Low Fertility, Rapid Aging and Fiscal Challenges with the Presence of Informal Employment

Tanyasorn Ekapirak¹, Minchung Hsu¹, Pei-Ju Liao²

National Graduate Institute for Policy Studies (GRIPS), Tokyo
² Academia Sinica, Taipei

October 13, 2015

Motivation

- Global trend of population aging: rapid decline in fertility and improvement in old-age survival rates in developing world
 - Decrease in labor force
 - Increase in old-age-dependency ratio
 - Increasing demand/cost of medical care
 - Getting old before getting rich

Low fertility

Table: Total Fertility Rate 2005-10

Lower income	India	Indonesia	Philippines	Vietnam
4.03	2.66	2.50	3.27	1.89
Upper-middle income	Brazil	China	Mexico	Thailand
2.09	1.90	1.63	2.37	1.49
High income	Australia	Japan	UK	US
1.65	1.89	1.34	1.88	2.06

Note: TFR of all countries – 2.44. Source: Lee et al (2014, Science)/UN.

Global Aging: number of people aged 60+

Fast increase in old people from developing countries

Motivation (cont'd)

- Developing countries are encouraged to pursue a better social welfare system for their aging population,
 - Public pension (social security) and universal health insurance are recommended
 - Many are developing or even recently established such social programs, eg.
 China, India, Thailand, Vietnam, Mexico, Brazil...
- Fiscally sustainable with the fast aging population?
- Additional challenge: large informal employment
 - On average more than 50% of workers in non-agricultural sectors are informal (even higher with agriculture)
 - A strict constraint for government on income tax collection

Informal Employment Share (non-agriculture 2009)

Source: ILO

Questions of Interest

- What is the impact of aging on the social development in developing countries?
- Will a change in population policy to encourage fertility help?
- What is a better fiscal police for financing the cost of aging?
- What is the role of the informal sector?

Related Literature

- Quantity-quality trade-off and growth:
 - Pioneered by Becker (1960) endogenous fertility/education choices
 - Following up studies linking fertility, demographic change and economic growth, e.g. Becker, Murphy, and Tamura (1990), Galor and Weil (1996), Doepke (2004), Doepke and Zilibotti (2005) and Liao (2011,2013)
 - Usually focusing on the early stage of economic development with a demographic transition from high to low fertility rates
- Population policy
 - Lee et al (2014) optimal fertility rate; Zhang (1997) population policies and growth

Related Literature (cont'd)

- Informal employment
 - Jung and Tran (2012) Extending social security to informal sectors
- Fiscal policy and aging
 - Many stude on issues of financing pension/social security with the trend of aging
 - Eg. Kitao (2014, 2015)
 - Fertility is exogenously given

What we do

- Combining the above strands of literature
- Focusing on developing economies in a later stage of development with low fertility
- An OLG model with endogenous fertility and education choices (quantity-quality trade-off)
- Taking into account the existence of large informal employment both voluntary and forced informal workers
- Using Thailand as a representative for calibration and quantitative analysis
 - has a very low fertility rate (TFR 1.5) and expects rapid population aging
 - has a large informal sector about 60% of employment is informal
 - recently established a public pension and a universal health care system
- Quantitative policy analysis

A dramatic transition in fertility: Thailand from 6 (1960s) to below 2 (2000s).

Decreasing mortality

Increasing old-age dependency (declining labor force)

More than 60% of total labor are informal employment

Income inequality between formal/informal employment

Table: Wage by Education and Employment

	Average monthly wage (baht)			
	2005	2006	2007	
Social average	7,993	8,436	9,141	
Formal workers	12,531	12,724	13,169	
Informal workers	3,677	3,928	4,235	

Source: HSES and Hsu et al (2014).

