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Abstract

This paper presents simple Granger causality tests applicable to any mixed frequency
sampling data setting, and feature remarkable power properties even with relatively small
low frequency data samples and a considerable wedge between sampling frequencies (for ex-
ample, quarterly and daily or weekly data). Our tests are based on a seemingly overlooked,
but simple, dimension reduction technique for regression models. If the number of parame-
ters of interest is large then in small or even large samples any of the trilogy test statistics
may not be well approximated by their asymptotic distribution. A bootstrap method can
be employed to improve empirical test size, but this generally results in a loss of power. A
shrinkage estimator can be employed, including Lasso, Adaptive Lasso, or Ridge Regression,
but these are valid only under a sparsity assumption which does not apply to Granger causal-
ity tests. The procedure, which is of general interest when testing potentially large sets of
parameter restrictions, involves multiple parsimonious regression models where each model
regresses a low frequency variable onto only one individual lag or lead of a high frequency
series, where that lag or lead slope parameter is necessarily zero under the null hypothesis of
non-causality. Our test is then based on a max test statistic that selects the largest squared
estimator among all parsimonious regression models. Parsimony ensures sharper estimates
and therefore improved power in small samples. Inference requires a simple simulation-
bootstrap step since the test statistic has a non-standard limit distribution. We show via
Monte Carlo simulations that the max test is more powerful than existing mixed frequency
Granger causality tests in small samples. An empirical application examines Granger causal-
ity over rolling windows of U.S. macroeconomic data from 1962-2013 using a mixture of high

and low frequency data.
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1 Introduction

Time series are often sampled at different frequencies, and it is well known that temporal aggre-
gation adversely affects Granger’s (1969) causality.! One of the most popular Granger causality
tests is a Wald statistic based on multi-step ahead vector autoregression (VAR) models. Its
appeal is that the approach can handle causal chains among more than two variables.? Since
standard VAR models are designed for single-frequency data, these tests often suffer from the ad-
verse effect of temporal aggregation. In order to alleviate this problem, Ghysels, Hill, and Motegi
(2013) develop a set of Granger causality tests that explicitly take advantage of data sampled at
mixed frequencies. They accomplish this by extending Dufour, Pelletier, and Renault’s (2006)
VAR-based causality test using Ghysels’ (2014) mixed frequency vector autoregressive (MF-
VAR) models.? Although these tests avoid the undesirable effects of temporal aggregation, their
applicability is limited because parameter proliferation in MF-VAR models adversely affects the
power of the tests, even after bootstrapping a test statistic p-value. Indeed, if we let m be the
ratio of high and low frequencies (e.g. m = 3 in mixed monthly and quarterly data), then for
bivariate mixed frequency settings the MF-VAR is of dimension m + 1. Parameter proliferation
occurs when m is large, and becomes precipitously worse as the VAR order increases. In these
cases, Ghysels, Hill, and Motegi’s (2013) Wald test of non-causality exhibits size distortions,
while a bootstrapped Wald test results in correct size but low size-corrected power, a common
occurrence when bootstrapping a size distorted asymptotic test (cfr. Davidson and MacKinnon
(2006)).

The present paper proposes a remarkably simple regression-based mixed frequency Granger
causality test that, in the case of testing non-causality from a low to a high frequency variable,
exploits Sims’ (1972) two-sided regression model. The tests we propose have several advantages:
(i) they are regression-based and simple to implement, and (ii) they apply to any m, large or
small, and even time-varying m, for example the number of days in a month.* We postulate
multiple parsimonious regression models where the j** model regresses a low frequency variable
x, onto lags of 7, and only the j** lag or lead of a high frequency variable z . Our test statistic
is the mazimum among squared estimators scaled and weighted properly. Although the max test
statistic follows a non-standard asymptotic distribution under the null hypothesis of Granger
non-causality, a simulated p-value is readily available through an arbitrary number of draws
from the null distribution. The max test is therefore straightforward to implement in practice.

Our tests are based on a seemingly overlooked, but simple, dimension reduction technique

!Existing Granger causality tests typically ignore this issue since they are based on aggregating data to the
common lowest frequency, leading possibly to spurious (non)causality. See Zellner and Montmarquette (1971) and
Amemiya and Wu (1972) for early contributions. This subject has been subsequently extensively researched: see,
for example, Granger (1980), Granger (1988), Liitkepohl (1993), Granger (1995), Renault, Sekkat, and Szafarz
(1998), Marcellino (1999), Breitung and Swanson (2002), and McCrorie and Chambers (2006), among others.

