly increasing in λ. Establishing this is easy when δ = 1, since gi,t then follows a

log-normal distribution. Under 100% depreciation, we obtain a closed-form solution for

λ as follows.

Proposition 3. If δ = 1, the Pareto exponent is determined as λ = 1 + (2/σ2) log(1/α).

This expression captures the essential result that λ is greater than 1 and decreasing in

σ. Proposition 2 establishes this property in a more realistic case of partial depreciation

under which gi,t follows a shifted log-normal distribution.

Proposition 2 shows that the “top heavy” distribution generated by the Solow econ-

omy has a certain limit in the wealth inequality, since the stationary Pareto exponent

cannot be smaller than 1. As we discussed previously, the share of the total wealth owned

by the wealthiest P fraction is P 1−1/λ for λ > 1. For example, if λ = 2, this implies that

the top 1 percent owns 10% of total wealth. If λ < 1, the wealth share possessed by

the rich converges to 1 as the population grows to infinity. Namely, virtually all of the

wealth belongs to the richest few. Further, when λ < 1, the expected ratio of the sin-

gle richest person’s wealth to the economy’s total wealth converges to 1 − λ (Feller [20,

p.172]). Proposition 2 shows that the Solow economy does not allow such an extreme

concentration of wealth, because λ cannot be smaller than 1 at the stationary state.

The Pareto distribution has a finite mean only if λ > 1 and a finite variance only if

λ > 2. When λ is found in the range between 1 and 2, the capital distribution has a finite

mean but an infinite variance. The infinite variance implies that in an economy with finite

households, the population variance grows unboundedly as the population size increases.

Empirical income distributions indicate that the Pareto exponent historically transits

below and above 2, in the range between 1.5 and 3.1 This implies that the economy goes

1See, for example, Alvaredo et al. [2], Fujiwara et al. [21], and Souma [52].
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back and forth between the two regimes, one with finite variance of income (λ > 2) and

one with infinite variance (λ ≤ 2). The two regimes differ not only quantitatively but

also qualitatively, since for λ < 2, almost the entire sum of the variances of idiosyncratic

risks is borne by the wealthiest few, whereas the risks are more evenly distributed for

λ > 2. This can be seen as follows. In our model, the households do not diversify business

productivity risks. Thus, their income variance increases with the square of their wealth

k2
i,t, which has a Pareto tail with exponent λ/2. Thus, given λ < 2, the income variance

is distributed as a Pareto distribution with exponent less than 1, which is so unequal that

the single wealthiest household bears a fraction 1 − λ/2 of the sum of the variances of

the idiosyncratic risks across households, and virtually the entire sum of the variances is

borne by the richest few percentiles. Thus, in this model, the concentration of wealth can

be interpreted as the result of the concentration of risk bearings in terms of the variance

of income.

An analytical solution is obtained for the important special case where λ = 2 as

follows.

Proposition 4. The Pareto exponent λ is greater than (less than) 2 when σ < σ̂ (> σ̂)
where

σ̂2 = log

(
1

α2

(
1 +

2(1− α)

γ/(1− δ)− 1

))
. (17)

Moreover, λ is decreasing in γ and δ in the neighborhood of σ = σ̂.

Proposition 4 relates the Pareto exponent λ with the productivity shock variance σ2, the

growth rate γ, and the depreciation rate δ. The Pareto exponent is smaller when the

variance is larger. Both γ and δ negatively affect λ around λ = 2. That is, faster growth

or faster wealth depreciation increases inequality in the tail if λ is around 2.

Proposition 4 determines the magnitude of risk that generates the Pareto exponent

λ = 2. The risk magnitude is intuitively derived as follows. At λ = 2, the condition
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for determining the Pareto exponent (16) must hold as E(g2
i,t) = 1. Using E(gi,t) =

1− z/K̄, this leads to Var(gi,t)/2 = z/K̄ − (z/K̄)2/2. The key variable z/K̄ is equal to

(1−α)(1−(1−δ)/γ) as can be derived from (14) at the steady state. Under the benchmark

parameters α = 0.36, δ = 0.1, and γ = 1.02, we obtain z/K̄ to be around 0.08. We can

thus neglect the second-order term (z/K̄)2 and obtain z/K̄ ≈ Var(gi,t)/2 as the condition

for λ = 2. This implies that λ = 2 holds when the standard deviation of g is about 0.4

under the calibration above.2 The ratio of the two contributions, (z/K̄)/(Var(gi,t)/2),

is inversely related to 1− (1− δ)/γ, as can be derived from (13,14) at the steady state.

Thus, both growth γ and depreciation δ enhance wealth accumulation more through risk-

taking income (Var(gi,t)/2) than through labor income (z/K̄). This mechanism explains

the comparative statics in Proposition 4.

We elaborate on this mechanism that determines the Pareto exponent λ. When ai,t

follows a log-normal distribution, g is approximated in the first order by a log-normal

distribution around the mean of ai,t. Under the first-order approximation, we obtain

λ ≈ −E(log g)/(Var(log g)/2) from (16). This indicates that λ is determined by the

relative importance of the drift and diffusion of capital growth rates, both of which

contribute to the overall growth rate. Using E(g) = 1 − z/K̄, we obtain an alternative

expression λ ≈ 1 − log(1−z/K̄)
Var(log g)/2

as in Gabaix [22]. We observe that the Pareto exponent

λ is always greater than 1, and it declines to 1 as savings z/K̄ decreases to 0 or the

diffusion effect Var(log g) increases to infinity. For a small z/K̄, the expression is further

2While it is difficult to obtain a reliable estimate for entrepreneurial risks, this value seems not

unreasonable. For example, Moskowitz and Vissing-Jørgensen [37] cite the annual standard deviation of

returns for the smallest decile of public firm in the period 1953–1999, 41.4%, in order to find the lower

bound of the risk faced by entrepreneurs.
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Figure 2: Determination of the Pareto exponent λ. The influx of wealth through savings from labor

raises λ, while the diffusion of wealth caused by business productivity risk lowers λ.

approximated as

λ ≈ 1 +
z/K̄

Var(log g)/2
. (18)

Equation (18) demonstrates that the Pareto exponent is determined by the balance

between two forces: the contributions of an additive term (z/K̄) and a diffusion term

(Var(log g)/2) of the Kesten process (12). These two forces are depicted in Figure 2.

