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Abstract

This paper proposes mixed parametric and nonparametric statistical techniques for

the analysis of high frequency data. It gives a general model, which can be discrete or

continuous in time depending on the point-of-view. This model can be seen as a parametric

model which allows its multidimensional parameter to follow a local martingale. As such,

we call it the locally parametric model (LPM). The quantity of interest is de�ned as the

uniformly weighted value over time (UWV) of the (discrete or continuous) parameter

process. We provide estimators of UWV and conditions under which we can show the

consistency and the corresponding central limit theorem. Those estimators are based on

estimators of the parametric model when parameters are �xed. Since the estimator is

obtained by chopping the data into small blocks, estimating the parameter on each block

pretending it is constant locally and taking a weighted mean of the estimates on each block,

we call it the locally parametric quasi-estimator (LPQE). We show that under conditions,

some discrete standard time series models of the literature (for instance ARMA or GARCH

models with MLE estimator) as well as continuous semiparametric models (for example

a semimartingale asset price model with IID noise component in the observations) of the

high-frequency �nancial econometrics literature belongs to the LPM class of models. This

paper thus builds a bridge between various perspectives, parametric, semiparametric and

nonparametric as well as discrete and continuous in time models. In addition, statistics to

test whether the parameter's constancy hypothesis is true are provided. We also discuss

model selection and provide statistics to test for nested models: as an example, this allows

us to test if there is noise in observations. Based respectively on the estimate of UWV,

we give a new input to use in the prediction model. Finally, an empirical study on S & P

500 daily returns, using ARMA and models is carried out. It shows that the parameters

are not constant over time for both models and that we obtain better statistical inference

using the new prediction's input of the model.
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1 Introduction

1.1 The dilemma of assuming parameter's constancy over time in a para-

metric model

Modeling dynamics is very important in various �elds, such as �nance, economics, physics,

environmental engineering, geology or even sociology. Parametric time dependent models are

tools meant to deal with one type of dynamics, the temporal evolution of systems. There

has been an explosion of research in the area in the last decades. We can identify two main

reasons why parametric models are very attractive and popular, both for researchers and

practitioners. First, by estimating an underlying (possibly multidimensional) parameter, they

provide crucial information on the mechanisms of the system of interest. As an example, the

�tted parameter of autoregressive moving average (ARMA) models (Whittle (1951)) give us

insight on the correlation structure of the observations. Also, parametric models usually allow

for inference such as prediction of future observations together with con�dence intervals, as a

function of the data. In particular, if we choose an adequate model, we can predict tomorrow's

temperature.

By de�nition, parametric approaches come with the strong assumption that there exists

an underlying parameter, who drives the structure of the observations, and which is �xed over

time. In practice, the parametric model user usually tries di�erent types of models, or has

a speci�c class of models in mind, and she �ts the models to the data. It means that she

estimates the parameter of the model with the observations. Nonetheless, as time goes by, the

structure driving the observations is most likely evolving as well. Thus, questions about the

constancy of the parameter, that would stay the same through thick and thin, are to be raised.

To corroborate this natural skepticism, it can even be the case that empirical work strongly

suggests that the assumption of constancy is too restrictive. To acknowledge the issue, one

has to build an extended model, that can be either parametric but typically with some more

parameters, semiparametric or nonparametric .

Models of the variance of the return terms (also called error terms) followed exactly this

path. Originally, we assumed that the returns Ri := Yi−Yi−1 of a time-series {Y1, Y2, . . . , Yn}
observed at times {τ1, τ2, . . . , τn} where τi = iτ were conditionally homoskedastic with variance

parameter σ, and we split them asRi = σzi where zi was a stochastic piece (typically a gaussian

with a time-increment variance ∆τi := τi−τi−1). On the parametric side, Engle (1982) allowed

conditional heteroskedasticity, the variance component following itself a moving-average (MA)
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model. He was soon imitated by Bollerslev (1986) and many other authors (see, e.g., Nelson

(1991), Engle and Ng (1993)), who allowed respectively an ARMA and more general models

for the evolution in time of the variance parameter. Taking a nonparametric approach, the

analysis of high-frequency �nancial data gave rise to the model where log prices follow a

semimartingale and returns are of the form

Ri =

∫ τi

τi−1

µtdt+

∫ τi

τi−1

σtdWt (1)

where the drift µt and the volatility σt are random processes. The object of interest, which

used to be the �xed volatility parameter, became the integrated volatility (IV), de�ned as

IVt =

∫ t

0
σ2
sds (2)

This was studied extensively in Andersen and Bollerslev (1998a,b), Andersen, Bollerslev,

Diebold and Labys (2001,2003), Barndor�-Nielsen and Shephard (2001,2002), Barndor�-Nielsen

(2004), Jacod and Protter (1998), Zhang (2001) and Mykland and Zhang (2006). Generalized

autoregressive conditional heteroskedasticity (GARCH) type models and di�usion models have

a signi�cant di�erence in their point-of-view: the former is discrete whereas the former is a

continuous-time model.

The nonparametric approach allows for a very general structure driving the returns. In the

past couple of decades, the assumptions on the drift and volatility processes of (1) has been

weakened as much as possible. This provides us very robust nonparametric estimators of the

RV, but as far as the forecast of the future returns and con�dence intervals are concerned, a

model not as general as (1) on the future path of drift and volatility is further needed. This

is one reason why parametric models are very convenient, they provide prediction values and

intervals straightforwardly. As such, the GARCH model is very appealing and behaves very

well in practice. Nonetheless, it actually involves a second level of nesting. It still assumes the

existence of a �xed parameter over time, which is driving the ARMA structure of the variance

term. Can we believe in such a model, which has a non time dependent input, when all the

quantities of the �real World� are changing over time ? (see, i.e., Foster and Nelson (1996)) If

not, what is an alternative more general model ?

We believe that when facing the problem of having a suspect parametric model, building

a new parametric model will only push the issue to the next order. Eventually, doubts about

the constancy of those new parameters will rise, and thus the problem is only solved partially.
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In this paper, we propose to shed light on this thought by building statistical tests and giving

the opportunity to test whether the constancy of the underlying parameter's assumption holds

on data for a speci�c model.

Also, we take a stand in this paper by assuming the parameter to be locally constant. We

prove that under this assumption we can trust the parametric model locally. Thus, inference

can still be performed (at least locally) using the parametric model, if we can estimate the

spot parameter. As a consequence, methods of parameter's estimation has to be updated to

take proper account of the nonconstancy over time of the parameter. The idea that locally

constant parameter implies the model to be locally true builds on previous investigations by

Mykland and Zhang (2009, 2011) of the maximum size of a neighborhood in which we can hold

volatility of an asset constant. In the case where the observation times of the price process

are endogeneous, techniques were extended in Potiron and Mykland (2015).

For the sake of simplicity, assume a null-drift in (1). The nonparametric Itô-process model

will be shown to be an element of LPM if we consider that volatility is constant locally. Simi-

larly, a zero-mean GARCH model where we allowed the parameters to follow a local-martingale

also belongs to the class of LPM. This paper builds a bridge between some time series mod-

els, parametric, semiparametric and nonparametric models, with discrete or continuous time

setting, by seeing them all as LPM.

When one looks at a model, there is commonly two ways of assessing the quality of it.

One can take the engineering approach and believe that the data follows the model, in the

sense that it is very robust to various tests to reject it. An alternative approach is, as Faraway

(2005) points out for regression problems1, to recognize that the parameter and its estimate

is a �ctional quantity in most situations. The �true� value may never be known (if it even

exist in the �rst place). Instead concentrate on predicting future values, these may actually be

observed and success can then be measured in terms of how good the predictions were. That

you take either point-of-view, this paper will show that the new approach performs better.

On top of describing in a more complete way the mechanisms of the system of interest, it

will provide directly better forecast values and con�dence intervals in the close future. We

emphasize that this work is not solely focused on the very speci�c problem of estimation of

volatility or even more general examples available in the �nancial econometrics literature.

It applies to any (possibly semi or non) parametric model, as long as an estimator of the

1see the discussion on interpretation of parameter estimates of Chapter 3.10
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underlying parameter is known and that they verify the conditions provided in Section 3 of

this paper.

1.2 The serious statistical implications of assuming that parameter is con-

stant over time when it's not

We remind to the lector that assuming that θ∗ is constant when it's not can rise serious estima-

tion issues. It means that we are using the estimator with the wrong model. In the likelihood

theory, ever since Fisher (1922, 1925) has introduced the method of maximum likelihood, a

signi�cant body of the literature has taken an interest in the asymptotic behavior of the maxi-

mum likelihood estimator (MLE) when the model is misspeci�ed. This was pioneered by Berk

(1966, 1970) for the Bayesian approach and Huber (1967), who took the classical perspective.

More recently, White (1982), among numerous other authors, also investigated the issue. A

MLE computed on data not following the �true model� is called Quasi Maximum Likelihood

Estimator (QMLE).

Using the analogy, we will refer to Quasi Estimator (QE) when an estimator is performed

on a misspeci�ed model. In particular, the QMLE is a type of QE. As the previous cited

authors showed in their work on QMLE, a QE is no longer necessarily consistent to the new

object of interest (see (2) or (5) for examples of such objects of interest). It might converge to

a value, but this is not necessarily the one the parametric model user has in mind. Even if the

procedure is consistent in the value of interest, the estimated standard deviation will most likely

be wrong. Consequently, this leads to wrong inferences, building interval con�dences of the

wrong size, rejecting or accepting hypothesis with a probability di�erent from the acceptance

rate, setting wrong forecast intervals and so on. This is much of the same problem that the one

we face when we are �tting a general linear model (GLM) and we encounter over-dispersion

(see p.124 of McCullagh and Nelder (1989)). This issue is easily and very often overlooked,

even if it seems to be the norm in practice.

Needless to add that QMLE is still a very popular estimator nowadays (see Xiu (2010)

among many other papers). Usually, the approach taken is to identify and estimate the

eventual bias, obtain a consistent estimator by removing the bias to the QMLE, and then

investigate the error's magnitude. This seems like a lot of work, and very often there is

still the assumption of underlying constant parameters in the procedure, and their non time

dependency is not checked properly. This paper will provide a basis of work for anyone willing

to use MLE on wrong models which are following the assumptions of our work.
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We insist on the fact that this paper is not solely focused on QMLE. The philosophy is

to advocate anyone who has at hands a parametric model and estimator to chop the data

into several blocks and to use its estimator locally on each block, where the constancy of the

parameters is much less questionable because of our locally constant parameter's assumption.