2See Liitkepohl (1993), Dufour and Renault (1998), Dufour, Pelletier, and Renault (2006), and Hill (2007).

3An early example of ideas related to mixed frequency VAR models appeared in Friedman (1962). Foroni,
Ghysels, and Marcellino (2013) provide a survey of mixed frequency VAR models.

4We assume m is constant in order to conserve notation, but all of our theoretical results extend to time
varying m in a straightforward way.



for regression models. The merits can be easily understood if we focus on a low frequency data
generating process y(7) = a'x(7) + b'z(7) +€(7), where y(7) is a scalar, €(7) is an idiosyncratic
term, a € R¥ and b € R", and (x(7), 2(7)) are regressors. Consider testing the hypothesis that
b = 0, and suppose that standard asymptotics apply for estimating [a’,’]". If the number of
parameters of interest h is large then in small or even large samples any of the trilogy test
statistics may not be well approximated by their asymptotic x? distribution. A bootstrap
method can be employed to improve empirical test size, but this generally results in a loss of
power since (i) bootstrap samples only approximate the true data generating process; and (ii)
at best size corrected bootstrap test power nearly matches size corrected asymptotic test power,
where the latter may be quite low due to large size distortions (cfr. Davidson and MacKinnon
(2006)). A shrinkage estimator can be employed, including Lasso, Adaptive Lasso, or Ridge
Regression, but these are valid only under the sparsity assumption b = 0, hence we cannot test
b = 0 against b # 0. In the mixed frequency literature, MIDAS polynomials are proposed as
an ad hoc dimension reduction, but these models may generally be mis-specified and therefore
result in low or no power in some directions from the null of Granger non-causality.

Our contribution is to build parsimonious regression models y(7) = ajz(r) + B;2(7, )
+u(r, ) for j =1,..., h, where z(7, j) is the j** component of z(7), and 7 = 1,..., T with sample
size T. Write § = [Bj]?zl. Provided the covariance matrix for the regressors [z(7)’, z(7)'] is non-
singular, it can be shown b = 0 if and only if f = 0.5 If Bj estimates 3; then our test in mixed
frequencies is based on a slightly generalized form of a max test statistic max;—; _p {(VTB;)?}.
This is a boon for a small sample asymptotic test because for even large h the dimension re-
duction leads to sharp estimates of 3;, and therefore accurate empirical size, as long as the
remaining regressor set x(7) does not have a large dimension. This is precisely the case for a
test of non-causality from a high frequency (e.g. week) to a low frequency (e.g. quarter) variable.
Further, in the above framework b = 0 if and only if 8 = 0 implies the max test is consistent
against any deviation from the null. This method obviously cannot identify b when the null is
false, but we can identify that b = 0 is false asymptotically with probability one for any direc-
tion b # 0. The testing approach we propose can be applied in many other settings, whenever
hypothesis testing involves a zero restriction on a large parameter set.

In mixed frequencies, consistency carries over to a test of non-causality from a high to a low
frequency variable. There are, however, unresolved difficulties in identifying causality from a
low to high frequency variable, although the max test trivially identifies non-causality. As the
above example reveals, our method has broad applications for inference in time series regressions
with either same or mixed frequency data, and in cross sections where a penalized regression
under a sparsity assumption is increasingly common. Our focus here is mixed frequency time
series models where parameter proliferation is typical, and no broadly accepted solution exists

for sharp small sample inference based on an asymptotic test.

SWe prove the claim for a test of no causality from a high to a low frequency variable in Theorem 2.4, but
the proof trivially carries over to the present low frequency data generating process when ¢(7) is a stationary
martingale difference with respect to the sigma field o(z(t) : t < 7).



In our theoretical analysis, we compare the max test based on mixed frequency [MF] data,
with a Wald test based on mixed frequency data, a max test based on low frequency [LF] data,
and a Wald test based on low frequency data. We prove the consistency of MF max test for
Granger causality from high frequency data xp to low frequency xy. We also show by counter-
examples that LF tests need not be consistent. In the case of Granger causality from z, to zp,
proving the consistency of MF max test remains an open question. Moreover, relative to LF
tests, we show that MF tests are more robust against complex (but realistic) causal patterns
both in terms of local asymptotics and in finite samples. In addition, we also show that the MF
max and the MF Wald tests are roughly equally powerful in terms of local asymptotics, but the
former is clearly more powerful in finite samples. Local power is similar for max and Wald tests
precisely because power is asymptotic, and these statistics may have different dispersions.