The additive term constitutes the wealth accumulation contributed from labor income.

This term determines the mass of households who enter the lower end of the high wealth

group from the low and middle groups. We call this an influx effect. The diffusion term

constitutes the wealth accumulation contributed from capital income due to risk taking.

This is seen by noting that Var(log g)/2 is the contribution of diffusion to the mean total

return log E(g).
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Our analysis of the Solow-version model showed that the Pareto exponent is deter-

mined as 2 when the influx effect balances with the diffusion effect. In other words,

the stationary distribution of income exhibits a finite or infinite variance depending on

whether the contribution of labor to capital accumulation exceeds or falls short of the

contribution of risk taking. The simple Solow model allows extension in various ways.

In Appendix B, we analyze the effect of redistribution and risk sharing on the Pareto

exponent in an extended Solow model.

4. The Bewley model

4.1. Bewley model with idiosyncratic business productivity shocks

In reality, household saving behavior depends on the wealth level, tax rate, and risk

environment, and it has important implications on the Pareto exponent. In order to

incorporate the households’ optimal savings and portfolio choice, we depart from the

Solow-type restrictions and develop a Bewley model with idiosyncratic business produc-

tivity shocks and borrowing constraints.

Given the optimal static labor hiring and optimal production in each period as in

(3), the households solve the following dynamic programming problem at the balanced

growth path:

V (W,a, e) = max
c,k′,b′,W ′

c1−ρ

1− ρ
+ β̃E (V (W ′, a′, e′) | a, e) (19)

subject to c, k′ ≥ 0 and

c+ γ(k′ + b′ + φ) = W, (20)

W ′ = (1 + p)(r(a′)k′ +Rb′ + we′ − T ′) + γφ, (21)

b′ + φ > 0, (22)
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where β̃ is a modified discount factor β̃ ≡ βγ1−ρ(1 − µ). W denotes the total resources

available (the cash-at-hand). The control variables k and b can be equivalently expressed

by the household’s total financial assets x ≡ k + b+ φ and portfolio θ ≡ k/x. Thus, the

household solves the optimal savings problem for x and the portfolio choice for θ.

A stationary equilibrium is defined as a value function V , policy functions (x, θ),

prices (w,R), a joint distribution function Λ, and the law of motion Γ for Λ such that

V (W,a, e; Λ), x(W,a, e; Λ), and θ(W,a, e; Λ) solve the household’s dynamic programming

problem, such that prices w and R clear the markets for goods, labor
∫ 1

0
li,tdi =

∫ 1

0
ei,tdi =

1, and bonds
∫ 1

0
bi,tdi = 0, such that the policy functions and the exogenous Markov

processes of a and e constitute Γ, which maps the joint distribution Λ(W,a, e) to that in

the next period, and such that Λ is a fixed point of Γ.

We argue that the stationary wealth distribution in the Bewley economy with a suf-

ficiently large business productivity shock and with CRRA preferences generically has a

power-law tail. There is one notable exception in which the borrowing limit φ is not bind-

ing, the labor shock ei,t is degenerate, and µ = 0. In this particular case, the stationary

distribution does not exist, as we show in Section 4.2. Otherwise, the stationary distribu-

tion exists, and the business productivity shock leads to the Pareto distribution. This can

be seen as follows. Households with CRRA preferences hold a constant portfolio of risky

and risk-less assets asymptotically as their wealth increases (see Carroll and Kimball [13];

Benhabib et al. [10]). Thus, their total resources Wi,t incur a multiplicative shock gi,t. In

this case, if the total resources Wi,t (detrended) has a stationary distribution, the station-

ary distribution must satisfy Pr(Wi,t+1 > w) = Pr(Wi,t > w/gi,t) for large w in the case

of i.i.d. shocks, as argued in Gabaix [22]. This equation is solved by a Pareto distribution

with exponent λ satisfying E(gλi,t) = 1, if the condition Pr(gi,t > 1) > 0 is satisfied. The

existence of the stationary distribution is warranted either by µ > 0 or a binding bor-
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rowing constraint. The former case is discussed in Section 4.2. The latter case is related

to the recent finding by Kamihigashi and Stachurski [30] on the existence of a stationary

distribution for Markov processes. They establish the existence even when the domain

is not compact. Their existence condition requires that the steady-state transition func-

tion of household total resources Wi,t in our model satisfy that the stochastic kernel is

increasing, order-reversing, bounded in probability and has a deficient distribution. As

Aiyagari [1] showed, solvency constraints require that households’ debt is limited by a

natural borrowing limit wemin/(R − 1) if there is a non-degenerate labor shock. With

this borrowing limit, the detrended total resources are bounded in probability and have

a deficient distribution. The order-reversing condition is satisfied in the setup studied in

Section 5, where households with high productivity always choose to invest in physical

capital.

4.2. Tractable case without borrowing constraints

The Bewley model is analytically tractable when the borrowing constraint and the

labor shock are absent. In this sub-section, we show that wealth follows a log-normal

process if µ = 0 in this case. This log-normal process implies that no stationary distri-

bution of relative wealth exists. When µ > 0, the stationary distribution of wealth exists

and has a Pareto tail, and the Pareto exponent is analytically derived.

We concentrate on a special case of the general environment with: (i) constant labor

supply ei,t = 1 and i.i.d. productivity ai,t over i and t, (ii) no tax (Ti,t = 0), and (iii)

no binding borrowing limit φ. However, here we have endogenous savings and portfolio

choice. Because of the i.i.d. shocks, we have the aggregate production relation (9) as

in the Solow model. Since this model features utility exhibiting constant relative risk

aversion, the savings rate and portfolio decisions are independent of wealth levels if there

is no limit on borrowing (Samuelson [51]; Merton [36]). Here, we draw on Angeletos’
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[3] analysis. Let Ht denote human wealth, defined as the present value of future wage

income stream, H̃t ≡
∑∞

τ=t γ
τwτ (1 − µ)τ−t

∏τ
s=t+1 R

−1
s , where wage wτ is detrended by

the growth factor γ. Define detrended human wealth Ht = H̃t/γ
t. Then, the evolution

of human wealth satisfies Ht = wt + (1 − µ)γR−1
t+1Ht+1. We define a household’s total

wealth (detrended) as Wi,t = (1 + p)(r(ai,t)ki,t +Rtbi,t) +Ht.