1.3 The solution: allowing the parameter to follow a local martingale

One goal of this paper is to take a proper account of the possible nonconstancy of parameters

in a parametric model. We will allow the parameter to follow a local martingale. We don't

include a drift in the structure because if this is the case, it should properly be included in

the original parametric model.

We �rst take the discrete time series perspective. We observe {Y0,n, Y1,n, . . . , YnY ,n}. We

assume that {R1,n, R2,n, . . . Rn,n}, which is a function of the observations, of size n, follows the

assumptions of the LPM de�ned in Section 3. In particular, Ri,n doesn't need to be stationary

or ergodic. The corresponding observation times are {τ1,n, τ2,n, . . . , τn,n}, where τi,n := iT/n

with T > 0 the horizon time. In a signi�cant number of applications, Ri,n will be de�ned as

the (possibly log) returns of the original time-series. As such, we will refer to them as returns

in the rest of the paper. Nonetheless, bear in mind that the order of di�erencing needed to

stationarize the time series can be well di�erent from 1, and Ri,n can thus be equal to the

original time series or an approximate of the di�erential of order 2 for instance. We assume

that the moving parameter {θ∗1,n, . . . , θ∗n,n} is a local martingale. Instead of the constant

parameter θ∗, the object of interest is

Θ(dis)
n :=

1

n

n∑
i=1

θ∗i (3)

We keep the discrete time model point-of-view, but assume now that observation times

can be random, and dependent of the other quantities, we call it endogeneity. We observe

{(R1,n,∆τ1,n), . . . , (R1,n,∆τNn,n)} coming from a parametric model, where Nn is the (ran-

dom) number of observations. We will seek to infer

Θ(dis)
n :=

1

T

n∑
i=1

θ∗i ∆τi,n (4)

If the parametric model user believes in a continuous time setting, then the parameter process

θ∗t can be de�ned for all time 0 ≤ t ≤ T . Our object of interest is the estimation of the integral
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of parameter spot process

Θ :=
1

T

∫ T

0
θ∗sds (5)

If we assume that in the discrete time model θ∗i is the interpolation of a continuous parameter

process at its time of observation θ∗τi , we have

Θ(dis)
n = Θ + op(1) (6)

and thus regardless of the point-of-view taken, our object of interest will be Θ. The uniformly

weighted value over time (UWV) or integrated parameter (5) is to be compared to the IV

de�ned in (2). If the underlying parameter has a physical interpretation such the volatility

has, it is natural to have an interest in (5). On the other hand, even if the parameter doesn't

have a direct physical interpretation, it still makes sense to infer about the quantity (5): one

reason is that a slight modi�cation of its estimate Θ̂n will provide better inference about the

spot parameter θ∗T and thus allow us to make better predictions.

By choosing a continuous local martingale parameter process in our model, we will provide

a parameter's estimate Θ̂n which is more robust to observed variation over time in data. The

model could be more general by including jumps, but this is already a substantial step in

the parametric model literature, where researchers have been assuming that the parameter is

constant over time.

1.4 Applications

1.4.1 Theoretical Applications

The consistency of (5) under very simple assumptions is done in Section 2. The main result

of this paper, a central limit theorem of (5) under the assumption that the parameter process

is a null-drift continuous Itô-process can be found in Section 3. A (non-exhaustive) list of

examples is provided in Section 7, where we give an extended model allowing nonconstancy of

parameter as well as an estimator of the integrated parameter, the asymptotic variance and

its corresponding rate of convergence.

1.4.2 Practical Applications

We give here the practical route to follow in the rest of the paper. First of all, the LPM

user should try to implement the tests of Section 2 on various models she has in mind. If
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she gets suspicious at the constancy of parameter's assumption based on the tests, she can

use the techniques of this paper. She will have the possibility to compare models in Section

6. In Section 7, a prediction model is given. It is exactly the same model as under the

constancy of parameter's assumption, except that we use estimates of the mean (5) as input

instead of estimates of the constant parameter. Note that even if the paremeter is constant,

the criteria of comparison and the forecasts of this paper should be roughly as good as the

ones used on the original models. In addition, it is very straightforward to implement. We

provide constancy of a subset of the p-dimensional parameter's test in Section 8. Numerical

simulations on forecasting are carried out in Section 10. Section 11 gives empirical results for

S & P 500 daily returns, �tting ARMA and GARCH models.

2 Outline of the problem

2.1 Asymptotics : High-frequency and Low-frequency and bridge between

two point-of-views

In our asymptotics, we are assuming that ∆τn := sup
0<τi,n≤T

∆τi,n tends to 0. This looks like a

setting of high frequency inference. Nevertheless, this paper embraces all kind of time-series,

such as the month-to-month GDP also (or something else), as long as we have enough points

(to be more speci�c about this). Because we have only observed the data from 0 to T (0

can be year 1950 and T year 2015), we are only interested in the estimation of the integrated

θ∗t from 0 to T with T beeing �xed. Using the techniques of this paper, if we �nd that θ∗t
seems constant over time, then it makes sense to use a low-frequency central limit theorem by

sending T to ∞. But if θ∗t seems to have a non-zero volatility, then there is no real reason to

send T to ∞ and to try to estimate something like the normalized integrated value because

we have no idea what the future of the volatility of σ∗t will look like.

For instance, if we are forecasting, we should only take account of the estimation of θ at

time t, and its volatility to get the next con�dence interval.

Think about p. 25 of Hamilton's book, why this would be a bit di�erent in this case, why

we want the integrated of the spot process.

Also think about : if θ∗ is �xed, is there equivalence between our asymptotic and the usual

asymptotic ?
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2.2 Set-up

To �x ideas, for Section 3 and 4, we will assume that the parameter process θ∗t is a local

martingale of the form

dθ∗t = σθt dW
θ
t (7)

where σθt is a random process (of dimension p×p), andW θ
t a standard p-dimensional Brownian

motion. Furthermore, θ∗t is locally bounded and restricted to lie in K. The lector which is

interested in knowing the general continuous semimartingale theory can look at Section 5.

We focus on simple setting in this section. First, we work with real-valued returns Ri,n.

Also, we assume that the observations occur at equidistant time interval ∆τn := T
n , so that

τi,n = i
nT . Furthermore, the parametric model's user mistakenly thinks that given the true

parameter θ∗, Ri,n are independent and identically distributed (IID). She is wrong because

there is no true �xed parameter θ∗, only a true moving parameter θ∗t that drives the returns.

Since θ∗t is in fact un�xed, Ri,n are neither identically distributed nor independent. There are

not even necessarily conditionnally independent given the true parameter process θ∗t , as we

can see on the following three toy examples.

Example 1. (estimating volatility with time series model) Consider that θ∗i,n = (σ2
i,n)∗ where

σi,n is the interpolation of a null-drift Itô-process as in ??. The real model (which allows the

parameter to move over time) assumes that Ri,n = σi,nNi,n, where Ni,n is an IID sequence

of normal distribution with mean zero and variance ∆τi,n. The time series user mistakenly

believes that the distribution of returns is Ri,n = σ∗Ni,n, with σ∗ the true volatility. This

is a toy example because the time series user's model doesn't assume any movement in the

volatility parameter. Ri,n are IID if we trust the time series user's model. Under the more

general model, they are neither independent nor identically distributed.

Example 2. (estimating volatility with continuous time model) Consider that θ∗t = (σ2
t )
∗ (the

volatility is thus assumed to follow (7)), Ri,n =
∫ τi,n
τi−1,n

σ∗sdWs, whereWt is a standard Brownian

motion. Also, the parameter is restricted to taking positive values, i.e. the parameter space

K = R+
∗ . This is the so-called estimation of volatility in the no-noise case. The econometrician

mistakenly thinks that the distribution of the returns is Ri,n = σ∗∆Wτi,n , where σ
∗ is the �xed

volatility. Under her assumption, the returns are IID. Under the real model, Ri,n are clearly

not IID, and they are also not conditionally independent given the whole volatility process if

there is leverage-e�ect (see i.e. Wang and Mykland (2014), Aït-Sahalia et al. (2013))
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Example 3. (estimating the rate of a Poisson process) Suppose a sociologist observes data

on crimes commited in a given city, and thinks that in �rst approximation, Nt follows a

homogeneous Poisson process with rate λ∗, where Nt is the number of crimes commited between

0 and t. Because she doesn't have access to the raw data, she can't observe directly the exact

time of each crime. Instead, she only observes the number of crimes commited on a period

(for instance a day) [τi−1,n, τi,n], that is Yi,n = Nτi,n −Nτi−1,n. This is an example where the

series is already stationary, and thus Yi,n = Ri,n. If the assumption on homogeneousity of the

sociologist is true, the returns are IID. In case of heterogeneity, the parameter rate λ∗t will be

assumed to follow (7), Nt will be a nonhomogenous Poisson process, and the returns Ri,n will

be neither identically distributed nor independent.

We believe that the parametric model's user had the good intuition in the sense that locally,

her model of the returns is not too far from the real model. Formally, it means that if we

know the parameter's initial value θ∗0, then there exists an approximation for i = 1, · · · , hn of

the returns Ri,n, denoted R̃1,i,n, that is conditionally IID given θ∗0, and very close to Ri,n since

the observation times τ1,n, · · · , τhn,n are in a small neighborhood of 0. Thus, because true and

approximated returns are approximately the same, the parametric model's user can apply her

estimator to the observed returns Ri,n. We thus obtain an estimate Θ̂1,n of the value of the

parameter at time 0 (that we call Θ̃1,n := θ∗0). We de�ne the spot parameter's average on the

i−th block as

Θi,n :=

∫ Ti,n
Ti−1,n

θ∗sds

∆Ti,n
(8)

where Ti,n := min{τihn , T} = min{ ihnn T, T}. Since the block size is very small, the value of

Θ̃1,n is approximately equal to the average of the spot parameter on the �rst block Θ1,n. Let

Bn := pnh−1
n q be the number of blocks. For i = 2, · · · , Bn, we estimate in the same way the

i − th block's initial value of the parameter Θ̃i,n := θ∗Ti−1,n
and we call this estimator Θ̂i,n.

