Does Home Production Drive Structural Transformation?

Alessio Moro, Solmaz Moslehi, Satoshi Tanaka

U of Cagliari, Monash, U of Queensland

Macro Workshop @ U of Tokyo, September 2015

- Many papers emphasize the role of home production for structural transformation
- Rogerson (2008): European countries have a smaller service sector share than the U.S.
 - Higher labor income tax discourages people to work in markets
 - 2 Home-produced services substitute market services
- Others: Ngai and Pissarides (2008), Buera and Kaboski (2012a and 2012b), Ngai and Petrongolo (2014), Rendall (2014), Duernecker and Herrendorf (2015)
- All works are done through calibration

- Many papers emphasize the role of home production for structural transformation
- Rogerson (2008): European countries have a smaller service sector share than the U.S.
 - Higher labor income tax discourages people to work in markets
 - Home-produced services substitute market services
- Others: Ngai and Pissarides (2008), Buera and Kaboski (2012a and 2012b), Ngai and Petrongolo (2014), Rendall (2014), Duernecker and Herrendorf (2015)
- All works are done through calibration

- Many papers emphasize the role of home production for structural transformation
- Rogerson (2008): European countries have a smaller service sector share than the U.S.
 - Higher labor income tax discourages people to work in markets
 - Home-produced services substitute market services
- Others: Ngai and Pissarides (2008), Buera and Kaboski (2012a and 2012b), Ngai and Petrongolo (2014), Rendall (2014), Duernecker and Herrendorf (2015)
- All works are done through calibration

- Many papers emphasize the role of home production for structural transformation
- Rogerson (2008): European countries have a smaller service sector share than the U.S.
 - Higher labor income tax discourages people to work in markets
 - 4 Home-produced services substitute market services
- Others: Ngai and Pissarides (2008), Buera and Kaboski (2012a and 2012b), Ngai and Petrongolo (2014), Rendall (2014), Duernecker and Herrendorf (2015)
- All works are done through calibration

- A couple of papers estimate a structural transformation model using the U.S. data
- Buera and Kaboski (2009), and Herrendorf, Rogerson and Valentinyi (2013)
 - Evaluate the performance of the 3-sector model (agriculture, manufacturing, services) with the data
 - Quantify each impact of different driving forces on structural transformation
- No modeling of home production
- This paper estimates a structural tansformation model with a home production sector

- A couple of papers estimate a structural transformation model using the U.S. data
- Buera and Kaboski (2009), and Herrendorf, Rogerson and Valentinyi (2013)
 - Evaluate the performance of the 3-sector model (agriculture, manufacturing, services) with the data
 - Quantify each impact of different driving forces on structural transformation
- No modeling of home production
- This paper estimates a structural tansformation model with a home production sector


- A couple of papers estimate a structural transformation model using the U.S. data
- Buera and Kaboski (2009), and Herrendorf, Rogerson and Valentinyi (2013)
 - Evaluate the performance of the 3-sector model (agriculture, manufacturing, services) with the data
 - Quantify each impact of different driving forces on structural transformation
- No modeling of home production
- This paper estimates a structural tansformation model with a home production sector

- A couple of papers estimate a structural transformation model using the U.S. data
- Buera and Kaboski (2009), and Herrendorf, Rogerson and Valentinyi (2013)
 - Evaluate the performance of the 3-sector model (agriculture, manufacturing, services) with the data
 - Quantify each impact of different driving forces on structural transformation
- No modeling of home production
- This paper estimates a structural tansformation model with a home production sector

MOTIVATION: HOME PRODUCTION DATA

Home production data from Bridgman (2013)

- Around 1978,
 - Market services grew faster
 - Home production declined
 - Home labor productivity stopped growing

WHAT THIS PAPER DOES?

- Propose a parsimonious model of structural transformation with a home production sector
 - Differential productivity growth in each sector; Ngai and Pissarides (2007)
 - Non-homothetic preferences; Kongsamut, Rebelo, and Xie (2001)
- Estimate the model for the U.S. using the new home production data by Bridgman (2013)
 - Compare the implications of alternative preference specifications
- Run counter-factual experiments to quantify the role of the home production sector for structural transformation

WHAT THIS PAPER DOES?

- Propose a parsimonious model of structural transformation with a home production sector
 - Differential productivity growth in each sector; Ngai and Pissarides (2007)
 - Non-homothetic preferences; Kongsamut, Rebelo, and Xie (2001)
- Estimate the model for the U.S. using the new home production data by Bridgman (2013)
 - Compare the implications of alternative preference specifications
- Run counter-factual experiments to quantify the role of the home production sector for structural transformation

WHAT THIS PAPER DOES?

