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Abstract

The article considers a nested error regression model with heteroscedastic variance functions
for analyzing clustered data, where the normality for the underlying distributions is not assumed.
Classical methods in normal nested error regression models with homogenous variances are extended
in the two directions: heterogeneous variance functions for error terms and non-normal distributions
for random effects and error terms. Consistent estimators for model parameters are suggested, and
second-order approximations of their biases and variances are derived. The mean squared errors of
the empirical best linear unbiased predictors are expressed explicitly to second-order. Second-order
unbiased estimators of the mean squared errors are provided analytically in closed forms. The
proposed model and the resulting procedures are numerically investigated through simulation and
empirical studies.

1 Introduction

Linear mixed models and the model-based estimators including empirical Bayes (EB) estimator or
empirical best linear unbiased predictor (EBLUP) have been studied quite extensively in the literature
from both theoretical and applied points of view. Of these, the small area estimation (SAE) is an
important application, and methods for SAE have received much attention in recent years due to
growing demand for reliable small area estimates. For a good review and account on this topic, see
Ghosh and Rao (1994), Rao (2003), Datta and Ghosh (2012) and Pfeffermann (2014). The linear
mixed models used for SAE are the Fay-Herriot model suggested by Fay and Herriot (1979) for area-
level data and the nested error regression (NER) models given in Battese, Harter and Fuller (1988)
for unit-level data. Especially, the NER model has been used in application of not only SAE but also
biological experiments and econometric analysis. Besides the noise, a source of variation is added to
explain the correlation among observations within clusters, or subjects, and to allow the analysis to
‘borrow strength’ from other clusters. The resulting estimators, such as EB or EBLUP, for small-
cluster means or subject-specific values provide reliable estimates with higher precisions than direct
estimates like sample means.

In the NER model with m small-clusters, let (yi1,xi1), . . . , (yini ,xini) be ni individual observations
from the i-th cluster for i = 1, . . . ,m, where xij is a p-dimensional known vector of covariates. The
normal NER model is written as

yij = x
′
ijβ + vi + εij , i = 1, . . . ,m, j = 1, . . . , ni,
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where vi and εij denote the random effect and samping error, respectively, and they are mutually
independently distributed as vi ∼ N(0, τ2) and εij ∼ N(0, σ2). The mean of yij is x′

ijβ for regression
coefficients β, and the variance of yij is decomposed as

Var(yij) = E[(yij − x′
iβ)

2] = τ2 + σ2. (1)

which is the same for all the clusters. However, Jiang and Nguyen (2012) illustrated that the within-
cluster sample variances change dramatically from cluster to cluster for the data given in Battese, et al.
(1988). Also, the normality assumptions for random effects and error terms are not always appropriate
in practice. Thus, we want to address the issue of relieving these assumptions of normal NER models
in the two directions: heterogeneity of variances and non-normality of underlying distributions.

In real application, we often encounter the situation where the sampling variance Var(εij) is affected
by the covariate xij . In such case, the variance function is a useful tool for describing its relationship.
Variance function estimation has been studied in the literature in the framework of heteroscedastic
nonparametric regression. For example, see Cook and Weisberg (1983), Hall and Carroll (1989), Muller
and Stadtmuller (1987, 1993) and Ruppert, Wand, Holst and Hossjer (1997). Thus, in this paper,
we propose use of the technique to introduce the heteroscedastic variances into NER model without
assuming normality of underlying distributions.

The variance structure we consider is

Var(yij) = τ2 + σ2ij , (2)

namely, the setup means that the sampling error εij has heteroscedastic variance Var(εij) = σ2ij . Then

we suggest the variance function model given by σ2ij = σ2(z′ijγ), where the details are explained in
Section 2.

Related to this paper, Jiang and Nguyen (2012) proposed the heteroscedastic nested error regres-
sion model with the setup that variance Var(yij) is proportional to σ

2
i , namely

Var(yij) = (λ+ 1)σ2i . (3)

This is equivalent to the assumption that Var(vi) = λσ2i and Var(εij) = σ2i . For setup (3), Jiang
and Nguyen (2012) assumed normality for vi and εij and demonstrated the quite interesting result
that the maximum likelihood (ML) estimators of β and λ are consistent for large m, which implies
that the resulting empirical Bayes estimator estimates the Bayes estimator consistently. In setup (3),
however, there is no consistent estimator for the heteroscedastic variance σ2i , and the mean squared
error (MSE) of the EB cannot be estimated consistently, since it depends on σ2i . To fix the inconsistent
estimation of σ2i , Maiti, Ren and Sinha (2014) suggested the hierarchical model such that σ2i ’s are
random variables and σ−2

i has a gamma distribution. Maiti, et al. (2014) applied this setup to the
Fay-Herriot model with statistics for estimating σ2i . However, the resulting EB estimator and the
MSE can not be expressed in closed forms. The same setup of σ2i was used recently by Kubokawa,
Sugasawa, Ghosh and Choudhuri (2014) who derived explicit expressions of the EB estimator and the
MSE to second-order. In their simulation study, however, the finite sample properties of estimators of
two hyper-parameters in the gamma prior distribution of σ2i are not so well. Although the hierarchical
models used in Maiti, et al. (2014) and Kubokawa, et al. (2014) provide consistent estimators for
model parameters and predictors, both models assume parametric hierarchical structures based on
normal distributions of vi and εij . However, the normality assumption is not always appropriate and
another heteroscedastic models are useful for such a situation when the normality assumption does
not seem to be correct.
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In contrast to the existing results, the proposed model with variance function does not assume
normality for either vi nor εij . The advantage of this paper is that the MSE of the EB or EBLUP and
its unbiased estimator are derived analytically in closed forms up to second-order without assuming
normality for vi and εij . Nonparametric approach to SAE has been studied by Jiang, Lahiri and Wan
(2002), Hall and Maiti (2006), Lohr and Rao (2009) and others. Most estimators of the MSE have
been given by numerical methods such as Jackknife and bootstrap methods except for Lahiri and Rao
(1995), who provided an analytical second-order unbiased estimator of the MSE in the Fay-Heriot
model. Hall and Maiti (2006) developed a moment matching bootstrap method for nonparametric
estimation of MSE in nested error regression models. The suggested method is actually convenient but
it requires bootstrap replication and has computational burden. In this paper, without assuming the
normality, we derive not only second-order biases and variances of estimators for the model parameters,
but also a closed expression for a second-order unbiased estimator of the MSE in a closed form. Thus
our MSE estimator does not require any resampling method and is useful in practical use. Also our
MSE estimator can be regarded as a generalization of the robust MSE estimator given in Lahiri and
Rao (1995).

The paper is organized as follows: A setup of the proposed HNER model and estimation strategy
with asymptotic properties are given in Section 2. In Section 3, we obtain the EBLUP and the second-
order approximation of the MSE. Further, we provide the second-order unbiased estimators of MSE
by the analytical calculation. In Section 4, we investigate the performance of the proposed procedures
through simulation and empirical studies. The technical proofs are given in the Appendix.

2 HNER Models with Variance Functions

2.1 Model settings

Suppose that there arem small clusters, and let (yi1,xi1), . . . , (yini ,xini) be the pairs of ni observations
from the i-th cluster, where xij is a p-dimensional known vector of covariates. We consider the
heteroscedastic nested error regression model

yij = x
′
ijβ + vi + εij , j = 1, . . . , ni, i = 1, . . . ,m, (4)

where β is a p-dimenstional unknown vector of regression coefficients, and vi and εij are mutually
independent random variables with mean zero and variances Var(vi) = τ2 and Var(εij) = σ2ij , which
are denoted by

vi ∼ (0, τ2) and εij ∼ (0, σ2ij). (5)

It is noted that no specific distributions are assumed for vi and εij . It is assumed that the heteroscedas-
tic variance σ2ij of εij is given by

σ2ij = σ2(z′ijγ), i = 1, . . . ,m, (6)

where zij is a q-dimensional known vector given for each cluster, and γ is a q-dimensional unknown
vector. The variance function σ2(·) is a known (user specified) function whose range is nonnegative.
Some examples of the variance function are given below. The model parameters are β, τ2 and γ,
whereas the total number of the model parameters is p+ q + 1.

Let yi = (yi1, . . . , yini)
′, Xi = (xi1, . . . ,xini)

′ and ϵi = (εi1, . . . , εini)
′. Then the model (4) is

expressed in a vector form as

yi =Xiβ + vi1ni + ϵi, i = 1, . . . ,m,
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where 1n is an n× 1 vector with all elements equal to one, and the covariance matrix of ϵi is

Σi = Var(yi) = τ2Jni +W i,

for Jni = 1ni1
′
ni

and W i = diag(σ2i1, . . . , σ
2
ini

). It is noted that the inverse of Σi is expressed as

Σ−1
i =W−1

i

(
Ini −

τ2JniW
−1
i

1 + τ2
∑ni

j=1 σ
−2
ij

)
,

where W−1
i = diag(σ−2

i1 , . . . , σ
−2
ini

). Further, let y = (y′1, . . . ,y
′
m)′, X = (X ′

1, . . . ,X
′
m)′, ϵ =

(ϵ′1, . . . , ϵ
′
m)′ and v = (v11

′
n1
, . . . , vm1′nm

)′. Then, the matricial form of (4) is written as y =Xβ+v+ϵ,
where Var(y) = Σ = block diag(Σ1, . . . ,Σm).