Then, we take the weighted sum of Θ̂i,n and obtain an estimator of the integrated spot process

Θ̂n =
1

T

Bn∑
i=1

Θ̂i,n∆Ti,n (9)

Note that each block includes exactly hn observations, except for the last one who might

include less of them. We call our new estimator (9) the locally parametric quasi-estimator

(LPQE) of the estimator of the parametric model's user, since we are mistakenly specifying

the distribution of the returns on small blocks and we are estimating with her parametric

estimator on each of them.
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2.3 Consistency of the estimator

In the following of this paper, we will make the number of observations inside a block go to

in�nity

hn →∞ (10)

Furthermore, we will make the size of each block vanish asymptotically. Because we assumed

observations occur at equidistant time, this can be expressed as (this is valid only for this

section)

hnn
−1 → 0 (11)

We can rewrite the consistency of Θ̂n as

Bn∑
i=1

(
Θ̂i,n −Θi,n

)
∆Ti,n

P→ 0 (12)

The basic insight to show (12) is that we can decompose the increments (Θ̂i,n−Θi,n) into the

part related to misspeci�ed distribution error, the part on estimation of approximated returns

error and the evolution in the spot parameter error

Θ̂i,n −Θi,n =
(
Θ̂i,n − ̂̃Θi,n

)
+
( ̂̃Θi,n − Θ̃i,n

)
+
(
Θ̃i,n −Θi,n

)
(13)

where ̂̃Θi,n is the estimator of the parametric model's user used on the underlying non-observed

approximated time-series. It is not a feasible estimator and appears in (13) only to help

compute the consistency of the estimator. We �rst cope with the last error term of (13),

which is due to the non-constancy of the spot parameter θ∗t . Note that

Bn∑
i=1

(
Θ̃i,n −Θi,n

)
∆Ti,n =

Bn∑
i=1

(
θ∗Ti−1,n

∆Ti,n −
∫ Ti,n

Ti−1,n

θ∗sds
)

(14)

and thus we deduce from Riemann-approximation2 that

Bn∑
i=1

(
Θ̃i,n −Θi,n

)
∆Ti,n

P→ 0 (15)

To deal with other terms of (13), we need to introduce some de�nitions. On a given block

i = 1, · · · , Bn the observed returns will be called R1
i,n, · · · , R

hn
i,n. Formally, it means that

2see i.e. Proposition 4.44 in p.51 of Jacod and Shiryaev (2003)
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Rji,n = R(i−1)hn+j,n for any j = 1, · · · , hn. In analogy withRji,n, we introduce the approximated

returns {R̃1
i,n, . . . , R̃

hn
i,n} on the ith block. We also introduce the corresponding observation

times τ ji,n = τ(i−1)hn+j,n for j = 0, . . . , hn. Note that τ
0
i,n = τhni−1,n. Finally, for j = 1, . . . , hn,

we de�ne the increment of time between the (j − 1)th return and the jth return of the ith

block as ∆τ ji,n = τ ji,n − τ
j−1
i,n . We assume that

Rji,n = Fn
(
U ji,n, {θ

∗
s}τ j−1

i,n ≤s≤τ
j
i,n

)
(16)

R̃ji,n = Fn
(
U ji,n, Θ̃i,n

)
(17)

where U ji,n take values on a space that can be functional3 and that can depend on n, U ji,n are

IID for a �xed n but the distribution can depend on n, Fn(x, y) is a non-random function4.

For a block i = 1, . . . , Bn and for the observation time j = 0, . . . , hn of the i − th block, we

de�ne Ii,j,n5 the information up to time τ ji,n. Also, we assume that U ji,n is independent of the

past information6 (and in particular of Θ̃i,n). Furthermore, the asymptotics (explain that we

take a stand by scaling the structure of the returns) is such that there exists a sequence αn

with for all θ ∈ K

αnF1(Ui,j,1, θ)
D
= Fn(Ui,j,n, θ) (18)

For any positive integer k, the parametric model's user has at her hands an estimator θ̂k,n :=

θ̂k,n(r1,n; . . . ; rk,n), which depends on the input of returns {r1,n; . . . ; rk,n}, and also of n in the

following sense

θ̂k,n(r1,n; . . . ; rk,n)
D
= θ̂k,1(α−1

n r1,n; . . . ;α−1
n rk,n) (19)

This makes perfect sense to use the same estimator on a scaled version (which depends of the

sampling frequency) of the returns in light of (18). As we can only look at the hn observed

returns on each block i = 1, . . . , Bn, we estimate the local parameter as

Θ̂i,n := θ̂hn,n
(
R1
i,n; . . . ;Rhni,n

)
(20)

3U ji,n take values on a Borel space
4 Fn(x, y) is jointly measurable real-valued function such that E | Rji,n |<∞ and E | R̃ji,n |<∞. Moreover,

the advised lector will have seen that à priori {θ∗s}τj−1
i,n ≤s≤τ

j
i,n

is a process in (16) whereas Θ̃i,n is only a vector

in (17). We match the de�nitions by seeing Θ̃i,n as a process with constant values.
5In this paper, we will be using the term information to refer to the mathematical object of �ltration.Let

(Ω,F , P ) a probability space. De�ne the sorted information {Ik,n}k≥0 such that for any integer k ≥ 0 that

we can decompose as k = (i − 1)hn + j, Ik,n = Iji,n. We are assuming that Ik,n is a (discrete) �ltration

of (Ω,F , P ). In addition, we assume that {θ∗s}0≤s≤τji,n , for k = 1, . . . , i − 1 and l = 1, . . . , hn, U
l
k,n and for

l = 1, . . . , j, U li,n are Iji,n-measurable.
6past information means up to time τ j−1

i,n
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The non-feasible estimator ̂̃Θi,n is de�ned as the parametric model's user's estimator, with

approximated returns as input instead of observed returns.̂̃Θi,n := θ̂hn,n
(
R̃i,1,n; . . . ; R̃i,hn,n

)
(21)

(21) is unfeasible because the approximated returns are non-observable quantities. LetM > 0.

We de�ne KM = {x ∈ K , ‖x‖1 ≤ M} the subset of K dominated by M . In order to obtain

the consistency of (9), we make the assumption that the parametric model's user's estimator

is L1-convergent, locally uniformly in the parameter of the model θ if she actually observes

returns coming from the parametric model, that we can express as

Condition (C1). For any ε > 0 and any M > 0

sup
θ∈KM

E
[∣∣θ̂hn,n(Fn(U1

1,n, θ); . . . ;Fn(Uhn1,n, θ))− θ
∣∣]→ 0

Remark 1. Note that L1-convergence is slightly stronger than the consistency. Nonetheless,

in most applications, we will observe both.

Under (C1), standard results on regular conditional distributions7 give us that the error

made on the estimation of the underlying non-observed returns tends to 0, i.e.

Bn∑
i=1

( ̂̃Θi,n − Θ̃i,n

)
∆Ti,n

P→ 0 (22)

To deal with the �rst term of (13), we need to make sure that we can control the discrepancy

between the estimate made on the returns of the observed time series and the estimate made

on the underlying approximation, uniformly in the parameter θ and in the information that

we have. Indeed, the returns we observe depend not only on the parameter Θ̃i,n, but also on

the past information. For instance, it depends on the volatility of the spot parameter at the

initial point of the i− th block θ∗
τ0i,n

. We make the new following assumption.

Condition (C2). For any M > 0, de�ne EM the product space of information, initial pa-

rameter value, and parameter process value (Ji,j,n, θ, χt)8, where θ ∈ KM , χt is a null-drift

continuous Itô-process with χt ∈ KM for all 0 ≤ t ≤ T , and its initial value equal to θ (χ0 = θ).

We have

sup
(J ji,n,θ,χt)∈EM

EJ 0
1,n

[∣∣θ̂hn,n(Fn(U1
1,n, θ), . . . , Fn(Uhn1,n, θ))

7see for instance Leo Breiman (1992), see Appendix for more details
8J ji,n can be any �ltration of (Ω,F , P ), sorted as J1,0,n, . . . ,J1,hn,n,J2,1,n, . . . ,J2,hn,n, . . ., such that U ji,n

and {χs}0≤s≤τji,n are adapted to J ji,n, and U
j
i,n is independent of the past.
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−θ̂hn,n(Fn(U1
1,n, {χs}0≤s≤τ11,n), . . . , Fn(Uhn1,n, {χs}τhn−1

1,n ≤s≤τhn1,n
))
∣∣]→ 0

(C2) implies9 that the error due to the local model's approximation of the returns vanishes

in the limit, i.e.

Bn∑
i=1

(Θ̂i,n − ̂̃Θi,n)∆Ti,n
P→ 0 (23)

We can now give the theorem on consistency in this very simple case where observations

occur at equidistant time intervals and returns of the approximated time-series are IID on

each block.

Theorem (consistency). Under (C1), (C2) and all the de�nitions of this section, we have

the consistency of (9), i.e.

Θ̂n
P→ Θ

We obtain the consistency in the two toy examples10

Example 4. We continue Example 1. We identify the quantities U ji,n = Nihn+j,n as the

value of the normal variables. The returns are de�ned as Rji,n = σ∗ihn+j,nNihn+j,n and the

approximated returns as R̃ji,n = σ∗ihn,nNihn+j,n. The approximated returns use the volatility

at the starting time of the ith block, whereas the returns use the current volatility. We can

construct easily Fn easily as in (16) and (17). Also, because we assume that U ji,n are normally

distributed with null-mean and variance ∆τi,n, we have (18) with αn = n−
1
2 . The estimator

is the scaled usual RV, i.e. θ̂k,n(r1,n; . . . ; rk,n) = T−1k−1n
∑k

j=1 r
2
j,n. Note that it can be seen

also as the MLE (see the discussion pp. 112-115 of Mykland and Zhang (2012))

Example 5. We are back to Example 1. In this case, U ji,n = {∆W
[τ j−1
i,n ,s]

}
τ j−1
i,n ≤s≤τ

j
i,n

are

the Brownian motion increment process between two consecutive observation times. The re-

turns are naturally de�ned as Rji,n =
∫ τ ji,n
τ j−1
i,n

σ∗sdWs, and the approximated returns R̃ji,n =

σ∗
τ0i,n

∆W
[τ j−1
i,n ,τ ji,n]

are the same quantity, holding the variance constant on each block. It is

clear that we can choose a unique Fn that generates the returns and the approximated returns

from the parameter and U ji,n as in (16) and (17). Because of the scaling property of Brow-

nian motions, we obtain (18) with αn = n−
1
2 . The estimator is the scaled usual RV, i.e.