Consider a balanced growth path at which Rt, wt, and Ht are constant over time. In

this case, the dynamic programming problem allows a linear solution with constants s

and θ as c = (1− s)W , k′ = θsW/γ, and b′ = (1− θ)sW/γ − (1− µ)R−1H.

By substituting the policy functions into the definition of wealth, and by noting that

(1 − µ)(1 + p) = 1 holds from the zero-profit condition for the pension program (6), we

obtain the equation of motion for the detrended individual total wealth:

Wi,t+1 =

 g̃′i,t+1Wi,t with prob. 1− µ

H with prob. µ,
(23)

where the growth rate is defined as

g̃′i ≡
(θr′i + (1− θ)R)s

(1− µ)γ
. (24)

Thus, at the balanced growth path, household wealth evolves multiplicatively according

to (23) as long as the household lineage is continued. When the lineage is discontinued,

a new household with initial wealth Wi,t+1 = H replaces the old one. Therefore, the

individual wealth Wi,t follows a log-normal process with random reset events where H is

the resetting point. Using the result of Manrubia and Zanette [35], the Pareto exponent

of the wealth distribution is determined as follows.3

3We thank Wataru Souma for pointing to this reference. This result can be seen as a discrete-time

analogue of the stationary Pareto distribution of a geometric Brownian motion with random life-time, as
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Proposition 5. A household’s detrended total wealth Wi,t has a stationary distribution
with Pareto exponent λ, which is determined by

(1− µ)E(g̃λi,t) = 1 (25)

if µ > 0. If µ = 0, Wi,t has no stationary distribution and asymptotically follows a
log-normal distribution with its log-variance increasing linearly in t.

Proof: See Appendix C.

We note that if there is no discontinuation event (i.e., µ = 0), individual wealth follows

a log-normal process with log-variance increasing linearly in t. Therefore, the relative

wealth Wi,t/
∫
Wj,tdj does not have a stationary distribution in the case of µ = 0 and

no binding borrowing constraint. In this case, a vanishingly small fraction of individuals

eventually possesses almost all the wealth. However, historical records in the U.S. show

otherwise, where the current level of the Pareto exponent is comparable with that in

1920. Unlike the log-normal process, the empirical variance of log-income is stationary

in the long run, as Kalecki [29] pointed out in a classic debate with Gibrat. One way

to avoid the diverging variance is to introduce µ > 0 as seen above. Another way is to

introduce borrowing constraints, as we show in the next section.

5. Quantitative investigation of the Pareto exponent

5.1. Bewley model with binding borrowing constraints

In this section, we analyze how the Pareto distribution is affected by fundamental

parameters in the general equilibrium model defined in Section 4.1 without restrictions

imposed in Section 4.2. The key element for the Bewley model to generate the Pareto

explained in Reed [49] and applied to the overlapping generations model by Benhabib et al. [9], although

the geometric Brownian model differs in that it generates a double Pareto distribution.
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distribution even when µ = 0 is a borrowing constraint. When households face a bind-

ing borrowing constraint, the consumption function is concave in wealth, whereas it is

linear without borrowing constraints. As Carroll and Kimball [13] emphasize, the linear

consumption function arises only in a narrow specification of the Bewley model. For

example, a concave consumption function arises when the labor income is uncertain or

when the household’s borrowing is constrained. This implies that the log-normal process

of wealth is a special case whereas the Pareto distribution characterizes a wide class of

model specifications.

Since the Bewley model with a borrowing constraint is difficult to solve analytically,

we numerically solve for a stationary equilibrium. This model features a multiplicative

shock on wealth caused by business risks, in addition to a labor hours shock that enters

the wealth accumulation process additively as in Aiyagari [1]. Thus, the stationary wealth

distribution has a fat tail unlike the Aiyagari economy.

To manage the computation of portfolio choice, we follow a two-step approach similar

to Barillas and Fernández-Villaverde [6], who solve the neoclassical growth model with

labor choice using the endogenous gridpoints method used by Carroll [12] for the savings

problem and standard value function iteration for the labor choice. The autoregressive

process of labor supply ei,t is approximated by a five-state Markov process following the

Rouwenhorst method (Kopecky and Suen [33]).

We set ai,t to be a two-state Markov process with persistence. With autocorrelation in

productivity ai,t, households with high productivity will invest in capital at a high rate of

borrowing, while the households with low productivity will shift their assets to risk-free

bonds. Thus, this model captures an economy wherein a fraction of the households choose

to become entrepreneurs while the other households rely on wages and returns from safe

assets as their main income source. Since the entrepreneurs bear the business productivity
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shocks that generate the fat tail of wealth distribution in this model, we observe that

the tail population largely consists of current and past entrepreneurs. As a model of

entrepreneurship, the model presented here is not as rich as the ones with occupational

choice (see Quadrini [47] for a survey). Nonetheless, in this model, the entrepreneurs

(households with high productivity) do not diversify much of their business risks while

workers (households with low productivity) choose to bear substantially smaller risks.

We compute the stationary equilibrium distributions of wealth Wi,t and income Ii,t.