Now we give some examples of the variance function σ2(z′ijγ) in (6).
(a) In the case that the dispersion of the sampling error is proportional to the mean, it is reasonable

to put zij = x
(s)
ij and σ2(x′

(s)ijγ) = (x′
(s)ijγ)

2 for the sub-vector x′
(s)ij of the covariate xij . For

identifiability of γ, we restrict γ1 > 0.
(b) Consider the case that m clusters are decomposed into q homogeneous groups S1, . . . , Sq with

{1, . . . ,m} = S1 ∪ . . . ∪ Sq. Then, we put

zij =
(
1{i∈S1}, . . . , 1{i∈Sq}

)′
,

which implies that
σ2ij = γ2t for i ∈ St.

Note that Var(yij) = τ2+γ2t for i ∈ St. Thus, the models assumes that the m clusters are divided into
known q groups with their variance are equal over the same groups. Jiang and Nguyen (2012) used
a similar setting and argued that the unbiased estimator of the heteroscedastic variance is consistent
when |Sk| → ∞, k = 1, . . . , q as m→ ∞, where |Sk| denotes the number of elements in Sk.

(c) Log linear functions of variance were treated in Cook and Weisberg (1983) and others. That
is, log σ2ij is a linear function, and σ2ij is written as σ2(z′ijγ) = exp(z′ijγ). Similarly to (a), we put
zij = x(s)ij .

For the above two cases (a) and (b), we have σ2(x) = x2, while the case (c) corresponds to
log{σ2(x)} = x. In simulation and empirical studies in Section 4, we use the log-linear variance
model. As given in subsequent section, we show consistency and asymptotic expression of estimators
for γ as well as β and τ2.

2.2 Estimation

We here provide estimators of the model parameters β, τ2 and γ. When values of γ and τ2 are given,
the vector β of regression coefficients is estimated by the generalized least squares (GLS) estimator

β̃ = β̃(τ2,γ) = (X ′Σ−1X)−1X ′Σ−1y =

(
m∑
i=1

X ′
iΣ

−1
i Xi

)−1 m∑
i=1

X ′
iΣ

−1
i yi. (7)

This is not a feasible form since γ and τ2 are unknown. When estimators τ̂2 and γ̂ are for τ2 and γ,
we get the feasible estimator β̂ = β̃(τ̂2, γ̂) by replacing τ2 and γ in β̃ with their estimators.
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Concerning estimation of τ2, we use the second moment of observations yij ’s. From model (4), it
is seen that

E
[
(yij − x′

ijβ)
2
]
= τ2 + σ2(z′ijγ). (8)

Based on the ordinary least squares (OLS) estimator β̂OLS = (X ′X)−1X ′y, a moment estimator of
τ2 is given by

τ̂2 =
1

N

m∑
i=1

ni∑
j=1

{
(yij − x′

ijβ̂OLS)
2 − σ2(z′ijγ)

}
, (9)

with substituting estimator γ̂ into γ, where N =
∑m

i=1 ni.
For estimation of γ, we consider the within difference in each cluster. Let ȳi be the sample mean

in the i-th cluster, namely ȳi = n−1
i

∑ni
j=1 yij . It is noted that for ε̄i = n−1

i

∑ni
j=1 εij ,

yij − ȳi = (xij − x̄i)
′β + (εij − ε̄i),

which dose not include the term of vi. Then it is seen that

E
[{
yij − ȳi − (xij − x̄i)

′β
}2]

=
(
1− 2n−1

i

)
σ2(z′ijγ) + n−2

i

ni∑
h=1

σ2(z′ihγ),

which motivates us to estimate γ by solving the following estimating equation given by

1

N

m∑
i=1

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)

′β̂OLS

}2
−
(
1− 2n−1

i

)
σ2(z′ijγ)− n−2

i

ni∑
h=1

σ2(z′ihγ)

]
zij = 0,

which is equivalent to

1

N

m∑
i=1

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)

′β̂OLS

}2
zij − σ2(z′ijγ)(zij − 2n−1

i zij + n−1
i z̄i)

]
= 0 (10)

where z̄i = n−1
i

∑ni
j=1 zij . It is noted that, In case of homoscedastic case, namely σ2(z′ijγ) = δ2, the

estimator δ2 and τ2 reduces to the estimator identical to Prasad-Rao estimator (Prasad and Rao,
1990) up to the constant factor.

Note that the objective function (10) for estimation of γ does not depend on β and τ2 and that
the estimator of τ2 depends on γ. These suggest the following algorithm for calculating the estimates
of the model parameters: We first obtain the estimate γ̂ of γ by solving (10), and then we get the
estimate τ̂2 from (9) with γ = γ̂. Finally we have the GLS estimate β̂ with substituting γ̂ and τ̂2 in
(7).

2.3 Large sample properties

In this section, we provide large sample properties of the estimators given in the previous subsection
when the number of clusters m goes to infinity, but ni’s are still bounded. To establish asymptotic
results, we assume the following conditions under m→ ∞.

Assumption (A)

1. There exist n and n such that n ≤ ni ≤ n for i = 1, . . . ,m. The dimensions p and q are bounded,
namely p, q = O(1). The number of clusters with one observation, namely ni = 1, is bounded.
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2. The variance function σ2(·) is twice differentiable and its derivatives are denoted by (σ2)(1)(·)
and (σ2)(2)(·), respectively.

3. The following matrices converge to non-singular matrices:

m−1
m∑
i=1

ni∑
j=1

zijz
′
ij , m−1X ′X, m−1

m∑
i=1

ni∑
j=1

(σ2)(a1)(z′ijγ)zijz
′
ij , m−1X ′Σa2X

for a1 = 1, 2 and a2 = ±1.

4. The forth moments of vi and εij exist, namely E[v4i ] <∞ and E[ε4ij ] <∞.

The conditions 1 and 3 are the standard assumptions in small area estimation. The condition 2
is also non-restrictive, and the simple variance function σ2(x) = x2 and σ2(x) = exp(x) obviously
satisfies the assumption. The moment condition 4 is necessary for existence of MSE of the EBLUP,
and it is satisfied by many continuous distributions, including normal, shifted gamma, Laplace and
t-distribution with degrees of freedom larger than 5.

In what follows, we use the notations

σ2ij ≡ σ2(z′ijγ), σ2ij(k) ≡ (σ2)(k)(z′ijγ), k = 1, 2

for simplicity. To derive asymptotic approximations of the estimators, we define the following statistics
in the i-th cluster:

u1i =
m

N

ni∑
j=1

{
(yij − x′

ijβ)
2 − σ2ij − τ2

}
, (11)

u2i =
m

N

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)

′β
}2
zij − σ2ij(zij − 2n−1

i zij + n−1
i z̄i)

]
. (12)

Moreover, we define

T 1(γ) =
m∑
k=1

nk∑
h=1

σ2kh(1)zkh, T 2(γ) =

 m∑
k=1

nk∑
j=1

σ2kh(1)(zkh − 2n−1
k zkh + n−1

k z̄k)z
′
kh

−1

, (13)

noting that T 1(γ) = O(m) and T 2(γ) = O(m−1) under Assumption (A). Then we obtain the asymp-
totically linear expression of the estimators.

Theorem 1. Let θ̂ = (β̂
′
, γ̂ ′, τ̂2)′ be the estimator of θ = (β′,γ ′, τ2)′. Under Assumption (A), it

follows that θ̂ − θ = Op(m
−1/2) with the asymptotically linear expression

θ̂ − θ =
1

m

m∑
i=1

((ψβ
i )

′, (ψγ
i )

′, ψτ
i )

′ + op(m
−1/2),

where

ψγ
i = NT 2(γ)u2i, ψτ

i = u1i − T 1(γ)
′T 2(γ)u2i, ψβ

i = m
(
X ′Σ−1X

)−1
XiΣ

−1
i (yi −Xiβ).
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From Theorem 1, it follows that m1/2(θ̂ − θ) have an asymptotically normal distribution with
mean vector 0 and covariance matrix mΩ, where Ω is a (p+ q+1)× (p+ q+1) matrix partitioned as

mΩ ≡

 mΩββ mΩβγ mΩβτ

mΩ′
βγ mΩγγ mΩγτ

mΩ′
βτ mΩ′

γτ mΩττ

 = lim
m→∞

1

m

m∑
i=1

 E[ψβ
i ψ

β′

i ] E[ψβ
i ψ

γ′

i ] E[ψβ
i ψ

τ
i ]

E[ψγ
i ψ

β′

i ] E[ψγ
i ψ

γ′

i ] E[ψγ
i ψ

τ
i ]

E[ψτ
i ψ

β′

i ] E[ψτ
i ψ

γ′

i ] E[ψτ
i ψ

τ
i ]

 .

It is noticed that E[u1i(yij −x′
ijβ)] = 0 and E[u2i(yij −x′

ijβ)] = 0 when yij are normally distributed.

In such a case, it follows Ωβγ = 0 and Ωβτ = 0, namely β and ϕ = (γ ′, τ2)′ are asymptotically
orthogonal. However, since we do not assume that normality for observations y′ijs, β and ϕ are not
necessarily orthogonal.

