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Abstract

This paper presents simple Granger causality tests applicable to any mixed frequency

sampling data setting, and feature remarkable power properties even with relatively small

low frequency data samples and a considerable wedge between sampling frequencies (for ex-

ample, quarterly and daily or weekly data). Our tests are based on a seemingly overlooked,

but simple, dimension reduction technique for regression models. If the number of parame-

ters of interest is large then in small or even large samples any of the trilogy test statistics

may not be well approximated by their asymptotic distribution. A bootstrap method can

be employed to improve empirical test size, but this generally results in a loss of power. A

shrinkage estimator can be employed, including Lasso, Adaptive Lasso, or Ridge Regression,

but these are valid only under a sparsity assumption which does not apply to Granger causal-

ity tests. The procedure, which is of general interest when testing potentially large sets of

parameter restrictions, involves multiple parsimonious regression models where each model

regresses a low frequency variable onto only one individual lag or lead of a high frequency

series, where that lag or lead slope parameter is necessarily zero under the null hypothesis of

non-causality. Our test is then based on a max test statistic that selects the largest squared

estimator among all parsimonious regression models. Parsimony ensures sharper estimates

and therefore improved power in small samples. Inference requires a simple simulation-

bootstrap step since the test statistic has a non-standard limit distribution. We show via

Monte Carlo simulations that the max test is more powerful than existing mixed frequency

Granger causality tests in small samples. An empirical application examines Granger causal-

ity over rolling windows of U.S. macroeconomic data from 1962-2013 using a mixture of high

and low frequency data.
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1 Introduction

Time series are often sampled at different frequencies, and it is well known that temporal aggre-

gation adversely affects Granger’s (1969) causality.1 One of the most popular Granger causality

tests is a Wald statistic based on multi-step ahead vector autoregression (VAR) models. Its

appeal is that the approach can handle causal chains among more than two variables.2 Since

standard VAR models are designed for single-frequency data, these tests often suffer from the ad-

verse effect of temporal aggregation. In order to alleviate this problem, Ghysels, Hill, and Motegi

(2013) develop a set of Granger causality tests that explicitly take advantage of data sampled at

mixed frequencies. They accomplish this by extending Dufour, Pelletier, and Renault’s (2006)

VAR-based causality test using Ghysels’ (2014) mixed frequency vector autoregressive (MF-

VAR) models.3 Although these tests avoid the undesirable effects of temporal aggregation, their

applicability is limited because parameter proliferation in MF-VAR models adversely affects the

power of the tests, even after bootstrapping a test statistic p-value. Indeed, if we let m be the

ratio of high and low frequencies (e.g. m = 3 in mixed monthly and quarterly data), then for

bivariate mixed frequency settings the MF-VAR is of dimension m + 1. Parameter proliferation

occurs when m is large, and becomes precipitously worse as the VAR order increases. In these

cases, Ghysels, Hill, and Motegi’s (2013) Wald test of non-causality exhibits size distortions,

while a bootstrapped Wald test results in correct size but low size-corrected power, a common

occurrence when bootstrapping a size distorted asymptotic test (cfr. Davidson and MacKinnon

(2006)).

The present paper proposes a remarkably simple regression-based mixed frequency Granger

causality test that, in the case of testing non-causality from a low to a high frequency variable,

exploits Sims’ (1972) two-sided regression model. The tests we propose have several advantages:

(i) they are regression-based and simple to implement, and (ii) they apply to any m, large or

small, and even time-varying m, for example the number of days in a month.4 We postulate

multiple parsimonious regression models where the jth model regresses a low frequency variable

xL onto lags of xL and only the jth lag or lead of a high frequency variable xH . Our test statistic

is the maximum among squared estimators scaled and weighted properly. Although the max test

statistic follows a non-standard asymptotic distribution under the null hypothesis of Granger

non-causality, a simulated p-value is readily available through an arbitrary number of draws

from the null distribution. The max test is therefore straightforward to implement in practice.

Our tests are based on a seemingly overlooked, but simple, dimension reduction technique

1Existing Granger causality tests typically ignore this issue since they are based on aggregating data to the
common lowest frequency, leading possibly to spurious (non)causality. See Zellner and Montmarquette (1971) and
Amemiya and Wu (1972) for early contributions. This subject has been subsequently extensively researched: see,
for example, Granger (1980), Granger (1988), Lütkepohl (1993), Granger (1995), Renault, Sekkat, and Szafarz
(1998), Marcellino (1999), Breitung and Swanson (2002), and McCrorie and Chambers (2006), among others.

2See Lütkepohl (1993), Dufour and Renault (1998), Dufour, Pelletier, and Renault (2006), and Hill (2007).
3An early example of ideas related to mixed frequency VAR models appeared in Friedman (1962). Foroni,

Ghysels, and Marcellino (2013) provide a survey of mixed frequency VAR models.
4We assume m is constant in order to conserve notation, but all of our theoretical results extend to time

varying m in a straightforward way.
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for regression models. The merits can be easily understood if we focus on a low frequency data

generating process y(τ) = a′x(τ) + b′z(τ) +ϵ(τ), where y(τ) is a scalar, ϵ(τ) is an idiosyncratic

term, a ∈ Rk and b ∈ Rh, and (x(τ), z(τ)) are regressors. Consider testing the hypothesis that

b = 0, and suppose that standard asymptotics apply for estimating [a′, b′]′. If the number of

parameters of interest h is large then in small or even large samples any of the trilogy test

statistics may not be well approximated by their asymptotic χ2 distribution. A bootstrap

method can be employed to improve empirical test size, but this generally results in a loss of

power since (i) bootstrap samples only approximate the true data generating process; and (ii)

at best size corrected bootstrap test power nearly matches size corrected asymptotic test power,

where the latter may be quite low due to large size distortions (cfr. Davidson and MacKinnon

(2006)). A shrinkage estimator can be employed, including Lasso, Adaptive Lasso, or Ridge

Regression, but these are valid only under the sparsity assumption b = 0, hence we cannot test

b = 0 against b ̸= 0. In the mixed frequency literature, MIDAS polynomials are proposed as

an ad hoc dimension reduction, but these models may generally be mis-specified and therefore

result in low or no power in some directions from the null of Granger non-causality.

Our contribution is to build parsimonious regression models y(τ) = a′jx(τ) + βjz(τ, j)

+u(τ, j) for j = 1, . . . , h, where z(τ, j) is the jth component of z(τ), and τ = 1, . . . , T with sample

size T. Write β = [βj ]
h
j=1. Provided the covariance matrix for the regressors [x(τ)′, z(τ)′]′ is non-

singular, it can be shown b = 0 if and only if β = 0.5 If β̂j estimates βj then our test in mixed

frequencies is based on a slightly generalized form of a max test statistic maxj=1,...,h {(
√
T β̂j)

2}.
This is a boon for a small sample asymptotic test because for even large h the dimension re-

duction leads to sharp estimates of βj , and therefore accurate empirical size, as long as the

remaining regressor set x(τ) does not have a large dimension. This is precisely the case for a

test of non-causality from a high frequency (e.g. week) to a low frequency (e.g. quarter) variable.

Further, in the above framework b = 0 if and only if β = 0 implies the max test is consistent

against any deviation from the null. This method obviously cannot identify b when the null is

false, but we can identify that b = 0 is false asymptotically with probability one for any direc-

tion b ̸= 0. The testing approach we propose can be applied in many other settings, whenever

hypothesis testing involves a zero restriction on a large parameter set.

In mixed frequencies, consistency carries over to a test of non-causality from a high to a low

frequency variable. There are, however, unresolved difficulties in identifying causality from a

low to high frequency variable, although the max test trivially identifies non-causality. As the

above example reveals, our method has broad applications for inference in time series regressions

with either same or mixed frequency data, and in cross sections where a penalized regression

under a sparsity assumption is increasingly common. Our focus here is mixed frequency time

series models where parameter proliferation is typical, and no broadly accepted solution exists

for sharp small sample inference based on an asymptotic test.

5We prove the claim for a test of no causality from a high to a low frequency variable in Theorem 2.4, but
the proof trivially carries over to the present low frequency data generating process when ϵ(τ) is a stationary
martingale difference with respect to the sigma field σ(x(t) : t ≤ τ).
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In our theoretical analysis, we compare the max test based on mixed frequency [MF] data,

with a Wald test based on mixed frequency data, a max test based on low frequency [LF] data,

and a Wald test based on low frequency data. We prove the consistency of MF max test for

Granger causality from high frequency data xH to low frequency xL. We also show by counter-

examples that LF tests need not be consistent. In the case of Granger causality from xL to xH ,

proving the consistency of MF max test remains an open question. Moreover, relative to LF

tests, we show that MF tests are more robust against complex (but realistic) causal patterns

both in terms of local asymptotics and in finite samples. In addition, we also show that the MF

max and the MF Wald tests are roughly equally powerful in terms of local asymptotics, but the

former is clearly more powerful in finite samples. Local power is similar for max and Wald tests

precisely because power is asymptotic, and these statistics may have different dispersions.

The remainder of the paper is organized as follows. Sections 2 and 3 present the max test

statistic and derive its asymptotic properties for the two cases of testing for non-causality from

high-to-low and low-to-high frequencies. In Section 4 we conduct local power analysis. In Section

5 we run Monte Carlo simulations, Section 6 presents an empirical application, and Section 7

concludes the paper. Proofs for all theorems are provided in Technical Appendices, and tables

and figures are collected at the end.

2 High-to-Low Frequency Data Granger Causality

This paper focuses on a bivariate case where we have a high frequency variable xH and a low

frequency variable xL, so we need to formulate a data generating process (DGP) governing these

variables.6 We denote by m the number of high frequency time periods for each low frequency

time period τL ∈ Z, often called the ratio of sampling frequencies. We assume throughout that

m is fixed (e.g. m = 3 months per quarter) in order to focus ideas and reduce notation, but all

of our main results carry over to time-varying sequences m(τL) in a straightforward way.

Example 2.1 (Mixed Frequency Data - Quarterly and Monthly). A simple example is when

the high frequency is monthly observations combined with quarterly low frequency data, hence

m = 3. We let xH(τL, 1) be the first monthly observation of xH in quarter τL, xH(τL, 2) is the

second, and xH(τL, 3) is the third. A leading example in macroeconomics is quarterly real GDP

growth xL(τL), where existing analyses of causal patterns use unemployment, oil prices, inflation,

interest rates, etc., aggregated into quarters (see Hill (2007) for references). Consider monthly

CPI inflation in quarter τL, denoted [xH(τL, 1), xH(τL, 2), xH(τL, 3)]
′ and the resulting stacked

system for quarter τL therefore is {xH(τL, 1), xH(τL, 2), xH(τL, 3), xL(τL)}. The assumption that

xL(τL) is observed after xH(τL,m) is merely a convention.

In the bivariate case with one high and one low frequency variable, we have a K × 1 mixed

frequency vector X(τL) = [xH(τL, 1), . . . , xH(τL,m), xL(τL)]
′, where K = m + 1. Define the

6The trivariate case involves causality chains in mixed frequency which are far more complicated, and detract
us from the main theme of dimension reduction covered in this paper. See Dufour and Renault (1998), Dufour,
Pelletier, and Renault (2006) and Hill (2007) for further discussion.
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σ-field FτL ≡ σ(X(τ) : τ ≤ τL). We assume as in Ghysels, Hill, and Motegi (2013) and Ghysels

(2014) that E[X(τL)|FτL−1] has a version that is almost surely linear in {X(τL−1), . . . ,X(τL−
p)} for some finite p ≥ 1.

Assumption 2.1. The mixed frequency vector X(τL) is governed by a MF-VAR(p) for some

finite p ≥ 1:
xH(τL, 1)

...

xH(τL,m)

xL(τL)


︸ ︷︷ ︸

=X(τL)

=

p∑
k=1


d11,k . . . d1m,k c(k−1)m+1

...
. . .

...
...

dm1,k . . . dmm,k ckm

bkm . . . b(k−1)m+1 ak


︸ ︷︷ ︸

≡Ak


xH(τL − k, 1)

...

xH(τL − k,m)

xL(τL − k)


︸ ︷︷ ︸

=X(τL−k)

+


ϵH(τL, 1)

...

ϵH(τL,m)

ϵL(τL)


︸ ︷︷ ︸

≡ϵ(τL)

(2.1)

or compactly

X(τL) =

p∑
k=1

AkX(τL − k) + ϵ(τL).

The error {ϵ(τL)} is a strictly stationary martingale difference sequence (mds) with respect to

increasing FτL ⊂ FτL+1, with positive definite covariance matrix Ω ≡ E[ϵ(τL)ϵ(τL)
′].

Two remarks regarding the above assumption are worth making.

Remark 2.1. The mds assumption allows for conditional heteroscedasticity of unknown form,

including GARCH-type processes. We can also easily allow for stochastic volatility or other

random volatility errors by expanding the definition of the σ-fields FτL .

Remark 2.2. A constant term is omitted from (2.1) for simplicity, but can be easily added if

desired. Therefore, X(τL) is mean centered. The coefficients d (a) govern the autoregressive

property of xH (xL).

The coefficients b and c in (2.1) are relevant for Granger causality, so we explain how they are

labeled. Namely, b1 is the impact of the most recent past observation of xH (i.e. xH(τL−1,m)) on

xL(τL), b2 is the impact of the second most recent past observation of xH (i.e. xH(τL−1,m−1))

on xL(τL), and so on through bpm. In general, bk represents the impact of xH on xL when there

are k high frequency periods apart from each other.

Similarly, c1 is the impact of xL(τL − 1) on the nearest observation of xH (i.e. xH(τL, 1)),

c2 is the impact of xL(τL − 1) on the second nearest observation of xH (i.e. xH(τL, 2)), cm+1 is

the impact of xL(τL− 2) on the (m+1)-st nearest observation of xH (i.e. xH(τL, 1)), and so on.

Finally, cpm is the impact of xL(τL − p) on xH(τL,m). In general, cj represents the impact of

xL on xH when there are j high frequency periods apart from each other.

Since {ϵ(τL)} is not i.i.d. we must impose a weak dependence property in order to ensure

standard asymptotics. In the following we assume ϵ(τL) and X(τL) are stationary α-mixing.7

7See Doukhan (1994) for compendium details on mixing sequences.
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Assumption 2.2. All roots of the polynomial det(IK −
∑p

k=1Akz
k) = 0 lie outside the unit

circle, where det(·) is the determinant.

Assumption 2.3. X(τL) and ϵ(τL) are α-mixing with mixing coefficients αh that satisfy∑∞
h=0 α2h < ∞.

Remark 2.3. Note that Ω ≡ E[ϵ(τL)ϵ(τL)
′] allows for the high frequency innovations ϵH(τL, j)

to have a different variance for each j. Therefore, while Assumptions 2.1 and 2.2 imply {xH(τL, j)}τL
is covariance stationary for each fixed j ∈ {1, . . . , m}, they do not imply covariance stationarity

for the entire high frequency array {{xH(τL, j)}mj=1}τL .

Remark 2.4. The condition
∑∞

h=0 α2h < ∞ is quite general, allowing for geometric or hyper-

bolic memory decay in the innovations ϵ(τL), hence conditional volatility with a broad range

of dynamics. We impose the infinite order lag function X(τL) of ϵ(τL) to also be mixing as a

simplifying assumption since underlying sufficient conditions are rather technical if {ϵ(τL)} is a

non-finite dependent process (see Chapter 2.3.2 in Doukhan (1994)).

Since there are fundamentally different challenges when testing for non-causality from high-

to-low or low-to-high frequency, we restrict attention to the former in this section, and treat the

latter in Section 3.

We first pick the last row of the entire system (2.1):

xL(τL) =

p∑
k=1

akxL(τL − k) +

pm∑
j=1

bjxH(τL − 1,m+ 1− j) + ϵL(τL),

ϵL(τL)
mds∼ (0, σ2

L), σ2
L > 0.

(2.2)

The index j ∈ {1, . . . , pm} is in high frequency terms, and the second argument m + 1 − j

of xH(τL − 1,m + 1 − j) can be less than 1 since j > m occurs when p > 1. Allowing any

integer value in the second argument of xH(τL − 1,m + 1 − j), including those smaller than 1

or larger than m, does not cause any confusion, and simplifies analytical arguments below. We

can therefore interchangeably write xH(τL − i, j) = xH(τL, j − im) for j = 1, . . . ,m and i ≥ 0,

for example: xH(τL, 0) = xH(τL − 1,m), xH(τL,−1) = xH(τL − 1,m− 1), and xH(τL,m+1) =

xH(τL + 1, 1).8

Now define XL(τL − 1) = [xL(τL − 1), . . . , xL(τL − p)]′, XH(τL − 1) = [xH(τL − 1,m+ 1−
1), . . . , xH(τL − 1,m+ 1− pm)]′, a = [a1, . . . , ap]

′, and b = [b1, . . . , bpm]′. Then, (2.2) becomes:

xL(τL) = XL(τL − 1)′a+XH(τL − 1)′b+ ϵL(τL). (2.3)

Based on the classic theory of Dufour and Renault (1998) and the mixed frequency extension

made by Ghysels, Hill, and Motegi (2013), we know that xH does not Granger cause xL given

the mixed frequency information set FτL = σ(X(τ) : τ ≤ τL) if and only if b = 0pm×1. In

8Complete details on mixed frequency notation conventions are given in Appendix A.
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order to test the non-causality hypothesis H0 : b = 0pm×1, we want a test statistic that obtains

asymptotic power of one against any deviation from non-causality (i.e. it is consistent), achieves

high power in local asymptotics and finite samples, and does not produce size distortions in

small samples when pm is large. We divide the topic into mixed and low frequency approaches.