- Propose a parsimonious model of structural transformation with a home production sector
 - Differential productivity growth in each sector; Ngai and Pissarides (2007)
 - Non-homothetic preferences; Kongsamut, Rebelo, and Xie (2001)
- Estimate the model for the U.S. using the new home production data by Bridgman (2013)
 - Compare the implications of alternative preference specifications
- Run counter-factual experiments to quantify the role of the home production sector for structural transformation

Model

Model Setup

- The model is a simple multi-sector growth model
- Time: Discrete, t = 0, 1, 2, ...
- Household: A representative household
- Five types of goods (and sectors):
 - **1** Agricultural good: c_t^a
 - 2 Manufacturing good: c_t^m
 - **1** Market services: c_t^{sm}
 - Home services: c_t^{sh} (as if operated by a market firm!)
 - **1** Investment good: x_t
- Firm: A perfectly competitive firm in each sector

Two Driving Forces of Structural Transformation

Non-Homothetic Preference:

Household's preferences are given by

$$u = \sum_{t=0}^{50} \beta^{t} \ln C_{t}$$

$$C_{t} = \left((\omega^{s})^{\frac{1}{\sigma}} \left(c_{t}^{s} + \overline{c}^{s} \right)^{\frac{\sigma-1}{\sigma}} + (\omega^{m})^{\frac{1}{\sigma}} \left(c_{t}^{m} + \overline{c}^{m} \right)^{\frac{\sigma-1}{\sigma}} + (\omega^{s})^{\frac{1}{\sigma}} \left(c_{t}^{s} + \overline{c}^{s} \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

$$c_{t}^{s} = \left[\psi(c_{t}^{sm})^{\frac{\gamma-1}{\gamma}} + (1 - \psi)(c_{t}^{sh} + \overline{c}^{sh})^{\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

Differential Growth of Technological Change

• For the consumption sector j ($\in \{a, m, sm, sh\}$), production is given by;

$$Y^{j} = A_{t}^{j} \left(K_{t}^{j} \right)^{\alpha} \left(L_{t}^{j} \right)^{1-\alpha},$$

For the investment good sector, it is given by

$$Y^{x} = A_{t}^{x} \left(K_{t}^{x}\right)^{\alpha} \left(L_{t}^{x}\right)^{1-\alpha}$$

Two Driving Forces of Structural Transformation

Non-Homothetic Preference:

Household's preferences are given by

$$u = \sum_{t=0}^{\infty} \beta^{t} \ln C_{t}$$

$$C_{t} = \left((\omega^{a})^{\frac{1}{\sigma}} \left(c_{t}^{a} + \overline{c}^{a} \right)^{\frac{\sigma-1}{\sigma}} + (\omega^{m})^{\frac{1}{\sigma}} \left(c_{t}^{m} + \overline{c}^{m} \right)^{\frac{\sigma-1}{\sigma}} + (\omega^{s})^{\frac{1}{\sigma}} \left(c_{t}^{s} + \overline{c}^{s} \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

$$c_{t}^{s} = \left[\psi(c_{t}^{sm})^{\frac{\gamma-1}{\gamma}} + (1 - \psi)(c_{t}^{sh} + \overline{c}^{sh})^{\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

Differential Growth of Technological Change:

• For the consumption sector j ($\in \{a, m, sm, sh\}$), production is given by;

$$Y^{j} = A_{t}^{j} \left(K_{t}^{j} \right)^{\alpha} \left(L_{t}^{j} \right)^{1-\alpha},$$

• For the investment good sector, it is given by

$$Y^{x} = A_{t}^{x} \left(K_{t}^{x}\right)^{\alpha} \left(L_{t}^{x}\right)^{1-\alpha}$$

We can write the household problem as

$$\max \sum_{t=0}^{\infty} \beta^t \ln C_t \tag{P1}$$

subject to

$$C_t = \left(\sum_{i=a,m,s} \left(\omega^i\right)^{\frac{1}{\sigma}} \left(c_t^i + \overline{c}^i\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

$$c_t^s = \left[\psi(c_t^{sm})^{\frac{\gamma-1}{\gamma}} + (1-\psi)(c_t^{sh} + \overline{c}^{sh})^{\frac{\gamma-1}{\gamma}}\right]^{\frac{\gamma}{\gamma-1}}$$

$$p_t^a c_t^a + p_t^m c_t^m + p_t^{sm} c_t^{sm} + p_t^{sh} c_t^{sh} + k_{t+1} - (1-\delta) k_t = r_t k_t + w_t \overline{l}$$

DECOMPOSITION OF HOUSEHOLD'S PROBLEM

Inter-Temporal Problem:

$$\max_{\{C_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t \ln C_t \tag{P2}$$

s.t.
$$P_t C_t + k_{t+1} - (1 - \delta) k_t = r_t k_t + w_t \overline{l} + p_t^{sh} \overline{c}^{sh} + \sum_{i=a,m,s} p_t^i \overline{c}^i$$

where
$$P_t \equiv \left[\sum_i \omega^i \left(p_t^i\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$
, $p_t^s \equiv \left[\psi^\gamma \left(p_t^{sm}\right)^{1-\gamma} + (1-\psi)^\gamma \left(p_t^{sh}\right)^{1-\gamma}\right]^{\frac{1}{1-\gamma}}$

Intra-Temporal Problem:

$$\max_{\left\{c_{t}^{a},c_{t}^{m},c_{t}^{sm},c_{t}^{sh}\right\}}\left(\sum_{i=a,m,s}\left(\omega^{i}\right)^{\frac{1}{\sigma}}\left(c_{t}^{i}+\bar{c}^{i}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}\tag{P3}$$

$$\text{s.t.} \qquad c_t^s = \left[\psi(c_t^{sm})^{\frac{\gamma-1}{\gamma}} + (1-\psi)(c_t^{sh} + \bar{c}^{sh})^{\frac{\gamma-1}{\gamma}}\right]^{\frac{\gamma}{\gamma-1}}$$

$$p_t^a c_t^a + p_t^m c_t^m + p_t^{sm} c_t^{sm} + p_t^{sh} c_t^{sh} = P_t C_t - \sum_{i=a,m,s} p_t^i \bar{c}^i - p_t^{sh} \bar{c}^{sh} \equiv E_t$$

where E_t stands for the extended total consumption expenditure

INTER- AND INTRA-TEMPORAL PROBLEM

- We only solve and estimate the intra-temporal problem (P3)
 - As an alternative, Buera and Kaboski (2009) estimate (P1) in a general equilibrium framework using TFP data
- Advantages in focusing on only (P3);
 - We can be agnostic about the investment sector
 - The investment sector is hard to model
 - We are interested in estimating preference parameters
 - Given the separation of the two problems, it is sufficient to estimate (P3)