The asymptotic covariance matrix mΩ or Ω can be easily estimated from samples. For example,

mΩββ = limm→∞m−1
∑m

i=1E[ψβ
i ψ

β′

i ] can be estimated by

mΩ̂ββ =
1

m

m∑
i=1

ψ̂β
i ψ̂

β′

i ,

where ψ̂β
i is obtained by replacing unknown parameters θ in ψβ

i with estimates θ̂. It is noted that the
accuracy of estimation is given by

Ω̂ββ = Ωββ + op(m
−1),

from Theorem 1 and Ω = O(m−1). The estimator Ω̂ will be used to get the estimators of mean
squared errors of predictors in Section 3.

We next provide the asymptotic properties of conditional covariance matrix given in the following
corollary where the proof is given in the Appendix.

Corollary 1. Under Assumption (A), for i = 1, . . . ,m, it follows that

E
(
(θ̂ − θ)(θ̂ − θ)′

∣∣∣yi) = Ω+ op(m
−1). (14)

This property is used for estimation and evaluating the mean squared errors of EBLUP discussed
in the subsequent section. Moreover, in the evaluation of the mean squared errors of EBLUP and
derivation of its estimators, we need to obtain the conditional and unconditional asymptotic bias of
estimators θ̂.

Let b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi) be the second-order conditional asymptotic bias defined as

E[β̂ − β|yi] =b
(i)
β (yi) + op(m

−1), E[γ̂ − γ|yi] = b
(i)
γ (yi) + op(m

−1),

E[τ̂2 − τ2|yi] = b(i)τ (yi) + op(m
−1).

In the following theorem, we provide the analytical expressions of b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi). Define

bβ, bγ and bτ by

bβ =
(
X ′Σ−1X

)−1
{ q∑

s=1

m∑
k=1

X ′
kΣ

−1
k W i(s)Σ

−1
k Xk (Ωβ∗γs −Ωβγs)

+

m∑
k=1

X ′
kΣ

−1
k Jnk

Σ−1
k Xk(Ωβ∗τ −Ωβτ )

}
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bγ = T 2(γ)

[
2

m∑
k=1

col
{
tr
(
EkZkrEkXk

[
V OLSX

′
k − (X ′X)−1X ′

kΣk

])}
r

−
m∑
k=1

nk∑
j=1

zkjσkj(2)(zkj − 2n−1
k zkj + n−1

k z̄k)
′Ωγγzkj

]
,

(15)

and

bτ = − 1

N

m∑
k=1

nk∑
j=1

σ2kj(1)z
′
jkbγ −

2

N

m∑
k=1

tr
{
(X ′X)−1X ′

kΣkXk

}
− 1

2N

m∑
k=1

nk∑
j=1

σ2kj(2)z
′
kjΩγγzkj +

1

N

m∑
k=1

tr
(
X ′

kXkV OLS

)
,

where Ek = Ink
− n−1

k Jnk
, V OLS = (X ′X)−1X ′ΣX(X ′X)−1, Zkr = diag(zk1r, . . . , zknkr) for r-th

element zkjr of zkj , Ωβ∗a for a ∈ {τ, γ1, . . . , γq} andW i(s) are defined in the proof of Theorem 2, and
col{ar}r denotes a q-dimensional vector (a1, . . . , aq)

′. It is noted that bβ, bγ , bτ are of order O(m−1).
Now we provide the second-order approximation to the conditional asymptotic bias.

Theorem 2. Under Assumption (A), we have

b
(i)
β (yi) =

(
X ′Σ−1X

)−1
X ′

iΣ
−1
i (yi −Xiβ) + bβ, b

(i)
γ (yi) = T 2(γ)u2i + bγ

b(i)τ (yi) = m−1u1i −m−1T 1(γ)
′T 2(γ)u2i + bτ ,

(16)

where b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi) are of order Op(m

−1), and u1i and u2i are given in (11) and (12),
respectively.

From the above theorem, we immediately obtain the unconditional asymptotic bias of the estima-
tors θ̂ by taking expectation with respect to yi given in the following Corollary.

Corollary 2. Under Assumption (A), it follows that

E[θ̂ − θ] = (b′β, b
′
γ , bτ )

′ + o(m−1),

where bβ, bγ and bτ are given in (15).

3 Prediction with Risk Evaluation

3.1 EBLUP

We now consider the prediction of
µi = c

′
iβ + vi,

where ci is a known (user specified) vector and vi is the random effect in model (4). The typical choice
of ci is ci = x̄i which corresponds to the prediction of mean of the i-th cluster. A predictor µ̃(yi) of µi
is evaluated in terms of the MSE E[(µ̃(yi)− µi)

2]. In the general forms of µ̃(yi), the minimizer (best
predictor) of the MSE cannot be obtain without a distributional assumption for vi and εij . Thus we
focus on the class of linear and unbiased predictors, and the best linear unbiased predictor (BLUP)
of µi in terms of the MSE is given by

µ̃i = c
′
iβ + 1′ni

Σ−1
i (yi −Xiβ).
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This can be simplified to

µ̃i = c
′
iβ +

ni∑
j=1

λij
(
yij − x′

ijβ
)
,

where λij = τ2σ−2
ij η

−1
i for ηi = 1 + τ2

∑ni
h=1 σ

−2
ih . In case of homogeneous variances, namely σ2ij = δ2,

it is confirmed that the BLP reduces to µ̃i = c
′
iβ+ λi (ȳi − x̄′

iβ) with λi = niτ
2(δ2 + niτ

2)−1 as given
in Hall and Maiti (2006). The BLUP is not feasible since it depends on unknown parameters β, γ and
τ2. Plugging the estimators into µ̃i, we get the empirical best linear unbiased predictor (EBLUP)

µ̂i = c
′
iβ̂ +

ni∑
j=1

λ̂ij

(
yij − x′

ijβ̂
)
, λ̂ij = τ̂2σ̂−2

ij η̂
−1
i (17)

for η̂−1
i = 1+ τ̂2

∑ni
h=1 σ̂

−2
ih . In the subsequent section, we consider the mean squared errors (MSE) of

EBLUP (17) without any distributional assumptions for vi and εij .

3.2 Second-order approximation to MSE

To evaluate uncertainty of EBLUP given by (17), we evaluate the MSE defined as MSEi(ϕ) =
E
[
(µ̂i − µi)

2
]
for ϕ = (γ ′, τ2)′. The MSE is decomposed as

MSEi(ϕ) = E
[
(µ̂i − µ̃i + µ̃i − µi)

2
]

= E
[
(µ̃i − µi)

2
]
+ E

[
(µ̂i − µ̃i)

2
]
+ 2E [(µ̂i − µ̃i)(µ̃i − µi)] .

From the expression of µ̃i, we have

µ̃i − µi =

 ni∑
j=1

λij − 1

 vi +

ni∑
j=1

λijεij ,

which leads to

R1i(ϕ) ≡ E
[
(µ̃i − µi)

2
]
=

 ni∑
j=1

λij − 1

2

τ2 +

ni∑
j=1

λ2ijσ
2
ij = τ2η−1

i . (18)

For the second term, however, we cannot obtain an exact expression, so that we obtain the ap-
proximation up to O(m−1). Using the Taylor series expansion and Theorem 1, we have

E
[
(µ̂i − µ̃i)

2
]
= E

[{(
∂µ̃i
∂θ

)′
(θ̂ − θ)

}2
]
+ o(m−1)

= tr

{
E

[(
∂µ̃i
∂θ

)(
∂µ̃i
∂θ

)′
E
(
(θ̂ − θ)(θ̂ − θ)′

∣∣∣yi)]}+ o(m−1)

= tr

{
E

[(
∂µ̃i
∂θ

)(
∂µ̃i
∂θ

)′]
Ω

}
+ o(m−1) ≡ R2i(ϕ) + o(m−1),

where we used Corollary 1 and the fact that ∂µ̂i/∂θ does not depend on y1, . . . ,ym except for yi.
The straightforward calculation shows that

∂µ̃i
∂β

= ci −
ni∑
j=1

λijxij ,
∂µ̃i
∂γ

= η−2
i

ni∑
j=1

σ−2
ij δij(yij − x

′
ijβ),

∂µ̃i
∂τ2

= η−2
i

ni∑
j=1

σ−2
ij (yij − x′

ijβ), (19)
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where

δij = τ4
ni∑
h=1

σ−4
ih σ

2
ih(1)zih − τ2ηiσ

−2
ij σ

2
ij(1)zij ,

so that we have

R2i(ϕ) =η
−4
i τ2

 ni∑
j=1

σ−2
ij δij

′

Ωγγ

 ni∑
j=1

σ−2
ij δij

+ η−4
i

ni∑
j=1

σ−2
ij δ

′
ijΩγγδij

+ 2η−3
i

ni∑
j=1

σ−2
ij δ

′
ijΩγτ + η−3

i

ni∑
j=1

σ−2
ij Ωττ +

ci − ni∑
j=1

λijxij

′

Ωββ

ci − ni∑
j=1

λijxij

 ,

(20)

which is of order O(m−1). We next evaluate the cross term E [(µ̂i − µ̃i)(µ̃i − µi)]. This term vanishes
under the normality assumptions for vi and εij , but in general, it cannot be neglected. As in the
case of R2i, we obtain an approximation of E [(µ̂i − µ̃i)(µ̃i − µi)] up to O(m−1). In the evaluation, we
assume that E(v3i ) = E(ε3ij) = 0. To this end, we expand µ̂i − µ̃i as

µ̂i − µ̃i =

(
∂µ̃i
∂θ

)′
(θ̂ − θ) + 1

2

(
∂µ̃i
∂θ

)′
(θ̂ − θ)(θ̂ − θ)′

(
∂µ̃i
∂θ

)
+ op(m

−1).