2.1 Max Test: High-to-Low Granger Causality

Before presenting the new test, it is helpful to review the existing mixed frequency Granger

causality test proposed by Ghysels, Hill, and Motegi (2013). They work with a regression model

that regresses xL onto q low frequency lags and h high frequency lags of xH :

xL(τL) =

q∑
k=1

αkxL(τL − k) +
h∑

j=1

βjxH(τL − 1,m+ 1− j) + uL(τL) (2.4)

for τL = 1, . . . , TL. Ghysels, Hill, and Motegi (2013) estimate the parameters in (2.4) by least

square sand then test H0 : β1 = · · · = βh = 0 via a Wald test. Model (2.4) contains DGP (2.2)

as a special case when q ≥ p and h ≥ pm, hence the Wald test is trivially consistent if q ≥ p

and h ≥ pm.

A potential problem here is that pm, the true lag order of xH , may be quite large in some

applications, even when the AR order p is fairly small. Consider a weekly versus quarterly

data case for instance, hence the MF-VAR lag order p is in terms of quarters and m = 13

approximately. Then pm = 39 when p = 3, and pm = 52 when p = 4, etc. Including sufficiently

many high frequency lags h ≥ pm generally results in size distortions for an asymptotic Wald

test when the sample size TL is small and pm is large. Davidson and MacKinnon (2006),

however, show that the power of bootstrap tests is close to the asymptotic power for size-corrected

tests. An asymptotic Wald test of mixed frequency non-causality can exhibit substantial size

distortions, implying size-corrected power well below one in finite samples. Of course, we may

use a small number of lags h < pm to ensure the Wald statistic is well characterized by its χ2

limit distribution, but this results in an inconsistent test when there exists Granger causality

involving lags beyond h. Conversely, we may use a MIDAS type parametric dimension reduction,

but a mis-specified MIDAS polynomial again results in an inconsistent test (cfr. Ghysels, Santa-

Clara, and Valkanov (2004), Ghysels, Santa-Clara, and Valkanov (2006), Ghysels, Hill, and

Motegi (2013)). Finally, we can simply bypass a mixed frequency approach in order to reduce

dimensionality, but a Wald test of non-causality in a low frequency model is not consistent (see

Section 2.2). This is in a nutshell the problem of parameter proliferation in mixed frequency

models.

A main contribution of this paper is to resolve this trade-off by combining the following

multiple parsimonious regression models:

xL(τL) =

q∑
k=1

αk,jxL(τL − k) + βjxH(τL − 1,m+ 1− j) + uL,j(τL), j = 1, . . . , h. (2.5)
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We abuse notation since the key parameter βj in (2.5) in generally not equivalent to βj in (2.4)

when there is causality. We are, however, concerned with a test of non-causality, in which case

there is little loss of generality, and a gain of notation simplicity. Moreover, as we show below,

the hypothesis b = 0pm×1, corresponding to high-to-low non-causality in (2.3), holds if and only

if βj = 0 for each j = 1, ..., h in (2.5), provided q ≥ p and h ≥ pm. Hence, the parsimonious

models allow us to identify null and alternative hypotheses.

Model j is compactly rewritten as

xL(τL) =
[
X

(q)
L (τL − 1)′ xH(τL − 1,m+ 1− j)

]

α1,j

...

αq,j

βj

+ uL,j(τL) (2.6)

= xj(τL − 1)′θj + uL,j(τL),

say, where

X
(q)
L (τL − 1) ≡ [xL(τL − 1), . . . , xL(τL − q)]′.

The jth model contains q low frequency autoregressive lags of xL as well as only the jth high

frequency lag of xH . Therefore, the number of parameters, q+1, is typically much smaller than

the number of parameters restrictions equal to q + h in the näıve regression model (2.4). This

advantage helps to alleviate size distortions for large m and small TL.

In order for each parsimonious regression model to be correctly specified under the null

hypothesis of high-to-low non-causality, we need to assume that the autoregressive part of (2.5)

has enough lags: q ≥ p. We impose the same assumption on regression model (2.4) in order to

focus on the causality component, and not the autoregressive component.

Assumption 2.4. The number of autoregressive lags included in the näıve regression model

(2.4) and each parsimonious regression model (2.5), q, is larger than or equal to the true autore-

gressive lag order p in (2.2).

The parsimonious regression models obviously reveal non-causality from high-to-low fre-

quency since βj = 0 for each j in (2.4) implies βj = 0 in each jth equation in (2.5). The subtler

challenge is showing that (2.5) reveals any departure from non-causality in (2.4), hence (2.5)

can be used as a valid and consistent test of high-to-low non-causality. We first describe how

to combine all h parsimonious models to get a test statistic for testing non-causality, and then

show how the resulting test identifies the (non)-causality.

Since we are assuming that q ≥ p, each model (2.5) is correctly specified under the null

hypothesis of high-to-low non-causality. Hence, if there is non-causality from high-to-low fre-

quency, the least squares estimators β̂j
p→ 0, hence max1≤j≤h {β̂2

j }
p→ 0. Using this property,

we propose a max test statistic:

T̂ ≡ max
1≤j≤h

(√
TLwTL,j β̂j

)2
, (2.7)
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where {wTL,j : j = 1, . . . , h} is a sequence of σ(X(τL − k) : k ≥ 1)-measurable L2-bounded

non-negative scalar weights with non-random probability limits {wj}. As a standardization, we

assume
∑h

j=1wTL,j = 1 without loss of generality. When we do not have any prior information

about the weighting structure, a straightforward choice of wTL,j is the non-random flat weight

1/h. We can consider any other weighting structure by choosing desired {wTL,1, . . . , wTL,h},
and other measurable mappings from Rh to [0,∞) like the average

∑h
j=1(

√
TLwTL,j β̂j)

2 (cfr.

Andrews and Ploberger (1994)). Finally, we will also need to make an assumption about how

many models j = 1, . . . , h we run to perform the test, namely:

Assumption 2.5. The number of models h used to compute T̂ in (2.7) satisfies, h ≥ pm.

2.1.1 Asymptotics under Non-Causality from High-to-Low Frequency

We stack all parameters across the h models (2.6) and write:

θ ≡ [θ′
1, . . . ,θ

′
h]

′,

and construct a selection matrix R such that

β ≡ [β1, . . . , βh]
′ = Rθ.

Therefore, R is an h× (q+1)h matrix with Rj,(q+1)j = 1 for j = 1, . . . , h, and all other elements

are zero. Let WTL,h be an h×h diagonal matrix whose diagonal elements are wTL,1, . . . , wTL,h.

Similarly, let Wh be an h× h diagonal matrix whose diagonal elements are w1, . . . , wh.

Under Assumptions 2.1–2.4, it is not hard to prove the asymptotic normality of θ̂ and hence

β̂. A simple weak convergence argument then suffices for the max test statistic.

Theorem 2.1. Let Assumptions 2.1-2.4 hold. Under H0 : b = 0pm×1, we have that T̂ d→
max1≤j≤hN 2

j as TL → ∞, where N ≡ [N1, . . . ,Nh]
′ is distributed N(0h×1,V ) with positive

definite covariance matrix:

V ≡ σ2
LWhRSR′Wh ∈ Rh×h, (2.8)

where σ2
L ≡ E[ϵ2L(τL)], and

S ≡


Σ1,1 . . . Σ1,h

...
. . .

...

Σh,1 . . . Σh,h

 ∈ R(q+1)h×(q+1)h and Σj,i ≡ Γ−1
j,jΓj,iΓ

−1
i,i ∈ R(q+1)×(q+1),

Γj,i ≡ E
[
xj(τL − 1)xi(τL − 1)′

]
∈ R(q+1)×(q+1) and R ≡


01×q 1 · · · · · · 01×q 0
...

... · · · · · ·
...

...

01×q 0 · · · · · · 01×q 1

 ∈ Rh×(q+1)h.

(2.9)

Proof. See Appendix B.
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2.1.2 Simulated P-Value

The mixed frequency max test statistic T̂ has a non-standard limit distribution under H0 that

can be easily simulated in order to compute an approximate p-value. Let V̂TL
be a consistent esti-

mator of V (see below), and draw R samples N (1), . . . ,N (R) independently from N(0h×1, V̂TL
).

Now compute artificial test statistics T̂ (r) ≡ max1≤j≤h(N
(r)
j )2. An asymptotic p-value approxi-

mation for T̂ is

p̂ =
1

R

R∑
r=1

I
(
T̂ (r) > T̂

)
.

Since N (r) are i.i.d., and R can be made arbitrarily large, by the Glivenko-Cantelli Theorem p̂

can be made arbitrarily close to P (T̂ (1) > T̂ ).

Define the max test limit distribution under H0: F 0(c) ≡ P (max1≤j≤h(N
(r)
j )2 ≤ c). The

asymptotic p-value is therefore F̄ 0(T̂ ) ≡ 1 − F 0(T̂ ) = P (max1≤j≤h(N
(r)
j )2 ≥ T̂ ). By an argu-

ment identical to Theorem 2 in Hansen (1996), we have the following link between the p-value

approximation P (T̂ (1) > T̂ ) and the asymptotic p-value for T̂ .

Theorem 2.2. Under Assumptions 2.1 - 2.4 P (T̂ (1) > T̂ ) = F̄ 0(T̂ ) + op(1), hence p̂ = F̄ 0(T̂ )

+ op(1).

Proof. See Appendix C.

A consistent estimator of V in (2.8) is easily obtained. Simply note that the weightsWTL,h
p→

Wh by assumption, and Γ̂j,i ≡ 1/TL
∑TL

τL=1 xj(τL − 1)xi(τL − 1)′
p→ Γj,i under Assumptions

2.1-2.4. Consistent estimators Σ̂j,i
p→ Σj,i and Ŝ p→ S can then be obtained directly from (2.9).

Next, a consistent estimator σ̂2
L of σ2

L ≡ E[ϵ2L(τL)] can be obtained by computing residuals

ϵ̂L(τL) from model (2.4). Note, though, that we only require consistency for the true σ2
L under

H0 since power only requires an estimator with a constant finite probability limit. As a bonus,

estimating σ2
L under H0 can be done simply by fitting an AR(q) model for xL and computing

the sample variance of the residuals.

2.1.3 Identification of Null and Alternative Hypotheses

We now show that as long as the number of high frequency lags h used across the parsimonious

regression models (2.5) is at least as large as the dimension pm of the parameters b from the

true DGP (2.3), then the parsimonious regression parameters β identify null and alternative

hypotheses in the sense b = 0pm×1 if and only if β = 0h×1. Under the condition h ≥ pm the

max test statistic T̂ then has its intended limit properties under either hypothesis.

If there is Granger causality then the estimator β̂j of βj in (2.5) is in general not Fisher

consistent for the true bj in DGP (2.2) due to omitted regressors. The next result shows

that the least squares first order equations for (2.5) identify some so-called pseudo-true values

β∗ = [β∗
1 , . . . , β

∗
h]

′, which are identically the probability limits of β̂j . Since this in turn is a

function of underlying parameters a, b, and σ2
L, as well as population moments of xH and xL,

the resulting relationship can be exploited to identify null and alternative hypotheses.
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Stack again all parameters θj from (2.6) and write θ = [θ′
1, . . . ,θ

′
h]

′, and let θ̂ be the least

squares estimator.

Theorem 2.3. Let 2.1-2.4 hold. Then θ̂
p→ θ∗ ≡ [θ∗′

1 , . . . ,θ
∗′
h ]

′, the unique pseudo-true value

of θ that satisfies

θ∗
j ≡



α∗
1,j
...

α∗
p,j

α∗
p+1,j
...

α∗
q,j

β∗
j


=



a1
...

ap

0
...

0

0


+
[
E
[
xj(τL − 1)xj(τL − 1)′

]]−1︸ ︷︷ ︸
=Γ−1

j,j : (q+1)×(q+1)

×E
[
xj(τL − 1)XH(τL − 1)′

]︸ ︷︷ ︸
≡Cj : (q+1)×pm

b, (2.10)

where xj(τL − 1) is a vector of all regressors in each parsimonious regression model (cfr. (2.6))

while XH(τL − 1) is a vector of pm high frequency lags of xH (cfr. (2.3)). Therefore β̂
p→ β∗ =

Rθ∗.

Proof. See Appendix D.

Remark 2.5. Although tedious, the population covariance terms Γj,j and Cj can be charac-

terized by the underlying parameters a, b, and σ2
L. For an example, see the local asymptotic

power analysis in Section 4.

Theorem 2.3 provides useful insights on the relationship between the underlying coefficient

b and the pseudo-true value β∗ of β in general. First, as noted in the discussion leading to

Theorem 2.1, trivially β∗ = 0h×1 whenever there is non-causality (i.e b = 0pm×1), regardless

of the relative magnitude of h and pm. Second, as the next result proves, b = 0pm×1 whenever

β∗ = 0h×1, provided h ≥ pm. This follows ultimately from Assumption 2.1 which ensures

covariance matrices of X
(q)
L (τL) and XH(τL) are non-singular, which in turns allows us to

exactly identify the null, and therefore identify when a deviation from the null takes place. Of

course, we cannot generally identify the true βj in model (2.4) under the alternative, but we can

identify that the alternative must be true: that some βj in (2.4) is non-zero.

Theorem 2.4. Let Assumptions 2.1, 2.2, 2.4 and 2.5 hold. Then β∗ = 0h×1 implies b = 0pm×1,

hence β∗ = 0h×1 if and only if b = 0pm×1.

Proof. See Appendix E.

Theorems 2.1 and 2.4 together imply the max test statistic has its intended limit properties

under either hypothesis. Assume the weight limits wj > 0 for all j = 1, . . . , h so that we have a

non-trivial result under the alternative. In view of Theorem 2.4, we also assume h is sufficiently

large to allow the parsimonious regression models to identify the hypotheses.
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We first tackle the limit when H0 is false in order to definitively show that the max test

statistic null distribution limit holds if and only if H0 is true. The max test statistic construction

(2.7) with non-trivial weights wj > 0 for all j = 1, . . . , h indicates that T̂ p→ ∞ if and only if

β∗ ̸= 0h×1, and by Theorems 2.3 and 2.4 β̂
p→ β∗ ̸= 0h×1 under a general alternative hypothesis

H1 : b ̸= 0pm×1, given h ≥ pm. This proves consistency of the mixed frequency max test.

Theorem 2.5. Let Assumptions 2.1-2.5 hold, and assume wj > 0 for all j = 1, . . . , h. Then

T̂ p→ ∞ if and only if H1 : b ̸= 0pm×1 is true.

As an immediate consequence of the limit distribution Theorem 2.1, identification Theorem

2.4 and consistency Theorem 2.5, is that the limiting null distribution arises if and only if H0

is true.

Corollary 2.6. Let Assumptions 2.1-2.5 hold, and assume wj > 0 for all j = 1, . . . , h. Then

T̂ d→ max1≤j≤hN 2
j as TL → ∞ if and only if H0 : b = 0pm×1 is true.

If we choose h < pm then it is possible for asymptotic power to be less than unity, as the

following example reveals.

Example 2.2 (Inconsistency due to Small h). Consider a simple DGP with m = 2 and p = 1:xH(τL, 1)

xH(τL, 2)

xL(τL)

 =

 0 0 0

0 0 0

−1/ρ 1 0


xH(τL − 1, 1)

xH(τL − 1, 2)

xL(τL − 1)

+

ϵH(τL, 1)

ϵH(τL, 2)

ϵL(τL)

 (2.11)

ϵ(τL)
mds∼ (03×1,Ω), Ω =

1 ρ 0

ρ 1 0

0 0 1

 , ρ ̸= 0, |ρ| < 1.

If (q, h) = (1, 1) then asymptotic power of the max test is zero (above the nominal size), and if

(q, h) = (1, 2) the asymptotic power is 1. See Appendix E for a proof.

Assume ρ > 0 for simplicity. The simple explanation behind the lack of power is that the

positive impact of xH(τL − 1, 2) on xL(τL), the negative impact of xH(τL − 1, 1) on xL(τL), and

the positive autocorrelation of xH all offset each other to make the pseudo-true β∗
1 = 0.

2.2 Low Frequency Approach

The mixed frequency Wald test based on (2.4) and the mixed frequency max test based on model

(2.5) are consistent as long as h ≥ pm. If we instead work with an aggregated xH , then under

DGP (2.1) neither test would be consistent no matter how many low frequency lags of xH we

included.