The remainder of the paper is organized as follows. Sections 2 and 3 present the max test
statistic and derive its asymptotic properties for the two cases of testing for non-causality from
high-to-low and low-to-high frequencies. In Section 4 we conduct local power analysis. In Section
5 we run Monte Carlo simulations, Section 6 presents an empirical application, and Section 7
concludes the paper. Proofs for all theorems are provided in Technical Appendices, and tables

and figures are collected at the end.

2 High-to-Low Frequency Data Granger Causality

This paper focuses on a bivariate case where we have a high frequency variable xy and a low
frequency variable x 1, so we need to formulate a data generating process (DGP) governing these
variables. We denote by m the number of high frequency time periods for each low frequency
time period 77, € Z, often called the ratio of sampling frequencies. We assume throughout that
m is fixed (e.g. m = 3 months per quarter) in order to focus ideas and reduce notation, but all

of our main results carry over to time-varying sequences m(7rz) in a straightforward way.

Example 2.1 (Mixed Frequency Data - Quarterly and Monthly). A simple example is when
the high frequency is monthly observations combined with quarterly low frequency data, hence
m = 3. We let xy (7, 1) be the first monthly observation of xy in quarter 77, xgy(7r,2) is the
second, and z g (77, 3) is the third. A leading example in macroeconomics is quarterly real GDP
growth xp (77), where existing analyses of causal patterns use unemployment, oil prices, inflation,
interest rates, etc., aggregated into quarters (see Hill (2007) for references). Consider monthly
CPI inflation in quarter 77,, denoted [x g (71,1), 2g(71,2), 2m(7L,3)] and the resulting stacked
system for quarter 77, therefore is {z g (77, 1), (71, 2), 2 (7L, 3), 2L (7) }. The assumption that

xr(7r) is observed after xg(7tr, m) is merely a convention.

In the bivariate case with one high and one low frequency variable, we have a K x 1 mized

frequency vector X (1) = [xg(rp,1), ..., xg(t,m), zr (1)), where K = m + 1. Define the

SThe trivariate case involves causality chains in mixed frequency which are far more complicated, and detract
us from the main theme of dimension reduction covered in this paper. See Dufour and Renault (1998), Dufour,
Pelletier, and Renault (2006) and Hill (2007) for further discussion.



o-field F;, = o(X(7) : 7 < 71,). We assume as in Ghysels, Hill, and Motegi (2013) and Ghysels
(2014) that E[X (71,)|F7,—1] has a version that is almost surely linear in {X (7, —1),..., X (17, —
p)} for some finite p > 1.

Assumption 2.1. The mixed frequency vector X (77) is governed by a MF-VAR(p) for some
finite p > 1:

xu(rr,1) dig ... dim,k Clhi—ym+1 | | vu(tL — kK, 1) e (e, 1)
p . . . . . .
xH(TL> m) k=1 dml,k ce dmm,k Ckm xH(TL —k, m) GH(TL, m)
:Z?L(TL) bkm b(k—l)m+1 ag IL(TL 7]43) EL(TL)
=X (7L) =Ayg =X (1, —k) =e(r1)

or compactly

X(r) =) ApX(rs — k) + €(71).
k=1

The error {€(7r)} is a strictly stationary martingale difference sequence (mds) with respect to

increasing Fr, C Fr, +1, with positive definite covariance matrix Q = Ele(r)e(rr)’].
Two remarks regarding the above assumption are worth making.

Remark 2.1. The mds assumption allows for conditional heteroscedasticity of unknown form,
including GARCH-type processes. We can also easily allow for stochastic volatility or other

random volatility errors by expanding the definition of the o-fields F, .

Remark 2.2. A constant term is omitted from (2.1) for simplicity, but can be easily added if

desired. Therefore, X (77) is mean centered. The coefficients d (a) govern the autoregressive

property of zg (xr).

The coefficients b and ¢ in (2.1) are relevant for Granger causality, so we explain how they are
labeled. Namely, by is the impact of the most recent past observation of x g (i.e. (7, —1,m)) on
xr(71), b is the impact of the second most recent past observation of xg (i.e. (7, —1,m—1))
on zr,(7z,), and so on through by,,. In general, by, represents the impact of g on x7, when there
are k high frequency periods apart from each other.