It follows that

µ̃i − µi =

 ni∑
j=1

λij − 1

 vi +

ni∑
j=1

λijεij ≡ wi,

and then,

E [(µ̂i − µ̃i)(µ̃i − µi)] = E

[(
∂µ̃i
∂θ

)′
(θ̂ − θ)wi

]
+

1

2
E

[(
∂µ̃i
∂θ

)′
(θ̂ − θ)(θ̂ − θ)′

(
∂µ̃i
∂θ

)
wi

]
+ o(m−1).

Using the expression of (19) and Corollary 1, the straightforward calculation (whose details are given
in the Appendix) shows that

R32i(ϕ) = E

[(
∂µ̃i
∂θ

)′
(θ̂ − θ)(θ̂ − θ)′

(
∂µ̃i
∂θ

)
wi

]
= o(m−1),

under the assumption E(v3i ) = E(ε3ij) = 0. Moreover, from Theorem 2, we obtain

E

[(
∂µ̃i
∂θ

)′
(θ̂ − θ)wi

]
= R31i(ϕ,κ) + o(m−1),

for

R31i(ϕ,κ) = η−2
i

ni∑
j=1

σ−2
ij δ

′
ij

(
m∑
k=1

nk∑
h=1

σ2kh(1)zkhz
′
kh

)−1

M2ij(ϕ,κ)

+m−1η−2
i

ni∑
j=1

σ−2
ij

{
M1ij(ϕ,κ)− T 1(γ)

′T 2(γ)M2ij(ϕ,κ)

}
,

(21)
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where

M1ij(ϕ,κ) = mN−1τ2η−1
i

{
niτ

2(3− κv) + σ2ij(κε − 3)
}

M2ij(ϕ,κ) = mN−1τ2η−1
i n−2

i (ni − 1)2(κε − 3)σ2ijzij ,

and κv, κε is defined as E(v4i ) = κvτ
4 and E(ε4ij) = κεσ

4
ij , respectively, and κ = (κv, κε)

′. The
derivation of the expression of R31i(ϕ,κ) is also given in the Appendix. From the expression (21), it
holds that R31i(ϕ,κ) = O(m−1).

Under the normality assumption of vi and εij , we immediately obtain M1ij = 0 and M2ij = 0
since κ = (3, 3)′. This leads to R31 = 0, which means that the cross term does not appear in the
second-order approximated MSE, that is our result is consistent to the well-known result.

Now, we summarize the result for the second-order approximation of the MSE.

Theorem 3. Under Assumption (A) and E[v3i ] = E[ε3ij ] = 0, the second-order approximation of the
MSE is given by

MSEi(ϕ) = R1i(ϕ) +R2i(ϕ) + 2R31i(ϕ,κ) + o(m−1),

where R1i(ϕ), R2i(ϕ) and R31i(ϕ,κ) are given in (18), (20) and (21), respectively, and R1i(ϕ) = O(1),
R2i(ϕ) = O(m−1) and R31i(ϕ,κ) = O(m−1).

The approximated MSE given in Theorem 3 depends on unknown parameters. Thus, in the
subsequent section, we derive the second-order unbiased estimator of the MSE by the analytical and
the matching bootstrap methods.

3.3 Analytical estimator of the MSE

We first derive the analytical second-order unbiased estimator of the MSE. From Theorem 3, R2i(ϕ)
is O(m−1), so that it can be estimated by the plug-in estimator R2i(ϕ̂) with second-order accuracy,
namely E[R2i(ϕ̂)] = R2i(ϕ) + o(m−1). For R31i(ϕ,κ) with order O(m−1), if a consistent estimator κ̂
is available for κ, this term can be estimated by the plug-in estimator with second-order unbiasedness.
To this end, we construct a consistent estimator of κ using the expression of fourth moment of
observations. The straightforward calculation shows that

E

 ni∑
j=1

{
yij − ȳi − (xij − x̄i)

′β
}4

= κεn
−4
i (ni − 1)(ni − 2)(n2i − ni − 1)

 ni∑
j=1

σ4ij

+ 3n−3
i (2ni − 3)


 ni∑

j=1

σ2ij

2

−
ni∑
j=1

σ4ij

 ,

whereby we can estimate κε by

κ̂ε =
1

N∗

m∑
i=1

 ni∑
j=1

{
yij − ȳi − (xij − x̄i)

′β̂
}4

− 3n−3
i (2ni − 3)


 ni∑

j=1

σ2ij

2

−
ni∑
j=1

σ4ij


 , (22)

where N∗ = n−4
i (ni − 1)(ni − 2)(n2i − ni − 1)

∑ni
j=1 σ

4
ij and β̂ is feasible GLS estimator of β given in

Section 2. For κv, it is observed that

E
[(
yij − x′

ijβ
)4]

= τ4κv + 6τ2σ2ij + κεσ
4
ij ,
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which leads to the estimator of κv given by

κ̂v =
1

Nτ̂4

m∑
i=1

ni∑
j=1

{(
yij − x′

ijβ̂OLS

)4
− 6τ̂2σ̂2ij − κ̂εσ̂

4
ij

}
. (23)

From Theorem 1, it is immediately follows that the estimators given in (22) and (23) are consistent.
Using these estimators, we can estimate R31i by R31i(ϕ̂, κ̂) with second-order accuracy.

Finally, we consider the second-order unbiased estimation of R1i. The situation is different than
before since R1i = O(1), which means that the plug-in estimator R1i(ϕ̂) has the second-order bias
with O(m−1). Thus we need to obtain the second-order bias of R1i(ϕ̂) and correct them. By the
Taylor series expansion, we have

R1i(ϕ̂) = R1i(ϕ) +

(
∂R1i(ϕ)

∂ϕ′

)
(ϕ̂− ϕ) + 1

2
(ϕ− ϕ)′

(
∂2R1i(ϕ)

∂ϕ∂ϕ′

)
(ϕ̂− ϕ) + op(m

−1)

from Theorem 1. Then, the second-order bias of R1i(ϕ̂) is expressed as

E[R1i(ϕ̂)]−R1i(ϕ)

=

(
∂R1i(ϕ)

∂ϕ′

)
E[ϕ̂− ϕ] + 1

2
tr

{(
∂2R1i(ϕ)

∂ϕ∂ϕ′

)
E
[
(ϕ̂− ϕ)(ϕ̂− ϕ)′

]}
+ o(m−1)

=

(
∂R1i(ϕ)

∂ϕ′

)
bϕ +

1

2
tr

{(
∂2R1i(ϕ)

∂ϕ∂ϕ′

)
Ωϕ

}
+ o(m−1),

where Ωϕ is the sub-matrix of Ω with respect to ϕ, and bϕ is the second-order bias of ϕ̂ given in
Corollary 2. The straightforward calculation shows that

∂R1i(ϕ)

∂τ2
= η−2

i ,
∂R1i(ϕ)

∂γ
= −τ2η−2

i ηi(1),
∂2R1i(ϕ)

∂τ2∂τ2
= 2τ−2(η−3

i − η−2
i ),

∂2R1i(ϕ)

∂γ∂τ2
= −2η−3

i ηi(1),
∂2R1i(ϕ)

∂γ∂γ ′ = τ2η−3
i (2ηi(1)η

′
i(1) − ηiηi(2)),

where

ηi(1) ≡
∂ηi
∂γ

= −τ2
ni∑
j=1

σ−4
ij σ

2
ij(1)zij , ηi(2) ≡

∂2ηi
∂γ∂γ ′ = τ2

ni∑
j=1

(
2σ−2

ij σ
4
ij(1) − σ2ij(2)

)
σ−4
ij zijz

′
ij .

Therefore, we obtain the expression of the second-order bias given by

Bi(ϕ) =− τ2η−2
i η′i(1)bγ + η−2

i bτ − 2η−3
i η′i(1)Ωγτ + τ−2(η−3

i − η−2
i )Ωττ

+ τ2η−3
i

{
η′i(1)Ωγγηi(1) −

1

2
ηitr

(
ηi(2)Ωγγ

)}
,

(24)

with Bi = O(m−1). Noting that Bi can be estimated by Bi(ϕ̂) with E[Bi(ϕ̂)] = Bi + o(m−1) from
Theorem 1, we propose the bias corrected estimator of R1i given by

R̂1i(ϕ̂)
bc = R1i(ϕ̂)−Bi(ϕ̂),

which is second-order unbiased estimator of R1i, namely

E[R̂1i(ϕ̂)
bc] = R1i(ϕ) + o(m−1).

Now, we summarize the result for the second-order unbiased estimator of MSE in the following theorem.
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Theorem 4. Under Assumption (A) and E[v3i ] = E[ε3ij ] = 0, the second-order unbiased estimator of
MSEi is given by

M̂SEi = R̂1i(ϕ̂)
bc +R2i(ϕ̂) + 2R31i(ϕ̂, κ̂),

that is, E
[
M̂SEi

]
= MSEi + o(m−1).