To calibrate the taxation function, we use the estimate by Heathcote, Storesletten, and

Violante [25], τ1 = 0.151. We set τ0 = 0.9 so government expenditure is about 10%

of GDP. The highest marginal tax rate is specified as τ2 = 0.5 to emulate the rate

before the tax cut in 1986 in the U.S. The labor endowment process is calibrated as

ζ = 0.82 and Std(εi,t) = 0.29, following Guvenen [24]. The transition matrix Π for the

productivity shock ai,t is set by π11 = 0.9727 and π22 = 0.8, for which the stationary

fraction of households with high productivity is 12% and the average exit rate from the

high productivity group is 20%. These numbers correspond to the fraction and exit rate

of entrepreneurs in the U.S. data (Kitao [32]).4 The states of ai,t are set at {0.71, 1.29},

which corresponds to a 20% standard deviation in risky asset returns. At this volatility

of productivity shocks, the stationary wealth distribution in the model with tax rate

τ2 = 0.5 generates a Pareto exponent of about 2, which roughly matches with the U.S.

level right before the tax cut in 1986. The lineage discontinuation rate µ is set at 2%. The

borrowing constraint is set at φ = 0.19, which is worth three months wage income. At

this value, the difference in consumption growth rates between low-asset (less than two

4In the model, the low productivity households still hold some capital in backyard production, as a

result of imposing the Inada condition. However, the level of the return to capital with low productivity

is very close to the risk-free rate. Thus, we interpret those households as non-entrepreneurs.
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p20 p40 p60 p80 p95 Gini Top I share Top W share

Benchmark 0.611 0.931 1.223 1.666 2.919 0.369 0.083 0.152

Low tax 0.617 0.944 1.194 1.667 2.838 0.379 0.106 0.248

US 1985 0.421 0.792 1.227 1.845 3.049 0.419 0.127 0.251

US 2010 0.406 0.771 1.248 2.030 3.663 0.469 0.198 0.395

Table 1: Distribution characteristics in the model and in the U.S. The table lists quintiles of income Ii,t,

95 percentile income, Gini index of income, and top 1% shares of income and wealth Wi,t. Percentile

income is measured relative to the median income. Sources of the U.S. estimates are the Census for the

percentiles and Gini index, Piketty [44] for the top income shares, and Saez and Zucman [50] for the top

wealth shares.

months labor income) and high-asset groups matches with Zeldes’ estimate, 1.7% (Zeldes

[56]; Nirei [39]). The parameters on technology and preferences are set at standard values

as α = 0.36, δ = 0.1, ρ = 3, β = 0.96, and γ = 1.02.

The wealth distribution at the stationary equilibrium for this benchmark calibration is

computed numerically. Appendix D details the computation method. Table 1 compares

income distribution for the benchmark case with income distribution in the U.S. in 1985.

As can be seen, the simulated and empirical distributions reasonably resemble each other

at the quintiles and at the 95 percentile, as well as in the Gini index and the top one

percent shares of income and wealth. Note that the highest marginal income tax rate

is set at τ2 = 0.5 in the benchmark calibration in order to be comparable to the tax

rate before the tax cut in 1986. The case of a low tax (τ2 = 0.28) and the empirical

distribution in 2010 are also reported in the table. We observe that the top 1% wealth

share increases significantly in our model with the low tax rate.

In what follows, we conduct comparative statics of the Pareto exponent. We will show
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that the Pareto exponent decreases (i.e., the tail becomes less equal) under high business

productivity risk, low labor risk, low income tax rate, loose borrowing constraint, or high

growth. We interpret these results by using the scheme depicted in Figure 2: business

productivity risk is categorized as the diffusion effect, while labor risk and borrowing

constraint as the influx effect. The tax and technological growth affect both the diffusion

and influx effects. We explain them in turn.

5.2. Business productivity risk: the diffusion effect

Figure 3 shows the stationary wealth distributions under the benchmark calibration,

the case with high variance of idiosyncratic productivity shocks ai,t, the case with low

variance, and the case with no productivity shocks. The plot shows a complementary cu-

mulative distribution (i.e., a distribution cumulated from above) of the household wealth

relative to the median household wealth. Pareto distributions are clearly observed in the

right tail of wealth for the top 1% of the distribution (i.e., beneath 10−2 in the com-

plementary cumulative distribution). The plots demonstrate that the increased business

productivity risk leads to less equal tail distributions, indicated by the flatter tail. Fur-

thermore, the Pareto tail distribution disappears when the variance of the productivity

shock is set at 0. This observation confirms our hypothesis that business productivity

risk is necessary for our model to generate the Pareto distribution of wealth.

We interpret the effect of productivity shocks as a diffusion effect. Some diffusion is

necessary for the Pareto distribution to emerge, as shown by the case with no productivity

risk. As the productivity risk becomes high, the volatility of the wealth growth rate

increases, resulting in a lower Pareto exponent. Note that the higher productivity risk can

reduce the capital portfolio due to risk aversion, which mitigates the increased volatility

of capital return. However, this mitigating effect is relatively weak under our calibrations.
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Figure 3: Stationary wealth distributions when standard deviation of productivity Std(ai,t) is set at

0.48 (high), 0.41 (benchmark), 0.34 (low), and 0 (no productivity shock). The standard deviations of

corresponding capital returns are 0.23 (high), 0.20 (benchmark), 0.16 (low), and 0, respectively.
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Figure 4: Stationary wealth distributions when standard deviation of labor income shock Std(εi,t) is set

at 0.145 (low), 0.29 (benchmark), and 0.435 (high).

5.3. Precautionary savings: the influx effect

Figure 4 shows the stationary wealth distributions when the standard deviation of

the labor endowment shock (Std(εi,t)) varies. The plots show that the increased variance

of the labor endowment shock naturally leads to a less equal distribution in the low

and middle wealth region. However, in the tail region, the wealth distribution becomes

more equal under the increased variance of the labor shock. We will interpret this as an

increased influx effect shortly.

Our benchmark calibration for the labor income process adopts a relatively mild

persistence, ζ = 0.82, following Guvenen’s [24] estimates. To see if our results survive

when the labor income process is near unit-root, we conduct a robustness check by setting

ζ = 0.97 and the variance of εi,t at 0.03 following Hryshko [26]. Figure 5 shows the result.
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Figure 5: Stationary wealth distributions when the labor income process is persistent (ζ = 0.97). The

variance of shock Var(εi,t) is set at 0.03 and 0.07.