θ̂k,n(r1,n; . . . ; rk,n) = T−1k−1n
∑k

j=1 r
2
j,n

9see Appendix for more details
10see Appendix for proofs
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Example 6. This is a continuation of Example 2. To be able to estimate the integrated value

of parameter (5), we assume that in the asymptotic the rate of the inhomogeneous Poisson

process is βnλt, where βn is a non-time dependent and non-random quantity, that tends to

in�nity. U ji,n can be de�ned as standard Poisson processes {N i,j,n
t }t≥0, independent of each

other. The returns are the time-changed Poisson processes

Rji,n = N i,j,n∫ τji,n
τ
j−1
i,n

βnλ∗sds

(24)

R̃ji,n = N i,j,n

βn∆τ ji,nλ
∗
τ0
i,n

(25)

where βn∆τ ji,n = 1, so that (18) is satis�ed with αn = 1. The estimator to be used is the mean

of returns θ̂k,n(r1,n; . . . ; rk,n) = k−1
∑k

j=1 rj,n

Remark 2. By Girsanov's theorem, together with local arguments (see, i.e., pp.158-161 in

Mykland and Zhang (2012)), we can weaken the price and volatility local-martingale assump-

tion by allowing them to follow an Itô-process (of dimension 2), with volatility matrix locally

bounded and locally bounded away from 0, and drift locally bounded.

Remark 3. The advised lector will have noticed that in both examples, if the parametric

model's user trusts constant-volatility model (resp. homogeneous Poisson process model), she

will end up with the same estimator as (9). This is because in those very basic examples, the

estimator is linear, i.e. for any positive integer k and l = 1, . . . , k − 1

θ̂k,n(r1,n; . . . ; rk,n) = θ̂l,n(r1,n; . . . ; rl,n) + θ̂k−l,n(rl+1,n; . . . ; rk,n) (26)

In more general examples of Section ??, (26) will break, and we will obtain two distinct

estimators.

2.4 How to build stochastic-parameter models from any parametric model

?

We've seen in the volatility example that there is a natural way of extending the model bla

bla. How do we do that in the case of a general model. One easy way is to use rewrite the

equation with Fn in the following way bla bla...

2.5 Challenges

There are several provisos to the presentation above. The �rst is that the structure of the

approximate returns need not be IID. If the approximate serie follows an ARMA process or any
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other general kth-step Markov chain, we will still obtain consistency of (9), under conditions

that are stated in Section 3. Also, we will deal with noisy observations. It means that we will

observe

Yi,n = Xi,n + εi,n

(bla bla bla to be more speci�c about it). Moreover, we will allow for endogeneity in observation

times.

Consistency is a very good limit property but as we want to know the magnitude of the

error, we will also investigate the associated central limit theorem. Conditions similar to (C1)

and (C2) will be stated, so that the parametric model's user can verify by himself if he can

use the techniques of this paper on his favorite estimator. bla bla...

3 Estimation of the integral of parameter process in general

case

block assumption (to add somewhere in the text)

n
2
l
−1h

1− 2
l′

n = O(1) (27)

assumption on observation times (to add somewhere in the text: actually, make its own

assumption with any type of volatility on parameters)

sup
θ∈K
| Var

(
h1/l′
n (θ̂hn,n(R̃q∗,r∗,θ

1,n ; . . . ; R̃q∗,r∗,θ
hn,n

;q∗; r∗)− θ)n−1h−1
n

hn∑
i=1

R
(dr)
i,n

)
(28)

(29)

−Var

(
h1/l′
n (θ̂hn,n(R̃q∗,r∗,θ

1,n ; . . . ; R̃q∗,r∗,θ
hn,n

;q∗; r∗)− θ)n−1h−1
n

hn∑
i=1

R̃
(dr)
i,n

)
| → 0

Technical assumption to add at the end (Assumption 5 ??) : see P216.

In this section, the returns are dr-dimensional vectors Ri,n := (R
(1)
i,n , . . . , R

(dr)
i,n ) where dr

can be any positive integer. We assume that the last component of any return is the di�erence

between the last two sampling times, i.e. R
(dr)
i,n = ∆τi,n. Let m be a nonnegative integer, the

general assumption of this section is that Ri,n is an homogeneous partially observed Markov

chain of order m, i.e. there exists a dq-dimensional vector Qi,n such that (Qi,n, Ri,n) is an

homogeneous Markov chain of order m. Speci�cally, the parametric model user supposedly
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thinks that (Qi,n, Ri,n) is an homogeneous Markov chain, whereas under the true model it is

not even a nonhomogeneous Markov chain. Nonetheless, we will see in (31) that it is almost

a nonhomogeneous Markov chain, except for the evolution of the parameter θ∗t part which is

not necessarily Markovian. As an example, if we �x the volatility σθt of θ∗t to be a constant,

(Qi,n, Ri,n) is an nonhomogeneous Markov chain. In the following, we will use the expression

�Markov chain� but the lector should understand �Markov chain under the (wrong) parametric

model� or even �locally Markov chain�.

Qi,n can be seen as the e�cient return we can't see and Ri,n is the noisy corresponding

version we get to observe. It can well be the case that the integrated parameter Θ we want

to infer about is only related to the evolution of Qi,n and that the noise εi,n = Ri,n − Qi,n
is independent of the e�cient return Qi,n. In this case, it would be preferable to observe

directly Qi,n, but we can only use the noised returns Ri,n to compute Θ̂. We can also imagine

a situation where the parameter θ∗t is only dependent of the noise, dependent of both the

e�cient return Qi,n and the noise, or even where Qi,n is not the e�cient return but something

else.

We introduce the notations d = dq +dr as well as Mi,n = (Qi,n, Ri,n) for the Markov chain

elements, and assume thatMi,n takes values on the spaceM, which is a subset of Rd. Also, we
de�ne them-dimensional vector of Markov chain elementsMi,n := (Mi,n, . . . ,Mi−(m−1),n) and

them initial valuesM(m−1),n, . . . ,M0,n of the Markov chain. We consider for any i nonnegative

integer Ni,n := Mim,n the Markov chain of dimension d ∗ m, which consists of blocks of m

elements of the original Markov chain Mi,n. By construction, Ni,n is a Markov chain of order

1, which takes values on a spaceMm (subset ofMm). We assume that the parametric model

user thinks that given the true parameter value θ∗

Mi,n = Fn(Mi−1,n, Ui,n, θ
∗) (30)

where Fn(x, y, z) is a Rd-valued non-random function11, Ui,n are IID for a �xed n but the

distribution can depend on n. The truth is that

Mi,n = Fn(Mi−1,n, Ui,n, {θ∗s}τi−1,n≤s≤τi,n) (31)

In analogy with (18) of Section 2, we keep asymptotically the structure of the returns by

scaling the distribution of Mi,n. Formally, it means that there exists a d-dimensional αn such

11Consider Xn the space on which the third component of Fn(x, y, z) is de�ned. We assume that Fn(x, y, z)

is a jointly measurable Rd-valued function such that for any M ∈ Mm and any χn ∈ Xn, we have E |
Fn(M,Ui,n, χn) |<∞
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that for all M ∈Mm and θ ∈ K, we have

αn ∗ F1(M, U1,1, θ)
D
= Fn(M, U1,n, θ) (32)

where the operation ∗ de�nes the component-multiplication, i.e. α∗β := (α(1)β(1), . . . , α(m)β(m)).

We are investigating the normalized error's behavior. For a l > 0 (with corresponding rate of

convergence n
1
l ), we want to �nd the limit ditribution of

n
1
l

Bn∑
i=1

(
Θ̂i,n −Θi,n

)
∆Ti,n (33)

Speci�cally, we want to show that (33) converges stably12 to a limit distibution. This mode

of convergence, which is a bit stronger than the regular convergence in distribution, is due for

statistical purposes. Because we will obtain in the variance limit of (33) random quantities,

we need the stable convergence to infer the same way we would do it if the variance limit was

nonrandom. Since the stable convergence needs a corresponding information J to be de�ned

with, we need to be more speci�c about how to obtain J . We will be needing the following

technical assumption, which turns out to be easily veri�ed on all the examples of this paper.

We de�ne Ii,n13 the information up to time τi,n.

Condition (E0). Ii,n can be extended into Ji,n14, where Ji,n is the interpolated information

of a continuous information J (c)
t , i.e. Ji,n = J (c)

τi,n

In all the following of this paper, when using the conditional expectation Eτ
[
Z
]
15, we will

refer to the conditional expecation of Z knowing J (c)
τ . Finally, we consider J := J (c)

T the

information to go with stable convergence.

It is clear that the parametric model user's estimator will include the returns {r1,n, . . . , rk,n}
as inputs. Also, because the Markov chai is of order m, she needs a m-dimensional vector of

initial returns r0,n. Finally, since the Markov chain is partially observed, she can also use an

estimate of the unobserved part of the Markov chain Q̂0,n.

θ̂k,n := θ̂k,n(r1,n; . . . ; rk,n; Q̂0,n; r0,n) (34)

12One can look at de�nitions of stable convergence in Rényi (1963), Aldous and Eagleson (1978), Chapter 3

(p. 56) of Hall and Heyde (1980), Rootzén (1980), and Section 2 (pp. 169-170) of Jacod and Protter (1998).
13We assume that Ii,n is a (discrete) �ltration of (Ω,F , P ) such that {θ∗s}0≤s≤τi,n and Ui,n are adapted to

Ii,n.
14It means that Ji,n is a discrete �ltration and for any i positive integer Ii,n ⊂ Ji,n
15τ has to be a Jt-stopping time
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We keep the same asymptotic property as in (19) of Section 2 adapted to the multidimension

case. We need some notations for this purpose. De�ne the part αQ,n := (α
(1)
n , . . . , α

dq
n ) related

to the unobserved returns Qi,n and the part αR,n := (α
(dq+1)
n , . . . , α

(d)
n ) related to the observed

returns Ri,n of αn. For S ∈ {Q,R}, let αααS,n := (αS,n, . . . , αS,n) consisting of m αS,n appened

together. Also, for any vector β of dimension dβ , β
−1 :=

(
(β(1))−1, . . . , (β(dβ))−1

)
. Finally,

ααα−1
Q,nQ̂0,n is the scaled distribution (if Q̂0,n is the distribution of a random vector A, ααα−1

Q,nQ̂0,n

will be realized by α−1
Q,nA).