It is remarked that the proposed estimator of MSE does not require any resampling methods
such as bootstrap. This means that the analytical estimator can be easily implemented and has less
computational burden compared to bootstrap. Moreover, we do not assume normality of vi and εij in
the derivation of the MSE estimator as in Lahiri and Rao (1995). Thus the proposed MSE estimator
is expected to have a robustness property, which will be investigated in the simulation studies.

4 Simulation and Empirical Studies

4.1 Model based simulation

We first compare the performances of EBLUP obtained from the proposed HNER with variance
functions (HNERVF) with the conventional NER and the HNER with random dispersions (HNERRD)
proposed in Kubokawa, et al. (2014) in terms of simulated MSE. To this end, we consider the following
data generating process:

yij = β0+β1xij + vi + εij , j = 1, . . . , ni, i = 1, . . . ,m,

vi ∼ (0, τ2), εij ∼ (0, exp(γ0 + γ1zij)).
(25)

We take m = 20, ni = 8, β0 = 1, β1 = 0.8, τ = 1.2. For the values of γ0 and γ1, we consider two
patterns: (γ0, γ1) = (1,−0.4), (1, 0). Note that γ1 = −0.4 indicates that the true model holds the
heteroscedasticity in sampling variances while γ1 = 0 indicates the true model has homoscedastic
variance in which both HNER models are overfitted. We generate xij and zij from the uniform
distribution on (0, 2) and (0, 5), respectively, which are fixed through the simulation runs. Following
Hall and Maiti (2006), we consider five patterns of distributions of vi and εij , that is , M1: vi and εij
are both normally distributed, M2: vi and εij are both scaled t-distribution with degrees of freedom
6, M3: vi and εij are both scaled and located χ5 distribution, M4: vi are εij are scaled and located
χ5 and −χ5 distribution, respectively, and M5: vi are εij are both logistic distribution. Based on
R = 10, 000 simulation runs, we calculate the MSE of each area defined as

MSEi =
1

R

R∑
r=1

(µ̂
(r)
i − µ

(r)
i )2, (26)

where µ̂
(r)
i and µ

(r)
i are obtained values of the EBLUP and the true values of µi = β0 + β1xi + vi

in the r-th iteration, respectively. For estimation of the variance component in the NER model, we
use the Prasad and Rao estimator (Prasad and Rao, 1990). The resulting simulated MSE values for
five distribution and two values of γ1 are given in Figure 1 (in case of γ1 = −0.4) and Figure 2 (in
case of γ1 = 0). From Figure 1, it is observed that the HNERVF provides least values of MSE in
all areas. It is a natural result that the HNERRD provides second best prediction in terms of MSE
values, but the MSE values are not so different from the NER model. Thus the model specification is
appropriate, the EBLUP obtained from HNERVF performs so well compared to the existing models.
On the other hand, in Figure 2, the HNERVF provides little larger MSE values than the HNERRD
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and NER in normal case (M1). It is not surprising result since the parameter γ1 in the HNERVF is
0 in the true model and the estimation error of γ1 inflates the MSE values. However, in other cases
(M2∼M5), the HNERVF provides the close MSE values to the NER and HNERRD although the true
model has homoscedastic variances. Thus we may conclude that the HNERVF has little disadvantages
of over-specification in terms of MSE values of the EBLUP.
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Figure 1: The Simulated Values of MSE in HNERVF (real line), NER (dashed line) and HNERRD
(dotted line) in Case of γ1 = −0.4 (Heteroscedasticity).

4.2 Finite sample performances of the MSE estimator

We next investigate the finite sample performances of the MSE estimators given in Theorem 4. We
use the same data generating process given in (25) and we take β0 = 1, β1 = 0.8, τ = 1.2, γ0 = 1 and
γ1 = −0.4. Moreover, we equally divided m = 20 areas into four groups (G = 1, . . . , 5), so that each
group has five areas and the areas in the same group has the same sample size nG = G+3. Following
the simulation study in the previous subsection, we again consider the five patterns of distributions for
vi and εij . The simulated values of the MSE are obtained from (26) based on R = 10, 000 simulation
runs. Then, based on R = 5, 000 simulation runs, we calculate the relative bias (RB) and coefficient
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Figure 2: The Simulated Values of MSE in HNERVF (real line), NER (dashed line) and HNERRD
(dotted line) in Case of γ1 = 0 (Homoscedasticity).

of variation (CV) of MSE estimators given by

RBi =
1

R

R∑
r=1

M̂SE
(r)

i −MSEi

MSEi
, CV2

i =
1

R

R∑
r=1

M̂SE
(r)

i −MSEi

MSEi

2

where M̂SE
(r)

i is the MSE estimator in the r-th iteration. In Table 1, we report mean and median
values of RBi and CVi in each group. For comparison, results for the naive MSE estimator, without
any bias correction, are reported in Table 1 as well. The naive MSE estimator is the plug-in estimator
of the asymptotic MSE (18), namely it is obtained by replacing τ2 and γ in formula (18) by τ̂2 and γ̂,
respectively. In Table 1, the relative bias is small, less than 10% in many cases. When the underlying
distributions leave from normality, the MSE estimator still provides small relative bias although it
has higher coefficient of variation. The naive MSE estimator is more biased than the analytical MSE
estimator in all groups and models, so that the bias correction in MSE estimator is successful.
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Table 1: The Mean Values of Percentage Relative Bias (RB) and Coefficient of Variation (CV) of MSE
Estimator and Relative Bias of Naive MSE Estimator (RBN) in Each Group.

G1 G2 G3 G4

Model RB CV RBN RB CV RBN RB CV RBN RB CV RBN

M1 -8.72 17.48 -10.67 -7.61 17.52 -9.16 -7.89 19.85 -9.31 -6.52 22.02 -7.83
M2 -12.50 23.60 -13.74 -9.72 23.24 -10.66 -8.39 26.05 -9.43 -4.74 28.37 -5.68
M3 -10.86 22.47 -12.10 -10.58 22.70 -11.48 -7.65 24.66 -8.70 -4.96 26.93 -5.91
M4 -12.51 23.40 -13.57 -10.57 23.03 -11.33 -8.92 25.37 -9.86 -5.65 27.68 -6.52
M5 -11.81 21.24 -13.39 -7.27 20.31 -8.54 -6.34 22.94 -7.58 -4.27 24.98 -5.42

4.3 Illustrative example

We now investigate empirical performances of the suggested model, the empirical Bayes estimator
and the second-order unbiased estimator of MSE through analysis of real data. The data used here
originates from the posted land price data along the Keikyu train line in 2001. This train line connects
the suburbs in the Kanagawa prefecture to the Tokyo metropolitan area. Those who live in the suburbs
in the Kanagawa prefecture take this line to work or study in Tokyo everyday. Thus, it is expected
that the land price depends on the distance from Tokyo. The posted land price data are available for
52 stations on the Keikyu train line, and we consider each station as a small area, namely, m = 52.
For the i-th station, data of ni land spots are available, where ni varies around 4 and some areas have
only one observation.

For j = 1, . . . , ni, yij denotes the value of the posted land price (Yen/10,000) for the unit meter
squares of the j-th spot, Ti is the time to take from the nearby station i to the Tokyo station around
8:30 in the morning, Dij is the value of geographical distance from the spot j to the station i and
FARij denotes the floor-area ratio, or ratio of building volume to lot area of the spot j. This data
set is treated in Kubokawa, et al. (2014), where they pointed out that the heteroscedasticity seem
to be appropriate from boxplots of some areas and Bartlett test for testing homoscedastic variance.
Figure 3 is the plot of the pairs (Dij , eij), where eij is OLS residuals given by eij = yij − (β̂0,OLS +

FARij β̂1,OLS + Tiβ̂2,OLS +Dij β̂3,OLS). It indicates that the residuals are more variable for small Dij

than for large Dij , namely the variances seem functions of Dij . Thus we apply the following HNER
model with a variance function given by

yij = β0 + FARijβ1 + Tiβ2 +Dijβ3 + vi + εij , (27)

where vi ∼ (0, τ2) and εij ∼ (0, σ2(γ0+γ1Dij)). For the variance function σ
2(·), we use σ2(x) = exp(x)

motivated from Figure 3. As a submodel of (27), we also consider the homoscedastic variance model
with γ1 = 0. Then the estimated values of parameters in these two models are given in the following:

estimates β̂0 β̂1 β̂2 β̂3 γ̂0 γ̂1 τ̂2

HNERVF 42.31 2.81 −3.56 −0.66 4.91 −1.82 6.60
NER 33.35 6.58 −3.18 −0.83 3.90 0 8.82

The estimated values of β2 and β3, coefficients of Ti and Dij , in both models are negative values
which leads to the natural result that the Ti and Dij have negative influence on yij . The sign of γ̂1 is
negative. This corresponds to the variability illustrated in Figure 3. The obtained values of EBLUP
given in (17) are given in Table 2 for selected 15 areas. To see the difference of predicted values in
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terms of the degree of shrinkage, we compute difi = |ȳi − µ̂i| for each two model and the results are
given in Figure 4. It is observed that difi in NER model decreases as the area sample size ni gets large.
This is because the sample mean provides better estimates of the true mean as ni gets larger, so that
the sample mean does not need to be shrunk. On the other hand, difi in HNERVF is influenced by the
estimated heteroscedastic variance σ2(γ̂0 + γ̂1Dij) as well as ni. Thus the plot in Figure 4 shows that
the shrinkage degrees in HNERVF has more variability than that in NER. In Table 2 and Figure 3,
we also provide the estimates of squared root of MSE (SMSE) given in Theorem 4. It is revealed from
Table 2 that the estimates of the SMSE in NER get smaller as ni gets larger. On the other hands,
the SMSE in HNERVF do not have a similar property, because the SMSE in HNERVF is affected by
not only ni but also the heteroscedastic variance as indicated in the MSE formula given in Theorem
3. From Figure 3, we observe that the estimated SMSEs of HNERVF are smaller than that of NER
in many areas. Especially, in area 47, 49, 50 and 51, the SMSE values of HNERVF are dramatically
small compared to NER. In some other areas, the SMESs of HNERVF is larger than that of NER,
but the differences are not so large. These observations and the residual plot in Figure 3 motivate us
to utilize the HNERVF in case of heteroscedastic variance explained by some covariates.