Rest of the talk

- Model
- Calibration
- Quantitative analysis
 - Impact of aging
 - Policy analysis: population/education/fiscal policies and role of informal sector
- Conclusion

Model features

Demographics

• Life cycle is characterized by 3 stages (each 30 years): child, young adult, and old adult. Total population:

$$N = N^c + N^y + N^o$$

- $N^c = nN^y$, where *n* is the average fertility per person
- Survival rate from young adults to old adults: π^y .

$$N^{o'} = \pi^y N^y$$

• Life expectancy: $60 + 30\pi_v$.

Production and Labor market

- ullet Two sectors (formal and informal) total production $Y=Y^f+Y^x$
- CRS production technology with 3 input factors (capital K, skilled labor L_s , unskilled labor L_u):

$$Y^{f} = A^{f} (K^{f})^{\alpha_{1}} (L_{s}^{f})^{\alpha_{2}} (L_{u}^{f})^{\alpha_{3}}$$
$$Y^{x} = A^{x} (K^{x})^{\gamma_{1}} (L_{s}^{x})^{\gamma_{2}} (L_{u}^{x})^{\gamma_{3}}$$

- Firms are competitive with labor market frictions (mobility constraints) –
 both voluntary and forced employment in the informal sector
- Wage inequality: $w_s^f > w_u^f$, $w_s^f > w_s^x$ and $w_u^f > w_u^x$

Informal employment

- labor income is not monitored (taxed)
- informal income does not count for pension
- workers receiving much lower wage rates
- · a constraint of moving to formal sector
- both voluntary and forced employment

Education and Labor quality

Two types of workers: skilled (if parents invested on education) and unskilled, $i \in \{s, u\}$.

Government

- Funding 2 social programs
 - ullet A public pension (PAYG)with a replacement rate ho on registered labor income
 - ullet A public health insurance covering a fraction, ω , of individual medical expenditures
- Other (net) public expenditures G
- Tax tools: labor income, consumption and capital income taxes

Life-cycle

- 1. Children depend on their parents (no decision making).
- 2. Young adults work and make decisions on time allocation (formal labor, informal labor, child care), number of children n, children's education e, consumption c^y , and savings a'.
- 3. Old adults use their savings/pention for consumption $c^{o\prime}$ and medical care m'.

Individual's problem

An young adult with skill level i chooses current consumption c_i^y , asset holdings a_i' , number of kids n_i , education investment per kid $e_i = \{0, \overline{e}\}$ and proportion of formal labor supply $\theta_i \leq \overline{\theta}_i$ (limit of formal positions) to maximize her lifetime utility.

$$V_i = \max_{\{c_i^{\mathsf{y}}, a_i^{\mathsf{y}}, n_i, e_i, \theta_i \leq \bar{\theta}_i\}} \{ u(c_i^{\mathsf{y}}) + \beta \pi^{\mathsf{y}} u(c_i^{\mathsf{o}'}) + \psi n_i^{-\epsilon} [n_i V_j'] \},$$

subject to

$$(1 + \tau_C)c_i^y + \pi^y a_i' + e_i n_i = (1 - \phi n_i)[\theta_i (1 - \tau_L)w_i^f + (1 - \theta_i)w_i^x];$$

$$(1 + \tau_C)c_i^{o'} + (1 - \omega)m' = [1 + (1 - \tau_K)r']a_i' + P_{g,i};$$

$$P_{g,i} = \rho w_i^f (1 - \phi n_i)\theta_i;$$

$$j = s, \text{ if } e_i = \bar{e} \ (= \rho_s w_s^f); \ j = u, \text{ if } e_i = 0$$

Equilibrium features

- Focus on an equilibrium that both skilled and unskilled workers exist with an upward mobility
 - Skilled parents always invest on children's education
 - Some unskilled parents invest on education but the others don't: that implies an indifferent condition in the model equilibrium

$$\frac{V_{u,e=\bar{e}}}{P_s^{1-\epsilon}} = \frac{V_{u,e=0}}{P_u^{1-\epsilon}}$$

where

 $P_s = \phi[\theta_i(1-\tau_L)w_i^f + (1-\theta_i)w_i^x] + \overline{e}$ is the total cost for having an educated child and

 $P_u = \phi[\theta_i(1-\tau_L)w_i^f + (1-\theta_i)w_i^X]$ is the total cost for an un-(low-)educated child.