θ̂k,n(r1,n; . . . ; rk,n; Q̂0,n; r0,n)
D
= θ̂k,1(α−1

R,nr1,n; . . . ;α−1
R,nrk,n;ααα−1

Q,nQ̂0,n;ααα−1
R,nr0,n) (35)

Let i be a positive integer. In analogy with Section 2, we de�ne the Markov chain elements

on the ith block M j
i,n := M(i−1)hn+j,n for j = 1, . . . , hn. We also de�ne the initial vector

of the ith block as (M0
i,n, . . . ,M

−(d−1)
i,n ) := M(i−1)hn+j,n. For M ∈ Mm, we let M̃ j,M

i,n be

the approximations of the Markov chain on the ith block with starting vector M for j =

−(d − 1), . . . , hn. The initial vector is de�ned as (M̃
−(m−1),M
i,n , . . . , M̃

−(m−1),M
i,n ) := M. The

m-dimensional vector of approximation is de�ned as M̃j,M
i,n := (M̃ j,M

i,n , . . . , M̃
j−(d−1),M
i,n ). We

obtain the approximated returns by the recurrence relation similar to (31)

M̃ j,l
i,n = Fn(M̃j−1,l

i,n , U ji,n, Θ̃i,n) (36)

The unfeasible estimator ˆ̃ΘM
i,n with initial vector l is de�ned as

ˆ̃ΘM
i,n := θ̂hn,n(R̃1,M

i,n ; . . . ; R̃hn,Mi,n ; M̃0,M
i,n ) (37)

The spot parameter's estimator on the ith block Θ̂i,n is de�ned with observed returns and Q̂0
i,n

an estimate of the initial distribution of the unobserved part of the Markov chain as input. In

particular, it doesn't rely directly on unobservable quantities.

Θ̂i,n := θ̂hn,n(R1
i,n; . . . ;Rhni,n; Q̂0

i,n;R0
i,n) (38)

Let M∗ ∈Mm. We can decompose
(
Θ̂i,n −Θi,n

)
as(

Θ̂i,n − ˆ̃Θ
M0
i,n

i,n

)
+
( ˆ̃Θ

M0
i,n

i,n − ˆ̃ΘM∗
i,n

)
+
( ˆ̃ΘM∗

i,n − Θ̃i,n

)
+
(
Θ̃i,n −Θi,n

)
(39)

where the �rst term is the error in estimation due to the use of the approximated model (36)

instead of the true model (31), the second term is the error made when taking M∗ instead of

M0
i,n as initial value of the block, the third term corresponds to the error of the estimation of

the constant parameter by the underlying approximations starting with a �xed initial value

M∗ and the last term is the error made by holding the process parameter constant on each

block. We make the �rst assumption, which is on observation times.
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Condition (E1). The observation times are such that for k = 1, 2, 4, 8

inf
1≤i≤Nn

Eτi−1,n

[
(∆τi,n)k

]
and sup

1≤i≤Nn
Eτi−1,n

[
(∆τi,n)k

]
are exactly of order Op(n

−k) (40)

Note that the observation times generated by the hitting boundary process with time process

model of Potiron and Mykland (2015), which includes very general endogeneous settings,

veri�es condition (E1). Thus, it seems that (E1) is harmless. We make a second assumption,

this time on the size of a block hn. We de�ne l′ > 0 such that under the assumption that the

parametric model is true, the rate of convergence of the parametric model user's estimator

is n
1
l′ . To �x ideas, under regular models, l′ = 2 for the MLE (see, e.g., Firth (1993) bias

reduction of max likelihood TO ADD!).

Condition (E2). The block size hn is such that

n
2
l
−2h2

n = o(1) (41)

n
2
l
−1h

1− 2
l′

n → 1 (42)

(add that (42) is used in proof of third term) In practice, this assumption provides us the

maximum block size hn to use for constant approximation of parameter. (41) will be useful to

prove that bla bla and the last term of (52) tends to 0, and (42) will be used to prove bla bla.

The next assumption is on the parametric model user's estimator. (to change the text from

here !!) Roughly, it assumes that under the assumption that the parametric model is true, we

have a central limit theorem (at the speed n
1
l′ ), and we can bound uniformly in the parameter

the L1-convergence of the scaled error as well as the di�erence between the variance of the

scaled error and the variance obtained in the central limit theorem.

Condition (E3). For any parameter θ ∈ K, de�ne the expectation of the normalized error

when holding the model constant Eθhn,n := E
[
h

1
l′
n

(
θ̂hn,n(RM∗,θ

1,n ; . . . ;RM∗,θ
hn,n

;M∗)− θ
)]
. For any

M > 0, we need the following uniform convergence

sup
θ∈KM

| E
[
h

1
l′
n

(
θ̂hn,n(RM∗,θ

1,n ; . . . ;RM∗,θ
hn,n

;M∗)− θ
)
− Eθ

]
| = o(h

1− 1
l′

n n
1
l
−1) (43)

We also consider Cθhn,n := Var

[
h

1
l′
n

(
θ̂hn,n(RM∗,θ

1,n ; . . . ;RM∗,θ
hn,n

;M∗)− θ
)∑hn

j=1(RM∗,θ
j,n )(dr)

]
. We

assume that there exists Vθ > 0 such that for any M > 0, we have uniformly in θ ∈ KM

Cθhn,n = Vθ

hn∑
j=1

(RM∗,θ
j,n )(dr)hnn

−1 + op(hnn
−1) (44)
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De�ne Dθ
hn,n

:= E
[
h

1
l′
n

(
θ̂hn,n(RM∗,θ

1,n ; . . . ;RM∗,θ
hn,n

;M∗)− θ
)∑hn

j=1(RM∗,θ
j,n )(dr)

]
. For any M > 0,

we have uniformly in θ ∈ KM

Dθ
hn,n = op(

hn∑
j=1

(RM∗,θ
j,n )(dr)) (45)

Finally, for any M > 0, we need that

sup
θ∈KM

E
[
(h

1
l′
n

(
θ̂hn,n(RM∗,θ

1,n ; . . . ;RM∗,θ
hn,n

;M∗)− θ
)
− Eθhn,n)8

]
= 0(1) (46)

TM∗,θ
hn,n

and TM∗,χ
hn,n

to be de�ned

Condition (E4). For any M > 0, de�ne EM the product space of information, initial pa-

rameter value, and parameter process value (Ji,j,n, θ, χt)16, where θ ∈ KM , χt is a null-drift

continuous Itô-process with χt ∈ KM for all 0 ≤ t ≤ T , and its initial value equal to θ (χ0 = θ).

We have

sup
(J ji,n,θ,χt)∈EM

EJ 0
1,n

[
(TM∗,θ

hn,n
− TM∗,χ

hn,n
)2
]
→ 0 (47)

(to change the text !) The next assumption is purely a model assumption of Markov

chain's ergodicity. We need to introduce some de�nitions �rst. For M ∈ M, θ ∈ K and i

any integer greater than −(d − 1), we de�ne M̃M,θ
i the Markov chain with initial vector M

and parameter θ. The initial vector is such that (MM,θ
−(m−1), . . . , M̃

M,θ
0 ) := M. The m-vector

is de�ned as MM,θ
i := (MM,θ

i , . . . ,MM,θ
i−(d−1)). The rest of the Markov chain is obtained by the

same recurrence relation as (30)

MM,θ
i = F1(MM,θ

i−1 , Ui,1, θ) (48)

We consider NM,θ
i := MM,θ

id the Markov chain of dimension d ∗m, which consists of block of

d-elements of the original Markov chain MM,θ
i . By construction, NM,θ

i is a Markov chain of

order 1. We note P kθ its transition probability, i.e. for any B ∈ B(Fm) (set of borelians of

Mm)

P kθ (M, B) = P(NM,θ
k ∈ B) (49)

16J ji,n can be any �ltration of (Ω,F , P ), sorted as J1,0,n, . . . ,J1,hn,n,J2,1,n, . . . ,J2,hn,n, . . ., such that U ji,n
and {χs}0≤s≤τji,n are adapted to J ji,n, and U

j
i,n is independent of the past.
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Condition (E5). We have

sup
θ∈KM , M1∈Mn

, M2∈Mn
|θ̂(R̃M1,θ

i , . . . , R̃M1,θ
hn

;MM1,θ
0 )− θ̂(R̃M2,θ

1 , . . . , RM2,θ
hn

;MM2,θ
0 )| = op(h

−1/l′
n )(50)

(First two parts of this assumption should go as a remark because we don't need them, we

only need the third part) For all θ ∈ K, NM,θ
i is uniformly ergodic, i.e. there exists πθ such

that

sup
M∈Mm

||P kθ (M, .)− πθ|| → 0

Furthermore, the convergence is locally uniform, i.e. for all M > 0

sup
θ∈KM

sup
M∈Mm

||P kθ (M, .)− πθ|| → 0

There exists a d-dimensional sequence αn := (α
(1)
n , . . . , α

(d)
n )

F1({(qk, rk)}j−m≤k≤j−1, Ui,j,n, Θ̃i,n) = αn ∗ Fn({(qk, rk)}j−m≤k≤j−1, Ui,j,n, Θ̃i,n)

The estimator of the time series user includes k returns, the previousm returns and an estimate

of the previous m vectors of Q q (which can be a distribution)

θ̂qk,n := θ̂k,n(r1,n; . . . ; rk,n;q; r0,n; . . . ; r−(m−1),n)

:= θ̂k(α
R
n ∗ r1,n; . . . ;αRn ∗ rk,n;αQn q;αRn ∗ r0,n; . . . ;αRn ∗ r−(m−1),n)

The unfeasible estimators are de�ned as

ˆ̃Θq,r
i,n := θ̂hn,n(R̃q,r

i,1,n; . . . ; R̃q,r
i,hn,n

;q; r)

such that on each block, the approximations (Q̃q,r
i,j,n, R̃

q,r
i,j,n) ∈ Q×R starts at (q, r), i.e.