As can be seen, the persistent labor income process does not change the Pareto exponent

of the stationary wealth distribution from the benchmark case. We also use an upper-

bound estimate for the variance of εi,t, 0.07. The high variance results in a high Pareto

exponent, similarly to that in Figure 4. Hence, we find that our results are robust to the

persistence of labor income process.

The stationary wealth distribution is affected by other fundamental parameters, such

as the death rate µ, borrowing constraint φ, and technological growth γ, as shown in

Figure 6. The plot for µ = 0 demonstrates that the Pareto distribution can be gener-

ated even when the households are infinitely living. As proven in the previous section,

the wealth distribution of infinitely living households follows a log-normal distribution

with diverging log-variance if the savings function is linear in wealth. Thus, the bind-
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Figure 6: Stationary wealth distributions for the cases of infinitely living households (µ = 0), relaxed

borrowing limit (φ = 1.52), and high growth (γ = 1.04), compared to the benchmark (µ = 0.02, φ = 0.19,

and γ = 1.02).

ing borrowing constraint plays a key role in generating a stationary Pareto distribution

when µ = 0, by inducing precautionary savings. The borrowing constraint also has a

quantitatively considerable impact on the Pareto exponent. In Figure 6, the stationary

wealth distribution for the case φ = 1.52 is plotted. This value of the borrowing limit

corresponds to two years’ worth of wage income. The plot indicates that relaxing the bor-

rowing constraint from the benchmark three months wage to two years wage has roughly

the same impact on the Pareto exponent as reducing the death rate from µ = 0.02 to 0.

The low labor risk and loose borrowing constraint affect the influx effect through the

precautionary motive of savings. Households have less incentive for precautionary savings

when the labor risk is low or the borrowing constraint becomes lax. Hence, the saving
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rate among the low and middle wealth groups falls, which reduces the influx of labor

income into wealth, leading to a fall in the Pareto exponent. This result contrasts with

Benhabib et al. [8] who claimed that labor income risk does not affect the tail. When

there is a borrowing limit, our numerical results show that labor risk affects the tail and

that the impact is quantitatively considerable.

We note that the influx effect results from the difference in the saving rates between

the high wealth group and the others, rather than from the average saving rate. In the

Solow model, the savings rate per se does not affect λ at the stationary distribution, as

shown in Proposition 6 in Appendix B. In the Bewley model, we argue that precautionary

savings serve as a reflective lower bound for wealth accumulation. When the borrowing

constraint is binding, more volatile labor shocks lead to a higher saving rate among the

low and middle wealth groups, while the effect for high wealth households is limited. The

differential response of households in the saving rates results in an increased influx effect

z/K̄. Because stationarity requires E(g) = 1− z/K̄, the increased z/K̄ raises the Pareto

exponent through the condition E(gλ) = 1.5

Figure 6 shows that a low death rate (µ = 0) leads to a low Pareto exponent. While

this is straightforward given the analysis in Section 4.2, we can interpret the effect of µ

as an influx effect, because the low death rate reduces the net inflow of households from

the low and middle wealth groups to the lower end of high wealth group relative to the

outflow. Figure 6 also plots the stationary wealth distribution for the case with high

growth γ = 1.04. The plot shows that the higher rate of technological growth makes

5It may be useful to consider a “Cambridge” growth model in which the saving rate from capital

income (i.e., s in (13)) differs from that from labor income (s in (14)). Nirei [40] showed that an increase

in s only in (14) but not in (13) causes a relatively quick transition to a flatter Pareto tail. This occurs

because the increased savings in (14) alone increases z more than aggregate capital K̄.
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the wealth distribution less equal in the right tail. This is consistent with our analytical

result in Proposition 4. A high growth rate increases both the influx effect z/K̄ and

the wealth growth g linearly in 1 − (1 − δ)/γ, as can be derived from (13,14) at the

steady state. Since the diffusion effect depends on the variance (i.e., the square) of g, the

diffusion effect overwhelms the influx effect, resulting in the lower Pareto exponent.

5.4. The effect of tax

Figure 7 plots the complementary cumulative distributions of wealth and income at

the stationary equilibrium for the cases of a top marginal tax rate τ2 = 0.5 (benchmark)

and 0.28. Both wealth and income are normalized by the median household wealth

and income, respectively. We observe that the Pareto exponents for wealth and income

coincide. That is because in this model high income earners earn most of their income

from accumulated wealth. The Pareto exponent is significantly smaller in the low tax

regime than in the high tax regime: 1.46 for τ2 = 0.28 and 1.99 for τ2 = 0.5.

The low tax rate strengthens the diffusion effect, because it increases the volatility of

after-tax returns to capital. At the same time, the low tax rate weakens the influx effect,

because it reduces the net inflow of households into the tail from below. Therefore, both

effects induce a low Pareto exponent. The two tax rates used for Figure 7 emulate the

U.S. Tax Reform Act in 1986. As studied by Feenberg and Poterba [19], an unprecedented

decline in the Pareto exponent is observed right after the tax reform. Although the stable

Pareto exponent right after the downward leap may suggest that the sudden decline was

partly due to tax-saving behavior, the steady decline of the Pareto exponent in the 1990s

may suggest more persistent effects of the tax reform. Piketty and Saez [45] suggested

that the imposition of a progressive tax around the Second World War was the possible

cause for the top income share remaining at a low level for a long time after the war,

until the 1980s. Our simulations and the above analytical results are consistent with
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Figure 7: Stationary distributions of wealth and income for the benchmark case (τ2 = 0.5) and the case

of lower tax rate (τ2 = 0.28).

the view that a tax cut substantially reduces the stationary Pareto exponent. However,

our analysis is limited to the comparison of stationary distributions, and the transition

dynamics are beyond the scope of this paper.6

The above interpretations of the sensitivity analysis assume that the analysis in the

Solow model can be extended to the Bewley economy, at least qualitatively. Since our

Bewley economy incorporates many features, such as non-linear savings and taxation

as well as autocorrelated shocks in business returns and endowments, we cannot pro-

vide analytical justifications to this analogy. Nonetheless, we find that the comparative

statics obtained by numerical analysis of the Bewley model fit well with the theoretical

predictions obtained from the analytical formula shown with the Solow model.