- Value Added Consumption and Price Index from Herrendorf, Rogerson and Valentinyi (2013)
 - Compute value-added consumption from final consumption expenditure by using input-output matrix
 - Remove investment components in value-added consumption
- Total Value Added from Bureau of Economic Analysis (BEA)
- Value Added and Labor Productivity in Home Sector from Bridgman (2013)
 - We assume that home produced goods are not used for investment

Value Added Approach

(Value Added at Home)
$$= w_t L_t^{sh} + \sum_{i=1}^3 \left(r_t^j + \delta^j \right) Q_t^j$$

- L_t^{sh} : hours in household production from time use surveys
- ullet w_t : hourly compensation of workers in the household sector
- Q_t^1, Q_t^2, Q_t^3 : 1) consumer durables, 2) residential capital, and 3) governmental capital
- r_t^1, r_t^2, r_t^3 : 1) households' financial asset returns, 2) imputed rents, and 3) government debt returns

LINKING IMPLICIT HOME PRICE

From the FOC in the home service sector, we have

$$\begin{aligned} \rho_t^{sh} &= \frac{w_t}{\left(1 - \alpha\right) A_t^{sh} \left(\frac{K_t^{sh}}{L_t^{sh}}\right)^{\alpha}} \\ &= \frac{\left(1 - \alpha\right) EGDP_t}{\left(1 - \alpha\right) A_t^{ssh}} \end{aligned}$$

where $A_t^{*sh} \equiv \frac{Y_t^{sh}}{L_t^{sh}}$ is the labor productivity of the home sector

For the last equation, we use

$$w_t = \underbrace{(1-\alpha)EGDP_t}_{\text{labor share}}$$

which is given by the assumption $L_t^a + L_t^m + L_t^{sm} + L_t^{sh} + L_t^x = \overline{l} = 1$.

ESTIMATION PROCEDURE

ullet Given the set of parameters (we assume $ar c^m=0$)

$$\boldsymbol{\theta} \equiv \left(\sigma, \bar{c}^{a}, \bar{c}^{s}, \bar{c}^{sh}, \omega^{a}, \omega^{m}, \omega^{s}, \psi, \gamma\right),$$

and given the set of (pre-determined) variables,

$$\mathbf{x}_t \equiv \left(p_t^{a}, p_t^{m}, p_t^{sm}, A_t^{*sh}, E_t, EGDP_t\right),$$

• the problem (P3) can be solved for the three shares as,

$$\begin{split} \frac{p_t^a c_t^a}{E_t} &= f_1\left(\mathbf{x}_t; \boldsymbol{\theta}\right) + \epsilon_1, \\ \frac{p_t^m c_t^m}{E_t} &= f_2\left(\mathbf{x}_t; \boldsymbol{\theta}\right) + \epsilon_2, \\ \frac{p_t^{sm} c_t^{sm}}{E_t} &= f_3\left(\mathbf{x}_t; \boldsymbol{\theta}\right) + \epsilon_3. \end{split}$$

• We employ iterated feasible generalized nonlinear least square (Deaton (1986) and Rogerson, Herrendorf and Valentinyi (2013))

Alternative Preference Specifications

Preference Specification in the Literature

- The literature (with a three-sector model);
 - Assumes $\bar{c}^a < 0$, $\bar{c}^m = 0$, and $\bar{c}^s > 0$ in the household's intra-temporal preference

$$C_{t} = \left(\left(\omega^{a}\right)^{\frac{1}{\rho}} \left(c_{t}^{a} + \overline{c}^{a}\right)^{\frac{\sigma-1}{\sigma}} + \left(\omega^{m}\right)^{\frac{1}{\rho}} \left(c_{t}^{m} + \overline{c}^{m}\right)^{\frac{\sigma-1}{\sigma}} + \left(\omega^{s}\right)^{\frac{1}{\rho}} \left(c_{t}^{sm} + \overline{c}^{s}\right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

- Kongsamut, Rebelo, and Xie (2001) interpret
 - $\bar{c}^a < 0$: Subsistence level for food
 - ② $\bar{c}^s > 0$: Home production

Model 1: No Non-Homothetic Terms in Services

• Assume $\bar{c}^a < 0$, $\bar{c}^m = 0$, $\bar{c}^s = 0$ and $\bar{c}^{sh} = 0$

Model 1

$$\begin{aligned} \mathcal{C}_t &= \left(\left(\omega^{\mathsf{a}} \right)^{\frac{1}{\rho}} \left(c_t^{\mathsf{a}} + \overline{\mathsf{c}}^{\mathsf{a}} \right)^{\frac{\sigma - 1}{\sigma}} + \left(\omega^{\mathsf{m}} \right)^{\frac{1}{\rho}} \left(c_t^{\mathsf{m}} \right)^{\frac{\sigma - 1}{\sigma}} + \left(\omega^{\mathsf{s}} \right)^{\frac{1}{\rho}} \left(c_t^{\mathsf{s}} \right)^{\frac{\sigma - 1}{\sigma}} \right)^{\frac{\sigma}{\sigma - 1}} \\ c_t^{\mathsf{s}} &= \left[\psi (c_t^{\mathsf{s} \mathsf{m}})^{\frac{\gamma - 1}{\gamma}} + (1 - \psi) (c_t^{\mathsf{s} \mathsf{h}})^{\frac{\gamma - 1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1}} \end{aligned}$$