Table 2: The Estimated Results of PLP Data for Selected 15 Areas

sample HNERVF NER
area ni mean EBLUP SMSE EBLUP SMSE

1 1 60.70 42.92 3.84 41.49 4.18
10 1 38.20 38.36 3.66 37.92 3.92
7 2 40.10 39.57 3.73 39.12 3.78
19 3 32.30 33.81 3.20 34.23 3.55
15 4 38.50 39.26 3.49 40.78 3.41
41 4 18.20 19.84 2.86 20.73 3.37
12 5 41.46 38.90 3.53 41.15 3.20
51 5 16.54 16.55 1.36 15.55 3.21
46 6 20.57 20.00 1.84 19.96 3.05
52 6 15.00 17.33 1.00 16.83 3.13
25 7 29.74 29.92 2.66 30.99 2.89
50 7 20.30 18.63 1.81 17.25 2.93
33 8 22.86 23.53 2.59 22.15 2.80
49 10 16.64 15.60 1.38 16.36 2.55
34 11 24.94 23.90 2.33 23.41 2.44

5 Concluding Remarks

In the context of small-area estimation, homogeneous nested error regression models have been studied
so far in the literature. However, some real data sets show heteroscedasticity in variances as pointed out
in Jiang and Nguyen (2012) and Kubokawa, et al. (2014). In such a case, the residuals often indicate
that the heteroscedasticity can be explained by some covariates, which motivated us to propose and
investigate the heteroscedastic nested error regression model with variance functions (HNERVF). We
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have proposed the estimating method for the model parameters and the asymptotic properties of
these estimators have been established without any distributional assumptions for error terms. For
measuring uncertainty of the empirical Bayes estimator, the mean squared errors (MSE) have been
approximated up to second-order, and their second-order unbiased estimators have been provided in
the closed form.
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Appendix

A.1. Proof of Theorem 1. Since y1, . . . ,ym are mutually independent, the consistency of γ̂ follows from the

standard argument, so that τ̂2 and β̂ are also consistent. In what follows, we derive the asymptotic expressions
of the estimators.

First we consider the asymptotic approximation of τ̂2 − τ2. From (9), we obtain

τ̂2 − τ2 =
1

N

m∑
i=1

ni∑
j=1

{
(yij − x′

ijβ̂OLS)
2 − σ̂2

ij

}
− τ2

=
1

N

m∑
i=1

ni∑
j=1

{
(yij − x′

ijβ)
2 − σ2

ij

}
− τ2 − 1

N

m∑
i=1

ni∑
j=1

σ2
ij(1)z

′
ij(γ̂ − γ)

− 2

N

m∑
i=1

ni∑
j=1

(yij − x′
ijβ)x

′
ij(β̂OLS − β) + op(γ̂ − γ) + op(β̂OLS − β)

=
1

m

m∑
i=1

u1i −
1

N

m∑
i=1

ni∑
j=1

σ2
ij(1)z

′
ij(γ̂ − γ) + op(m

−1/2) + op(γ̂ − γ), (28)

where u1i = mN−1
∑ni

j=1

{
(yij − x′

ijβ)
2 − σ2

ij

}
− τ2 and we used the fact that β̂OLS − β = Op(m

−1/2) and

N−1
∑m

i=1

∑ni

j=1(yij − x′
ijβ)xij = Op(m

−1/2) from the central limit theorem.
For the asymptotic expansion of γ̂, remember that the estimator γ̂ is given as the solution of the estimating

equation

1

N

m∑
i=1

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)

′β̂OLS

}2

zij − σ2
ij(zij − 2n−1

i zij + n−1
i z̄i)

]
= 0

Using Taylor expansions, we have

0 =
1

m

∑
i=1

u2i −
2

N

m∑
i=1

ni∑
j=1

{yij − ȳi − (xij − x̄i)
′β}zij(xij − x̄i)

′(β̂OLS − β)

− 1

N

m∑
i=1

ni∑
j=1

σ2
ij(1)(zij − 2n−1

i zij + n−1
i z̄i)z

′
ij(γ̂ − γ) + op(γ̂ − γ) + op(m

−1/2),

where

u2i = mN−1
ni∑
j=1

[
{yij − ȳi − (xij − x̄i)

′β}2 zij − σ2
ij(zij − 2n−1

i zij + n−1
i z̄i)

]
.
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From the central limit theorem, it follows that

1

N

m∑
i=1

ni∑
j=1

{yij − ȳi − (xij − x̄i)
′β}zij(xij − x̄i)

′ = Op(m
−1/2),

so that the second terms in the expansion formula is op(m
−1/2). Then we get

γ̂ − γ =
N

m

 m∑
i=1

ni∑
j=1

σ2
ij(1)(zij − 2n−1

i zij + n−1
i z̄i)z

′
ij

−1
m∑
i=1

u2i + op(γ̂ − γ) + op(m
−1/2).

Under Assumption (A), we have

m∑
i=1

ni∑
j=1

σ2
ij(1)(zij − 2n−1

i zij + n−1
i z̄i)z

′
ij = O(m).

From the independence of y1, . . . ,ym and the fact E(u2i) = 0, we can use the central limit theorem to show
that the leading term in the expansion of γ̂ − γ is Op(m

−1/2). Thus,

γ̂ − γ =
N

m

 m∑
i=1

ni∑
j=1

σ2
ij(1)(zij − 2n−1

i zij + n−1
i z̄i)z

′
ij

−1
m∑
i=1

u2i + op(m
−1/2).

Using the approximation of γ̂ − γ and γ̂ − γ = Op(m
−1/2), we get the asymptotic expression of τ̂2 − τ2

from (28), which established the result for τ̂2 and γ̂.

Finally we consider the asymptotic expansion of β̂ − β. From the expression in (7), it follows that

β̂ − β = β̃ − β +

q∑
s=1

(
∂

∂γs
β̃

)′

(γ̂s − γ) +

(
∂

∂τ2
β̃

)′

(τ̂2 − τ2) + op(γ̂ − γ) + op(τ̂
2 − τ2).

Since
∂

∂τ2
Σi = Jni ,

∂

∂γs
Σi =W i(s), s = 1, . . . , q,

for W i(s) = diag(σ2
i1(1)zi1s, . . . , σ

2
ini(1)

zinis), we have

∂

∂τ2
β̃ =

(
X ′Σ−1X

)−1

(
m∑
i=1

X ′
iΣ

−1
i JniΣ

−1
i Xi

)(
β̃
∗
τ − β̃

)
,

∂

∂γs
β̃ =

(
X ′Σ−1X

)−1

(
m∑
i=1

X ′
iΣ

−1
i W i(s)Σ

−1
i Xi

)(
β̃
∗
γs

− β̃
)
, s = 1 . . . , q,

(29)

where

β̃
∗
τ =

(
m∑
i=1

X ′
iΣ

−1
i JniΣ

−1
i Xi

)−1 m∑
i=1

X ′
iΣ

−1
i JniΣ

−1
i yi,

β̃
∗
γs

=

(
m∑
i=1

X ′
iΣ

−1
i W i(s)Σ

−1
i Xi

)−1 m∑
i=1

X ′
iΣ

−1
i W i(s)Σ

−1
i yi, s = 1, . . . , q.

Under Assumption (A), we have β̃
∗
a − β = Op(m

−1/2) for a ∈ {τ, γ1, . . . , γq}, whereby β̃
∗
− β̃ = Op(m

−1/2).
Since γ̂ − γ = Op(m

−1/2) and τ̂2 − τ2 = Op(m
−1/2) as shown above, we get

β̂ − β =
(
X ′Σ−1X

)−1
m∑
i=1

XiΣ
−1(yi −Xiβ) + op(m

−1/2),
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which completes the proof.

A2. Proof of Corollary 1. Let θ = (θ1, . . . , θp+q+1)
′ = (β′,γ′, τ2)′. Note that ψθk

i , k = 1, . . . , p+ q+1 does
not depend on y1, . . . ,yi−1,yi+1, . . . ,ym and that y1, . . . ,ym are mutually independent. Then,

1

m2
E

 m∑
j=1

ψθk
j

 m∑
j=1

ψθl
j

∣∣∣∣yi

 =
1

m2

m∑
j=1,j ̸=i

E
[
ψθk
j ψθl

j

]
+

1

m2
ψθk
i ψθl

i

= Ωkl +
1

m2

{
ψθk
i ψθl

i − E
[
ψθk
i ψθl

i

]}
= Ωkl + op(m

−1),

where Ωkl is the (k, l)-element of Ω and we used the fact that E[ψθk
j |yi] = E[ψθk

j ] = 0 for j ̸= i. Hence, we get

the result from the asymptotic approximation of θ̂ given in Theorem 1.