6We tackle this issue in a different paper (Aoki and Nirei [4]).
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6. Conclusion

This paper demonstrates that the neoclassical growth model with idiosyncratic busi-

ness productivity risks is able to generate the Pareto distribution as the stationary dis-

tributions of income and wealth at the balanced growth path. We explicitly determine

the Pareto exponent in terms of the fundamental parameters, and provide an economic

interpretation for its determinants in a general equilibrium analysis. In particular, we

emphasize the role played by precautionary savings in determining the Pareto exponent.

The Pareto exponent is determined by the balance between two factors: savings from

labor income, which determines the influx of population from the middle class to the

tail part, and business income contributed by risk-taking behavior, which corresponds to

the diffusion effect making the tail distribution less equal. We show that an increase in

the variance of the idiosyncratic business productivity shock lowers the Pareto exponent.

While this paper features households’ risky business investments in physical capital, the

Pareto tail should be similarly obtained when the risky asset takes the form of human

capital, or executive stock option pay as studied in Aoki and Nirei [4]. The essential

feature of the model is that the households own a stock factor of production with risky

returns and a flow factor of production that is always positive. The risky returns generate

the diffusion effects, while the flow factor provides the influx effect.

The analytical results shown in the Solow model hold in a Bewley model, wherein

the savings and portfolio are optimally determined by the households. In a special case

without borrowing constraints, the Bewley model generates a log-normal process for

individual wealth that implies a counterfactual “escaping” path of less and less equal

distributions. One way to reestablish the Pareto distribution of income and wealth is to

incorporate a random reset event by which each household lineage is discontinued. We

emphasize a new factor that prevents the distribution from diverging and generates the
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Pareto exponent: precautionary savings generated by a binding borrowing constraint. We

conduct sensitivity analyses of the Pareto exponent for the borrowing constraint, techno-

logical growth rate, death rate, tax rate, business return volatility, and labor endowment

volatility. Results obtained by numerical computation agree with the mechanism of the

determination of the Pareto exponent derived in the Solow model.

The agreement between the Solow model and the Bewley model with borrowing con-

straints points to the key roles played by the influx effect and the diffusion effect in

generating the Pareto distribution. Without idiosyncratic business productivity shocks,

the model lacks the diffusion effect and thus no Pareto distribution emerges. The in-

flux effect is also necessary for generating Pareto distributions, and it is affected by a

variety of economic fundamentals other than the death rate of households. For example,

either a stricter borrowing limit or a riskier labor income leads to greater precautionary

savings, resulting in a higher Pareto exponent. In the Solow model, savings by the low

wealth group correspond to the savings from labor income, which serve as a reflective

lower bound of wealth accumulation and exert the influx effect on the Pareto exponent.

Our numerical analysis with varying borrowing constraints shows that this effect can be

quantitatively considerable.

Appendix A. Proofs for the propositions in Section 3.3

Proof of Proposition 2. We first show the unique existence of a solution λ for (16). Note

that (d/dλ)E(gλ) = E(gλ log g) and (d2/dλ2)E(gλ) = E(gλ(log g)2). Since g > 0, the

second derivative is positive, and thus, E(gλ) is convex in λ. As λ→∞, gλ is unbounded

for the region g > 1 and converges to zero for the region g < 1, while the probability

of g > 1 is unchanged. Thus, E(gλ) eventually becomes greater than 1 as λ increases to

infinity. Further, recall that E(g) < 1. Thus, for the range λ > 1, E(gλ) is a continuous
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convex function that travels from below 1 to above 1. This establishes that the solution

for E(gλ) = 1 exists uniquely in the range λ > 1, and that the solution λ̄ satisfies

(d/dλ)E(gλ)|λ=λ̄ > 0.

Next, we show that λ is decreasing in σ by showing that an increase in σ is a mean-

preserving spread in g. Define constants g0 ≡ (1− δ)/γ and u0 ≡ log(α(1− (1− δ)/γ)).

Then, log u ≡ log(g−g0) follows a normal distribution with mean u0−σ2/2 and variance

σ2. Namely, g follows a shifted log-normal distribution. The mean of g is equal to g0 +eu0

and independent of σ.

The cumulative distribution function of g is F (g) = Φ((log(g − g0)− u0 + σ2/2)/σ),

where Φ(·) denotes the cumulative distribution function of the standard normal. Then,

∂F

∂σ
= φ

(
log(g − g0)− u0 + σ2/2

σ

)(
− log(g − g0)− u0

σ2
+

1

2

)
, (A.1)

where φ(·) is the derivative of Φ. Using the change of variable x = (log(g − g0) − u0 +

σ2/2)/σ, we obtain ∫ ḡ ∂F

∂σ
dg =

∫ x̄

φ(x)(−x/σ + 1)dxdg/dx (A.2)

= σeu0
∫ x̄ −x/σ + 1√

2π
e−(x−σ)2/2dx, (A.3)

The last line reads as a partial moment of −x/σ+1, wherein x follows a normal distribu-

tion with mean σ and variance 1. The integral tends to 0 as x̄→∞, and the integrand is

positive for x below σ and negative above σ. Thus, the partial integral achieves the max-

imum at x̄ = σ and then monotonically decreases toward 0. Hence, the partial integral

is positive for any x̄, and so is
∫ ḡ
∂F/∂σdg. This completes the proof for the assertion

that an increase in σ is a mean-preserving spread in g.

Since gλ is strictly convex in g for λ > 1, a mean-preserving spread in g strictly

increases E(gλ). As was observed, E(gλ) is also strictly increasing in λ locally at λ = λ̄.

Thus, an increase in σ results in a decrease in λ̄ that satisfies E(gλ̄) = 1.
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Proof of Proposition 3. When δ = 1, g is reduced to αa
(1−α)/α
i,t . Then, gλ follows a

log-normal with log-mean λ(logα− σ2/2) and log-variance λ2σ2. Then, we obtain

1 = E(gλ) = eλ(logα−σ2/2)+λ2σ2/2. (A.4)

Taking the logarithm of both sides and solving for λ, we obtain λ = 1− (2/σ2) logα.