Similarly, ¢; is the impact of zp (77, — 1) on the nearest observation of zy (i.e. zg(7r,1)),
co is the impact of z1 (7 — 1) on the second nearest observation of zp (i.e. xg(71,2)), Cmt1 1S
the impact of z7, (77, —2) on the (m + 1)-st nearest observation of x (i.e. xg(7r,1)), and so on.
Finally, cp, is the impact of x (7, — p) on xg (7, m). In general, ¢; represents the impact of
xr, on xz when there are j high frequency periods apart from each other.

Since {e(7r)} is not i.i.d. we must impose a weak dependence property in order to ensure

standard asymptotics. In the following we assume €(77,) and X (77) are stationary a-mixing.”

"See Doukhan (1994) for compendium details on mixing sequences.



Assumption 2.2. All roots of the polynomial det(Ix — Y %_, Axz¥) = 0 lie outside the unit

circle, where det(-) is the determinant.

Assumption 2.3. X (77) and €(7) are a-mixing with mixing coefficients ay, that satisfy

Y ope g Qigh < 00.

Remark 2.3. Note that Q = E[e(r1)e(r)'] allows for the high frequency innovations ey (77, 5)
to have a different variance for each j. Therefore, while Assumptions 2.1 and 2.2 imply {x g (77,7) }+,
is covariance stationary for each fized j € {1, ..., m}, they do not imply covariance stationarity

for the entire high frequency array {{zm(7r,5)}[ 1 }r, -

Remark 2.4. The condition Y ;7 ;g < 0o is quite general, allowing for geometric or hyper-
bolic memory decay in the innovations €(77), hence conditional volatility with a broad range
of dynamics. We impose the infinite order lag function X (77,) of €(71) to also be mixing as a
simplifying assumption since underlying sufficient conditions are rather technical if {€(77)} is a
non-finite dependent process (see Chapter 2.3.2 in Doukhan (1994)).

Since there are fundamentally different challenges when testing for non-causality from high-
to-low or low-to-high frequency, we restrict attention to the former in this section, and treat the
latter in Section 3.

We first pick the last row of the entire system (2.1):

p pm
wr(ro) =Y apzr(tp — k) + Y bjwm(tp —1,m+1—j) +er(rr), 22)
1 j=1 2.2

er(rr) " (0,0%), 0% >0.

The index j € {1,...,pm} is in high frequency terms, and the second argument m + 1 — j
of zg(tp, —1,m 4+ 1 — j) can be less than 1 since j > m occurs when p > 1. Allowing any
integer value in the second argument of xg (7, —1,m 4+ 1 — j), including those smaller than 1
or larger than m, does not cause any confusion, and simplifies analytical arguments below. We
can therefore interchangeably write xg (7, —i,7) = zg (1,7 —im) for j =1,...,m and ¢ > 0,
for example: g (71,0) = 2y (7, —1,m), xu(t, —1) = (. —1,m —1), and zg(rp,m+1) =
ry(rp +1,1).8

Now define X (r, — 1) = [xp(rp = 1),...,zp(tp — p)|s, Xg(rp, — 1) = [xg(rp —1,m+1—
1),...,za(r —1,m+1—pm)|', a =[ai,...,ap), and b= [b1,...,bym]". Then, (2.2) becomes:

:BL(TL):XL(TL—1),a—|—XH(TL—l),b+€L(TL). (2.3)

Based on the classic theory of Dufour and Renault (1998) and the mixed frequency extension
made by Ghysels, Hill, and Motegi (2013), we know that xzx does not Granger cause xj, given
the mixed frequency information set F,, = o(X(7) : 7 < 71) if and only if b = Oppx1. In

8Complete details on mixed frequency notation conventions are given in Appendix A.



order to test the non-causality hypothesis Hy : b = 0p,,x1, we want a test statistic that obtains
asymptotic power of one against any deviation from non-causality (i.e. it is consistent), achieves
high power in local asymptotics and finite samples, and does not produce size distortions in

small samples when pm is large. We divide the topic into mixed and low frequency approaches.

2.1 Max Test: High-to-Low Granger Causality

Before presenting the new test, it is helpful to review the existing mixed frequency Granger
causality test proposed by Ghysels, Hill, and Motegi (2013). They work with a regression model

that regresses xj onto ¢ low frequency lags and A high frequency lags of xy:
q h
wp(r) =Y aper(tn — k) + Y Bwa(re —1L,m+1—j) +ur(rr) (2.4)
k=1 j=1

for 7, = 1,...,T. Ghysels, Hill, and Motegi (2013) estimate the parameters in (2.4) by least
square sand then test Hy : 81 = -+ = B, = 0 via a Wald test. Model (2.4) contains DGP (2.2)
as a special case when ¢ > p and h > pm, hence the Wald test is trivially consistent if ¢ > p
and h > pm.