{(Q̃q,r
i,j,n, R̃

q,r
i,j,n)}j=0

j=−m+1 = (q, r)

and (Q̃q,r
i,j,n, R̃

q,r
i,j,n) is an homogeneous Markov chain of order m with

(Q̃q,r
i,j,n, R̃

q,r
i,j,n) = Fn({(Q̃q,r

i,k,n, R̃
q,r
i,k,n)}j−m≤k≤j−1, Ui,j,n, Θ̃i,n) (51)

For a l > 0, we are interested in the asymptotic behavior of

n
1
l

Bn∑
i=1

(Θ̂i,n −Θi,n)∆Ti,n
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We can decompose (Θ̂i,n −Θi,n) as

(Θ̂i,n − ̂̃Θqi,n,ri,n

i,n ) + ( ̂̃Θqi,n,ri,n

i,n − ̂̃Θq∗,r∗

i,n ) + ( ̂̃Θq∗,r∗

i,n − Θ̃i,n) + (Θ̃i,n −Θi,n) (52)

where

qi,n := (Qihn−1,n, . . . , Qihn−m,n)

ri,n := (Rihn−1,n, . . . , Rihn−m,n)

and (q∗, r∗) are vectors that can be taken for any θ (i.e. its density is strictly positive for any

θ).

We also de�ne (Q̃q,r,θ
i,n , R̃q,r,θ

i,n ) as

(Q̃q,r,θ
i,n , R̃q,r,θ

i,n ) = Fn({(Q̃q,r,θ
k,n , R̃q,r,θ

k,n )}i−m≤k≤i−1, Ui,j,n, θ)

and for χ a process (be more speci�c about χi,n)

(Q̃q,r,χ
i,n , R̃q,r,χ

i,n ) = Fn({(Q̃q,r,χ
k,n , R̃q,r,χ

k,n )}i−m≤k≤i−1, Ui,j,n, χi,n)

We de�ne the Markov chain (of order 1)

(Q̃q,r,θ
i,n , R̃q,r,θ

i,n ) := {(Q̃q,r,θ
im+k,n, R̃

q,r,θ
im+k,n)}mk=1

and ∀(q, r) ∈ (Q×R)m P kθ ((q, r), .) its transition probability, i.e. for any B ∈ B((Q×R)m)

(set of borelians of (Q×R)m)

P kθ ((q, r), B) = P ((Q̃q,r,θ
k,n , R̃q,r,θ

k,n ) ∈ B)

We de�ne the following assumptions needed for the central limit theorem

Assumptions. • (E1) hn → +∞ and hnn
1
l
−1 → 0. Furthermore, the observation times

are such that

sup
i≥0

Eτi−1,n [(∆τi,n)] = Op(n
−1)

sup
i≥0

Eτi−1,n

[
(∆τi,n)2

]
= Op(n

−2)
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• (E2) for all parameter θ ∈ K, we assume that

h
1
l
n

(
θ̂hn,n(R̃q∗,r∗,θ

1,n ; . . . ; R̃q∗,r∗,θ
hn,n

;q∗; r∗)− θ
) D→ N (0, Vθ)

Furthermore, we need the following uniform convergences

sup
θ∈K
| E
[
h1/l
n

(
θ̂hn,n(R̃q∗,r∗,θ

1,n ; . . . ; R̃q∗,r∗,θ
hn,n

;q∗; r∗)− θ
)]
| → 0

sup
θ∈K
| Var

(
h1/l
n (θ̂hn,n(R̃q∗,r∗,θ

1,n ; . . . ; R̃q∗,r∗,θ
hn,n

;q∗; r∗)− θ)
)
− Vθ | → 0

• (E3) For all θ ∈ K, (Q̃q,r,θ
i,n , R̃q,r,θ

i,n ) is uniformly ergodic, i.e. there exists πθ such that

sup
(q,r)∈(Q×R)m

||P kθ ((q, r), .)− πθ|| → 0

Furthermore, for all M > 0, the convergence is uniform in {|θ| ≤M}, i.e.

sup
θ∈K,|θ|≤M

sup
(q,r)∈(Q×R)m

||P kθ ((q, r), .)− πθ|| → 0

• (E4) For anyM > 0, de�ne EM the product space of information, initial parameter value,

and parameter process value (Ji,j,n, θ, χt)17, where χt ∈ K is a null-drift continuous Ito-

process with its volatility bounded by M , and its initial value equal to θ (χ0 = θ). We

have

sup
(Ji,j,n,θ,χt,M,qd)∈EM

EJ1,0,n
[∣∣θ̂hn,n(R̃M,θ

1,n ; . . . ; R̃M,θ
hn,n

; qd; r)

−θ̂hn,n(R̃M,r,χ
1,n ; . . . ; R̃M,r,χ

hn,n
; qd; r)

∣∣] = op(1)

Rq : There are several possibilities to prove (ACLT3), this is equivalent to uniform ergod-

icity and continuity of something (see Meyn and Tweedie!). Also it can be : For all θ ∈ K
and x ∈ Q×R,

Pmθ (x, .) ≥ νkθθ (B)

where kθ is a bounded integer and νkθθ (Q×R) is uniformly bounded away from 0.

It can be the case (because of hn or p) that (ACLT4) is not veri�ed, i.e. n
1
l
− p

2h
p
2
n does not

go to 0. In this case, we will not obtain a CLT, but only the order of convergence, which is

n
1
l′ , where

l′ = inf{l′′ : n
1
l
− p

2h
p
2
n}

17Ji,j,n can be any �ltration of (Ω,F , P ) such that Ui,j,n and {χs}0≤s≤τi,j,n are adapted to Ji,j,n, and Ui,j,n
is independent of the past (Ji,j−1,n if j 6= 0 or Ji−1,hn−1,n if j = 0).
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To obtain this order of convergence, needless to verify (ACLT2), we only need to have

h
1
l′
n (θ̂hn,n(θ, ν)− θ) P→ 0

(to look at it more though)

4 Can we trust the parameter's constancy in a model ?

4.1 The parametric case: testing if σθt = 0

This section is written for the parametric model user who uses (and trusts) her model. The

semiparametric model user, who already believes in the nonconstancy of some parameters

over time, can go directly to the next section. The point of this section is to provide to the

parametric model user a (non-exhaustive) list of statistical tests, which can be implemented

easily, that will shed light on the parameter's behavior over time. Speci�cally, the null-

hypothesis throughout the rest of this section will be

(H0) The parameter of the model is constant over time equal to θ∗

In the following, we will be describing four types of tests, that will provide statistics to the

lector, together with their distribution under (H0). Accordingly, associated p-values can be

computed. The way we advise the parametric model user to use results of this section is to look

at the �rst type of tests, because it is very straightforward to implement. If (some) p-values

are very small, we have enough information to reject (H0), and there is no need to look at the

other type of tests. If not, then she should use the second type of tests, and so on. The fourth

type of tests will be more involved to implement, so it is better to avoid it if we can. Note

that if she obtains not-signi�cant statistic's value for the four types of tests, then it doesn't

mean that (H0) is true. A closer look at the data is further needed in this case. We insist on

the fact that she shall never trust (H0) without proper model checkings, and that using the

technology of this paper will not harm her even if (H0) is indeed true (see the simulations in

Section 7).

The idea behind the statistical tests of constancy of the underlying parameter is the follow-

ing. Assume that the parametric model user has a speci�c model in mind (such as ARMA(p,q))

and that she wants to estimate the underlying parameter of her model with an estimator (typ-

ically MLE or least squares). For this section, we assume that she is �rst choosing p and q by

an ad-hoc criteria, and then she sticks to this choice. Thus, the number of one-dimensional

25



underlying parameters to be estimated is equal to p+q+2 (or p+q+1 if we restrict the model

to have a zero mean). When she �ts the model to the whole dataset, she obtains estimated

values of the parameters, together with standard errors' estimates. Under (H0), if she �ts

the model to a subblock of the data, she will obtain estimates of the same parameter. Note

that the standard errors will be larger than the ones we obtained by �tting the whole dataset,

because the procededure is only using part of the data. We repeat the block-�tting for a

moving block (with a constant size), and look at the pattern of the �tted parameter in time.

We keep the same notations as in previous sections, and also assume that the parametric

user has at hands an estimator sk,n of the standard deviation, which depends on the same

quantities as the parameter's estimator. The standard deviation's estimates are de�ned as

Ŝ1,n, . . . , ŜBn,n. De�ne

Θ̂A
n = θ̂Nn,n

(
R1,n; . . . ;RNn,n; Q̂0,n;R0,n

)
(53)

the parameter's estimate using the whole dataset, and Ŝ
(1)
n a standard error's estimate of

Θ̂n − Θ̂A
n . The test statistic is de�ned as

T (1) :=
Θ̂n − Θ̂A

n

Ŝ
(1)
n

(54)

Under (H0), T (1) is approximately a standard normal distribution. We are now giving one

way to compute Ŝ
(1)
n in practice. Let Sn (respectively SAn ) the theoretical standard deviation

of Θ̂n (Θ̂A
n ). Because Θ̂i,n are asymptotically uncorrelated under the assumptions of Section

3, Sn can be estimated by

Ŝn = T−1
( Bn∑
i=1

(∆Ti,n)2Ŝ2
i,n

) 1
2

(55)

An estimate of the estimator using the whole dataset is directly available to the parametric

model user by

ŜAn = ŝNn,n
(
R1,n; . . . ;RNn,n; Q̂0,n;R0,n

)
(56)

The variance of the numerator of the test statistic
(
Θ̂n − Θ̂A

n

)
is equal to

S2
n + (SAn )2 − 2 cov

(
Θ̂n, Θ̂

A
n

)
We expect Θ̂n and Θ̂A

n to be positively correlated, and thus we can be conservative by setting

Ŝ(1)
n =

(
Ŝ2
n + (ŜAn )2

) 1
2 (57)
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The second test looks at the variation of Θ̂i,n the parameter's estimate over time, compared

to its estimated mean Θ̂n. It looks at over-dispersion or under-dispersion. We de�ne the test

statistic

T (2) := B−1
n

Bn∑
i=1

(Θ̂i,n − Θ̂n)2

Ŝi,n
(58)

Under (H0), T (2) is approximately a standard normal. We warn the lector that this test should

be used only if Ŝn is small compared to the standard errors on each block Ŝi,n. Alternative

estimators of the standard deviation can be used in the denominator of (58), but as this is not

the main purpose of our work, we will leave it to the lector.