Proof of Proposition 4. From the definition of gi,t (13), we obtain

E(g2
i,t) =

(
1− δ
γ

)2

+ 2
1− δ
γ

α

γ
(γ − 1 + δ) +

(
α

γ
(γ − 1 + δ)

)2

E(a
2(1−α)/α
i,t ). (A.5)

Using the log-normal distribution of a
(1−α)/α
i,t , we obtain E(a

2(1−α)/α
i,t ) = eσ

2
. Combining

these results with the condition E(g2) = 1, after some manipulation we obtain

σ̂2 = log

(
1

α2

(
1 +

2(1− α)

γ/(1− δ)− 1

))
. (A.6)

We observe that an increase in γ or δ decreases σ̂. By Proposition 2, λ is decreasing in

σ. Thus, in the neighborhood of λ = 2, the stationary λ is decreasing in γ or δ, because

an increase in either γ or δ decreases σ̂ relative to the current level of σ.

Appendix B. Redistribution policies in the Solow model

In this section, we extend the Solow framework to redistribution policies financed

by taxes on income and bequests. This extension provides an analytical framework to

interpret the numerical results on income tax in the Bewley model in Section 5. Moreover,

by this extension we incorporate, as a limiting case, the classic argument by Stiglitz [53]

that the Solow economy leads to a completely equal distribution of wealth.

Let τy denote the flat-rate tax on income, and let τb denote the flat-rate bequest tax on

inherited wealth. The tax proceeds are equally redistributed among the households. We

assume that a household changes generations with probability µ in each period. Thus,
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the household wealth is taxed at flat rate τb with probability µ and remains intact with

probability 1−µ. We denote the bequest event by a random variable 1b that takes 1 with

probability µ and 0 with probability 1− µ. Then, the capital accumulation equation (8)

is modified as follows:

γki,t+1 = (1− δ − 1bτb)ki,t + s((1− τy)(πi,t + wtei,t) + τyYt + τbµKt). (B.1)

By aggregating, we recover the law of motion for Kt as in (10). Therefore, the redistri-

bution policy does not affect K̄ or aggregate output at the steady state. Combining with

(B.1), the accumulation equation for individual wealth is rewritten at K̄ as follows:

ki,t+1 = ĝi,tki,t + ẑei,t, (B.2)

where the newly defined growth rate ĝi,t and the savings term ẑ are given as follows:

ĝi,t ≡
1− δ − 1bτb

γ
+

(1− τy)α(γ − 1 + δ)

γ

a
(1−α)/α
i,t

E(a
(1−α)/α
i,t )

, (B.3)

ẑ ≡ (1− α + ατy)sA

γ

(
sA

γ − 1 + δ

)α/(1−α)

+ τbµ

(
sA

γ − 1 + δ

)1/(1−α)

. (B.4)

This is a Kesten process, and the Pareto distribution is immediately obtained.

Proposition 6. Under the redistribution policy, if the probability for ĝi,t > 1 is strictly
positive, a household’s wealth ki,t has a stationary distribution whose tail follows a Pareto
distribution with exponent λ that satisfies E(ĝλi,t) = 1. An increase in income tax τy or
bequest tax τb raises λ, while λ is not affected by the savings rate s.

Since the taxes τy and τb both shift the density distribution of ĝi,t downward, they raise

the Pareto exponent λ through the condition E(ĝλi,t) = 1.

The redistribution financed by bequest tax τb has an effect similar to that of a random

discontinuation of household lineage. By setting τb accordingly, we can incorporate the

situation where a household may have no heir, and all its wealth is confiscated and
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redistributed by the government, and a new household replaces it with no initial wealth.

A decrease in mortality (µ) in such an economy will reduce the stationary Pareto exponent

λ. Thus, larger longevity results in a less equal tail distribution.

The redistribution financed by income tax τy collects a fraction of profits and equally

transfers the proceeds to the households. Thus, income tax serves as a means to share

idiosyncratic business productivity risks across households. When the transfer is uncorre-

lated with the capital holding, it works as another additive term to wealth accumulation.

Thus, how the transfer is allocated does not affect λ, as long as the distribution of the

transferred amount has a thin tail.

If the transfer is proportional to the capital holding, this redistribution scheme by

the income tax is equivalent to an insurance against the business productivity risks.

The importance of capital market imperfections in determining income distributions is

emphasized by Banerjee and Newman [5] and Galor and Zeira [23]. In this context, we

obtain the following result.

Proposition 7. Consider a risk-sharing mechanism that collects τs fraction of profits
πi,t and refunds its ex-ante mean E(τsπi,t) as rebate. Then, an increase in τs raises λ.

The proof is as follows. Partial risk sharing (τs > 0) reduces the coefficient of ai,t in (B.3)

while keeping the mean of ĝi,t. Then, ĝi,t before the risk sharing is a mean-preserving

spread of the new ĝi,t. Since λ > 1, a mean-preserving spread of ĝi,t increases the

expected value of its convex function ĝλi,t. Thus, risk sharing must raise λ in order to

satisfy E(ĝλi,t) = 1. When the households completely share the idiosyncratic risks, the

model converges to the classic case of Stiglitz [53], wherein wealth is equally distributed

across households.
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Appendix C. Proof of Proposition 5

In this section, we solve the Bewley model with “natural” borrowing constraint and

pension program, and show the existence of the balanced growth path. Then the propo-

sition obtains directly by applying Manrubia and Zanette [35].

At the steady state of detrended aggregate capital K̄, the return to physical capital

(5) is written as:

r(ai,t) = α(ai,t/A)(1−α)/αK̄α−1 + 1− δ, (C.1)

which is an i.i.d. process. The average return is:

r̄ ≡ E(r) = αAK̄α−1 + 1− δ. (C.2)

The lending market must clear in each period, which requires
∫
bi,tdi = 0 for any t.