- Given an explicit home good in preference, \bar{c}^s should be zero
- Used by Rogerson (2008), Ngai and Petrongolo (2014), and Rendall (2014)

• Assume $\bar{c}^a < 0$, $\bar{c}^m = 0$, $\bar{c}^s > 0$, and $\bar{c}^{sh} = 0$

Model 2

$$C_{t} = \left(\left(\omega^{a}\right)^{\frac{1}{\rho}} \left(c_{t}^{a} + \overline{\mathbf{c}}^{a}\right)^{\frac{\sigma-1}{\sigma}} + \left(\omega^{m}\right)^{\frac{1}{\rho}} \left(c_{t}^{m}\right)^{\frac{\sigma-1}{\sigma}} + \left(\omega^{s}\right)^{\frac{1}{\rho}} \left(c_{t}^{s} + \overline{\mathbf{c}}^{s}\right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

$$c_{t}^{s} = \left[\psi(c_{t}^{sm})^{\frac{\gamma-1}{\gamma}} + (1 - \psi)(c_{t}^{sh})^{\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

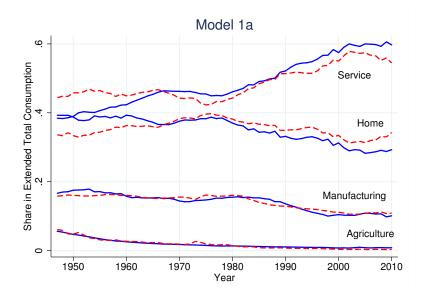
• The term $\bar{c}^s > 0$ captures non-homotheticity in services, which is not explained by home production

Model 3: Non-Homothetic Term in Home Services

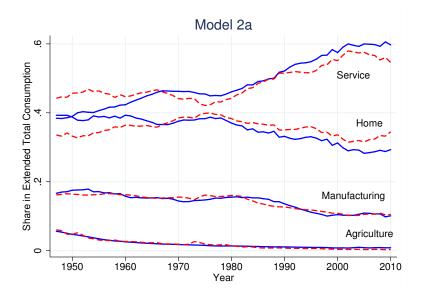
• Assume $\bar{c}^a < 0$, $\bar{c}^m = 0$, $\bar{c}^s = 0$, and $\bar{c}^{sh} < 0$

Model 3

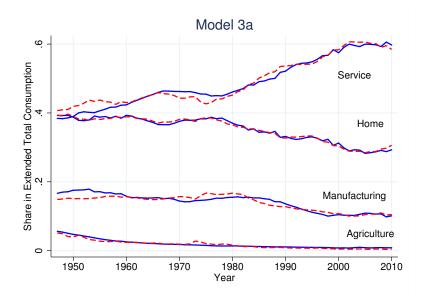
$$C_{t} = \left(\left(\omega^{a} \right)^{\frac{1}{\rho}} \left(c_{t}^{a} + \overline{\mathbf{c}}^{a} \right)^{\frac{\sigma - 1}{\sigma}} + \left(\omega^{m} \right)^{\frac{1}{\rho}} \left(c_{t}^{m} \right)^{\frac{\sigma - 1}{\sigma}} + \left(\omega^{s} \right)^{\frac{1}{\rho}} \left(c_{t}^{s} \right)^{\frac{\sigma - 1}{\sigma}} \right)^{\frac{\sigma}{\sigma - 1}}$$


$$c_{t}^{s} = \left[\psi(c_{t}^{sm})^{\frac{\gamma - 1}{\gamma}} + (1 - \psi)(c_{t}^{sh} + \overline{\mathbf{c}}^{sh})^{\frac{\gamma - 1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1}}$$

- The term $\bar{c}^{sh} < 0$ implies that the household initially needs a certain amount of home services
- As income grows, market services increases relative to home services
- Eichengreen and Gupta (2013): "The share of modern market services rises faster with income relative to that of more traditional market services which can be produced at home."



Results


Data Fit of Model 1 ($\bar{c}^s = 0$, $\bar{c}^{sh} = 0$)

Data Fit of Model 2 ($\bar{c}^s > 0$, $\bar{c}^{sh} = 0$)

Data Fit of Model 3 ($\bar{c}^s = 0$, $\bar{c}^{sh} < 0$)