This is verified by using the following linear aggregation scheme for the high frequency

variable:

xH(τL) =

m∑
j=1

δjxH(τL, j) where δj ≥ 0 for all j = 1, . . . ,m and

m∑
j=1

δj = 1,

11



where δj is a user chosen quantity which determines the aggregation scheme. The scheme is

sufficiently general for most economic applications since it includes flow sampling (i.e. δj = 1/m

for j = 1, . . . ,m) and stock sampling (i.e. δj = I(j = m) for j = 1, . . . ,m) as special cases.

We impose Assumption 2.4 such that q ≥ p in order to focus on testing for causality.

2.2.1 Low Frequency Näıve Regression : Wald Test

The low frequency näıve regression model is:

xL(τL) =

q∑
k=1

αkxL(τL − k) +

h∑
j=1

βjxH(τL − j) + uL(τL)

= [X
(q)
L (τL − 1)′, xH(τL − 1), . . . , xH(τL − h)︸ ︷︷ ︸

≡XH(τL−1)′

]



α1

...

αq

β1
...

βh


︸ ︷︷ ︸
≡θ(LF )

+uL(τL)

= [X
(q)
L (τL − 1)′,XH(τL − 1)′]︸ ︷︷ ︸

≡x(τL−1)′

θ(LF ) + uL(τL).

(2.12)

Note that XH(τL − 1) is an h× 1 vector stacking aggregated xH , and x(τL − 1) is a (q + h)× 1

vector of all regressors. The superscript “LF” in θ(LF ) emphasizes that we are working on a low

frequency model here.9

Since (2.1) governs the data generating process, the pseudo-true value for θ(LF ), denoted

θ(LF )∗, can be derived easily:

θ(LF )∗ ≡



α∗
1
...

α∗
p

α∗
p+1
...

α∗
q

β∗


=



a1
...

ap

0
...

0

0h×1


+
[
E
[
x(τL − 1)x(τL − 1)′

]]−1︸ ︷︷ ︸
≡Γ−1: (q+h)×(q+h)

E
[
x(τL − 1)XH(τL − 1)′

]︸ ︷︷ ︸
≡C: (q+h)×pm

b, (2.13)

where β∗ = [β∗
1 , . . . , β

∗
h]

′. The derivation of (2.13) is omitted since it is similar to the proof of

Theorem 2.3.

9Technically “LF” should also be put on α’s, β’s, and uL(τL) since they are generally different from the
parameters and error term in the mixed frequency näıve regression model (2.4). We refrain from doing so for the
sake of notational brevity.
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A low frequency Wald statistic WLF is simply a classic Wald statistic with respect to the

restriction β ≡ [β1, . . . , βh]
′ = 0h×1. Consistency requires WLF

p→ ∞ whenever there is high-to-

low non-causality b ̸= 0pm×1 in (2.3). We present a counter-example where high-to-low Granger

causality exists such that b ̸= 0pm×1, yet in the LF model (2.13) β∗ = 0h×1.

Example 2.3 (Inconsistency of Low Frequency Wald Test). Consider an even simpler DGP

than (2.11) with m = 2 and p = 1:xH(τL, 1)

xH(τL, 2)

xL(τL)

 =

 0 0 0

0 0 0

b2 b1 0


xH(τL − 1, 1)

xH(τL − 1, 2)

xL(τL − 1)

+

ϵH(τL, 1)

ϵH(τL, 2)

ϵL(τL)

 , ϵ(τL)
mds∼ (03×1, I3×1), b ̸= 02×1. (2.14)

The linear aggregation scheme when m = 2 is xH(τL) = δ1xH(τL, 1) + (1− δ1)xH(τL, 2).

Test consistency requires that β∗ ̸= 0h×1 for any deviation b ̸= 02×1 from the null hypothesis.

Below we show that, for any given aggregation scheme δ1, there exists b ̸= 02×1 such that

β∗ = 0h×1 for any lag length h. Given (2.14) it follows that:10

C ≡ E
[
x(τL − 1)XH(τL − 1)′

]
=

[
0 1− δ1 0 · · · 0

0 δ1 0 · · · 0

]′

Once we choose δ1 we can find a deviation from the null b ̸= 02×1 such that Cb = 0(h+1)×1.

Simply let b1 = 0 and b2 ̸= 0 if δ1 = 0; let b1 ̸= 0 and b2 = −b1(1 − δ1)/δ1 if δ1 ∈ (0, 1); or let

b1 ̸= 0 and b2 = 0 if δ1 = 1. In each case Cb = 0(h+1)×1 hence β∗ = 0h×1 in view of (2.13).

An intuition behind the above choice of b is that the impact of xH(τL − 1, 1) on xL(τL) and

the impact of xH(τL − 1, 2) on xL(τL) are inversely proportional to the aggregation scheme.

Hence, high-to-low causal effects are offset by each other after temporal aggregation.

2.2.2 Low Frequency Parsimonious Regression : Max Test

Now consider regressing xL onto its own low frequency lags and only one low frequency lag of

aggregated xH :

xL(τL) =

q∑
k=1

αk,jxL(τL − k) + βjxH(τL − j) + uL,j(τL)

= [X
(q)
L (τL − 1)′, xH(τL − j)]︸ ︷︷ ︸

≡xj(τL−1)′


α1,j

...

αq,j

βj


︸ ︷︷ ︸
≡θ

(LF )
j

+uL,j(τL), j = 1, . . . , h.
(2.15)

10Equation (2.14) immediately implies that xL(τL − 1) = b1ϵH(τL − 2, 2) + b2ϵH(τL − 2, 1) + ϵL(τL − 1)
and therefore E[xL(τL − 1)xH(τL − 1, 2)] = b1E[ϵH(τL − 2, 2)ϵH(τL − 1, 2)] + b2E[ϵH(τL − 2, 1)ϵH(τL − 1, 2)] +
ϵL(τL − 1)ϵH(τL − 1, 2) = 0. Similarly, E[xL(τL − 1)xH(τL − 1, 1)] = 0. In addition, assuming a general linear
aggregation scheme, E[xH(τL − j)xH(τL − 1, 2)] = E[(δ1xH(τL − j, 1) + (1 − δ1)xH(τL − j, 2))xH(τL − 1, 2)] =
(1− δ1)I(j = 1). Similarly, E[xH(τL − j)xH(τL − 1, 1)] = δ1I(j = 1). Therefore, the second row of C is [1− δ1, δ1]
and all other rows are zeros.
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Under the mixed frequency DGP (2.1) the pseudo-true value θ
(LF )∗
j for θ

(LF )
j can be easily

derived by replacing xj(τL − 1)′ with xj(τL − 1)′ in (2.10):

θ
(LF )∗
j ≡



α∗
1,j

...

α∗
p,j

α∗
p+1,j

...

α∗
q,j

β∗
j


=



a1
...

ap

0
...

0

0


+
[
E
[
xj(τL − 1)xj(τL − 1)′

]]−1︸ ︷︷ ︸
≡Γ−1

j,j : (q+1)×(q+1)

E
[
xj(τL − 1)XH(τL − 1)′

]︸ ︷︷ ︸
≡Cj : (q+1)×pm

b. (2.16)

The low frequency max test statistic is constructed in the same way as (2.7):

T̂ (LF ) ≡ max
1≤j≤h

(
√
TLwTL,j β̂j)

2.

The limit distribution of T̂ (LF ) under H0 : b = 0pm×1 has the same structure as the distribution

limit in Theorem 2.1, except that xj(τL − 1) replaces xj(τL − 1), hence the Gaussian limit

distribution covariance V ≡ σ2
LWhRSR′Wh ∈ Rh×h in (2.8) is now defined with a different S

based on xj(τL−1). In the spirit of Example 2.3, we can easily show that T̂ (LF ) is inconsistent:

asymptotic power is not one in all deviations from the null hypothesis for all linear aggregation

schemes.

3 Low-to-High Frequency Data Granger Causality

We now consider testing for Granger causality from low frequency xL to high frequency xH ,

both in mixed and low frequency settings. The null hypothesis based on model (2.1) is H0 : c

= 0pm×1. Under the MF-VAR(p) data generating process (2.1) we derive Wald and max test

statistics, and discuss an additional dimension reduction step based on MIDAS polynomials.

3.1 Mixed Frequency Approach

A natural extension of Sims’ (1972) two-sided regression model to the mixed frequency framework

allows for a simple Wald test. The model regresses xL onto q low frequency lags of xL, h high

frequency lags of xH , and r ≥ 1 high frequency leads of xH :

xL(τL) =

q∑
k=1

αkxL(τL − k) +
h∑

j=1

βjxH(τL − 1,m+ 1− j) +
r∑

j=1

γjxH(τL + 1, j) + uL(τL). (3.1)

Low-to-high non-causality c = 0pm×1 in model (2.1) therefore implies γ = [γ1, . . . , γr]
′ = 0r×1.

Under H0 : c = 0pm×1 a Wald statistic derived from a least squares estimator of γ has a χ2
r

limit distribution under Assumptions 2.1-2.4, as long as q ≥ p and h ≥ pm which ensures (3.1)

contains the true DGP.
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3.1.1 Parsimonious Regressions: Max Test

Parsimonious regression models inspired by (3.1) are, for j = 1, . . . , r:

xL(τL) =

q∑
k=1

αk,jxL(τL − k) +

h∑
k=1

βk,jxH(τL − 1,m+ 1− k) + γjxH(τL + 1, j) + uL,j(τL) (3.2)

hence only the jth high frequency lead of xH is included. As before, we abuse notation since

under causation γj in (3.1) and (3.2) are generally not equivalent.

Let n ≡ q + h+ 1 denote the number of regressors in each model, and define n × 1 vectors

yj(τL − 1) = [xL(τL − 1), . . . , xL(τL − q), xH(τL − 1,m + 1 − 1), . . . , xH(τL − 1,m + 1 − h),

xH(τL + 1, j)]′ and ϕj = [α1,j , . . . , αq,j , β1,j , . . . , βh,j , γj ]
′. Therefore yj(τL − 1) is a vector of

all regressors, and ϕj is a vector of all parameters in model j, hence we can write:

xL(τL) = yj(τL − 1)′ϕj + uL,j(τL).

Now stack the least squares estimator γ̂j for γj into γ̂ = [γ̂1, . . . , γ̂r]
′. Low-to-high non-causality

H0 : c = 0pm×1 implies γ = 0r×1 for any r ≥ 1, which justifies a mixed frequency max test

statistic for low-to-high causality:

Û ≡ max
1≤j≤r

(√
TLwTL,j γ̂j

)2
. (3.3)

The asymptotic null distribution of Û can be derived in the same way as in Theorem 2.1

under Assumptions 2.1-2.5, hence the proof is omitted.

Theorem 3.1. Let Assumptions 2.1-2.5 hold. Under H0 : c = 0pm×1 we have that Û d→
max1≤j≤r Ñ 2

j as TL → ∞, where Ñ ≡ [Ñ1, . . . , Ñr]
′ is distributed N(0r×1, Ṽ ) with positive

definite covariance matrix: Ṽ ≡ σ2
LWrR̃S̃R̃′Wr ∈ Rr×r, where σ2

L ≡ E[ϵ2L(τL)]; S̃ is defined

the same way as S in (2.9) by replacing the regressors xj(τL − 1) with yj(τL − 1); and selection

matrix R̃ is a r-by-(q + h+ 1)r matrix that picks [γ1, .., γr]
′ out of [ϕ′

1, ...,ϕ
′
r]
′.

Remark 3.1. We require Assumption 2.5, such that the number of high frequency lags h in

models (3.1) and (3.2) is at least as large as the true lag length pm, in order to ensure that the

true DGP is contained in the two-sided models (3.2) under the null hypothesis of no causation

from low-to-high frequency: under no causation γ̂
p→ 0 only if the model is otherwise correctly

specified vis-à-vis DGP (2.1). Conversely, the high-to-low frequency max test limit distribution

in Theorem 2.1 applies without h ≥ pm precisely because for any h ≥ 1 the coefficients β are

identically 0 under the null of no causality from high-to-low frequency. We imposed h ≥ pm

solely to deduce by Corollary 2.6 that the limit distribution applies if and only if no causation

from high-to-low frequency is true.

Remark 3.2. In general, it cannot be shown that γ ̸= 0r×1 in (3.2) follows under low-to-high

causality c ̸= 0pm×1, even if r ≥ pm. Therefore, consistency of the low-to-high Wald and max
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tests is an open question, and evidently not yet resolved by our methods.

3.1.2 MIDAS Polynomials in the Max Test

In a low-to-high frequency causality test the max statistic only operates on the lead parameters

γj , while our simulation study reveals a large lag h can prompt size distortions. In general a

comparatively large low frequency sample size is needed for the max test empirical size to be

very close to the nominal level.11

One option is to use a bootstrap procedure for p-value computation, but we find that a wild

bootstrap similar to Gonçalves and Killian’s (2004) does not alleviate size distortions.
Another approach is to exploit a MIDAS polynomial for the high-to-low causality part in

order to reduce the impact of large h, and keep the low-to-high causality part unrestricted
(cfr. Ghysels, Santa-Clara, and Valkanov (2006), Ghysels, Sinko, and Valkanov (2007), among
others). The model now becomes:

xL(τL) =

q∑
k=1

αkxL(τL − k) +
h∑

k=1

ωk(π)xH(τL − 1, 12 + 1− k) + γjxH(τL + 1, j) + uL(τL), j = 1, . . . , r, (3.4)

where ωk(π) represents a MIDAS polynomial with a parameter vector π ∈ Rs of small dimension

s < h.

There are a variety of possible polynomials in the literature (see e.g. Technical Appendix A

of Ghysels (2014)). In our simulation study we use the Almon polynomial ωk(π) =
∑s

l=1 πlk
l,

hence model (3.4) is linear in π, allowing for least squares estimation. Another important

characteristic of the Almon polynomial is that it allows negative and positive values in general

(e.g. wk(π) ≥ 0 for k < 3 and wk(π) < 0 for k ≥ 4, etc.). Many other MIDAS polynomials, like

the beta probability density or exponential Almon, assume a single sign for all lags.

MIDAS regressions, of course, may be misspecified. Therefore, the least squares estimator

of γ may not be consistent for 0 under the null, but rather may be consistent for some non-zero

pseudo-true value identified by the resulting first order moment conditions. Nevertheless, we

show that a model with mis-specified MIDAS polynomials leads to a dramatic improvement in

empirical size, even though the max test statistic for that model does not have its intended null

limit distribution. We also show that size distortions vanish with a large enough sample size

(cfr. Footnote 11).

11In our simulation study where m = 12, we find TL ∈ {40, 80} is not large enough but TL ≥ 120 is large
enough for sharp max test empirical size. If the low frequency is years, such that there are m = 12 high frequency
months, then TL = 120 years is obviously too large for practical applications in macroeconomics and finance,
outside of deep historical studies. If the low frequency is quarters such that the high frequency is approximately
m = 12 weeks, then TL = 120 quarters, or 30 years, is reasonable.
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3.2 Low Frequency Approach

Consider a low frequency counterpart to the parsimonious regression models (3.2), with aggre-

gated high frequency variable xH(τL) =
∑m

j=1 δjxH(τL, j):

xL(τL) =

q∑
k=1

αk,jxL(τL − k) +

hLF∑
k=1

βk,jxH(τL − k) + γjxH(τL + j) + uL,j(τL), j = 1, . . . , rLF . (3.5)

The subscript “LF” on h and r emphasizes that these are the number of low frequency lags and

leads of aggregated xH . We estimate the parsimonious model (3.5) by least squares, and use a

low frequency max test statistic as in (3.3):

Û (LF ) ≡ max
1≤j≤rLF

(
√

TLwTL,j γ̂j)
2.

Deriving the limit distribution of Û (LF ) under H0 : xL 9 xH requires an assumption in

addition to Assumptions 2.1-2.5. Under the null hypothesis of low-to-high non-causality, a

correctly specified two-sided MF regression reduces to (2.3). In general, each low frequency

parsimonious regression model (3.5) does not contain (2.3) as a special case. The true high-

to-low causal pattern based on the non-aggregated xH , i.e.
∑pm

l=1 blxH(τL − 1,m + 1 − l), may

not be fully captured by the low frequency lags of aggregated xH , i.e.
∑hLF

k=1 βk,jxH(τL − k), no

matter what the lag length hLF is. See Examples 3.1 and 3.2 below.

In order to find a condition that ensures each low frequency parsimonious regression model

contains (2.3) as a special case, we elaborate the relationship between the (non)aggregated causal

terms
∑pm

l=1 blxH(τL−1,m+1− l) and
∑hLF

k=1 βk,jxH(τL−k). In the following we write βk instead

of βk,j since it is irrelevant which jth lead term of xH is included in the model. Observe that

the aggregated high frequency variable is:

hLF∑
k=1

βkxH(τL − k) =

hLF∑
k=1

βk

m∑
l=1

δlxH(τL − k, l)

=β1δmxH(τL − 1,m+ 1− 1) + · · ·+ β1δ1xH(τL − 1,m+ 1−m)

+ · · ·+ βhLF
δmxH(τL − hLF ,m+ 1− 1) + · · ·+ βhLF

δ1xH(τL − hLF ,m+ 1−m)

=

hLFm∑
l=1

β⌈l/m⌉δ⌈l/m⌉m+1−lxH(τL − 1,m+ 1− l),

(3.6)

where ⌈z⌉ is the smallest integer not smaller than z. The last equality exploits the notational

convention that the second argument of xH can go below 1 (see Appendix A). Now compare the

last term in (3.6) with the true high-to-low causal pattern
∑pm

l=1 blxH(τL − 1,m + 1 − l). The

following assumption gives a sufficient property for the true b in model (2.3) in order for the

parsimonious regressions with aggregated xH to contain the true DGP under the null.