A3. Proof of Theorem 2. We begin by deriving the conditional asymptotic bias of γ̂. Let γ̃ be the solution
of the equation

F (γ;β) ≡ 1

N

m∑
i=1

ni∑
j=1

[
{yij − ȳi − (xij − x̄i)

′β}2 zij − σ2
ij(zij − 2n−1

i zij + n−1
i z̄i)

]
= 0

with σ2
ij = σ2(z′ijγ). For notational simplicity, we use F instead of F (γ;β) without any confusion and Fr, r =

1, . . . , q denotes the r-th component of F , namely F = (F1, . . . , Fq)
′. Define the derivatives F (a) and Fh(ab) by

F (a) =
∂F

∂a′ , Fr(ab) =
∂2Fr

∂a∂b′
.

It is noted that Fh(βγ) = 0. Expanding F (γ̂; β̂OLS) = 0, we obtain

0 = F + F (γ)(γ̂ − γ) + F (β)(β̂OLS − β) + 1

2
t1 +

1

2
t2 + op(m

−1),

where ts = (ts1, . . . , tsq), s = 1, 2 for

t1r = (γ̂ − γ)′Fr(γγ)(γ̂ − γ), t2r = (β̂OLS − β)′Fr(ββ)(β̂OLS − β).

It is also noted that

F (γ) = − 1

m

m∑
k=1

nk∑
j=1

σ2
kj(1)(zkj − 2n−1

k zkj + n−1
k z̄k)z

′
kj

F (β) = − 2

N

m∑
k=1

nk∑
j=1

{ykj − ȳk − (xkj − x̄k)
′β}zij(xkj − x̄k)

′,

so that F (γ) is non-stochastic. Thus we have

E[γ̂ − γ|yi] = −(F (γ))
−1

{
E[F (γ;β)|yi] + E

[
F (β)(β̂OLS − β)

∣∣∣yi

]
+

1

2
E[t1|yi] +

1

2
E[t2|yi]

}
+ op(m

−1).

In what follows, we shall evaluate the each term in the parenthesis in the above expression. For the first term,
since y1, . . . ,ym are mutually independent and E(u2i) = 0, we have

E[F (γ;β)|yi] =
1

m
u2i.
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For evaluation of the second term, we define Zkr = diag(zk1r, . . . , zknkr), where zkjr denotes the r-th element
of zkj . Then it follows that

E
[
F r(β)(β̂OLS − β)

∣∣∣yi

]
= − 2

N

m∑
k=1

E

[
(yk −Xkβ)

′EkZkrEkXk(β̂OLS − β)
∣∣∣∣yi

]

= − 2

N

m∑
k=1,k ̸=i

E
[
(yk −Xkβ)

′EkZkrEkXk(β̂OLS − β)
∣∣∣yi

]
− 2

N
(yi −Xiβ)

′EiZirEiXiE
[
β̂OLS − β

∣∣∣yi

]
.

Noting that it holds for ℓ = 1, . . . ,m and k ̸= i

E
[
(yℓ −Xℓβ)(yk −Xkβ)

′
∣∣∣yi

]
= 1{ℓ=k}Σk, E[β̂OLS − β|yi] =

(
X ′X

)−1
X ′

i(yi −Xiβ),

we have

E

[
(yk −Xkβ)

′EkZkrEkXk(β̂OLS − β)
∣∣∣∣yi

]
=

m∑
ℓ=1

tr
{
EkZkrEkXk(X

′X)−1X ′
kE
[
(yℓ −Xℓβ)(yk −Xkβ)

′
∣∣∣yi]}

= tr
{
(X ′X)−1X ′

kΣkEkZkrEkXk

}
,

which is O(m−1) and
1

N
(yi −Xiβ)

′EkZkrEkXkE
[
β̂OLS − β

∣∣∣yi

]
= op(m

−1).

Thus, we get

E
[
F r(β)(β̂OLS − β)

∣∣∣yi

]
= − 2

m

m∑
k=1

nk∑
j=1

tr
{
(X ′X)−1X ′

kΣkEkZkrEkXk

}
+ op(m

−1), (30)

where the leading term is O(m−1). For the third and forth terms, note that

Fr(γγ) = − 1

N

m∑
k=1

nk∑
j=1

σ2
kj(2)(zkj − 2n−1

k zkj + n−1
k z̄k)z

′
kjzkjr Fr(ββ) =

2

N

m∑
k=1

X ′
kEkZkrEkXk,

which are non-stochastic. Then for h = 1, . . . , q,

E[t1r|yi] = − 1

N

m∑
k=1

nk∑
j=1

zkjrσ
2
kj(2)(zkj − 2n−1

k zkj + n−1
k z̄k)

′Ωγγzkj + op(m
−1),

E[t2r|yi] =
2

N

m∑
k=1

tr
(
X ′

kEkZkrEkXkV OLS

)
+ op(m

−1),

for V OLS = (X ′X)−1X ′ΣX(X ′X)−1, where we used Corollary 1 and

E
[
(β̂OLS − β)(β̂OLS − β)′

∣∣yi

]
= V OLS + op(m

−1), (31)

which follows from the similar argument in the proof of Corollary 1. Thus we obtain

E[t1|yi] = − 1

N

m∑
k=1

nk∑
j=1

zkjσ
2
kj(2)(zkj − 2n−1

k zkj + n−1
k z̄k)

′Ωγγzkj + op(m
−1),

E[t2|yi] =
2

N

m∑
k=1

{
tr
(
X ′

kEkZkrEkXkV OLS

)}
r
+ op(m

−1),
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where {ar}r denotes the q-dimensional vector (a1, . . . , aq). Therefore, we establish the result for γ̂ in (16).

We next derive the result for τ̂2. Let

τ̃2 =
1

N

m∑
k=1

(yk −Xkβ)
′(yk −Xkβ)−

nk∑
j=1

σ2
kj

 .

Using the Taylor series expansion, we have

τ̂2 = τ̃2 +
∂τ̃2

∂γ
(γ̂ − γ) + 1

2
(γ̂ − γ)′

(
∂2τ̃2

∂γ∂γ′

)
(γ̂ − γ)

+
∂τ̃2

∂β
(β̂OLS − β) + 1

2
(β̂OLS − β)′

(
∂2τ̃2

∂β∂β′

)
(β̂OLS − β) + op(m

−1),

where we used the fact that ∂2τ̃2/∂γ∂β′ = 0. The straight calculation shows that

∂τ̃2

∂γ
= − 1

N

m∑
k=1

nk∑
j=1

σ2
kj(1)zkj ,

∂2τ̃2

∂γ∂γ′ = − 1

N

m∑
k=1

nk∑
j=1

σ2
kj(2)zkjz

′
kj ,

∂2τ̃2

∂β∂β′ =
2

N

m∑
k=1

X ′
iXi,

which are non-stochastic. Thus we obtain

E[τ̂2 − τ2|yi] = E[τ̃2 − τ2|yi] +

(
∂τ̃2

∂γ

)′

E [γ̂ − γ|yi] +
1

2
tr

{(
∂2τ̃2

∂γ∂γ′

)
E
[
(γ̂ − γ)(γ̂ − γ)′

∣∣yi

]}
+ E

[(
∂τ̃2

∂β

)′

(β̂OLS − β)
∣∣∣∣yi

]
+

1

2
tr

{(
∂2τ̃2

∂β∂β′

)
E
[
(β̂OLS − β)(β̂OLS − β)′

∣∣yi

]}
+ op(m

−1)

≡ Bτ1(yi) +Bτ2(yi) +Bτ3(yi) +Bτ4(yi) +Bτ5(yi) + op(m
−1).

From the expression of τ̃2, it holds that

Bτ1(yi) =
1

N

m∑
k=1,k ̸=i

nkτ
2 +

1

N

(yi −Xiβ)
′(yi −Xiβ)−

ni∑
j=1

σ2
ij

− τ2

=
(
1− ni

N

)
τ2 +

1

m
u1i +

ni
N
τ2 − τ2 =

1

m
u1i,

for u1i defined in (11). Also, we immediately have

Bτ2(yi) = − 1

N

m∑
k=1

nk∑
j=1

σ2
kj(1)z

′
kjb

(i)
γ (yi)

For evaluation of Bτ4(yi), note that

∂τ̃2

∂β
= − 2

N

m∑
k=1

X ′
k(yk −Xkβ).

Similarly to (30), we get

Bτ4(yi) = − 2

N

m∑
k=1

E

[
(yk −Xkβ)

′Xk(β̂OLS − β)
∣∣∣∣yi

]

= − 2

N

m∑
k=1

tr
{
(X ′X)−1X ′

kΣkXk

}
+ op(m

−1).
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Moreover, Corollary 1 and (31) enable us to obtain the expression of Bτ3(yi) and Bτ5(yi), whereby we get

b(i)τ (yi) = m−1u1i −
1

N

m∑
k=1

nk∑
j=1

σ2
kj(1)z

′
kj

{
b(i)γ (yi)− bγ

}
+ bτ ,

which completes the proof for τ̂2 in (16).