ESTIMATION RESULTS SUMMARY

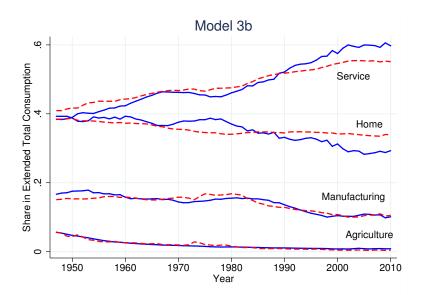
	(1) 1a	(2) 2a	(3) 3a	(4) 3b	(5) 3c	(6) 3d	
σ	0.2212*** (0.0265)	0.1781 ^{**} (0.0276)	0.0015 (0.0009)	0.0006 (0.0012)	0.0010 (0.0009)		
\bar{c}^a	-174.0990 ** (4.0798)	-171.9554*** (3.3737)	-111.0453** (4.8018)	-134.5039*** (11.7211)	-127.7640** (9.5673)	-107.6523** (6.2414)	
\bar{c}^s		562.9095 ^{**} (117.2384)					
ē ^{sh}			-5462.3142*** (102.6465)	-5016.4150 ^{**} (386.9034)	-5497.1630*** (156.6820)	-5374.0798 ^{**} (86.5952)	
ω^{a}	0.0001 (0.0001)	0.0000 (0.0001)	0.0039 ^{**} (0.0005)	0.0028 ^{**} (0.0010)	0.0030 ^{**} (0.0009)	0.0041 ^{**} (0.0006)	
ω^m	0.1714 ^{**} (0.0014)	0.1670 ^{**} (0.0017)	0.1997*** (0.0021)	0.1989 ^{**} (0.0024)	0.2004 ^{**} (0.0022)	0.1991 ^{**} (0.0021)	
ω^s	0.8285 ^{**} (0.0014)	0.8329 ^{**} (0.0017)	0.7964 ^{**} (0.0024)	0.7983 ^{**} (0.0030)	0.7966 ^{**} (0.0026)	0.7968 ^{**} (0.0024)	
ψ	0.5712 ^{**} (0.0020)	0.5710 ^{**} (0.0016)	0.6107** (0.0011)	0.6366 ^{**} (0.0072)	0.6179 ^{**} (0.0019)	0.6099*** (0.0010)	
γ	2.1180 ^{**} (0.0763)	1.9992 ^{**} (0.0828)	2.7357 ^{**} (0.0331)			2.7450 ^{**} (0.0318)	
N	64	64	64	64	64	64	
AIC	-1272.7	-1266.7	-1438.1	-1268.5	-1374.1	-1440.7	
BIC RMSE ^a RMSE ^m RMSE ^s	-1234.8 0.004 0.009 0.033	-1222.5 0.004 0.008 0.032	-1393.9 0.004 0.011 0.015	-1230.6 0.004 0.011 0.025	-1336.2 0.004 0.011 0.014	-1402.8 0.004 0.011 0.015	
RMSE ^h	0.029	0.030	0.005	0.027	0.011	0.005	

DISCUSSION ON INCOME ELASTICITY

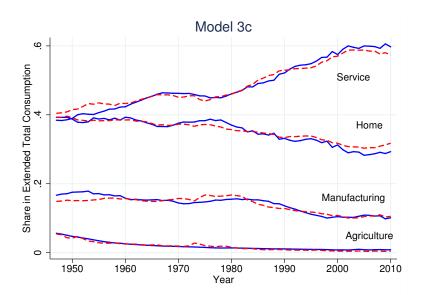
- The data support different income elasticity between home and market services
- The existing theories explain the movement of market and home only with differences in technologies: Ngai and Pissarides (2008) and Buera and Kaboski (2012a, 2012b)
 - Our results indicate changes in technologies are not enough to account for the movement in shares
- ② Countries with different income levels naturally have different size of market and home services shares
 - A caution for cross-country analyses

DISCUSSION ON INCOME ELASTICITY

- The data support different income elasticity between home and market services
- The existing theories explain the movement of market and home only with differences in technologies: Ngai and Pissarides (2008) and Buera and Kaboski (2012a, 2012b)
 - Our results indicate changes in technologies are not enough to account for the movement in shares
- Countries with different income levels naturally have different size of market and home services shares
 - A caution for cross-country analyses

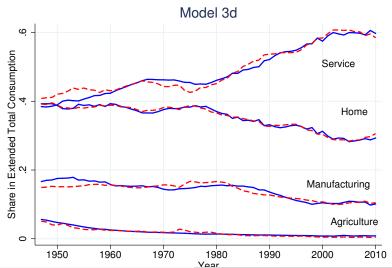


DISCUSSION ON INCOME ELASTICITY


- The data support different income elasticity between home and market services
- The existing theories explain the movement of market and home only with differences in technologies: Ngai and Pissarides (2008) and Buera and Kaboski (2012a, 2012b)
 - Our results indicate changes in technologies are not enough to account for the movement in shares
- Ocuntries with different income levels naturally have different size of market and home services shares
 - A caution for cross-country analyses

FIT OF MODEL 3B ($\gamma = 1.5$)

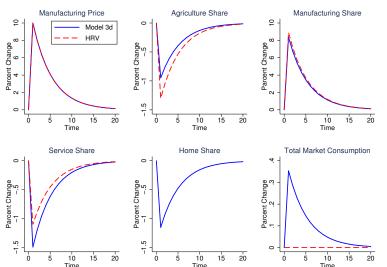
FIT OF MODEL 3C ($\gamma = 2.3$)