Assumption 3.1. Fix the linear aggregation scheme δ = [δ1, . . . , δm]′, and fix the true causal

pattern from xH to xL: b = [b1, . . . , bpm]′. There exists β∗ = [β∗
1 , . . . , β

∗
p ]

′ such that bl =
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β∗
⌈l/m⌉δ⌈l/m⌉m+1−l for all l ∈ {1, . . . , pm} provided a sufficiently large lag length hLF ≥ p is

chosen.

Remark 3.3. Assumption 3.1 is in some sense a low frequency version of Assumption 2.5,

but with a deeper restriction that the DGP can be aggregated and still retain identification of

underlying causal patterns. It ensures that there exists a pseudo-true β∗ such that
∑hLF

k=1 β∗
k

xH(τL − k) =
∑pm

l=1 bl xH(τL − 1,m+ 1− l), in which case each parsimonious regression model

(3.5) is correctly specified under H0 : xL 9 xH . Therefore, for a given aggregation scheme δ it

assumes the DGP itself, and therefore b = [b1, . . . , bpm]′, allows for identification of the DGP

under low-to-high non-causality using an aggregated high frequency variable xH .

If there is high-to-low non-causality, that is b = 0pm×1 in (2.3), then Assumption 3.1 is

trivially satisfied by choosing any hLF ∈ N and letting β∗
k = 0 for all k ∈ {1, . . . , hLF }. Under

high-to-low causality b ̸= 0pm×1, however, Assumption 3.1 is a relatively stringent restriction

on the DGP. The following examples show that some DGP’s cannot satisfy Assumption 3.1,

in particular that a low frequency test may not be able to reveal whether there is low-to-high

frequency causation.

Example 3.1 (Causality with Stock Sampling). Assume the sampling frequency ratio is m = 3,

the AR order is p = 2, and in model (2.3) consider lagged causality bl = b × I(l = 4) for

l ∈ {1, . . . , 6} with b ̸= 0. This causal pattern can be captured by the low frequency parsimonious

regression models if and only if the aggregation scheme is stock sampling.

A proof of this claim is as follows. Since stock sampling is represented as δl = I(l = 3) for l ∈
{1, 2, 3}, the summation term included in each parsimonious regression models,

∑hLF
k=1 βkxH(τL−

k), can be rewritten as
∑hLF

k=1 βkxH(τL−k, 3). Therefore, we can simply choose hLF = 2, β∗
1 = 0,

and β∗
2 = b to replicate the true causal pattern.

Conversely, assume δl ≥ 0 for all l ∈ {1, 2, 3}, δ3 < 1, and
∑3

l=1 δl = 1, which allows for

any aggregation except stock sampling. Since δ3 < 1, either δ1 and/or δ2 should have a positive

value, so assume δ1 > 0 without loss of generality. Assumption 3.1 therefore requires b4 = β∗
2δ3

and b6 = β∗
2δ1, but the true causal pattern implies b4 = b ̸= 0 and b6 = 0. Since δ1 > 0, there

does not exist any β∗
2 that satisfies all four equalities.

Example 3.2 (Flow Sampling). Under flow sampling we have δl = 1/m for all l ∈ {1, . . . ,m},
in which case Assumption 3.1 requires bl = β∗

⌈l/m⌉/m, hence b1 = · · · = bm, bm+1 = · · · = b2m,

and so on. In other words, Assumption 3.1 holds only when all m high frequency lags of xH in

each low frequency period have an identical coefficient. This is quite severe since empirical evi-

dence (here and elsewhere) points to more nuanced patterns of inter-period dynamics, including

parameter values with different signs, lagged causality (some parameters values are zeros), or

decaying causality (parameter values decline).

The limit distribution of Û (LF ) is straightforward to derive under H0 : xL 9 xH . Define an
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n× 1 vector of all regressors in model j:

y
j
(τL − 1) ≡ [xL(τL − 1), . . . , xL(τL − q), xH(τL − 1), . . . , xH(τL − h), xH(τL + j)]′.

Under Assumptions 2.1 - 2.4 and 3.1, the asymptotic distribution of Û (LF ) under H0 : xL 9 xH

is identical to that in Theorem 3.1, except we replace regressors yj(τL − 1) with y
j
(τL − 1).

4 Local Asymptotic Power Analysis for Tests of High-to-Low

Non-Causality

The results of Section 2 characterize the asymptotic global power properties of MF and LF

Wald and max tests of high-to-low frequency non-causality. The MF max and Wald tests are

consistent as long as the selected number of high frequency lags h is larger than or equal to

the true lag order pm. Conversely, the LF tests are sensitive to the chosen aggregation scheme:

for some DGP’s and aggregation schemes power is trivial, hence these tests are not generally

consistent. In this section we study the local power properties of each test for the high-to-low

case. We do not treat the low-to-high frequency case since identification of causation within

Sims’ (1972) two-sided regression model is unresolved.

As Example 2.3 suggests, the LF tests have asymptotic power of one in some cases depending

on the aggregation scheme and DGP, even though these tests do not have asymptotic power of

one against all deviations from non-causality. An advantage of LF tests of course is that they

require fewer parameters than MF tests, hence in some cases local power for LF tests may be

actually higher than for MF tests.

We impose Assumptions 2.1-2.4, and consider the usual mixed frequency DGP (2.1). The

high-to-low non-causality null hypothesis is H0 : b = 0pm×1, hence the local alternative hypoth-

esis under regular asymptotics is

HL
1 : b = ν/

√
TL,

where ν = [ν1, . . . , νpm]′ is the drift parameter. Under HL
1 , model (2.3) becomes

xL(τL) = XL(τL − 1)′a+XH(τL − 1)′
(

1√
TL

ν

)
+ ϵL(τL) (4.1)

where as before XL(τL − 1) = [xL(τL − 1), . . . , xL(τL − p)]′, XH(τL − 1) = [xH(τL − 1,m+ 1−
1), . . . , xH(τL − 1,m+ 1− pm)]′, and a = [a1, . . . , ap]

′.

4.1 Local Power for Tests with Mixed Frequency Data

4.1.1 Mixed Frequency Max Test

Our first result gives the asymptotic distribution of the max statistic underHL
1 .Define covariance

matrices Γj,j ≡ E[xj(τL − 1)xj(τL − 1)′] and Cj ≡ E[xj(τL − 1)XH(τL − 1)′]), and recall the
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weighting scheme Wh in (2.7) and selection matrix R in (2.9).

Theorem 4.1. Under Assumptions 2.1-2.4 and HL
1 we have T̂ d→ max1≤i≤h M2

i as TL → ∞,

where M = [M1, . . . ,Mh]
′ is distributed N(µ,V ), V is defined in (2.8), and

µ = WhR


Γ−1
1,1C1

...

Γ−1
h,hCh

ν ∈ Rh×1. (4.2)

Proof. See Appendix F.

In order to compute local power we need the Gaussian law mean µ and therefore explicit

characterizations of Γj,i and Cj in terms of underlying parameters (A1, . . . ,Ap) and Ω in (2.1).

Lemma 4.2. Let Assumptions 2.1 and 2.2 hold, and define f(j) ≡ ⌈(j − m)/m⌉ and g(j) ≡
mf(j)+m+1− j, where ⌈x⌉ is the smallest integer not smaller than x. Let Υk(s, t) be the (s, t)

element of Υk ≡ E[X(τL)X(τL − k)′]. Then, for j, i ∈ {1, . . . , h}:

Γj,i︸︷︷︸
(q+1)×(q+1)

=


Υ1−1(K,K) . . . Υ1−q(K,K) Υ−f(i)(g(i),K)

...
. . .

...
...

Υq−1(K,K) . . . Υq−q(K,K) Υ(q−1)−f(i)(g(i),K)

Υf(j)(K, g(j)) . . . Υf(j)−(q−1)(K, g(j)) Υf(j)−f(i)(g(i), g(j))

 ,

Cj︸︷︷︸
(q+1)×pm

=


Υf(1)(K, g(1)) . . . Υf(pm)(K, g(pm))

...
. . .

...

Υf(1)−(q−1)(K, g(1)) . . . Υf(pm)−(q−1)(K, g(pm))

Υf(j)−f(1)(g(1), g(j)) . . . Υf(j)−f(pm)(g(pm), g(j))

 .

(4.3)

Proof. See Appendix G.

Remark 4.1. Considering that Υk is (m + 1) × (m + 1), it must be the case that g(j) takes

a natural number between 1 and m + 1 for any j ∈ N. We verify this in Table T.1 of the

supplemental material Ghysels, Hill, and Motegi (2015). By definition, f(j) is a step function

taking 0 for j = 1, . . . ,m, 1 for j = m+ 1, . . . , 2m, 2 for j = 2m+ 1, . . . , 3m, etc. g(j) takes m,

m− 1, . . . , 1 as j runs from (k− 1)m+ 1 to km for any k ∈ N. Hence, the matrices in (4.3) are

always well-defined.

Remark 4.2. Let Υ be a pK × pK matrix whose (i, j) block is Υj−i for i, j ∈ {1, . . . , p}. Let
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Ω̄ be a pK × pK matrix whose (1, 1) block is Ω and all other blocks are 0K×K . Define

A ≡


A1 . . . Ap−1 Ap

IK . . . 0K×K 0K×K

...
. . .

...
...

0K×K . . . IK 0K×K

 ∈ RpK×pK .

Using the discrete Lyapunov equation, Υk for k ∈ {1 − p, . . . , p − 1} can be computed by the

following well-known formula:

vec[Υ] =
(
I(pK)2 −A⊗A

)−1
vec[Ω̄], (4.4)

where vec[·] is a column-wise vectorization operator, and ⊗ is the Kronecker product. Υk for

k ≥ p can be recursively computed by the Yule-Walker equation: Υk =
∑p

l=1AlΥk−l. Finally,

the covariance stationarity of X(τL) ensures Υk = Υ′
−k for k ≤ −p.

Local asymptotic power can be easily computed numerically for a given DGP. See Section

4.3 for numerical experiments.

Step 1 Calculate µ and V from underlying parameters (A1, . . . ,Ap), and Ω in model (2.1) by

using Theorems 2.1 and 4.1, and Lemma 4.2.

Step 2 Draw random vectors {[N (r)
i ]hi=1}

R1
r=1 independently fromN(0h×1,V ), and calculate test

statistics Tr = max1≤i≤h(N
(r)
i )2, where R1 is a large integer. The 100(1− α)% empirical

quantile qαR1
of {Tr}R1

r=1 is an asymptotically valid approximation of the α-level asymptotic

critical value of T̂ .

Step 3 Draw random vectors {[M(r)
i ]hi=1}

R2
r=1 independently from N(µ,V ), and calculate test

statistics T̃r = max1≤i≤h(M
(r)
i )2, where R2 is a large integer. Empirical local asymptotic

power is computed as P̂ ≡ (1/R2)
∑R2

r=1 I(T̃r > qαR1
).

By construction qαR1
estimates the 100(1−α)% quantile qα of the max test statistic limit law

max1≤i≤hN 2
i . By independence of the sample draws, qαR1

p→ qα as R1 → ∞. Indeed, since we

can choose {R1, R2} to be arbitrarily large, and the samples are independently drawn, empirical

power P̂ can be made arbitrarily close to local asymptotic power limTL→∞ P (T̂ > qα|HL
1 ) by

the Glivenko-Cantelli theorem. See the proof of Theorem 2.2 for related details.

4.1.2 Mixed Frequency Wald Test

Rewrite model (2.4) in matrix form:

xL(τL) = [xL(τL − 1), . . . , xL(τL − q)]


α1

...

αq

+ [xH(τL − 1,m+ 1− 1), . . . , xH(τL − 1,m+ 1− h)]


β1

...

βh

+ uL(τL)
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=
[
X

(q)
L (τL − 1)′ X

(h)
H (τL − 1)′

] [α
β

]
+ uL(τL) = x(τL − 1)′Θ+ uL(τL). (4.5)

X
(h)
H (τL − 1) is a vector stacking h high frequency lags of xH , while XH(τL − 1) is a vector

stacking pm high frequency lags of xH .

Let Ŵ denote the least squares based Wald statistic for testing H0 : b = 0pm×1, and Assump-

tions 2.1-2.4 hold. Then Ŵ is asymptotically χ2
h(κ) distributed under HL

1 , where χ2
h(κ) denotes

the noncentral χ2 distribution with degrees of freedom h and noncentrality κ that is a function of

drift ν, and the covariance matrices Γ ≡ E[x(τL−1)x(τL−1)′] andC ≡ E[x(τL−1)XH(τL−1)′].

In particular κ = 0 if and only if ν = 0 such that the null is true. The covariances Γ and C

can be derived in terms of underlying parameters, analogous to Lemma 4.2. See Section B.1

in the supplemental material Ghysels, Hill, and Motegi (2015) for complete derivations of the

Wald statistic, covariance matrices, and noncentrality parameter.

Since Ŵ has asymptotic χ2 distributions under H0 and HL
1 , local power of the mixed fre-

quency Wald test is P ≡ 1 − F1[F
−1
0 (1 − α)], where α ∈ (0, 1) is the nominal size, F0 is the

asymptotic null χ2
h distribution, and F1 is the asymptotic local alternative χ2

h(κ) distribution.

Noncentrality κ is computed from ν, Γ and C, and therefore from (A1, . . . ,Ap) and Ω, cfr.

Theorem B.1 and Lemma B.2 in the supplemental material.

4.2 Low Frequency Approach

As usual, we impose Assumption 2.4 that q ≥ p, but we do not assume anything about the

magnitude of the number of included high frequency lags h relative to the true lag order pm.

4.2.1 Low Frequency Parsimonious Regression

We compute the low frequency max test statistic T̂ (LF ) based on h low frequency parsimonious

regression models (2.15): xL(τL) = xj(τL − 1)′θ
(LF )
j + uL,j(τL), where xj(τL − 1) ≡ [xL(τL −

1), . . . , xL(τL−q), xH(τL−j)]′ with aggregation xH(τL−j)≡
∑m

l=1 δlxH(τL−j, l). The asymptotic

distribution of T̂ (LF ) under HL
1 : b = (1/

√
TL)ν is the same as in Theorem 4.1, except xj(τL−1)

there is replaced with xj(τL−1). Computing local power for the low frequency max test therefore

requires an analytical characterization of Γj,i = E[xj(τL − 1)xi(τL − 1)′] and Cj = E[xj(τL −
1)XH(τL − 1)′]. See Section B.2 in the supplemental material Ghysels, Hill, and Motegi (2015).

4.2.2 Low Frequency Näıve Regression

The low frequency näıve regression model is (2.12): xL(τL) = x(τL − 1)′θ(LF ) + uL(τL), where

x(τL − 1) = [xL(τL − 1), . . . , xL(τL − q), xH(τL − 1), . . . , xH(τL − h)]′.

Let Ŵ (LF ) denote the Wald statistic for testing H0 : b = 0pm×1. The asymptotic distribution

of Ŵ (LF ) is χ2
h underH0, and χ2

h(κ) underH
L
1 , where noncentrality κ depends on the covariances

Γ = E[x(τL − 1)x(τL − 1)′] and C = E[x(τL − 1)XH(τL − 1)′]. Complete analytical details are

presented in Section B.3 of the supplemental material Ghysels, Hill, and Motegi (2015).
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4.3 Numerical Examples

We now compare the local power of MF and LF max and Wald test.

4.3.1 Design

We work with a structural MF-VAR(1) process with m = 12 (e.g. the LF increment is one year
and the HF increment is one month):



1 0 . . . . . . . . . 0

−d 1
. . .

. . .
. . . 0

0 −d
. . .

. . .
. . .

.

..

.

..
.
..

. . .
. . .

. . .
.
..

0 0 . . . −d 1 0

0 0 . . . 0 0 1


︸ ︷︷ ︸

≡N


xH(τL, 1)

.

..

xH(τL, 12)

xL(τL)


︸ ︷︷ ︸

=X(τL)

=



0 0 . . . d c1

0 0 . . . 0 c2
.
..

.

..
. . .

.

..
.
..

0 0 . . . 0 c12

b12 b11 . . . b1 a


︸ ︷︷ ︸

≡M


xH(τL − 1, 1)

.

..

xH(τL − 1, 12)

xL(τL − 1)


︸ ︷︷ ︸

=X(τL−1)

+


ηH(τL, 1)

.

..

ηH(τL, 12)

ηL(τL)


︸ ︷︷ ︸

≡η(τL)

, (4.6)

where η(τL) ∼ (013×1, I13) is an mds with respect to increasing FτL ≡ σ(X(τ) : τ ≤ τL).
Coefficient a governs the autoregressive property of xL, d governs the autoregressive property
of xH , c = [c1, . . . , c12]

′ represents Granger causality from xL to xH , and our interest lies in
b = [b1, . . . , b12]

′ since it expresses Granger causality from xH to xL. Since

N−1 =



1 0 . . . . . . . . . 0

d 1
. . .