We also note that r(ai,t) is independent of ki,t under the i.i.d. assumption on ai,t. Thus,

aggregate total wealth satisfies
∫
Wi,tdi = (1 − µ)−1r̄Kt + Ht. At the balanced growth

path, aggregate total wealth, non-human wealth, and human wealth grow at γ. Let W̄ ,

H̄, and w̄ denote aggregate total wealth, human capital, and the wage rate detrended by

γt at the balanced growth path, respectively. Then we have:

W̄ = (1− µ)−1r̄K̄ + H̄. (C.3)

Combining the market clearing condition for lending with the policy function for lending,

we obtain the equilibrium risk-free rate:

R =
γ(1− µ)

s(1− θ)
H̄

W̄
. (C.4)

Aggregation of the policy function for savings across households yields:

K̄ = (sθ/γ)W̄ . (C.5)
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Combining with (C.3, C.4), we obtain the relation:

R =
γ(1− µ)

s(1− θ)
− θ

1− θ
r̄. (C.6)

Thus, the mean return to the risky asset and the risk-free rate are determined by K̄ from

(C.2,C.6). By using (4,9), the human wealth is written as:

H̄ =
w̄

1− (1− µ)γR−1
=

(1− α)AK̄α

1− (1− µ)γR−1
. (C.7)

In what follows, we show the existence of the balanced growth path in the situation

when the parameters of the optimal policy (s, θ) reside in the interior of (0, 1). By using

(C.2,C.6,C.7), we have:

K̄

H̄
=

1− (1−µ)γs(1−θ)
γ(1−µ)−sθ(1−δ)−sθαAK̄α−1

(1− α)AK̄α−1
. (C.8)

The right hand side function is continuous and strictly increasing in K̄, and travels from

0 to +∞ as K̄ increases from 0 to +∞.

Now, we rearrange (C.3) using (C.5) as:

γ

sθ

K̄

H̄
= 1 + (1− µ)−1 r̄K̄

H̄
. (C.9)

By (C.2), r̄ is strictly decreasing in K̄, and R is strictly increasing by (C.6). Thus, W̄/H̄

is strictly decreasing by (C.4), and so is r̄K̄/H̄ by (C.3). Thus, the right hand side

of (C.9) is positive and strictly decreasing in K̄. The left hand side is monotonically

increasing from 0 to +∞. Hence, there exists a unique steady-state solution K̄. This

verifies the unique existence of the balanced growth path.

The law of motion (23) for the detrended individual total wealth ki,t is now completely

specified at the balanced growth path:

ki,t+1 =

 g̃i,t+1ki,t with prob. 1− µ

H̄ with prob. µ,
(C.10)
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where,

g̃i,t+1 ≡ (θr(ai,t+1) + (1− θ)R)s/(1− µ). (C.11)

This is the stochastic multiplicative process with reset events studied by Manrubia and

Zanette [35]. By applying their result, we obtain the proposition.

Appendix D. Details of numerical computation

This section explains the computation procedure used for Section 5. Wealth W is

discretized by 400 grid points separated equally in log-scale in the range between 10−2 and

1010. The autoregressive process of e is discretized by Rouwenhorst’s quadrature method

(Kopecky and Suen [33]). To compute the stationary equilibrium of the Bewley model

with portfolio choice, we use a two-step algorithm similar to Barillas and Fernández-

Villaverde [6]. In the first step, we solve the savings choice given a portfolio policy, and

we solve the portfolio policy given the savings choice in the second step.

1. Initialize θ(W,a, ε)

(a) Initialize K

i. Compute w and r(a)

ii. Solve for household’s savings policy x(W,a, ε)

iii. Compute the stationary distribution Λ(W,a, ε)

iv. Compute stationary K. Repeat (a) until K converges

(b) Initialize R

i. Solve for household’s portfolio policy θ(W,a, ε)

ii. Compute aggregate bond demand
∫ 1

0
bidi. Adjust R and repeat (b) until

the aggregate bond demand converges to 0

2. Repeat 1 until θ(W,a, ε) converges
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In the algorithm above, (a-i) uses (C.1) and the profit maximization condition. In (a-

ii), the households’ dynamic programming problem is solved by the endogenous gridpoint

method with linear interpolation. In (a-iii), we first compute W ′ for given W,a, a′, e, e′,

where W is chosen at a grid point of wealth. The probability for this transition is

computed by combining the transition matrices for a and the discretized e. Thus, we

obtain a transition matrix for W . The stationary distribution of W is obtained by forward

simulation, that is, by iterating the multiplication of the transition matrix. The resulting

stationary distribution of wealth has a fat tail, but the average wealth always exists since

the Pareto exponent is greater than 1. We make the maximum grid for wealth quite large

(1010) so that the marginal propensity to consume for the households with high wealth

can be computed accurately.

The convergence of aggregate capital in (a) and aggregate bonds in (b) are obtained

by the bisection method applied to K and R, respectively. The criterion for convergence

is set as 10−9 for the savings policy function, 10−4 for aggregate capital and bonds, 10−3

for θ in the outer loop, and 10−2 for the estimated Pareto exponent of the stationary

wealth distribution in the outer loop.

Figure D.8 shows a part of the computed policy functions and the Lorenz curve for

the benchmark calibration. We note that the households with high productivity invest

all their wealth in risky assets, and thus k′ and k′ + b′ + φ coincide for them. We also

note that the households with low productivity hold some bonds when their wealth is

in the middle level or in the very high level. Bonds demanded by those households are

supplied by the households with high productivity and the households with low wealth.

Under the benchmark calibration, the stationary capital-output ratio is 1.746 and the

consumption-output ratio is 0.725. The risk-free rate is 0.053, while the risky capital

generates the net rate of return 0.048 in the low productivity state and 0.327 in the high
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Figure D.8: Policy functions (left) and Lorenz curve for income (right) for the benchmark calibration.

Policy functions show savings k′ + b′ + φ and capital holding k′ conditional on total resources W for

a household with low or high productivity a and with the median value of labor endowment e. Total

resources, savings, and capital are normalized by the median total resources. Note that the savings and

capital levels coincide for the households with high productivity, because they choose to hold all their

wealth in capital.
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productivity state.
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