Equilibrium features (cont'd)

- Optimal decisions:
 - savings $(\pi_y a')$: $u_{cy} = \beta (1 + (1 \tau_K)r')u_{co'}$
 - fertility (number of kids):

$$\psi(1-\epsilon)(n_i)^{-\epsilon}V_i'=u_{c^y}\{\phi[\theta_i(1-\tau_L)w_i^f+(1-\theta_i)w_i^x]+e_i\}$$

formal labor supply: if not binding

$$\left[\left(1-\tau_L\right)+\left(\frac{\pi_y}{1+r}\right)\rho\right]w_i^f=w_i^x; \quad \theta_i<\bar{\theta}_i$$

if binding

$$\left[(1 - \tau_L) + (\frac{\pi_y}{1+r}) \rho \right] w_i^f > w_i^x; \quad \theta_i = \bar{\theta}_i$$

Equilibrium features (cont'd)

- Given the big wage gap between formal and informal sectors, it is not possible if none of the formal labor supply constraints are binding
- 2 possible cases:
 - Case 1: unskilled binding; skilled not binding Skilled:

$$\begin{split} &\left[(1-\tau) + (\frac{\pi_y}{1+r})\rho \right] w_s^f = w_s^{\times}; \quad \theta_s < \bar{\theta}_s \\ \Rightarrow &\left[(1-\tau) + (\frac{\pi_y}{1+r})\rho \right] \frac{A^f(K^f)^{\alpha_1}(L_s^f)^{\alpha_2-1}(L_u^f)^{\alpha_3}}{A^{\times}(K^{\times})^{\gamma_1}(L_s^{\times})^{\gamma_2-1}(L_u^{\times})^{\gamma_3}} = 1 \\ \Rightarrow &\frac{L_s^f}{L_s^{\times}} = \left[(1-\tau) + (\frac{\pi_y}{1+r})\rho \right] \frac{A^f(K^f)^{\alpha_1}(L_s^f)^{\alpha_2}(L_u^f)^{\alpha_3}}{A^{\times}(K^{\times})^{\gamma_1}(L_s^{\times})^{\gamma_2}(L_u^{\times})^{\gamma_3}} \end{split}$$

Unskilled: $\theta_u = \bar{\theta}_u$

• Case 2: both binding $\Rightarrow \theta_u = \bar{\theta}_u$ and $\theta_s = \bar{\theta}_s$ (not interesting)

Equilibrium features (cont'd)

- Capital market clearing: $r^f = r^x$.
- Government budget balance every period: $P_g + M_g + G = T_c + T_l + T_k$

Calibration

 Benchmark: matching Thailand's demographic and other main economic variables in 2000s

Parameters

Parameters	Value	Source/Target
Survival Rate	5	
π^y	0.47	life expectancy 74.18
Preference		
β	0.9383	capital-output ratio 1.9
ψ	0.234	TFR 1.54
Informal emp	loyment and production	
$ar{ heta}_s$	_	not binding
$ar{ heta}_u$	0.3	binding; data $L_u^f/(L_u^f+L_u^{\times})=0.3$
\mathcal{A}^f	10	normalization
A^{\times}	6.53	data $L_s^f/(L_s^f+L_s^ imes)=0.726$
$(\alpha_1, \alpha_2, \alpha_3)$	(0.67, 0.09, 0.24)	data income shares (formal sector)
$(\gamma_1,\gamma_2,\gamma_3)$	(0.67, 0.045, 0.285)	$w^f/w^x = 3.26$

Parameters (cont'd)