. . .
. . . 0

d2 d
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...

d11 d10 . . . d 1 0

0 0 . . . 0 0 1


thus A ≡ N−1M =



0 0 . . . d
∑1

i=1 d
1−ici

0 0 . . . d2
∑2

i=1 d
2−ici

...
...

. . .
...

...

0 0 . . . d12
∑12

i=1 d
12−ici

b12 b11 . . . b1 a


, (4.7)

the reduced form of (4.6) is X(τL) = AX(τL − 1) + ϵ(τL), where ϵ(τL) = N−1η(τL) and

Ω ≡ E[ϵ(τL)ϵ(τL)
′] = N−1N−1′ .

We consider three types of drift ν = [ν1, . . . , ν12]
′. First, νj = (−1)j−1 × 2.5/j for j =

1, . . . , 12, hence there is decaying causality from xH to xL with hyperbolic decay and alternating

signs. Second, lagged causality with νj = 2 × I(j = 12) for j = 1, . . . , 12, hence only ν12 ̸= 0.

Third, sporadic causality with (ν3, ν9, ν11) = (2.1,−2.8, 1.9) and all other νj ’s are zeros.12

Other parameters in the DGP are as follows. Since local power is not significantly affected

by the choice of a, we simply set a = 0.2 such that the autoregressive property for xL is fairly

weak. There are two values for the persistence of xH : d ∈ {0.2, 0.8}, and decaying causality

with alternating signs for low-to-high causality: cj = (−1)j−1 × 0.8/j for j = 1, . . . , 12.

In the regression models used as the premise for the four tests, we include two low frequency

lags of xL (i.e. q = 2), although q = 1 would suffice since the true DGP is MF-VAR(1). Max

text local power is then computed using draws of 100, 000 random variables from the limit

distributions under H0 and HL
1 , and a flat weight: Wh = (1/h) × Ih. We use a flat weight as

12Such relationships may exist in macroeconomic processes due to lagged information transmission, seasonality,
feedback effects, and ambiguous theoretical relations in terms of signs.
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a convention in the absence of information about the relative magnitudes of the parsimonious

regression slopes βj .

The number of high frequency lags of xH used in the mixed frequency tests is hMF ∈
{4, 8, 12}, and the number of low frequency lags of aggregated xH used in the low frequency

tests is hLF ∈ {1, 2, 3}. In the low frequency tests, for aggregating xH we use flow sampling (i.e.

δk = 1/12 for k = 1, . . . , 12) and stock sampling (i.e. δk = I(k = 12) for k = 1, . . . , 12). Finally,

the nominal size α is 0.05.

4.3.2 Results

Table 1 contains all local power results. We distinguish different cases which we characterize as

follows:

Decaying Causality, Low Persistence in xH : d = 0.2 The MF max and Wald tests have

moderately high power between 0.346 and 0.570 (e.g. max and Wald tests with hMF = 4 have

respective power 0.487 and 0.570).

The LF tests with flow sampling have very little power above nominal size, regardless of

the number of lags hLF ∈ {1, 2, 3}, since alternating signs in νj and flow aggregation combine

together to offset causality. The lowest value is 0.063 and the largest value is 0.076. Under stock

sampling, however, local power is much larger, ranging from 0.495 to 0.643. For example, the

LF Wald test with stock sampling and hLF = 1 has power 0.643, while the MF Wald test power

is .570. The reason for the improved performance is the largest coefficient ν1 = 2.5 is assigned

to xH(τL − 1, 12), which is precisely the regressor included in the low frequency models with

stock sampling.

Decaying Causality, High Persistence in xH : d = 0.8 Local power rises in general when

there is high persistence in the high frequency variable, but otherwise the above results carry

over qualitatively.

Lagged Causality Consider the high persistence case d = 0.8 (low persistence leads to similar

results with lower power). Mixed frequency tests have power that is increasing in hMF , for

example max-test power is 0.075, 0.181, and 0.769 when hMF is 4, 8, and 12. This reflects the

causal pattern that only the coefficient ν12 on xH(τL − 1, 1) is 2 and all other ν’s are zeros. It

is thus important to include sufficiently many lags when we apply MF tests.

The LF tests with flow sampling have reasonably high power regardless of hLF , ultimately

because the low frequency models work on an aggregated xH and hence taking only a few lags

tends to be enough. The power of the LF max test, for instance, is 0.455, 0.468, and 0.415 when

hLF is 1, 2, and 3, respectively. Another important reason for this good performance is that

the causal effect is unambiguously positive; we have one large positive coefficient ν12 = 2 and

no negative coefficients, while flow aggregation preserves such causality.
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The LF tests with stock sampling, by contrast, have nearly no power at hLF = 1. This is

expected since xH(τL − 1, 12) has a zero coefficient by construction. They have high power,

however, when hLF = 2 (0.676 for max test and 0.664 for Wald test) because the extra regressor

xH(τL−2, 12) has a strong correlation with the adjacent term xH(τL−1, 1), which has a nonzero

coefficient ν12 = 2. Such spillover monotonically adds to local power as the persistence of xH

(i.e. d) is larger.

Sporadic Causality The case of sporadic causality highlights the advantage of the mixed

frequency approach. Consider low persistence in the high frequency variable: d = 0.2. The MF

max test has power 0.391, 0.323, and 0.677 when hMF is 4, 8, and 12, and MF Wald test power

is 0.365, 0.291, and 0.761. Their power declines when switching from hMF = 4 to hMF = 8 since

ν5, ν6, ν7, and ν8 are all zeros, and thus a penalty arises due to the extra number of parameters.

The LF tests, whether flow sampling or stock sampling, have nearly no power (at most 0.072)

due to their vulnerability to alternating signs and lagged causality as seen above.

Max versus Wald Test It is not clear from Table 1 whether the MF max test with a flat

weight is preferred to the MF Wald test. Across our experiments, the max-test power surpasses

the Wald-test power in 12 cases out of 18. The difference between max and Wald tests takes the

largest value 0.769− 0.560 = 0.209 for lagged causality with (d, hMF ) = (0.8, 12), and smallest

value 0.690 − 0.872 = −0.182 for sporadic causality with (d, hMF ) = (0.8, 12). In the absence

of other experiment designs or weighting schemes, we cannot in general conclude that the max

text dominates the Wald test in terms of local power.13

This is not surprising since both test statistics are simple functions of least squares estimators,

and local power is asymptotic. Indeed, although the max statistic operates on the largest

estimator across parsimonious regression models, that need not imply higher local power since

the statistic may asymptotically have greater dispersion. As we show below, however, the flat

weighted max text statistic has the advantage of small sample size accuracy and in general

higher power.

5 Monte Carlo Simulations

Our next task is to conduct simulation experiments in order to compare the MF and LF max

and Wald tests.

5.1 High-to-Low Granger Causality

We first investigate tests of high-to-low non-causality H0 : b = 0pm×1 against general causality

H1 : b ̸= 0pm×1.

13In experiments not reported here, we tried a MF-VAR(2) data generating process as a robustness check, and
obtained qualitative the same results as in MF-VAR(1).
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5.1.1 MF-VAR(1)

We initially work with the MF-VAR(1) process (4.6) with m = 12, which serves as a benchmark.

We consider a MF-VAR(2), below, as a robustness check.

Data Generating Processes The error term η(τL) is mutually and serially independent

standard normal random distributed.

There are four (non)causality cases, similar to those in the local power experiments: non-

causality ; decaying causality with alternating signs: bj = (−1)j−1 × 0.3/j for j = 1, . . . , 12;

lagged causality : bj = 0.3 × I(j = 12) for j = 1, . . . , 12; and sporadic causality : (b3, b7, b10) =

(0.2, 0.05,−0.3) and all other bj = 0.

As in the local power study, we assume a weak autoregressive property for xL (i.e. a = 0.2).

See Table T.2 in the supplemental material for high-to-low causality tests when a = 0.8: the

choice of a does not appear to significantly influence rejection frequencies. There are two values

for the persistence of xH : d ∈ {0.2, 0.8}, and decaying low-to-high causality with alternating

signs: cj = (−1)j−1 × 0.4/j for j = 1, . . . , 12.

Sample size in terms of low frequency is TL ∈ {40, 80}. Since m = 12, our experimental

design can be thought as month versus year, or approximately as week versus quarter. In the

latter case, TL = 40 or 80 imply that the low frequency sample size is 10 or 20 years, which are

respectively small and medium spans of time. In the former case TL = 40 implies that the low

frequency sample size is a relatively large span of 40 years.

Model Estimation We estimate regression models that in all cases include two low frequency

lags of xL (i.e. q = 2). Setting q = 1 would be sufficient since the true DGP is MF-VAR(1),

but the true lag order is typically unknown. The number of high frequency lags of xH used in

the MF tests is hMF ∈ {4, 8, 12} as well as hMF = 24 when TL = 80, and the number of low

frequency lags of aggregated xH used in LF tests is hLF ∈ {1, 2, 3} as well as hLF = 4 when

TL = 80. Low frequency tests use flow and stock sampling for the high frequency variable. The

max test weighting scheme is flat Wh = (1/h) × Ih, and the number of draws from the limit

distributions under H0 is 1,000 for p-value computation.

Given the large ratio m = 12, the MF Wald test (and possibly even the LF Wald test)

may suffer from size distortions if we use the asymptotic chi-square distribution. We therefore

use Gonçalves and Killian’s (2004) parametric bootstrap in order to better approximate the

small sample Wald statistic distribution. As a bonus, their bootstrap allows for conditionally

heteroscedastic errors of unknown form, while our innovations are i.i.d. We use their bootstrap

p-value with 499 bootstrap samples in order to match the empirical study below, where the

innovations are unlikely to be i.i.d. 14

14Consider bootstrapping in the MF case with model (4.5), the LF case being similar. Let Θ̂ be the unrestricted
least squares estimator for Θ in xL(τL) = x(τL − 1)′Θ+ uL(τL), the residual is ũL(τL), and the Wald statistic is
Ŵ . Compute the least squares Θ̃0 for Θ0 = [α′,01×h]

′ in the null model xL(τL) = x(τL − 1)′Θ0 + uL(τL). Then

simulate N samples from xL(τL) = x(τL−1)′Θ̃0+ ũL(τL)v(τL), where v(τL)
i.i.d.∼ N(0, 1), and compute the Wald
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The number of Monte Carlo samples drawn is 5,000 for max tests and 1,000 for bootstrapped

Wald tests (due to the added computation time), and size α is fixed at 0.05.

Results Table 2 compiles the simulation results: Panel A contains empirical size, while Panels

B-D contain empirical power. Empirical size in both tests is fairly sharp, ranging across cases

between 0.032 and 0.068. The max tests has sharp size evidently due to its relatively more

parsimonious specification, while the Wald test has sharp size due to bootstrapping the p-value.

Panels B-D provide the same implications for MF versus LF tests as in the local power study,

cfr. Table 1. In particular, MF tests are better capable of detecting complicated causal patterns

like sporadic causality.

Consider the relative power performance of the MF max and Wald tests. In a strong majority

of cases across causal patterns b, lag length hMF , persistence d, and sample size TL, the max test

has higher power than the Wald test. In a few exceptions the differences are negligible, where

the greatest spread being 0.482−0.527 = −0.045 when there is decaying causality, hMF = 4 and

TL = 80 (Panel B.1.2). In the cases where the max test performs better, the difference in power

is often substantial. Under lagged causality with (d, TL, hMF ) = (0.8, 40, 12), for example, max

test power is 0.576 but Wald test has power is only 0.255 (Panel C.2.1). Similarly, max and Wald

tests have powers 0.907 and 0.498 under lagged causality with (d, TL, hMF ) = (0.8, 80, 24) (Panel

C.2.2). The apparent reason is the bootstrapped Wald test achieves a size corrected power that

approximates the size corrected power of the asymptotic test (cfr. Davidson and MacKinnon

(2006)). In simulations not reported here we find large to massive size distortions for the Wald

test, hence the bootstrapped version has sharp size and comparatively low power. Therefore, in

view of relatively sharp size for both tests, the max test dominates in general.

5.1.2 MF-VAR(2)

As a robustness check, we use observations drawn from a structural MF-VAR(2) NX(τL) =∑2
i=1MiX(τL−i)+η(τL) withm = 12. Relative to the MF-VAR(1) in (4.6), the extra coefficient

matrix M2 is parameterized as

M2 =

[
012×1 . . . 012×1 012×1

b24 . . . b13 0

]
.

The four causal patterns are non-causality : b = 024×1; decaying causality : bj = (−1)j−1 × 0.3/j

for j = 1, . . . , 24; lagged causality : bj = 0.3× I(j = 24) for j = 1, . . . , 24; and sporadic causality :

(b5, b12, b17, b19) = (−0.2, 0.1, 0.2,−0.35) and all other bj = 0.

Other quantities are similar to those used above: a = 0.2; d ∈ {0.2, 0.8}; cj = (−1)j−1×0.4/j

for j = 1, . . . , 12; q = 2; Wh = (1/h) × Ih; TL ∈ {40, 80}; and size is α = 0.05. Rejection

frequencies are similar when a = 0.8: see Table T.3 in the supplemental material Ghysels,

Hill, and Motegi (2015). The number of high frequency lags of xH used in the MF tests is

statistic W̃i. The bootstrapped p-value is pN = [1 +
∑N

i=1 I(W̃i ≥ W )]/(N + 1).
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hMF ∈ {16, 20, 24}, while the number of low frequency lags of aggregated xH used in LF tests

is hLF ∈ {1, 2, 3}.
Rejection frequencies are compiled in Table 3. There are no serious size distortions as in

the MF-VAR(1) case, and the relative performance of MF and LF tests is also the same. In

a vast majority of cases the MF max test has higher empirical power than the MF Wald test,

and the power advantage is often quite large. For example, fixing (d, TL, hMF ) = (0.8, 80, 24),

empirical power under lagged causality is 0.896 for the max test and 0.480 for the Wald test

(Panel C.2.2). There are two exceptions where the max test is less powerful than the Wald

test, but the power differences are negligible: 0.284 − 0.290 = −0.006 (Panel B.1.2: decaying

causality) and 0.621 − 0.655 = −0.034 (Panel D.2.2: sporadic causality). Therefore, again the

max test dominates, and it has an even greater advantage precisely in a model with greater

parameter proliferation. In general, therefore, the max test is best for MF high-to-low causality

tests.

5.2 Low-to-High Granger Causality

Our focus now is low-to-high causality c = [c1, . . . , c12]
′ in the structural MF-VAR(1) in (4.6)

with m = 12.

5.2.1 Design

We use the usual four causality patterns. In each case we need to be careful about how c

is transferred to the upper-right block [
∑1

i=1 d
1−ici, . . . ,

∑12
i=1 d

12−ici]
′ of A1, the low-to-high

causality pattern in the reduced form (4.7), where d is the AR(1) coefficient of xH . For non-

causality c = 012×1, the upper-right block of A1 is a null vector regardless of d. A similar pattern

arises for decaying causality cj = (−1)j−1×0.45/j for j = 1, . . . , 12, assuming d = 0.2. For lagged

causality cj = 0.4 × I(j = 12) for j = 1, . . . , 12, the upper-right block of A1 is identically c

regardless of d. In the case of sporadic causality (c3, c7, c10) = (0.4, 0.25,−0.5) a similar pattern

arises, assuming d = 0.2. Consult Figure 1 for a graphical representation.

We impose weak autoregressive properties a = d = 0.2 for xL and xH , and decaying high-

to-low causality with alternating signs: bj = (−1)j−1 × 0.2/j for j = 1, . . . , 12. Sample size is

TL ∈ {40, 80}.
As a benchmark, the Wald test is based on the MF näıve regression model (3.1) with a

bootstrapped p-value and 499 bootstrapped samples, and the MF max test is based on MF

parsimonious regression model (3.2).

In small samples TL = 40 the max test exhibits relatively large size distortions due to

the number of included high frequency lags. The asymptotic distribution is therefore a poor

approximation of the small sample distribution. In larger samples TL ≥ 120, however, size

distortions decrease precipitously: see the discussion below. In view of our relatively small

sample sizes, as a second max test we use the MF parsimonious regression models with a MIDAS

polynomial on the high frequency lags, as in (3.4), as an ad hoc attempt to tackle remaining
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parameter proliferation. We use the Almon polynomial of dimension s = 3 (cfr. Section 3.1). In

order to make a direct comparison with the Wald test, we also perform the Wald test on MF

näıve regression model (3.1) with lags of xH replaced with the Almon polynomial.

Besides the MF max test and MF Wald test, we perform the LF max test based on LF

parsimonious regression models:

xL(τL) = α1,jxL(τL − 1) +

hLF∑
k=1

βk,jxH(τL − k) + γjxH(τL + j) + uL,j(τL), j = 1, . . . , rLF . (5.1)

We do not exploit a MIDAS polynomial since hLF takes small values in our design. We consider

both stock and flow sampling for aggregating xH .