DISCUSSION ON SUBSTITUTABILITY PARAMETER

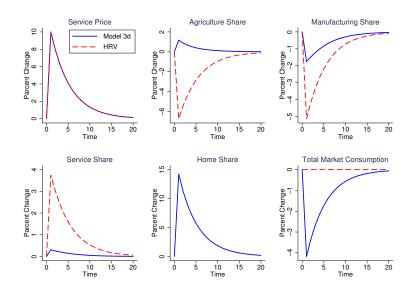
- We obtain 2.75 for the parameter of the substitutability between market and home services
 - Business cycles literature
 - McGrattan, Rogerson, and Wright (1997) find a value between 1.49 and 1.75. Chang and Schorfheide (2003) estimate it as 2.3
 - Micro hours data literature
 - Rupert, Rogerson, and Wright (1995) find a value in the range between 1.60 and 2.00. Aguiar and Hurst (2006) estimate it as 1.80
- Our approach differs from these studies:
 - Estimate substitutability between market services and home services (not between all market goods and home services)
 - Exploit variations in sectoral shares when prices change

FIT OF MODEL 3D ($\sigma = 0$)

 \bullet Buera and Kaboski (2009), and Herrendorf, Rogerson, and Valentinyi (2013) also got a similar result for σ

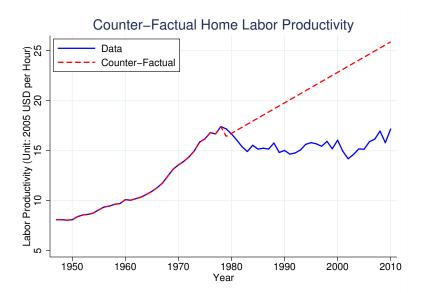

ESTIMATION RESULTS SUMMARY (CHECK 3A AND 3D)

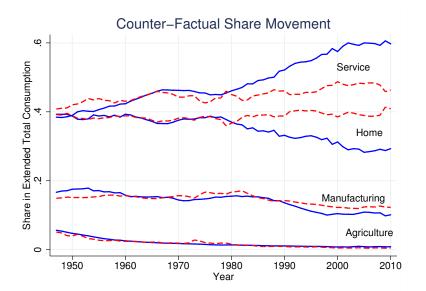
	(1)	(2)	(2)	(4)	(5)	(6)
	(1) 1a	(2) 2a	(3) 3a	(4) 3b	(5) 3c	(6) 3d
σ	0.2212**	0.1781**	0.0015	0.0006	0.0010	
	(0.0265)	(0.0276)	(0.0009)	(0.0012)	(0.0009)	
ē⁴	-174.0990 ** (4.0798)	-171.9554** (3.3737)	-111.0453** (4.8018)	-134.5039 ^{**} (11.7211)	-127.7640 ^{**} (9.5673)	-107.6523** (6.2414)
\bar{c}^s	, ,	562.9095 ^{**} (117.2384)	, ,	, ,	, ,	, ,
ē ^{sh}			-5462.3142** (102.6465)	-5016.4150 ^{**} (386.9034)	-5497.1630 ^{**} (156.6820)	-5374.0798 [*] (86.5952)
ω^a	0.0001 (0.0001)	0.0000 (0.0001)	0.0039 *** (0.0005)	0.0028 ^{**} (0.0010)	0.0030 ^{**} (0.0009)	0.0041 ^{**} (0.0006)
ω ^m	0.1714 ^{**} (0.0014)	0.1670 ^{**} (0.0017)	0.1997** (0.0021)	0.1989** (0.0024)	0.2004 ^{**} (0.0022)	0.1991** (0.0021)
ω^s	0.8285** (0.0014)	0.8329** (0.0017)	0.7964 ^{**} (0.0024)	0.7983 ^{**} (0.0030)	0.7966 ^{**} (0.0026)	0.7968 (0.0024)
ψ	0.5712 ^{**} (0.0020)	0.5710** (0.0016)	0.6107** (0.0011)	0.6366** (0.0072)	0.6179** (0.0019)	0.6099** (0.0010)
γ	2.1180 (0.0763)	1.9992** (0.0828)	2.7357** (0.0331)			2.7450 (0.0318)
N	64	64	64	64	64	64
AIC	-1272.7	-1266.7	-1438.1	-1268.5	-1374.1	-1440.7
BIC RMSE ^a RMSE ^m RMSE ^s	-1234.8 0.004 0.009 0.033	-1222.5 0.004 0.008 0.032	-1393.9 0.004 0.011 0.015	-1230.6 0.004 0.011 0.025	-1336.2 0.004 0.011 0.014	-1402.8 0.004 0.011 0.015
RMSE ^h	0.033	0.032	0.015	0.025	0.014	0.015


Counter-Factual Experiments

Model Property: Shock to Manufacturing Price

• Compare the results with HRV, which stands for Herrendorf, Rogerson and Valentinyi (2013) (a model without home production)


Model Property: Shock to Service Price


Model Property: Summary

- When a shock is to the service price
 - The household substitutes home services for market services, which mitigates the movement of other shares
 - Different movement of shares from Herrendorf, Rogerson and Valentinyi (2013)
- In the general equilibrium framework,
 - Our model predicts relocations of factors between market and home, but not across sectors
 - Lead to different policy implications from the existing model

No Slow-Down in Home Productivity: Productivity

No Slow-Down in Home Productivity: Share Movement

No Slow-Down in Home Productivity: Summary

	Ext. Consumption Share		Consumption Share		Consumption per Capita	
	Bench	Counter-Factual	Bench	Counter-Factual	Bench	Counter-Factual
Agriculture	0.0044	0.0048 (9.1%)	0.0063	0.0081 (28.6%)	255	279 (9.4%)
Manuf.	0.1049	0.1228 (17.1%)	0.1511	0.2077 (37.5%)	6097	7138 (17.1%)
Service	0.5848	0.4636 (-20.7%)	0.8425	0.7842 (-6.9%)	33992	26946 (-26.1%)
Home	0.3059	0.4089 (33.7%)	-	-	17783	23766 (33.6%)