The third type of tests will try to investigate if block-constant models behave signi�cantly

better than the null model. Speci�cally, we assume the alternative hypothesis

(H1) The parameter of the model is constant on each block of size hn equal to (θ∗1,n, . . . , θ
∗
Bn,n)

We de�ne Ln the log-likelihood of the model based on the whole dataset. Let Li,n the log-

likelihood. Because of the Markov nature of our model, it is straightforward to verify that

L(1)
n , the log likelihood of model (H1), is equal to the sum of block log-likelihoods, i.e.

L(1)
n =

Bn∑
i=1

Li,n (59)

The likelihood-ratio test statistic is de�ned as

T (3) := 2(L(1)
n − Ln) (60)

Under the null hypothesis, T (3) follows a chi-quared distribution with ν := p ∗ Bn degrees of

freedom. The issue with model following (H1) is that it allows parameter to evolve over time,

but the associated number of degrees of freedom ν can be very large. Thus, in a lot of cases,

T (3) will not be signi�cant because of ν being too large. Our �nal type of tests will be similar

to the third one, but we don't want the di�erence in log-likelihood of models to have a small

nmber of degrees freedom.

Test is a test of ratio of log likelihoods ! We can do it with di�erent size of blocks, so we

will end up with a lot of correlated tests! Extract the right information from them! The �rst

test would be to suppose that constant on blocks. The second one would be the one where we

use an extra parameter for the variance of the parameter.
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4.2 The semiparametric case: testing if ??

for some k σ
θ,(k)
t = 0 (be more speci�c about it) same, but this time we only test some

parameters, knowing that the others are moving over time...

5 Forecasting

• Suppose that we are at time τi,n, and that we want to predict the observed returns in

the next periods in time (not too far into the future). For simplicity in notations, we

assume that τi,n is the starting point of a block.

• We will use the parametric model as a prediction model, but with di�erent input θ̂∗τi,n

• The forecasting window is de�ned as W := [τj,n, τi,n] for a j < i.

• We estimate the spot parameter with

θ̂∗τi,n :=
∑

τ0i,n∈W

αi,nΘ̂i,n

where
∑

τ0i,n∈W
αi,n = 1.

• This is just one idea, a general estimator will be investigated in further work

Look at data if we obtain intervals closer to 95%.

For econometricians looking at forecasting a few periods ahead, this paper gives a prediction

model, which is not more parametrized that the one they have, because it has the same degree

of freedom, only a di�erent �spot parameter�, that in theory is more accurate than the one

the econometrician would have found using his estimator. This is much of the same than the

estimation of the speed of a car, where we need a small window of time to estimate the spot

(instantaneous) speed, or the estimation of the spot volatility. 18

If they forecast at more periods ahead, they have the choice to still keep their model

or a model including the volatility of the �spot parameter�, that we consistently estimate in

Section 4, that will remove p degrees of freedom. Of course, by seeing that their model is

time-dependent, they also have the choice to change it, and choose a new model with less

degrees of freedoms instead. Then, they could check on their new model if the new parameters

are still moving a lot over time using the techniques of this paper.

Nothing too much about it either!

18The way we estimate the spot volatility is bla bla (to be more accurate about this, we might need to change

the formula). See Foster and Nelson (1996), Comte and Renault (1998) and Mykland and Zhang (2008).
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6 Model selection

6.1 Nested models

Assume that the practitioner has a locally parametric model in mind. He wants to test if

some of the parameters are null bla bla (to continue). If he �nds something signi�cant here,

it means that he should use the more general semiparametric model. But then he should go

back to Section semiparametric constancy's trust, to see if he can trust the constancy of his

new parameter

The way the practitioner should use this Section is the following.

For instance, testing if there is noise in a model

add the example of noise in returns !!!

6.2 A general criteria

we can do a sum of log-likelihood on each block, and we could imagine that we penalize if the

parameter is moving a lot (think more about how to penalize it though). For now, we penalize

it because we are not interested in estimating the integrated covariation of the parameters.

But in next paper... In practise, do that with di�erent hn to see if we obtain the same kind

of results. Nothing too much about it (only one page to write!)

(the section and the following ones would be both for discrete time and continuous time

model)
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7 Examples on statistical models

7.1 ARMA model

7.2 GARCH model

7.3 IID noise independent of the return process

7.4 Hitting boundary process with time process model

7.5 Autoregressive Conditional Duration model

7.6 Hawkes process

7.7 Linear Model

When looking at a dataset, the usual simplest model that comes into the picture is the linear

model. Suppose we observe {yi, xi1, . . . , xip}ni=1 of n statistical units, a linear regression model

assumes that the relationship between the dependent variable yi and the p−vector of regressors
xi is linear, i.e. there exists real parameters β1, . . . , βp s.t.

yi = β1xi1 + . . .+ βpxip + εi (61)

where εi is the noise of the i− th observation. It is often the case that observations are time-

dependent, and thus the statistician can add new predictors in (61) by �tting a polynomial

of degree d to take a proper account of the time component: in practise she can often end up

with a high-degree d. As far as predictions of future values are concerned, this is probably a

bad idea because in most cases, the future pattern of the time e�ect is uncertain.

If we are assuming that parameters are moving with time, an alternative model to (61)

would be

yi = β1,tixi1 + . . .+ βp,tixip + ε′i (62)

where ti corresponds to the time of observation of the i−th unit. The statistician could use

the technology of this paper to chop the observations into short time-blocks, estimate the

value of parameters on each block (where the time-e�ect would be roughly the same for each

observation). Formally, it corresponds to �tting a model with a block e�ect for each time-

block, with interactions. The results of Section 4 gives us insight on how to choose the size

of each block hn. By taking the weighted sum of estimated parameters (9), we provide to

the statistician a straightforward prediction's model (for future observations in time), which
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is e�ectively a linear model, but with di�erent input parameters than (61). Furthermore, by

estimating the time-e�ect with this nonparametric technique, the statistician has gained d

degrees of freedom compared to the prediction's model she would have used instead. We insist

on the fact that if there is an obvious linear trend of the time, that will most likely continue,

the statistician should �rst build an extended model of (61) that takes a proper account of the

linear trend, and then use the techniques of this paper to estimate more accurately the inputs

of her model.

Finally, it would be beyond the scope of this paper to de�ne precisely the underlying

assumptions needed to obtain the Central Limit Theorem of Theorem 2, as well as all the

statistical implications for tests, but we would like to get the attention of the lector on the

fact that (E4) holds in this example. Similarly, we could apply the same machinerie to

generalized linear models (see, i.e., McCullagh and Nelder (1989)). We think that in cases

where overdispersion is very high, using (62) might help the statistician understand where it

comes from.

8 Application: �tting ARMA and GARCH models on the S &

P 500

To illustrate the application of our results, we take the S&P5000 stock index daily close

returns data from the beginning of January 1990 to the end of June 1997, which makes 1895

observation points. Since we are looking at index of returns of stock market prices, it is often

the case that the best model is a unit root or random walk (see, i.e., Bachelier (1900) or

Fama (1965)), but a quick check of the auto-correlation function estimation of the returns (see

Figure 1), which shows signi�cant lag-1 correlation at the 5 % con�dence level, suggests us to

use a di�erent model. The Ljung-Box statistic is examined to formally test the null hypothesis

that the �rst autocorrelation is 0. Under the null hypothesis, the test statistic is distributed

as a χ2
1. We obtain a chi-squared statistic of 8.26 and its associated p-value of 0.004 This

provides us enough reasons to �t an ARMA model (with null-mean) to the returns, instead

of a unit root. We follow closely Box and Jekins (1976) for the model selection (of the class

ARMA(p, q)), parameter estimation and model checking. We �nd that AR(1) is the best

candidate. In Figure 2, we can see a plot of the residuals over time. The variance seems to

be roughly constant in time, except for observations from 1996, where it increased a bit. It is

due to the fact that the volatility of the returns itself increased during that period. The auto-
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Figure 1: bla bla bla...

correlation function estimation of the residuals in �gure 3 shows no signi�cant autocorrelation

e�ect for the �rst 32 lags, once again at the 5% con�dence interval level. We obtain bla bla

Ljung-Box statistic... bla bla... Based on those two plots, we can say that the model �ts the

data very well.

When �tting the 1985 data points to the model, we obtain the following estimates We

make ten blocks of 190 observations (except for the last one, which is only 185 observation.

On each block, we �t an AR(1) model. (to continue !)

9 Conclusion

9.1 Allowing for a general structure

i.e. semimartingale with jumps... probably next paper !

9.2 Estimation of the integrated covariation

Will be the next paper, so much to say from this !
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Figure 2: In this �gure, bla bla bla...

9.3 Multidimension

Look at Ogihara and Yoshida paper (2014) for instance... probably next paper

9.4 Low-frequency setting

with Simon, probably next paper.

9.5 In generality how do you choose hn ?

Look at Kalnina and Linton (2007) for ideas... In �nite sample data, we should always choose

n as big as possible because we will be closer to the approximation, but we have to be careful

that θ is not moving too much... Think about it more... Also think about it more in the

forecasting

9.6 How do you choose the window of forecasting ?

i.e. how do you estimate the spot parameter
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Figure 3: In this �gure, bla bla bla...

9.7 Spatial time series ?

9.8 Forecasting

For the parameters to use into the forecasting, instead of the mean, use something else (a

function of the coe�cients ?). Which size of window to use ? Why is it better ? Also, build a

new model of forecasting from the integrated covariation

9.9 To read

Look at the paper Self-weighted and local quasi-maximum likelihood estimators for ARMA-

GARCH/IGARCH models

9.10 Noise, endogeneity and returns of the e�cient price

9.11 Simon's model

10 Appendix

For proofs of Section 3 and 4, since the parameter process θ∗t is locally bounded, we can follow

standard localisation arguments (see, i.e., pp. 160 − 161 of Mykland and Zhang (2012)) and
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assume without loss of generality that there existsM > 0 such that θ∗t ∈ KM for all 0 ≤ t ≤ T .

10.1 Proof of Theorem (consistency)

Proof (C1)⇒(22)

It su�ces to show that (C1) implies that

sup
i≥0

E
[∣∣ ̂̃Θi,n − Θ̃i,n

∣∣] = op(1) (63)

By (17), we can write ∣∣ ̂̃Θi,n − Θ̃i,n

∣∣ = gn(U1
i,n, . . . , U

hn
i,n , Θ̃i,n)

where gn is a jointly measurable real-valued function such that E
∣∣gn(U1

i,n, . . . , U
hn
i,n , Θ̃i,n)

∣∣ <∞.