Finally, the LF bootstrapped Wald test is based on a LF näıve regression model:

xL(τL) = α1xL(τL − 1) +

hLF∑
k=1

βkxH(τL − k) +

rLF∑
j=1

γjxH(τL + j) + uL(τL), (5.2)

and 499 bootstrapped samples.

The estimated MF models use leads and lags of xH taken from hMF , rMF ∈ {4, 8, 12}, and
the estimated LF models use leads and lags of aggregated xH taken from hLF , rLF ∈ {1, 2, 3}.
We compute flat weighted max statistics, and use 1,000 draws from the asymptotic distribution

under low-to-high non-causality for p-value computation. The number of Monte Carlo samples

drawn is 5,000 for max tests and 1,000 for Wald tests, and size is fixed at 5%.

5.2.2 Results

Table 4 presents the results. First, the MF max test exhibits large (small) size distortions

when TL is 40 (80). At worst, empirical size is 0.225 at the 5% level (Panel A.2.1: TL = 80

and hMF = rMF = 24), and at best size is 0.058 (Panel A.2.1: TL = 80, hMF = 4 and

rMF = 8), logically since fewer parameters align with sharper empirical size. If TL = 80, then

sizes are between 0.058 and 0.097 for hMF ∈ {4, 8, 12}, generally revealing greater parameter

proliferation is aligned with a greater size distortion. If we increase the sample size to TL = 120,

then empirical size is much sharper: see Table T.4 in the supplemental material Ghysels, Hill,

and Motegi (2015).

Second, the max test with MIDAS polynomials exhibits relatively sharp empirical size, de-

spite the inherent mis-specification of the estimated model. The Wald test works well with or

without the MIDAS polynomials: without the mis-specified polynomials, empirical size is sharp

due to the bootstrapped p-value.

In the case of decaying causality (Panel B), we see a clear advantage of MF tests compared

to LF tests when hMF ∈ {4, 8, 12}. For example, when TL = 80 the MF max test without

MIDAS has size adjusted empirical power of at least 0.728-0.097 = 0.631 (see Panel A.2.1 for

size and B.2.1 for power), while the LF test has unadjusted empirical power at most at 0.137

across both stock and flow sampling (see Panel B.2.4: max test with flow sampling). In order
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to understand why, consider stock sampling first. As seen in (5.1) and (5.2), lead terms used

in those tests are xH(τL + 1, 12), xH(τL + 2, 12), . . . , xH(τL + rLF , 12) and all these terms have

small coefficients due to the decaying structure of true causality. The LF test statistics, in other

words, are missing the most important lead term xH(τL+1, 1) and thus suffer from a poor signal

relative to noise. In the case of flow sampling, averaging xH(τL + 1, 1) through xH(τL + 1, 12)

makes positive impacts and negative impacts offset each other, hence again there is a very poor

causation signal. This has been well documented in the literature: temporal aggregation can

obfuscate or eliminate true underlying causality.

Next, consider lagged causality (Panel C). Consider TL = 80 and hMF ≤ 12 so that size

distortions are less an issue. The MF tests have no or little power net of size, when rMF = 4

or rMF = 8. This is understandable since the only relevant term is xH(τL + 1, 12) by con-

struction. When rMF = 12 then power improves sharply, but parametric proliferation evidently

augments noise in the least squares estimator and therefore diminishes power in either max

or Wald test statistics. If TL = 80, for example, then the MF max test has empirical power

within [0.563, 0.581] without MIDAS and [0.582, 0.592] with MIDAS, while the MF Wald test

has empirical power within [0.415, 0.456] without MIDAS and [0.497, 0.516] with MIDAS (see

Panels C.2.1 and C.2.2). LF tests with stock sampling, by contrast, obtain much higher power,

within [0.683, 0.919] (see Panel C.2.3). This occurs precisely because the LF models contain the

relevant lead term xH(τL + 1, 12), and requires fewer estimated parameters.

Lastly, under sporadic causality (Panel D) MF tests exhibit very high power, especially

when the number of lead terms is rMF = 12 since this takes into account c10 = −0.5, the largest

coefficient in absolute value. When TL = 80, hMF ∈ {4, 8, 12} and rMF = 12, the MF max

test has size corrected power above 0.81 (0.87) without (with) a MIDAS polynomial (see Panels

D.2.1 and D.2.2). LF tests, by contrast, have no or negligible power in all cases. The low

frequency leads and lags of xH are too coarse to capture the complicated causality pattern with

unevenly-spaced lags, alternating signs, and non-decaying structure.

Finally, the max test has higher power than the Wald test in a strong majority of cases.

Hence, based on our simulation design, the MF max and Wald tests are roughly equally powerful

under decaying causality, but the max test is more powerful under lagged and sporadic causality.

Therefore, the max test again dominates overall as a test of causality when there is parameter

proliferation.15

6 Empirical Application

As an empirical illustration, we study Granger causality between a weekly term spread (short

and long term interest rate spread) and quarterly real GDP growth in the U.S. We analyze both

high-to-low causality (i.e. from spread to GDP) and low-to-high causality (i.e. from GDP to

spread), although we are particularly interested in the former. A decline in the interest rate

15In Table T.5 of the supplemental material Ghysels, Hill, and Motegi (2015), we try MF-VAR(2) as a data
generating process. The results are generally similar to the MF-VAR(1) case.
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spread has historically been regarded as a strong predictor of a recession, but recent events place

doubt on its use for such prediction. Recall that in 2005 the interest rate spread fell substantially

due to a relatively constant long-term rate and an increasing short-term rate (also known as

”Greenspan’s Conundrum”), yet a recession did not follow immediately. The subprime mortgage

crisis started nearly 2 years later, in December 2007, and therefore may not be directly related

to the 2005 plummet in the interest rate spread.

We use seasonally-adjusted quarterly real GDP growth as a business cycle measure. In order

to remove potential seasonal effects remaining after seasonal adjustment, we use annual growth

(i.e. 4 quarter log-difference ln(yt) − ln(yt−4)). The short and long term interests rates used

for the term spread are respectively the federal funds (FF) rate and 10-year Treasury constant

maturity rate. We aggregate each daily series into weekly series by picking the last observation

in each week (recall that interest rates are stock variables). The sample period is January 5,

1962 to December 31, 2013, covering 2,736 weeks or 208 quarters.16

Figure 2 shows the weekly 10-year rate, weekly FF rate, their spread (10Y - FF), and

quarterly GDP growth from January 5, 1962 through December 31, 2013. The shaded areas

represent recession periods defined by the National Bureau of Economic Research (NBER). In

the first half of the sample period, a sharp decline of the spread seems to be immediately followed

by a recession. In the second half of the sample period there appears to be a weaker association,

and a larger time lag between a spread drop and a recession.

Table 5 contains sample statistics. The 10-year rate is about 1% point higher than the FF

rate on average, while average GDP growth is 3.15%. The spread has a relatively large kurtosis

of 5.61, whereas GDP growth has a smaller kurtosis of 3.54.

The number of weeks contained in each quarter τL is not constant, which we denote as m(τL):

13 quarters have 12 weeks each, 150 quarters have 13 weeks each, and 45 quarters have 14 weeks

each. While the max test can be applied with varying m(τL), we simplify the analysis by forcing

a constant m = 12 by taking a sample average at the end of each τL, resulting in the following

modified spread {x∗H(τL, j)}12j=1:

x∗H(τL, j) =

xH(τL, j) for j = 1, . . . , 11,

1
m(τL)−11

∑m(τL)
k=12 xH(τL, k) for j = 12.

This modification gives us a dataset with TL = 208, m = 12, and thus T = mTL = 2, 496 high

frequency observations.

In view of our 52-year sample period, we implement a rolling window analysis with a window

width of 80 quarters (i.e. 20 years). The first subsample covers the first quarter of 1962 through

the fourth quarter of 1981 (written as 1962:I-1981:IV), the second one is 1962:II-1982:I, and

the last one is 1994:I-2013:IV, equaling 129 subsamples. The trade-off between small and large

window widths is that the latter is more likely to contain a structural break, but a 20 year window

16All data are downloaded from the Saint Louis Federal Reserve Bank data archive.
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allows us to include more leads and lags in our models. Furthermore, our simulation experiments

in Section 5.1.2 reveal our tests work well for similar parsimonious and näıve regression models

with TL = 80.

6.1 Granger Causality from Interest Rate Spread to GDP Growth

We first consider causality from the high frequency interest rate spread (x∗H) to low frequency

GDP growth (xL). We use an MF-VAR(2) specification since the resulting residuals from the

näıve model (6.2), below, appear to be serially uncorrelated (all models also include a constant

term). The MF max test operates on parsimonious regression models:

xL(τL) = α0,j +

2∑
k=1

αk,jxL(τL − k) + βjx
∗
H(τL − 1, 12 + 1− j) + uL,j(τL). j = 1, . . . , 24, (6.1)

which includes two quarters of lagged GDP growth (xL) hence q = 2, and 24 weeks or about 2

quarter) of lagged interest rate spread (x∗H) hence hMF = 24.

The MF Wald test operates on:

xL(τL) = α0 +
2∑

k=1

αkxL(τL − k) +
24∑
j=1

βjx
∗
H(τL − 1, 12 + 1− j) + uL(τL). (6.2)

The LF max test is based on parsimonious models:

xL(τL) = α0,j +

2∑
k=1

αk,jxL(τL − k) + βjx
∗
H(τL − j) + uL,j(τL), j = 1, 2, 3, (6.3)

which has two quarters of lagged xL (i.e. q = 2) and three quarters of lagged x∗H (i.e. hLF = 3).

Since the interest rate spread is a stock variable, we let the aggregated high frequency variable

be x∗H(τL) = x∗H(τL, 12). Finally, the LF Wald test is performed on:

xL(τL) = α0 +
2∑

k=1

αkxL(τL − k) +
3∑

j=1

βjx
∗
H(τL − j) + uL(τL). (6.4)

Wald statistic p-values are computed based on Gonçalves and Killian’s (2004) bootstrap,

with N = 999 replications. Max statistic p-values are computed based on 100,000 draws from

the limit distributions under non-causality.

We perform the Ljung-Box Q tests of serial uncorrelatedness of the least squares residuals

from the MF model (6.2) and LF model (6.4) in order to check whether these models are well

specified. Since the true innovations are not likely to be independent, we use Horowitz, Lobato,

Nankervis and Savin’s (2006) double blocks-of-blocks bootstrap with block size b ∈ {4, 10, 20}.
The number of bootstrap samples is M1 = 999 for the first stage and M2 = 249 for the second

stage. In each of the 129 windows and for each model we implement the Q tests with 4, 8, or

12 lags.
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When b = 4, the null hypothesis of residual uncorrelatedness in the MF case is rejected at

the 5% level in {13, 5, 1} windows out of 129 for tests with {4, 8, 12} lags, suggesting the MF

model is well specified. In the LF case, the null hypothesis is rejected at the 5% level in {51,
23, 33} windows with {4, 8, 12} lags, hence the LF model may not be well specified. For larger

block size b ∈ {10, 20}, the MF model again produces fewer rejections than the LF model. (See

Table T.6 of Ghysels, Hill, and Motegi (2015) for complete results.) Overall, the MF model

seems to yield a better fit than the LF model in terms of residual uncorrelatedness.

Figure 3 plots p-values for tests of non-causality over the 129 subsamples. Unless otherwise

stated, the significance level is 5%. All tests except for the MF Wald test find significant causal-

ity in early periods. The MF max test detects significant causality prior to 1981:IV-2001:III,

the LF max test detects significant causality prior to 1980:III-2000:II, and the LF Wald test

detects significant causality prior to 1974:III-1994:II. The MF max test has the longest period

of significant causality, arguably due to its high power, as shown in Section 5.1. These three

tests all agree that there is non-causality in recent periods, possibly reflecting some structural

change in the middle of the entire sample.

The MF Wald test, in contrast, suggests that there is significant causality at the 5% level

only after subsample 1990:III-2010:II, which is somewhat counter-intuitive. This result may

stem from parameter proliferation. As seen from (6.1)-(6.4), the MF näıve regression model

has many more parameters than any other model. The MF Wald test does, however, give weak

evidence of causality through the 1973:II-1993:I, where we reject non-causality at levels below

10% for a few early windows. In view of the intuitive test results, the MF max test seems to be

preferred to the MF Wald test when the ratio of sampling frequencies m is large.

We also implement the four tests for the full sample covering 52 years from January 1962

through December 2013. We try models with more lags than in the rolling window analysis,

taking advantage of the greater sample size: (q, hMF , hLF ) = (4, 48, 6). This specification means

that (i) each model has 4 quarters of low frequency lags of xL, (ii) each mixed frequency model

has 48 weeks of high frequency lags of x∗H , and (iii) each low frequency model has 6 quarters of

low frequency lags of x∗H . The number of bootstrap replications for the Wald tests is 9,999.

We first implement the bootstrapped Ljung-Box Q test with 4, 8, or 12 lags on the least

squares residuals from MF and LF models. When block size is b = 4, p-values from the MF

model are {.107, .180, .084} for lags {4, 8, 12}. The null hypothesis of residual uncorrelatedness
is not rejected at the 5% level for any lag (although it is rejected at the 10% level for lag 12).

The MF model is therefore well specified in general. P-values from the LF model are {.021,
.066, .024} for lags {4, 8, 12}, suggesting that the LF model is not well specified. Similar results

appear when we change the block size to 10 or 20. As in the rolling window analysis, the MF

model yields a better fit than the LF model in terms of residual uncorrelatedness.

The p-value for the MF max test is .000, hence we strongly reject causality. Conversely,

we fail to reject non-causality at any conventional level by the MF Wald test (p-value .465),

possibly due to lower power relative to the max test in view of parameter proliferation. The LF
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p-values are .001 for the max test and .086 for the Wald test, demonstrating stronger evidence

of causality by the max test, and the strongest by the MF max test. Overall, there is strong

evidence for causality from interest rate spread to GDP based on the max test, and only weak

or partial evidence based on Wald tests.

6.2 Granger Causality from GDP Growth to Interest Rate Spread

We now consider causality from GDP growth to the interest rate spread, hence low-to-high
causality. The MF max test is either based on the unrestricted parsimonious regression models:

xL(τL) = α0,j +

2∑
k=1

αk,jxL(τL − k) +

24∑
k=1

βkx
∗
H(τL − 1, 12 + 1− k) + γjx

∗
H(τL + 1, j) + uL,j(τL), j = 1, . . . , 24,

or the restricted models with Almon polynomial ωk(π) of order 3:

xL(τL) = α0,j +

2∑
k=1

αk,jxL(τL − k) +

24∑
k=1

ωk(π)x∗
H(τL − 1, 12+ 1− k) + γjx

∗
H(τL +1, j) + uL,j(τL), j = 1, . . . , 24.

We include two quarters of lagged xL (i.e. q = 2), 24 weeks of lagged x∗H (i.e. hMF = 24), and

24 weeks of led x∗H (i.e. rMF = 24).

The Wald test is based on either an unrestricted näıve regression model:

xL(τL) = α0 +
2∑

k=1

αkxL(τL − k) +
24∑
k=1

βkx
∗
H(τL − 1, 12 + 1− k) +

24∑
j=1

γjx
∗
H(τL + 1, j) + uL(τL),

or a restricted model with Almon polynomial ωk(π):

xL(τL) = α0 +
2∑

k=1

αkxL(τL − k) +
24∑
k=1

ωk(π)x
∗
H(τL − 1, 12 + 1− k) +

24∑
j=1

γjx
∗
H(τL + 1, j) + uL(τL).

The LF max test is based on the unrestricted parsimonious regression models xL(τL) = α0,j

+
∑2

k=1 αk,jxL(τL − k) +
∑3

k=1 βk,jx
∗
H(τL − k) + γjx

∗
H(τL + j) + uL,j(τL), j = 1, 2, 3. Since

the rate spread is a stock variable, we let x∗H(τL) = x∗H(τL, 12). We include two quarters of

lagged xL (i.e. q = 2), three quarters of lagged x∗H (i.e. hLF = 3), and three quarters of lead

x∗H (i.e. rLF = 3). Finally, the LF Wald test uses the näıve regression model: xL(τL) = α0 +∑2
k=1 αkxL(τL − k) +

∑3
k=1 βkx

∗
H(τL − k) +

∑3
j=1 γjx

∗
H(τL + j) + uL(τL).

As usual, Wald test p-values are bootstrapped with N = 999 bootstrap samples, and the max

test p-values are computed using 100,000 draws from limit distributions under non-causality.