Parameters	Value	Source/Target
Child Schooli	ng/Rearin	ng Costs
ϕ_{s}	0.127	skilled labor share 17.34% (formal sector)
ϕ	0.243	child-rearing cost (to high school) 2004
Tax Rates		
$ au_{\mathcal{C}}$	10%	VAT 7% + other excise duty 3%
$ au_{K}$	20%	corporate tax on net profit
$ au_{L}$	15%	median tax rate on earnings
Government S	Subsidy	
ω	67.5%	public medical expenditure share
ho	25%	pension replacement rate

Benchmark

	Data	Model (benchmark)
Calibrated		
Average TFR	1.54	1.53
Life expectancy	74	74
Skilled labor share (formal)	17%	17%
Capital-output ratio	1.90	1.90
$ heta_s$ $\left(L_s^f/L_s ight)$	0.73	0.73
$\theta_u \left(L_u^f / L_u \right)$	0.30	0.30
w^f/w^x	3.26	3.28
Not calibrated		
w_s^f/w_u^f	1.79	1.80
(G/Y) / (Total Govt Exp/Y)	-/ 11.71%	7.79% / 11.24%
n _{ss}		0.3485
n _{us}		0.2991
n _{uu}		

Features of a developing economy

- Lower development of human capital 17% skilled labor share (formal sector)
- Large informal employment 36% skilled labor and 70% unskilled labor

Population Aging

- An increase in life expectancy from 74 to 83 as forecasted in 2065.
- An increase in medical expenditure to GDP ratio from 3.65% to 7.47% (estimated from cross-country data).
- Assume government expenditure G to GDP ratio fixed as in the benchmark.
- Baseline: labor income tax is used to ensure fiscal balance in the aging economy (new steady state).

Impact of Aging

	Benchmark (2000s)	Aging (2065)
n _{ss}	0.349	0.336
n _{us}	0.298	0.278
n _{uu}	0.927	0.927
Average TFR	1.532	1.526
Life expectancy	74.1	83.1
Skilled labor share (formal)	17.1%	14.7%
w_s^f/w_u^f	1.80	2.16
Capital-output ratio	1.90	2.19
$\left(L_s^f/L_s\right)$	0.726	0.679
Labor income tax	15.0%	29.4%

Impact of Aging (cont'd)

- Longer life expectancy
 - need more savings for old age; $K/Y \uparrow$
 - savings crowd out fertility
- Higher labor tax (15% o 29%) for financing government expenditures
 - lowers return of education investment (skilled labor share ↓)
 - pushes skilled labor to informal sector which has a lower TFP; L_s^f/L_s , $73\% \rightarrow 68\%$

Fiscal policy with aging

• Alternative tax tools for financing government expenditures with aging

	Aging economy			
Financing tool	Labor tax	Consumption tax	Capital tax	
$ au_{L}$	29.4%	15.0%	15.0%	
$ au_{\mathcal{C}}$	10%	15.6%	10.0%	
$ au_{K}$	20%	20.0%	27.1%	
Average TFR	1.526	1.530	1.530	
Skilled labor share (formal)	14.69%	17.14%	17.15%	
Capital-output ratio	2.193	2.297	2.186	
Social welfare	1.45	1.56	1.52	
Welfare (skilled)	2.45	2.56	2.49	
Welfare (unskilled)	1.37	1.48	1.44	

Fiscal policy with aging (cont'd)

- Labor tax distorts education investment and labor allocation
- Capital tax distorts capital accumulation
- Consumption tax is a better tool with less distortion on education investment, labor allocation, capital accumulation

Encouraging fertility or education?