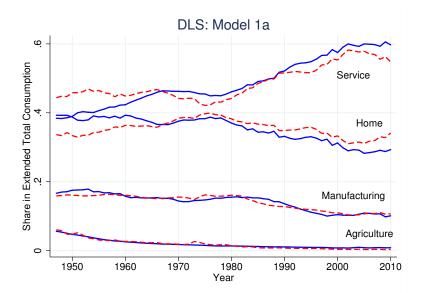
- If the home productivity had been growing at 2.5% (as before 1978),
- The market service share in total consumption expenditure would be lowered by 6.9% in 2010
- ② Market services per capita would be lowered by 26.1%, instead home services per capita would be raised by 33.6% in 2010

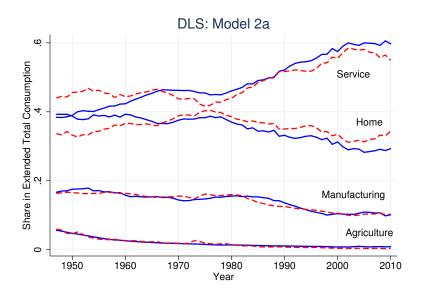
Conclusion

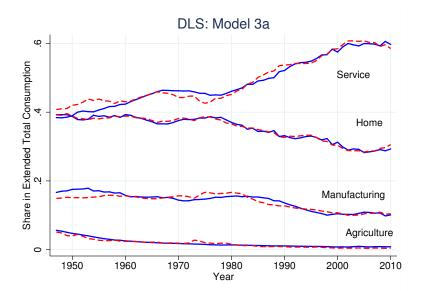
- This paper:
 - Estimate a model of structural transformation with a home production sector using new home production data for the U.S.
- Three main findings;
 - The popular specification of the model cannot fit the data
 - The data support different income elasticity of market and home services
 - The slowdown in home labor productivity in the late 70s accelerated the rise of market services

FUTURE (OR ONGOING) WORK

- Examination with detailed service categories
 - Services which substitute for home production
 - Others
- Why did home labor productivity slow down?
- International differences in home sector shares
 - Bridgman, Duernecker, and Herrendorf (2015)

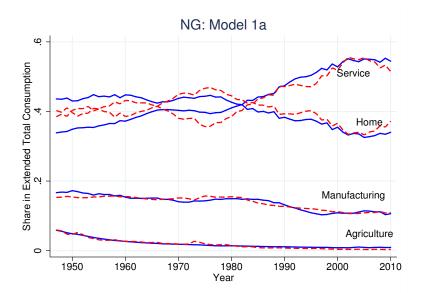

Robustness

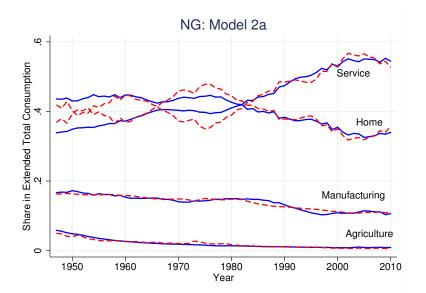

- We assume that the share parameter (α) is same between the market sectors and the home sector when deriving the price for home
- During the period, 1947 to 2010,
 - The mean labor share in GDP, $(1 \alpha^{mk})$, is 0.702
 - The mean labor share in the home sector, $(1-\alpha^{sh})$, is 0.632
- If we relax the assumption,

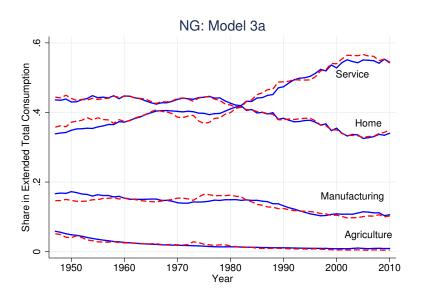

$$w_t = \left(1 - \alpha^{mk}\right) GDP_t + \left(1 - \alpha^{sh}\right) Y_t^{sh}$$

and

$$p_t^{sh} = \frac{\left(1 - \alpha^{mk}\right) \textit{GDP}_t + \left(1 - \alpha^{sh}\right) \textit{Y}_t^{sh}}{\left(1 - \alpha^{sh}\right) \textit{A}_t^{*sh}}$$






	(1) DLS: 1a	(2) DLS: 2a	(3) DLS: 3a	(4) DLS: 3d
σ	0.1872 ^{**} (0.0306)	0.1434 ^{**} (0.0320)	0.0003 (0.0007)	
\bar{c}^a	-170.9923** (3.4615)	-166.6319** (6.3239)	-109.5263 ^{**} (7.8216)	-111.7382*** (6.0989)
\bar{c}^s		783.5226 ^{**} (141.9526)		
ē ^{sh}			-5410.6116 ^{**} (97.2150)	-5425.7228 ^{**} (95.8840)
ω^a	0.0002 (0.0002)	0.0003 (0.0004)	0.0040 ^{**} (0.0007)	0.0038 ^{**} (0.0006)
ω^m	0.1716 ^{**} (0.0015)	0.1653 ^{**} (0.0020)	0.1989 ^{**} (0.0021)	0.1991** (0.0022)
ω^s	0.8282 ^{**} (0.0015)	0.8344 ^{**} (0.0020)	0.7972 ^{**} (0.0025)	0.7970 ^{**} (0.0026)
ψ	0.5717 ^{**} (0.0015)	0.5711 ^{**} (0.0013)	0.6107 ^{**} (0.0010)	0.6108 ^{**} (0.0010)
γ	2.1528 ^{**} (0.0827)	2.0192 ^{**} (0.0965)	2.7351 ^{**} (0.0331)	2.7376 ^{**} (0.0297)
N	64	64	64	64
AIC BIC	-1272.7 -1234.8	-1264.3 -1220.0	-1439.8 -1395.6	-1441.7 -1403.8
RMSE ^a	0.004	0.004	0.004	0.004
RMSE ^m	0.009	0.008	0.011	0.011
RMSE ^s	0.032	0.031	0.015	0.015
RMSE ^h	0.028	0.029	0.005	0.005