We finally derive the result for β̂. By the Taylor series expansion,

β̂ − β = β̃ − β +

q∑
s=1

(
∂

∂γs
β̃

)
(γ̂s − γ) +

(
∂

∂τ2
β̃

)
(τ̂2 − τ2) + op(m

−1),

since (
∂β̃

∂ϕ

)′

(ϕ̂− ϕ)(ϕ̂− ϕ)′
(
∂β̃

∂ϕ

)
= op(m

−1),

from ∂β̃/∂ϕ = Op(m
−1/2) as shown in the proof of Theorem 1. From (29), we have

q∑
s=1

(
∂

∂γs
β̃

)
(γ̂s − γs)

=
(
X ′Σ−1X

)−1
q∑

s=1

(
m∑

k=1

X ′
iΣ

−1
i W i(s)Σ

−1
i Xi

){(
β̃
∗
γs

− β
)
(γ̂s − γs)− (β̃ − β)(γ̂s − γs)

}
,

and(
∂

∂τ2
β̃

)
(τ̂2 − τ2) =

(
X ′Σ−1X

)−1

(
m∑

k=1

X ′
kΣ

−1
k Jnk

Σ−1
k Xk

){
(β̃

∗
τ − β)(τ̂2 − τ2)− (β̃ − β)(τ̂2 − τ2)

}
.

Let Ωβ∗γs = E[(β̃
∗
γs

− β)(γ̂s − γs)] and Ωβ∗τ = E[(β̃
∗
τ − β)(τ̂ − τ)]. Then it can be shown that

E[(β̃
∗
τ − β)(τ̂ − τ)|yi] = Ωβ∗γs + op(m

−1), E[(β̃
∗
γs

− β)(γ̂s − γs)|yi] = Ωβ∗τ + op(m
−1),

which can be proved by the same arguments as in Corollary 1. Thus from Corollary 1 and the fact that

E
[
β̃ − β|yi

]
=
(
X ′Σ−1X

)−1
X ′

iΣ
−1
i (yi −Xiβ),

we obtain the result for β̂ in (16).

A4. Derivation of R31i(ϕ,κ). Since yi given vi, ϵi is non-stochastic, we have

E

[(
∂µ̃i

∂θ

)′

(θ̂ − θ)wi

]
= E

[
E

[(
∂µ̃i

∂θ

)′

(θ̂ − θ)wi

∣∣∣∣vi, ϵi
]]

= E

[
E(θ̂ − θ|yi)

′
(
∂µ̃i

∂θ

)
wi

]
= E

[
b
(i)
β (yi)

′
(
∂µ̃i

∂β

)
wi

]
+ E

[
b(i)γ (yi)

′
(
∂µ̃i

∂γ

)
wi

]
+ E

[
b(i)τ (yi)

(
∂µ̃i

∂τ

)
wi

]
+ o(m−1)

≡ R31i(ϕ) + o(m−1).
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It is noted that E(wi) = 0 and

E
[
(yij − x′

ijβ)wi

]
= E [(vi + εij)wi] =

 ni∑
j=1

λij − 1

 τ2 +

ni∑
j=1

λijσ
2
ij = 0. (32)

Using the expression (16) and (19), it follows that

E

[
b
(i)
β (yi)

′
(
∂µ̃i

∂β

)
wi

]
=

ci − ni∑
j=1

λijxij

′ (
X ′Σ−1X

)−1
X ′

iΣ
−1
i E

[
(yi −Xiβ)wi

]
= 0

E

[
b(i)γ (yi)

′
(
∂µ̃i

∂γ

)
wi

]
= η−2

i

ni∑
j=1

σ−2
ij δ

′
ij

(
m∑

k=1

nk∑
h=1

σ2
kh(1)zkhz

′
kh

)−1

M2ij(ϕ,κ)

E

[
b(i)τ (yi)

(
∂µ̃i

∂τ

)
wi

]
= m−1η−2

i

ni∑
j=1

σ−2
ij

{
M1ij(ϕ,κ)− T 1(γ)

′T 2(γ)M2ij(ϕ,κ)

}
,

where
M2ij(ϕ,κ) = E

[
u2i(yij − x′

ijβ)wi

]
, M1ij(ϕ,κ) = E

[
u1i(yij − x′

ijβ)wi

]
.

To evaluate M1ij and M2ij , we first prove the following result for fixed j, k, ℓ ∈ {1, . . . , ni}.

E
[
(vi + εij)(vi + εik)(vi + εiℓ)wi

]
= τ2η−1

i

[
τ2(3− κv) + κεσ

2
ij1{j=k=ℓ} + σ2

ij(1{j=k ̸=ℓ} − 1{j=k})

+ σ2
ij(1{j=ℓ̸=k} − 1{j=ℓ}) + σ2

ik(1{k=ℓ ̸=j} − 1{k=ℓ})

]
.

(33)

To show (33), we note that the left side can be rewritten as

−η−1
i E [(vi + εij)(vi + εik)(vi + εiℓ)vi] +

ni∑
h=1

λihE [(vi + εij)(vi + εik)(vi + εiℓ)εih] (34)

from the definition of wi. Using the fact that εi1, . . . , εini and vi are independent, the first term in (34) is
calculated as

E
[
v4i + (εijεik + εijεiℓ + εikεiℓ)v

2
i

]
= κvτ

4 + τ2
(
σ2
ij1{j=k} + σ2

ij1{j=ℓ} + σ2
ik1{k=ℓ}

)
.

Moreover, we have

E [(vi + εij)(vi + εik)(vi + εiℓ)εih] = E
[
εih(εij + εiℓ + εik)v

2
i + εijεikεiℓεih

]
= τ2σ2

ih

(
1{h=j} + 1{h=k} + 1{h=ℓ}

)
+ κεσ

4
ih1{j=k=ℓ=h} + σ2

ih

(
σ2
ij1{j=k ̸=ℓ=h} + σ2

ij1{j=ℓ ̸=k=h} + σ2
ik1{j=h̸=k=ℓ}

)
,

whereby the second term in (34) can be calculated as

τ2η−1
i

[
3τ2 + κεσ

2
ij1{j=k=ℓ} + σ2

ij1{j=k ̸=ℓ} + σ2
ij1{j=ℓ̸=k} + σ2

ik1{k=ℓ̸=j}
]
,

where we used the expression λih = τ2η−1
i σ−2

ih . Then we established the result (33). From (33), we immediately
have

ni∑
ℓ=1

E
[
(vi + εij)(vi + εik)(vi + εiℓ)wi

]
= τ2η−1

i

[
niτ

2(3− κv) + σ2
ij(κε − 3)1{j=k}

]
= E

[
(vi + εij)(vi + εik)

2wi

]
.
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Now, we return to the evaluation of M1ij and M2ij . It follows that

M1ij(ϕ,κ) =
m

N

ni∑
h=1

E
[
(yih − x′

ihβ)
2(yij − x′

ijβ)wi

]
= mN−1η−1

i τ2
{
niτ

2(3− κv) + σ2
ij(κε − 3)

}
and

M2ij(ϕ,κ) =
m

N

ni∑
h=1

zihE
[
{vi + εih − (vi + ε̄i)}2(vi + εij)wi

]
=
m

N

ni∑
h=1

zih

{
E
[
(vi + εih)

2(vi + εij)wi

]
− 2n−1

i

ni∑
k=1

E [(vi + εij)(vi + εik)(vi + εih)wi]

+ n−2
i

ni∑
k=1

ni∑
ℓ=1

E [(vi + εij)(vi + εik)(vi + εiℓ)wi]

}
.

Using the identity given in (33), we have

M2ij(ϕ,κ) = mN−1τ2η−1
i

ni∑
h=1

zih

{
σ2
ij(κε − 3)(1{j=h} − 2n−1

i 1{j=h} + n−2
i )
}

= mN−1τ2η−1
i n−2

i (ni − 1)2(κε − 3)σ2
ijzij ,

which completes the result in (21).

A5. Evaluation of R32i(ϕ). Since yi given vi, ϵi is non-stochastic, we have

R32i(ϕ) =
1

2
E

[(
∂µ̃i

∂θ

)′

(θ̂ − θ)(θ̂ − θ)′
(
∂µ̃i

∂θ

)
wi

]

=
1

2
E

[
E

[(
∂µ̃i

∂θ

)′

(θ̂ − θ)(θ̂ − θ)′
(
∂µ̃i

∂θ

)
wi

∣∣∣∣vi, ϵi
]]

=
1

2
E

[(
∂µ̃i

∂θ

)′

E
[
(θ̂ − θ)(θ̂ − θ)′|yi

](∂µ̃i

∂θ

)
wi

]
=

1

2
tr

{
ΩE

[(
∂µ̃i

∂θ

)(
∂µ̃i

∂θ

)′

wi

]}
+ o(m−1),

where we used Corollary 1 in the last equation. Note that

E
[
(yij − x′

ijβ)
2wi

]
= −η−1

i E
[
(vi + εij)

2vi
]
+

ni∑
h=1

E
[
(vi + εij)

2εih
]
= 0

since E[v3i ] = 0 and E[ε3ij ] = 0. Using the expression (19) of ∂µ̃i/∂θ with the above moment results, we obtain

E

[(
∂µ̃i

∂θ

)(
∂µ̃i

∂θ

)′

wi

]
= 0,

which leads to R32i(ϕ) = op(m
−1).
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