- A subsidy on child-rearing covering a part of the time cost
- An education subsidy
- Steady-state comparison

Encouraging fertility or education? (cont'd)

	Baseline	10% child care	10% education
n _{ss}	0.336	0.404	0.345
n _{us}	0.278	0.305	0.299
n _{uu}	0.927	1.145	0.927
Average TFR	1.526	1.882	1.536
Skilled labor share	14.69%	12.10%	15.67%
w_s^f/w_u^f	2.158	2.699	2.000
Capital-output ratio	2.19	2.09	2.19
(L_s^f/L_s)	0.679	0.640	0.680
Labor income tax	29.41%	37.61%	29.86%
Social welfare	1.45	1.34	1.45
		(CEV=-12.92%)	(CEV=0.42%)
Welfare (skilled)	2.45	2.41	2.38
Welfare (unskilled)	1.37	1.27	1.37
Old/Young ratio	93.77%	75.40% 🔻 🗆 🕨	< ₱ → 93.63% = →

Encouraging fertility or education? (cont'd)

- Distortion of child-rearing subsidy
 - Unskilled children become cheaper
 - less education investment worsening the skilled labor share
 - crowding out savings (capital)
 - higher tax burden and lower welfare

Role of Informal Sector (I)

- Suppose the government improves its tax collection technology informal income can be taxed
- Assume government extends its taxation capacity to tax income from both skilled and unskilled workers in the informal sector with a 50% probability.

Role of Informal Sector (I)

	(1) Baseline	(2) taxing informal	(3) pension benefits fixed as in (1)
Average fertility	1.526	1.522	1.514
Skilled labor share (formal)	14.69%	15.76%	16.48%
Capital-output ratio	2.19	2.15	2.21
Labor income tax	29.4%	25.4%	23.5%
Social welfare	1.45	1.40 (CEV:-6.69%)	1.46 (CEV: 0.97%)
Welfare (skilled)	2.45	2.39 (CEV:-4.65%)	2.44 (CEV:-0.7%)
Welfare (unskilled)	1.37	1.32 (CEV:-6.85%)	1.38 (CEV:1.09%)

Role of Informal Sector (I)

- 50% of informal labor income is taxed
- Taxing informal sector reduces the distortion on skilled labor allocation and education investment by labor tax
- An increase in pension payment hurts the aging economy (with a negative population growth)
- If pension payment is fixed as before (prior to taxing informal income), a positive welfare gain

Role of Informal Sector (II)

• If both sectors pay taxes, which tax tool is better?

	Aging economy				
Financing tool	Labor tax	Consumption tax	Capital tax		
$ au_{L}$	23.1%	15.0%	15.0%		
$ au_{\it C}$	10%	19.0%	10.0%		
$ au_{K}$	20%	20.0%	31.4%		
Skilled labor share (formal)	16.5%	17.6%	17.6%		
Capital-output ratio	2.10	2.18	2.00		
Skilled welfare	2.33	2.38	2.27		
Unskilled welfare	1.27	1.35	1.28		
Social welfare	1.35	1.47	1.36		

Role of Informal Sector (II)

- If both sectors pay taxes, consumption tax is still better
- If consumption tax is not available
 - labor tax toll and capital tax tool are similar in terms of social welfare
 - the skilled prefer labor tax and the unskilled prefer capital tax
 - labor tax still distorts the time cost of child-rearing and capital tax distorts saving

Conclusion

- Impact of Aging:
 - Significant increase in tax burden to sustain social programs/government expenditures (labor income tax from 15% to 29%).
 - If labor income tax has to increase, there are distortions on education investment and labor allocation – because of the presence of the informal sector
- Fiscal policy on government financing with aging and informal employment
 - Consumption tax is the best and capital tax is better than labor income tax
 - less distortion on saving, employment and education investment
 - old people sharing some fiscal burden is good given the aging population
- Subsidy to increase fertility or education?
 - Not preferred in the long run
 - Skilled labor share decreases distortion on education investment; uneducated kids are cheaper
 - Education subsidy improves social welfare

Conclusion and future work

- Taxing informal sector?
 - lower labor tax rate, but social welfare is not improved unless pension benefit is unchanged
 - if both sectors pay taxes, consumption tax is still the best tool with aging
 - capital tax is not significantly better than labor tax
- Future work
 - Transition for policy comparison
 - Various benchmark scenarios size of informal employment, level of human capital, TFR, income gap between two sectors...