Bootstrapped Ljung-Box Q tests with lags 4, 8, or 12 suggest that the MF models produce

uncorrelated residuals in more windows than the LF model.17

Figure 4 plots p-values for the causality tests over the 129 subsamples. While MF tests

17When the block size is b = 4, the MF model without a MIDAS polynomial rejects the null hypothesis of
uncorrelated residuals at the 5% level in {4, 8, 5} windows out of 129 for lags {4, 8, 12}. When a MIDAS
polynomial is used, the null hypothesis is rejected in {25, 14, 16} windows. In the LF model the null hypothesis
is rejected in {31, 17, 26} windows. If we raise the block size to 10 or 20, rejections occur in only a few windows
across all models. See Table T.6 of Ghysels, Hill, and Motegi (2015) for complete results.
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without MIDAS polynomial find significant causality in some subsamples (cfr. Panels (a) and

(b)), MF tests with MIDAS polynomial find non-causality in all subsamples (cfr. Panels (c)

and (d)). The LF max test shows significant causality in only a few subsamples around 1984:I-

2003:IV (cfr. Panel (e)). The LF Wald test shows significant causality starting in subsample

1989:IV-2009:III, amounting to roughly the last 15% of the subsamples (cfr. Panel (f)).

Finally, we conduct the four tests on the full sample based on one specification

(q, hMF , rMF , hLF , rLF ) = (2, 24, 24, 3, 3), hence: (i) each model has 2 quarters of low frequency

lags of xL, (ii) each MF model has 24 weeks of high frequency leads and lags of x∗H each, and

(iii) each LF model has 3 quarters of low frequency leads and lags of x∗H each. Considering that

we already have 52 total leads and lags, we do not treat another specification with more lags.

The number of bootstrap replications for the Wald test is 9,999. Bootstrapped Ljung-Box Q

tests again suggest that residuals from the MF models have a weaker degree of autocorrelation

than residuals from the LF model.18

The MF max and Wald tests without a MIDAS polynomial have p-values .036 and .261,

respectively, and with a MIDAS polynomial the p-values are .090 and .689. The LF max and

Wald test have p-values .098 and .222. Therefore, the max test leads to the strongest evidence

for causality, and overall the clearest evidence comes from the max test in a model without a

MIDAS polynomial.

7 Conclusions

This paper proposes a new mixed frequency Granger causality test that achieves high power

even when the ratio of sampling frequencies m is large. This is accomplished by exploiting

multiple parsimonious regression models where the jth model regresses a low frequency variable

xL onto the jth lag or lead of a high frequency variable xH for j ∈ {1, . . . , h}. Our resulting max

test statistic then operates on the largest jth lag or lead estimated parameter. This method of

inference extends to any regression setting where many parameters have the value zero under

the null hypothesis, and should therefore be of general interest when many possibly irrelevant

regressors are available.

Although the max test statistic follows a non-standard asymptotic distribution under the

null hypothesis of non-causality, a p-value can be easily computed by drawing a large number

observations from the null limit distribution. We prove the MF max test obtains an asymptotic

power of one for a test of non-causality from high to low frequency, but consistency in the case

of low to high frequency remains as an open question.

Our max test has wider applicability. One can easy generalize the test for an increasing

number of parameters, and would therefore apply to, for example, nonparametric regression

18When the block size is b = 4, the p-values for the MF model without a MIDAS polynomial are {.076, .280,
.054} for lags {4, 8, 12}. When a MIDAS polynomial is used the p-values are {.035, .179, .019}. In the LF model
the p-values are {.043, .041, .001}. If we raise the block size to 10 or 20, we observe larger p-values (i.e. weaker
rejections of the null hypothesis of residual uncorrelatedness) in general.
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models using Fourier flexible forms (Gallant and Souza (1991)), Chebyshev, Laguerre or Hermite

polynomials (see e.g. Draper, Smith, and Pownell (1966)), and splines (Rice and Rosenblatt

(1983), Friedman (1991)) - where our test has use for determining whether a finite or infinite

number of terms are redundant. Similarly, a max test of white noise is another application since

bootstrapped Q-tests have comparatively lower power. These are only a few examples involving

a large - possibly infinite - set of parametric zero restrictions. We leave this as an area of future

research.

In terms of the specific application in this paper - we can summarize the findings as follows.

Through local asymptotic power analysis and Monte Carlo simulations, we compare the max

and Wald tests based on mixed or low frequency data. We show that MF tests are better able

to detect complex causal patterns than LF tests in both local asymptotics and finite samples.

The MF max and Wald tests have roughly the same local asymptotic power, but the max test

is generally more powerful, and in many cases substantially more powerful, than the Wald test

in finite samples since (i) only bootstrapping the Wald test can correct for size distortions due

to parameter proliferation, and (ii) size-corrected bootstrapped power for the Wald test is only

as good as size-corrected asymptotic test power, which is generally low due to the asymptotic

test size distortions.

We study causality patterns between a weekly interest rate spread and real GDP growth

in the U.S., over rolling sample windows. The MF max test yields an intuitive result that the

interest rate spread causes GDP growth until about the year 2000, after which causality vanishes,

while Wald and LF tests yield mixed results.
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Technical Appendices

A Double Time Indices

Consider low and high frequency variables xL and xH . xL(τL) obviously only requires a single time index
τL ∈ Z. xH(τL, j), however, has two time indices: the low frequency increments τL ∈ Z and the higher
frequency increment j ∈ {1, . . . ,m}, e.g. m = 3 for low frequency quarter τL and high frequency month
j ∈ {1, . . . ,m}.

It is often useful to use a notation convention that allows the second argument of xH to be any
integer. It is, for example, understood that xH(τL, 0) = xH(τL − 1,m), xH(τL,−1) = xH(τL − 1,m− 1),
and xH(τL,m + 1) = xH(τL + 1, 1). In general, the following notation can be used as a high frequency
simplification:

xH(τL, j) =

{
xH

(
τL −

⌈
1−j
m

⌉
,m

⌈
1−j
m

⌉
+ j

)
if j ≤ 0

xH

(
τL +

⌊
j−1
m

⌋
, j −m

⌊
j−1
m

⌋)
if j ≥ m+ 1

(A.1)

⌈x⌉ is the smallest integer not smaller than x, while ⌊x⌋ is the largest integer not larger than x. Any
integer put in the second argument of xH can be transformed to a natural number between 1 and m
by modifying the first argument appropriately. Indeed, m

⌈
1−j
m

⌉
+ j ∈ {1, . . . ,m} when j ≤ 0, and

j −m
⌊
j−1
m

⌋
∈ {1, . . . ,m} when j ≥ m+ 1.

Since the high frequency simplification allows both arguments of xH to be any integer, we can verify
the following low frequency simplification:

xH(τL − i, j) = xH(τL, j − im), ∀i, j, τL ∈ Z. (A.2)

Therefore, any lag or lead i in the first argument of xH can be deleted by modifying the second argument
appropriately. The second argument may therefore become an integer that is non-positive or larger than
m, but such a case is covered by the high frequency simplification.

B Proof of Theorem 2.1

Parsimonious regression model j is written as xL(τL) = xj(τL − 1)′θj + uL,j(τL), where xj(τL − 1) ≡
[xL(τL − 1), . . . , xL(τL − q), xH(τL − 1,m+ 1− j)]′ and θj ≡ [α1,j , . . . , αq,j , βj ]

′. Write θ ≡ [θ′
1, . . . ,θ

′
h]

′.
Recall WTL,h is an h × h diagonal matrix whose diagonal elements are the stochastic max test

weightswTL,1, . . . , wTL,h. Similarly, let Wh be an h× h diagonal matrix whose diagonal elements are the
max test weight non-random probability limits w1, . . . , wh.

In order to characterize the distribution limit of T̂ ≡ max1≤j≤h(
√
TLwTL,j β̂j)

2 , we must show

convergence of the finite dimensional distributions of [wTL,j β̂j ]
h
j=1 and tightness (e.g. Theorem 7.1 in

Billingsley (1999)). Since j is discrete valued, tightness is trivial (e.g. Theorem 1.3 in Billingsley (1999)).

Hence, we only need the to show the finite dimensional distributions for any h are
√
TLWTL,hβ̂

d→
N(0h×1,V ) where V ≡ σ2

LWhRSR′Wh. The claim max1≤j≤h(
√
TLwTL,j β̂j)

2 d→ max1≤j≤h N 2
j , where

N = [N1, . . . ,Nh]
′ is a vector-valued random variable drawn from N(0h×1,V ), then follows instantly

from the continuous mapping theorem.

B.1 Convergence in Finite Dimensional Distributions

It is easier to work with the identity β = Rθ, where the selection matrix R ∈ Rh×(q+1)h satisfies Rj,(q+1)j

= 1 for j = 1, . . . , h and all other elements are zero. Let θ̂j be the least squares estimators and define θ̂ ≡
[θ̂′

1, . . . , θ̂
′
h]

′. We begin by deriving the finite dimensional distributions of {θ̂j}hj=1 under H0 : b = 0pm×1.
Under H0 the parsimonious model parameters β ≡ [β1, . . . , βh]

′ = 0, so define θ0,j ≡ [α1,j , . . . , αq,j , 0]
′

and θ0 ≡ [θ′
0,1, . . . ,θ

′
0,h]

′.

Under the null we may write xL(τL) = xj(τL − 1)′θ0,j + ϵL(τL). Therefore, by the construction of θ̂j
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for the parsimonious model (2.6), and law of large numbers (B.4):

√
TL

(
θ̂j − θ0,j

)
=

√
TL

 TL∑
τL=1

xj(τL − 1)xj(τL − 1)′

−1
TL∑

τL=1

xj(τL − 1)ϵL(τL) (B.1)

=
(
E
[
xj(τL − 1)xj(τL − 1)′

])−1 1√
TL

TL∑
τL=1

xj(τL − 1)ϵL(τL) + op(1)

= Γ−1
j,j

1√
TL

TL∑
τL=1

xj(τL − 1)ϵL(τL) + op(1).

Therefore, for any λ = [λ′
1, . . . ,λ

′
h]

′, λ′λ = 1:

λ′×
√
TL(θ̂−θ0) =

1√
TL

TL∑
τL=1

h∑
j=1

λ′
jΓ

−1
j,jxj(τL−1)ϵL(τL)+op(1) =

1√
TL

TL∑
τL=1

X(τL−1,λ)ϵL(τL)+op(1), (B.2)

say. Now define Γj,i = E[xj(τL − 1)xi(τL − 1)′], and note that:

E
[
X(τL − 1,λ)2

]
=

h∑
j=1

h∑
i=1

λ′
jΓ

−1
j,jΓj,iΓ

−1
i,i λi =

h∑
j=1

h∑
i=1

λ′
jΣj,iλi = λ′Sλ,

where S ∈ R(q+1)h×(q+1)h has (i, j) block Si,j = Σi,j , and is Σi,j defined by (2.9). Under Assumptions 2.1-2.3 it
is easily verified that S is positive definite. Now apply central limit theorem (B.5) to (B.2) in order to obtain that

λ′ ×
√
TL (θ̂−θ0)

d→ N(0,λ′(σ2
LS) λ). Hence, by the Cramér-Wold theorem

√
TL(θ̂−θ0)

d→ N(0(q+1)h×1, σ
2
LS).

Now use wTL,j
p→ wj and the constructions β̂ = Rθ̂ and 0 = β = Rθ0 under H0 to deduce

√
TLWTL,hβ̂ =

√
TLWTL,hR(θ̂ − θ0) =

√
TLWhR(θ̂ − θ0) + op(1)

d→ N(0h×1,V ) (B.3)

where V ≡ σ2
LWhRSR′Wh. Finally, V is positive definite by the positive definiteness of S, the assumption

Wh ̸= 0, and by the construction of R.

B.2 LLN and CLT

The Assumption 2.3 α-mixing property implies mixing in the ergodic sense, hence ergodicity. Therefore, by
stationarity, square integrability, and the ergodic theorem:

1

TL

TL∑
τL=1

xj(τL − 1)xj(τL − 1)′
p→ E

[
xj(τL − 1)xj(τL − 1)′

]
. (B.4)

Next, we want a central limit theorem for 1/
√
TL

∑TL
τL=1

∑h
j=1 r

′
jxj(τL−1)ϵL(τL) for {rj}hj=1, r

′
jrj = 1 under

H0. Under H0 : b = 0pm×1 it follows xL(τL) = XL(τL − 1)′a + ϵL(τL) with mds ϵL(τL), and by Assumption 2.3

and measurability,
∑h

j=1 r
′
jxj(τL − 1)ϵL(τL) is α-mixing with coefficients

∑∞
h=0 α2h < ∞. Further, by the mds

property
∑h

j=1 r
′
jxj(τL − 1)ϵL(τL) is square integrable white noise, measurable with respect to strictly increasing

σ-fields FτL , and therefore has variance

E


 h∑

j=1

r′jxj(τL − 1)

2

ϵL(τL)

 =
h∑

i,j=1

r′jE [xj(τL − 1)xi(τL − 1)′] ri × σ2
L =

h∑
i,j=1

r′jΓj,iri × σ2
L > 0.

Hence
∑h

j=1 r
′
jxj(τL − 1)ϵL(τL) has a spectral density f(λ) that satisfies f(0) > 0. In view of Theorem 1.a of

Bradley (1993) it therefore follows that Theorem 2.2 of Ibragimov (1975) applies, hence

1√
TL

TL∑
τL=1

h∑
j=1

r′
jxj(τL − 1)ϵL(τL)

d→ N

(
0,

h∑
i,j=1

r′
jΓj,iri × E

[
ϵ2L(τL)

])
. (B.5)
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C Proof of Theorem 2.2

The max test statistic T̂ ≡ max1≤t≤h(
√
TLwTL,j β̂j)

2 operates on a discrete valued stochastic function

gTL
(j) ≡ wTL,j β̂j . Therefore, weak convergence for {gTL

(j) : j ∈ {1, ..., h}} is identical to convergence
in the finite dimensional distributions of {gTL

(j) : j ∈ {1, ..., h}}, cfr. Theorem 1.3 in Billingsley (1999).
Hansen’s (1996) proof of his Theorem 2 therefore carries over to prove the present claim.

D Proof of Theorem 2.3

Recall the parsimonious regression model j is xL(τL) = xj(τL − 1)′θj + uL,j(τL). In view of stationarity,

square integrability, and ergodicity (see Appendix B), the least squares estimator satisfies θ̂j
p→ θ∗

j , where:

θ∗
j = [E [xj(τL − 1)xj(τL − 1)′]]

−1
E [xj(τL − 1)xL(τL)] .

Now, recall the DGP xL(τL) = XL(τL − 1)′a+XH(τL − 1)′b+ ϵL(τL). Therefore:

θ∗
j =

[
E
[
xj(τL − 1)xj(τL − 1)′

]]−1
E
[
xj(τL − 1)

{
XL(τL − 1)′a+XH(τL − 1)′b+ ϵL(τL)

}]
=
[
E
[
xj(τL − 1)xj(τL − 1)′

]]−1 {
E
[
xj(τL − 1)XL(τL − 1)′

]
a+ E

[
xj(τL − 1)XH(τL − 1)′

]
b
}
,

(D.1)

where the second equality holds from the mds assumption of ϵL. By Assumption 2.4, the number of
autoregressive lags q in the parsimonious models (2.6) is at least as large as the true lag order p in the
true data generating process (2.3). Therefore, the low frequency regressor set from (2.3) satisfies:

XL(τL − 1) = [Ip, 0p×(q−p+1)]xj(τL − 1) (D.2)

hence

E [xj(τL − 1)XL(τL − 1)′] = E [xj(τL − 1)xj(τL − 1)′]

[
Ip

0(q−p+1)×p

]
. (D.3)

Substituting (D.3) into (D.1), we obtain the desired result (2.10).

E Proof of Theorem 2.4 and Example 2.2

Proof of Theorem 2.4 Pick the last row of (2.10). The lower left block of {E [xj(τL − 1)xj(τL − 1)′]}−1

is

−n−1
j E

[
xH(τL − 1,m+ 1− j)X

(q)
L (τL − 1)′

] [
E
[
X

(q)
L (τL − 1)X

(q)
L (τL − 1)′

]]−1

while the lower right block is simply n−1
j , where

nj ≡ E
[
xH(τL − 1,m+ 1− j)2

]
− E

[
xH(τL − 1,m+ 1− j)X

(q)
L (τL − 1)′

]{
E
[
X

(q)
L (τL − 1)X

(q)
L (τL − 1)′

]}−1

× E
[
X

(q)
L (τL − 1)xH(τL − 1,m+ 1− j)

]
.

Hence, the last row of [E[xj(τL − 1)xj(τL − 1)′]]−1× E[xj(τL − 1)XH(τL − 1)′] appearing in (2.10) is
n−1
j d′

j , where

dj ≡ E [XH(τL − 1)xH(τL − 1,m+ 1− j)]

− E
[
XH(τL − 1)X

(q)
L (τL − 1)′

]{
E
[
X

(q)
L (τL − 1)X

(q)
L (τL − 1)′

]}−1

× E
[
X

(q)
L (τL − 1)xH(τL − 1,m+ 1− j)

]
.