	Ext. Consumption Share		Cons	sumption Share Consum		ption per Capita
	Bench	Counter-Factual	Bench	Counter-Factual	Bench	Counter-Factual
Baseline Result						
Agriculture	0.0044	0.0048 (9.1%)	0.0063	0.0081 (28.6%)	255	279 (9.4%)
Manuf.	0.1049	0.1228 (17.1%)	0.1511	0.2077 (37.5%)	6097	7138 (17.1%)
Service	0.5848	0.4636 (-20.7%)	0.8425	0.7842 (-6.9%)	33992	26946 (-26.1%)
Home	0.3059	0.4089 (33.7%)	-	-	17783	23766 (33.6%)
Different Labor	Share					
Agriculture	0.0043	0.0047 (9.3%)	0.0062	0.0079 (27.4%)	250	271 (8.4%)
Manuf.	0.1049	0.1228 (17.1%)	0.1510	0.2071 (37.2%)	6097	7135 (17.0%)
Service	0.5853	0.4652 (-20.5%)	0.8427	0.7850 (-6.8%)	34020	27043 (-20.5%)
Home	0.3055	0.4073 (33.3%)	-	-	17759	23677 (33.3%)

- So far, we have assumed the government services are included in market services
- In reality, government consumption is externally imposed to the household
- For this reason, we re-estimate the model by removing the government sector both from consumption and from expenditure data
 - We assume the household is taxed by the government to run a balanced budget, and
 - The government spending does not provide utility to the household

	(1)	(2)	(3)	(4)
	NG: 1a	NG: 2a	NG: 3a	NG: 3d
σ	0.3661 ^{**} (0.0277)	0.4834 ^{**} (0.0229)	0.1052 ^{**} (0.0190)	
ē⁴	-152.8351**	-92.9442***	-101.4814**	-107.8409**
	(2.7966)	(7.1123)	(6.0650)	(6.8808)
\bar{c}^s	, ,	2774.3874 ^{**} (277.3434)	, ,	, ,
ē ^{sh}		, ,	-5566.9336** (166.1311)	-5703.8864** (138.8104)
ω^a	0.0000	0.0053 ^{**}	0.0042**	0.0034**
	(0.0000)	(0.0006)	(0.0007)	(0.0007)
ω^m	0.1587 ^{**}	0.1332 ^{**}	0.1883 ^{**}	0.1921 **
	(0.0019)	(0.0022)	(0.0021)	(0.0023)
ω^s	0.8413 ^{**}	0.8615 ^{**}	0.8075 ^{**}	0.8044**
	(0.0019)	(0.0020)	(0.0023)	(0.0027)
ψ	0.5561 **	0.5632 ^{**}	0.5992 ^{**}	0.6003 **
	(0.0014)	(0.0012)	(0.0012)	(0.0012)
γ	2.2717***	1.7492***	2.5670 ^{**}	2.5869 ^{**}
	(0.0590)	(0.0600)	(0.0174)	(0.0198)
N	64	64	64	64
AIC	-1312.7	-1379.2	-1467.3	-1463.2
BIC	-1274.8	-1334.9	-1423.1	-1425.3
RMSE ^a	0.004	0.004	0.004	0.004
RMSE ^m	0.008	0.006	0.011	0.012
RMSE ^s	0.027	0.023	0.014	0.014
RMSE ^h	0.021	0.017	0.005	0.005

	Ext. Consumption Share		Cons	Consumption Share		Consumption per Capita	
	Bench	Counter-Factual	Bench	Counter-Factual	Bench	Counter-Factual	
Baseline Result							
Agriculture	0.0044	0.0048 (9.1%)	0.0063	0.0081 (28.6%)	255	279 (9.4%)	
Manuf.	0.1049	0.1228 (17.1%)	0.1511	0.2077 (37.5%)	6097	7138 (17.1%)	
Service	0.5848	0.4636 (-20.7%)	0.8425	0.7842 (-6.9%)	33992	26946 (-26.1%)	
Home	0.3059	0.4089 (33.7%)	-	-	17783	23766 (33.6%)	
No Government							
Agriculture	0.0043	0.0047 (8.4%)	0.0066	0.0084 (27.3%)	216	233 (7.9%)	
Manuf.	0.0984	0.1176 (20.4%)	0.1517	0.2109 (39.0%)	4927	5890 (19.5%)	
Service	0.5459	0.4355 (-20.1%)	0.8416	0.7808 (-7.2%)	27334	21809 (-20.2%)	
Home	0.3514	0.4422 (25.9%)	-	-	17598	22142 (25.8%)	