E
[
gn(U1

i,n, . . . , U
hn
i,n , Θ̃i,n)

]
= E

[
E
[
gn(U1

i,n, . . . , U
hn
i,n , Θ̃i,n)

∣∣Θ̃i,n

]]
= E

[∫
gn(u, Θ̃i,n)µω(du)

]
where µω(du) is a regular condition for (U1

i,n, . . . , U
hn
i,n ) given Θ̃i,n (see, i.e., Breiman (1992)).

From (C1) together with assumptions of Section 3, we obtain (63).

Proof (C2)⇒(23)

It is su�cient to show that (C2) implies that

sup
i≥0

E
[∣∣Θ̂i,n − ˆ̃Θi,n

∣∣] = op(1) (64)

Similarly to the previous proof, we can write∣∣Θ̂i,n − ˆ̃Θi,n

∣∣ = g(2)
n (U1

i,n, . . . , U
hn
i,n , {θ

∗
s}τ0i−1,n≤s≤τ0i,n

, Θ̃i,n)

∣∣∣E [Θ̂i,n − ˆ̃Θi,n

] ∣∣∣ =
∣∣∣E [E [g(2)

n (U1
i,n, . . . , U

hn
i,n , {θ

∗
s}τ0i−1,n≤s≤τ0i,n

, Θ̃i,n)|Θ̃i,n

]] ∣∣∣
=

∣∣∣E [∫ g(2)
n (v, Θ̃i,n)µω(dv)

] ∣∣∣
= op(1)

where µω(dv) is a regular condition for (U1
i,n, . . . , U

hn
i,n , {θ∗s}τ0i−1,n≤s≤τ0i,n

) given Θ̃i,n and where

we used (C2) in the last equality.
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10.2 Proof of Consistency in Example 1/3

Let's show (C1) �rst. For any M > 0, the quantity∣∣∣σ̂2
hn,n

(
Fn(U1

1,n, σ
2); . . . ;Fn(Uhn1,n, σ

2)
)
− σ2

∣∣∣
can be uniformly in {σ2 ∈ KM} bounded by

C
∣∣∣ hn∑
j=1

(∆Wi,j,n)2nT−1h−1
n − 1

∣∣∣ (65)

We can prove that (65) tends to 0 in probability using Theorem I.4.47 of p.52 in Jacod and

Shiryaev (2003) together with strong Markov property of Brownian motions.

To show (C2), let M > 0, as well as (J ji,n, θ, χt) de�ned as in (C2). By Lemma 2.2.11 of

Jacod and Protter (2012), it is su�cient to show that the following quantity goes to 0.

nh−1
n

hn∑
j=1

EJ j−1
i,n

∣∣∣(χτ0i,n∆W
[τ j−1
i,n ;τ ji,n]

)2 − ( ∫ τ ji,n

τ j−1
i,n

χsdWs

)2∣∣∣ (66)

(66) can be bounded by

Ch−1
n

hn∑
j=1

EJ j−1
i,n

∣∣∣χτ0i,n∆W
[τ j−1
i,n ;τ ji,n]

−
∫ τ ji,n

τ j−1
i,n

χsdWs

∣∣∣ (67)

Using Conditional Burkholder-Davis-Gundy inequality (BDG, see, i.e. inequality (2.1.32) of

p. 39 in Jacod and Protter (2012)), we can bound (67) by

Ch−1
n

hn∑
j=1

(∆τi,j,n)1/2︸ ︷︷ ︸
O(n−1/2)

EJi,j−1,n

∣∣∣ sup
s∈[τi,0,n,τi+1,0,n]

|χτi,0,n − χs|
∣∣∣︸ ︷︷ ︸

op(n−1/2)

where we used BDG to obtain op(n
−1/2).

10.3 Proof of Consistency in Example 2/4

(C1) can be shown easily. Similarly (C2) is a direct consequence of the de�nition in (24), (25)

together with (11).
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10.4 Proof of Theorem (central limit theorem)

Last term of (52) tends to 0 in probability

We aim at showing that

Bn∑
i=1

n
1
l
(
Θ̃i,n −Θi,n

)
∆Ti,n︸ ︷︷ ︸

ei,n

P→ 0 (68)

We �rst need to show the following lemma.

Lemma 1. Let Ft be a �ltration, χt a null-drift bounded continuous Itô-process adapted to Ft,
and τ1, τ2, τ3 bounded Ft-stopping times such that 0 ≤ τ1 ≤ τ2 ≤ τ3. We have

Eτ1
[∫ τ3

τ2

χudu

]
= 0

Proof. De�ne At =
∫ t

0 χudu. Since χt is bounded, At is a martingale.

Eτ1
[∫ τ3

τ2

χudu

]
= Eτ1 [Aτ3 −Aτ2 ]

= Eτ1 [Eτ2 [Aτ3 −Aτ2 ]]

= 0

We de�ne the following scaled continuous interpolation of the left term in (68)

Ent =

∫ t

0

(
θ∗u − θ∗T−u,n

)
du (69)

where T−u,n is the starting point of the current block at time u., i.e. T−u,n = sup{Ti,n : Ti,n ≤ s}.

First step of the proof of (68) In this step, we will show that Ent is a continuous martingale.

For τ any stopping time, any s > 0 and t > 0 such that s < t, we de�ne P (τ, s, t) the projection

of τ onto the segment [s, t], i.e.

P (τ, s, t) =


s if τ ≤ s
τ if s ≤ τ ≤ t
t if τ ≥ t

37



For any s > 0 and t > 0 such that s < t, we have that

Es [Ent − Ens ] = Es

∑
i≥1

∫ P (Ti,n,s,t)

P (Ti−1,n,s,t)

(
θ∗u − θ∗Ti−1,n

)
du


=

∑
i≥1

Es

[∫ P (Ti,n,s,t)

P (Ti−1,n,s,t)

(
θ∗u − θ∗Ti−1,n

)
du

]

By lemma 1, each term of the sum is equal to 0.

Second step of the proof of (68) We compute the limit of n
2
l E
[
(Ent )2

]
n

2
l E
[
(Ent )2

]
=

Bn∑
i=1

E
[
ETi−1,n

[
e2
i,n

]]
= n

2
l

Bn∑
i=1

E

ETi−1,n

(∫ Ti,n

Ti−1,n

(θ∗u − θ∗Ti−1,n
)du

)2


≤ Cn
2
l

Bn∑
i=1

E

ETi−1,n

[
(∆Ti,n)2

]︸ ︷︷ ︸
Op(h2nn

−2)

ETi−1,n

[
sup

Ti−1,n≤s≤Ti,n

(θ∗s − θ∗Ti−1,n
)2

]
︸ ︷︷ ︸

Op(hnn−1)


→ 0

where we used that Ent is a martingale in the �rst equality, Conditional Cauchy-Schwarz in

the inequality, (E1) assumption together with BDG inequality to obtain the big taus. We can

concludze that it tends to 0 by (41) of condition (E2). Thus, because L2-convergence implies

convergence in probability, we show (68).

Third term of (52) tends stably in distribution to the asymptotic variance
∫ t

0 Vθ∗s

In all generality, Ai,n := n
1
l

( ˆ̃ΘM∗
i,n − Θ̃i,n

)
∆Ti,n is not the increment term of a discrete mar-

tingale. Thus, we need �rst to compensate it in order to apply usual discrete martingale limit

theorems. Let Bi,n = Ai,n−Eτi−1,n [Ai,n]. We want to use Corollary 3.1 of pp. 58− 59 in Hall

and Heyde (1980). We will thus show that the two conditions of the corollary are veri�ed in

the two following steps.

First step : We will show in this step that for all ε > 0,

Bn∑
i=1

Eτi−1,n

[
B2
i,n1{Bi,n>ε}

]
P→ 0 (70)
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The conditional Cauchy-Schwarz inequality gives us that each term of the sum in (70) can be

bounded by (
Eτi−1,n

[
B4
i,n

]
Eτi−1,n

[
1{Bi,n>ε}

]) 1
2

(71)

We apply another conditional Cauchy-Schwarz inequality on the left term of (71), then (40)

and (46). To deal with the right term of (71), we use (43). Then, we use the block assumption

(42) when taking the sum of all the terms in (71) and we can prove (70).

Second step : We will prove that

Bn∑
i=1

Eτi−1,n

[
B2
i,n

] P→ η (72)

Consider the approximated time ∆T̃i,n :=
∑hn

j=1(R̃ji,n)(d). De�ne Ãi,n := n
1
l

( ˆ̃ΘM∗
i,n −Θ̃i,n

)
∆T̃i,n

and the compensated quantity B̃i,n = Ãi,n − Eτi−1,n

[
Ãi,n

]
. By (47), we have

Bn∑
i=1

Eτi−1,n

[
B2
i,n

]
=

Bn∑
i=1

Eτi−1,n

[
B̃2
i,n

]
+ op(1)

By assumption (44), we have that

Bn∑
i=1

Eτi−1,n

[
B̃2
i,n

]
= h

1− 2
l′

n n
2
l
−1

Bn∑
i=1

Eτi−1,n

[
Vθ∗τi−1,n

∆T̃i,n

]
+ op(1)

Using Lemma 2.2.11 of Jacod and Protter (2012) with (47), we obtain

h
1− 2

l′
n n

2
l
−1

Bn∑
i=1

Eτi−1,n

[
Vθ∗τi−1,n

∆T̃i,n

]
= h

1− 2
l′

n n
2
l
−1

Bn∑
i=1

Vθ∗τi−1,n
∆Ti,n + op(1)

We can apply now Proosition I.4.44 (p. 51) in Jacod and Shiryaev (2003) and (42) and we get

h
1− 2

l′
n n

2
l
−1

Bn∑
i=1

Vθ∗τi−1,n
∆Ti,n →

∫ T

0
Vθ∗sds

We are interested in the stable convergence of the sum of Ai,n terms, but by using Corollary

3.1 of pp. 58 − 59 in Hall and Heyde (1980), we only obtain the stable convergence of the

increment martingale terms Bi,n. We will show now that the sum of the conditional means

Sn :=
∑Bn

i=1 Eτi−1,n [Ai,n] tends to 0 in probability. An application of (42), (45) together with

regular conditional distribution will give us the convergence to 0 of Sn by (??).
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Second term of (52) tends to 0

This is a straightforward consequence of (50).

�rst term of (52) tends to 0

We prove it the same way using bla bla of Assumption (E4).
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