(E.1)
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If β∗ = 0h×1 then n−1
j d′

jb = 0 in view of (2.10). Since nj is a nonzero finite scalar for any j = 1, . . . , h by
the nonsingularity of E [xj(τL − 1)xj(τL − 1)′] , it follows d′

jb = 0. Stacking these h equations, we have
that Db = 0h×1 and thus b′D′Db = 0, where D ≡ [d1, . . . ,dh]

′.
The claim b = 0pm×1 follows provided we show that D′D is positive definite. It is sufficient to

show that D is of full column rank pm. Since we are assuming that h ≥ pm, we only have to show that
Dpm ≡ [d1, . . . ,dpm]′, the first pm rows of D, is of full column rank pm or equivalently non-singular.
Equation (E.1) implies that

Dpm =E
[
XH(τL − 1)XH(τL − 1)′

]
− E

[
XH(τL − 1)X

(q)
L (τL − 1)′

] [
E
[
X

(q)
L (τL − 1)X

(q)
L (τL − 1)′

]]−1

E
[
X

(q)
L (τL − 1)XH(τL − 1)′

]
.

Now define

∆ ≡ E

[[
X

(q)
L (τL − 1)

XH(τL − 1)

] [
X

(q)
L (τL − 1)′ XH(τL − 1)′

]]
.

∆ is trivially non-singular by Assumption 2.1. But Dpm is the Schur complement of ∆ with respect to

E[X
(q)
L (τL − 1)X

(q)
L (τL − 1)′]. Therefore, by the classic argument of partitioned matrix inversion, Dpm

is non-singular as desired. QED

Proof of Example 2.2 We require inverses of Γ1,1 ≡ E[x1(τL − 1)x1(τL − 1)′], where x1(τL − 1) =
[xL(τL − 1), xH(τL − 1, 2)]′ as defined in (2.6) and (2.10, and Γ2,2 = E[x2(τL − 1)x2(τL − 1)′], where
x2(τL − 1) = [xL(τL − 1), xH(τL − 1, 1)]′. By construction Γ2,2 = Γ1,1. Under (2.11) we have E[xH(τL −
1, 1)2] = E[xH(τL − 1, 2)2] = 1, E[xL(τL − 1)2] = 1/ρ2, and E[ xL(τL − 1) xH(τL − 1, 2) ] = E [ (− 1

ρ

xH(τL − 2, 1) + xH(τL − 2, 2) + ϵL(τL − 1)) xH(τL − 1, 2)] = 0, hence

Γ1,1 =

[
1/ρ2 0
0 1

]
and Γ−1

1,1 =

[
ρ2 0
0 1

]
Next, recall XH(τL − 1) = [xH(τL − 1, 2), xH(τL − 1, 1)]′ in (2.3). Then

C1 ≡ E [x1(τL − 1)XH(τL − 1)′]

=

[
E[xL(τL − 1)xH(τL − 1, 2)] E[xL(τL − 1)xH(τL − 1, 1)]

E[xH(τL − 1, 2)xH(τL − 1, 2)] E[xH(τL − 1, 2)xH(τL − 1, 1)]

]
=

[
0 0
1 ρ

]
and

C2 ≡ E [x2(τL − 1)XH(τL − 1)′]

=

[
E[xL(τL − 1)xH(τL − 1, 2)] E[xL(τL − 1)xH(τL − 1, 1)]

E[xH(τL − 1, 1)xH(τL − 1, 2)] E[xH(τL − 1, 1)xH(τL − 1, 1)]

]
=

[
0 0
ρ 1

]
.

Now use (2.10) to deduce:[
α∗
1,1

β∗
1

]
=

[
ρ2 0
0 1

] [
0 0
1 ρ

] [
1

−1/ρ

]
=

[
0
0

]
and

[
α∗
1,2

β∗
2

]
=

[
ρ2 0
0 1

] [
0 0
ρ 1

] [
1

−1/ρ

]
=

[
0

ρ− 1/ρ

]
.

Hence β∗
1 = 0 and β∗

2 = ρ − 1/ρ ̸= 0 since |ρ| < 1. Therefore, if h = 1 then the MF max test statistic
T̂ converges to the Theorem 2.1 asymptotic null distribution, resulting in no power (above the nominal

size). However, h = 2 and assign positive weight w2 > 0 to β̂2, then T̂ p→ ∞. QED
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F Proof of Theorem 4.1

This argument mirrors the proof of Theorem 2.1. The DGP under HL
1 : b = (1/

√
TL)ν is described in

(4.1). Hence (B.1) becomes

√
TL(θ̂j − θ0) = Γ−1

j,jCjν + Γ−1
j,j (1/

√
TL)

TL∑
τL=1

xj(τL − 1)ϵL(τL) + op(1),

where Γj,j = E[xj(τL − 1)xj(τL − 1)′] and Cj = E[xj(τL − 1)XH(τL − 1)′]. Repeating (B.2), we get

λ′×
√
TL(θ̂− θ̄0)

d→ N(λ′u, λ′(σ2
LΣ)λ), for any λ′λ = 1, where u ≡ [(Γ−1

1,1C1)
′, · · · , (Γ−1

h,hCh)
′]′ν, hence

by the Cramér-Wold theorem
√
TL(θ̂ − θ̄0)

d→ N(u, σ2
LΣ). Now repeat (B.3) to get

√
TLWTL,hβ̂

d→
N(µ,V ), where µ = WhRu and V = σ2

LWhRΣR′Wh. The remainder of the proof proceeds along the
lines of the proof of Theorem 2.1.

G Proof of Lemma 4.2

We exploit covariance stationarity throughout without explicitly stating so. Recall:

Υk ≡ E[X(τL)X(τL − k)′]

=


E[xH(τL, 1)xH(τL − k, 1)] . . . E[xH(τL, 1)xH(τL − k,m)] E[xH(τL, 1)xL(τL − k)]

...
. . .

...
...

E[xH(τL,m)xH(τL − k, 1)] . . . E[xH(τL,m)xH(τL − k,m)] E[xH(τL,m)xL(τL − k)]
E[xL(τL)xH(τL − k, 1)] . . . E[xL(τL)xH(τL − k,m)] E[xL(τL)xL(τL − k)]

 (G.1)

for k ≥ 0, and Υk = Υ′
−k for k < 0.

We have for Γj,i:

Γj,i ≡ E[xj(τL − 1)xi(τL − 1)′] = E[xj(τL)xi(τL)
′]

= E


xL(τL)

...
xL(τL − (q − 1))
xH(τL,m+ 1− j)

 [
xL(τL) . . . xL(τL − (q − 1)) xH(τL,m+ 1− i)

]
.

(G.2)

Since j and i may be larger than m, the second argument of xH may be smaller than 1, hence it is not
immediately clear which element of Γj,i is identical to which element of Υk. In order to ensure that the
second argument of xH lies in {1, . . . ,m}, we use the high frequency simplification (A.1):

xH(τL,m+ 1− j) = xH

(
τL −

⌈
1− (m+ 1− j)

m

⌉
,m

⌈
1− (m+ 1− j)

m

⌉
+ (m+ 1− j)

)
= xH

(
τL −

⌈
j −m

m

⌉
,m

⌈
j −m

m

⌉
+m+ 1− j

)
= xH(τL − f(j), g(j)),

(G.3)

where the last equality follows from the definitions f(j) ≡ ⌈(j −m)/m⌉ and g(j) ≡ mf(j) +m+ 1− j.
Note that f(j) ≥ 0 and g(j) ∈ {1, . . . ,m} for any j as desired. Substituting (G.3) into (G.2), Γj,i can be
rewritten as follows.


E[xL(τL)xL(τL)] . . . E[xL(τL)xL(τL − (q − 1))] E[xH (τL − f(i), g(i))xL(τL)]

.

.

.
.
.
.

.

.

.

.

.

.
E[xL(τL − (q − 1))xL(τL)] . . . E[xL(τL − (q − 1))xL(τL − (q − 1))] E[xH(τL − f(i), g(i))xL(τL − (q − 1))]

E[xH (τL − f(j), g(j))xL(τL)] . . . E[xH (τL − f(j), g(j))xL(τL − (q − 1))] E[xH (τL − f(j), g(j))xH (τL − f(i), g(i))]

 . (G.4)

Now consider how Γj,i relates to Υk, and take as an example E[xH(τL − f(j), g(j)) xL(τL − (q − 1)) ],
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the (q + 1, q) element of Γj,i. There are two cases: f(j) ≥ q − 1 or f(j) < q − 1. For the first case:

E[xH(τL − f(j), g(j))xL(τL − (q − 1))] = E[xH(τL − (q − 1)− (f(j)− (q − 1)), g(j))xL(τL − (q − 1))]

= E[xH(τL − (f(j)− (q − 1)), g(j))xL(τL)] = Υf(j)−(q−1)(K, g(j)),

where Υf(j)−(q−1)(K, g(j)) denotes the (K, g(j)) element of Υf(j)−(q−1), and the third equality follows
from (G.1). For the second case:

E[xH(τL − f(j), g(j))xL(τL − (q − 1))] = E[xH(τL − f(j), g(j))xL(τL − f(j)− (q − 1− f(j)))]

= E[xH(τL, g(j))xL(τL − (q − 1− f(j)))]

= Υ(q−1)−f(j)(g(j),K) = Υf(j)−(q−1)(K, g(j)).

where the third equality follows from (G.1). Combine the two cases to deduceE[xH(τL−f(j), g(j))xL(τL−
(q−1))] = Υf(j)−(q−1)(K, g(j)) for any j. Now apply the same argument to each element of Γj,i appearing
in (G.4) to deduce the claimed representations of Γj,i in (4.3).

Next, consider Cj for j ∈ {1, . . . , h}. We have:

Cj ≡ E[xj(τL − 1)XH(τL − 1)′] = E[xj(τL)XH(τL)
′]

= E


xL(τL)

...
xL(τL − (q − 1))
xH(τL,m+ 1− j)

 [
xH(τL,m+ 1− 1) . . . xH(τL,m+ 1− pm)

]
.

Since the second argument of xH may be non-positive, we apply the high frequency simplification (G.3)
to get:

Cj =


E[xL(τL)xH(τL − f(1), g(1))] . . . E[xL(τL)xH(τL − f(pm), g(pm))]

.

..
. . .

.

.

.
E[xL(τL − (q − 1))xH(τL − f(1), g(1))] . . . E[xL(τL − (q − 1))xH(τL − f(pm), g(pm))]

E[xH(τL − f(j), g(j))xH(τL − f(1), g(1))] . . . E[xH(τL − f(j), g(j))xH(τL − f(pm), g(pm))]

 .

We now map each element of Cj to an appropriate element of Υk. Consider E[xL(τL − (q − 1))xH(τL −
f(pm), g(pm))], the (q, pm) element of Cj , as an example. In view of (G.4), this quantity is equal to the
(q+1, q) element of Γpm,i with an arbitrary i. We already know from (4.3) that the (q+1, q) element of
Γpm,i is equal to Υf(pm)−(q−1)(K, g(pm)). Applying the same argument to each element of Cj to complete
the proof.
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Tables and Figures

Table 1: Local Asymptotic Power of High-to-Low Causality Tests

A. Mixed Frequency

Decaying Causality Lagged Causality Sporadic Causality

d = 0.2 d = 0.8 d = 0.2 d = 0.8 d = 0.2 d = 0.8

hMF Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

4 .487 .570 .773 .736 .051 .050 .075 .066 .391 .365 .716 .614
8 .396 .472 .699 .621 .052 .050 .181 .125 .323 .291 .667 .679
12 .346 .407 .657 .542 .247 .206 .769 .560 .677 .761 .690 .872

B. Low Frequency with Flow Sampling

Decaying Causality Lagged Causality Sporadic Causality

d = 0.2 d = 0.8 d = 0.2 d = 0.8 d = 0.2 d = 0.8

hLF Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

1 .074 .076 .301 .302 .092 .094 .455 .454 .072 .070 .171 .169
2 .068 .067 .237 .244 .080 .080 .468 .459 .061 .063 .132 .132
3 .063 .063 .206 .208 .073 .074 .415 .402 .060 .060 .118 .115

C. Low Frequency with Stock Sampling

Decaying Causality Lagged Causality Sporadic Causality

d = 0.2 d = 0.8 d = 0.2 d = 0.8 d = 0.2 d = 0.8

hLF Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

1 .638 .643 .863 .862 .050 .050 .061 .059 .051 .051 .437 .435
2 .554 .538 .801 .786 .062 .063 .676 .664 .052 .051 .355 .356
3 .495 .473 .754 .728 .059 .060 .626 .598 .051 .051 .306 .305

The DGP is MF-VAR(1) with a ratio of sampling frequencies m = 12. Panels A, B, and C concern tests in mixed

frequency, low frequency with flow sampling, and low frequency with stock sampling. In each case, from left to

right, there is drift ν representing decaying causality νj = (−1)j−1 × 2.5/j for j = 1, . . . , 12, lagged causality

νj = 2 × I(j = 12) for j = 1, . . . , 12, and sporadic causality (ν3, ν9, ν11) = (2.1,−2.8, 1.9) with all other νj = 0.

The high frequency variable xH has low or high persistence: d ∈ {0.2, 0.8}, and the low frequency variable xL

has weak persistence: a = 0.2. Low-to-high causality is decaying with alternating signs: cj = (−1)j−1 × 0.8/j for

j = 1, . . . , 12. In the models used as the premise for our tests, the number of high frequency lags of xH for the

mixed frequency tests are hMF ∈ {4, 8, 12}, and the number of low frequency lags of aggregated xH for the low

frequency tests are hLF ∈ {1, 2, 3}. The max text uses 100, 000 draws from the limit distributions under H0 and

HL
1 , and the weights are Wh = (1/h)× Ih. Nominal size is α = .05.
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Table 5: Sample Statistics of U.S. Interest Rates and Real GDP Growth

mean median std. dev. skewness kurtosis
weekly 10 Year Treasury constant maturity rate 6.555 6.210 2.734 0.781 3.488
weekly Federal Funds rate 5.563 5.250 3.643 0.928 4.615
spread (10-Year T-bill minus Fed. Funds) 0.991 1.160 1.800 -1.198 5.611
percentage growth rate of quarterly GDP 3.151 3.250 2.349 -0.461 3.543

The sample period is January 5, 1962 through December 31, 2013, covering 2,736 weeks or 208 quarters.

Figure 1: Low-to-High Causal Patterns in Reduced Form
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Note: In the low-to-high causality simulation experiment, we start with a structural MF-VAR(1) data generating

process, and transform it to a reduced-form MF-VAR(1). This figure shows how each causal pattern in the

structural form is transformed in the reduced form. The AR(1) parameter of xH is fixed at d = 0.2. The

horizontal axis has the first lag through the twelfth lag in the reduced form, and the vertical axis has a coefficient

of each lag. The blue, solid line with circles is a reduced-form causal pattern implied by decaying causality :

cj = (−1)j−1 × 0.45/j. The red, dashed line with squares is a reduced-form causal pattern implied by lagged

causality : cj = 0.4× I(j = 12). The gray, dotted line with triangles is a reduced-form causal pattern implied by

sporadic causality : (c3, c7, c10) = (0.4, 0.25,−0.5) and all other c’s are zeros.
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Figure 2: Time Series Plot of U.S. Interest Rates and Real GDP Growth
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Note: This figure plots weekly 10-year Treasury constant maturity rate (blue, solid line), weekly effective federal

funds rate (ed, dashed line), their spread 10Y - FF (gray, solid line), and the quarterly real GDP growth from

previous year (yellow, solid line). The sample period covers January 5, 1962 through December 31, 2013, which

has 2,736 weeks or 208 quarters. The shaded areas represent recession periods defined by the National Bureau of

Economic Research (NBER).
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Figure 3: P-values for Tests of Non-Causality from Interest Rate Spread to GDP
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(a) MF Max Test
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(b) MF Wald Test
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(c) LF Max Test
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(d) LF Wald Test

Panel (a) contains rolling window p-values for the MF max test, Panel (b) represents the MF Wald test, Panel (c)

the LF max test, and Panel (d) the LF Wald test. MF tests concern weekly interest rate spread and quarterly GDP

growth, while LF tests concern quarterly interest rate spread and GDP growth. The sample period is January

5, 1962 through December 31, 2013, covering 2,736 weeks or 208 quarters. The window size is 80-quarters. The

shaded area is [0, 0.05], hence any p-value in that range suggests rejection of non-causality from the interest rate

spread to GDP growth at the 5% level for that window.
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Figure 4: Rolling Window P-values for Tests of Non-Causality from GDP to Interest Rate Spread
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(a) MF Max Test (w/o MIDAS)
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(b) MF Wald Test (w/o MIDAS)
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(c) MF Max Test (w/ MIDAS)
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(d) MF Wald Test (w/ MIDAS)
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(e) LF Max Test
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(f) LF Wald Test

Panel (a) contains rolling window p-values for the MF max test without MIDAS polynomial, Panel (b) represents

the MF Wald test without MIDAS polynomial, Panel (c) the MF max test with MIDAS polynomial, Panel (d)

the MF Wald test with MIDAS polynomial, Panel (e) the LF max test, and Panel (f) the LF Wald test. MF

tests concern weekly interest rate spread and quarterly GDP growth, while LF tests concern quarterly interest

rate spread and GDP growth. The sample period is January 5, 1962 through December 31, 2013, covering 2,736

weeks or 208 quarters. The window size is 80-quarters. The shaded area is [0, 0.05], hence any p-value in that

range suggests rejection of non-causality from GDP growth to the interest rate spread at the 5% level for that

window.
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