A potential problem here is that pm, the true lag order of x g, may be quite large in some
applications, even when the AR order p is fairly small. Consider a weekly versus quarterly
data case for instance, hence the MF-VAR lag order p is in terms of quarters and m = 13
approximately. Then pm = 39 when p = 3, and pm = 52 when p = 4, etc. Including sufficiently
many high frequency lags h > pm generally results in size distortions for an asymptotic Wald
test when the sample size Ty, is small and pm is large. Davidson and MacKinnon (2006),
however, show that the power of bootstrap tests is close to the asymptotic power for size-corrected
tests. An asymptotic Wald test of mixed frequency non-causality can exhibit substantial size
distortions, implying size-corrected power well below one in finite samples. Of course, we may
use a small number of lags h < pm to ensure the Wald statistic is well characterized by its x>
limit distribution, but this results in an inconsistent test when there exists Granger causality
involving lags beyond h. Conversely, we may use a MIDAS type parametric dimension reduction,
but a mis-specified MIDAS polynomial again results in an inconsistent test (cfr. Ghysels, Santa-
Clara, and Valkanov (2004), Ghysels, Santa-Clara, and Valkanov (2006), Ghysels, Hill, and
Motegi (2013)). Finally, we can simply bypass a mixed frequency approach in order to reduce
dimensionality, but a Wald test of non-causality in a low frequency model is not consistent (see
Section 2.2). This is in a nutshell the problem of parameter proliferation in mixed frequency
models.

A main contribution of this paper is to resolve this trade-off by combining the following

multiple parsimonious regression models:

q
xL(TL):Zak’ij(TL—k)—i—ﬂij(TL—1,m+1—j)+uL7j(TL), jZl,...,h. (2.5)
k=1



We abuse notation since the key parameter §; in (2.5) in generally not equivalent to 5; in (2.4)
when there is causality. We are, however, concerned with a test of non-causality, in which case
there is little loss of generality, and a gain of notation simplicity. Moreover, as we show below,
the hypothesis b = 0p,x1, corresponding to high-to-low non-causality in (2.3), holds if and only
if B; =0 for each j = 1,...,h in (2.5), provided ¢ > p and h > pm. Hence, the parsimonious
models allow us to identify null and alternative hypotheses.

Model j is compactly rewritten as

al,j

xp(r) = [Xéq)(TL — 1)/ xg(rp —1,m+1—j) : + ULJ(TL) (2.6)
Qq,j
B;

= wj(TL — 1)’9]‘ + ULJ(TL),

say, where
Xéq)(TL 1) =[zp(rp—1),...,20(r — q)]".

The ;7% model contains ¢ low frequency autoregressive lags of x7, as well as only the j** high
frequency lag of xg. Therefore, the number of parameters, g + 1, is typically much smaller than
the number of parameters restrictions equal to ¢ + h in the naive regression model (2.4). This
advantage helps to alleviate size distortions for large m and small T7,.

In order for each parsimonious regression model to be correctly specified under the null
hypothesis of high-to-low non-causality, we need to assume that the autoregressive part of (2.5)
has enough lags: ¢ > p. We impose the same assumption on regression model (2.4) in order to

focus on the causality component, and not the autoregressive component.

Assumption 2.4. The number of autoregressive lags included in the naive regression model
(2.4) and each parsimonious regression model (2.5), g, is larger than or equal to the true autore-

gressive lag order p in (2.2).

The parsimonious regression models obviously reveal non-causality from high-to-low fre-
quency since 3; = 0 for each j in (2.4) implies 8; = 0 in each j* equation in (2.5). The subtler
challenge is showing that (2.5) reveals any departure from non-causality in (2.4), hence (2.5)
can be used as a valid and consistent test of high-to-low non-causality. We first describe how
to combine all h parsimonious models to get a test statistic for testing non-causality, and then
show how the resulting test identifies the (non)-causality.

Since we are assuming that ¢ > p, each model (2.5) is correctly specified under the null
hypothesis of high-to-low non-causality. Hence, if there is non-causality from high-to-low fre-
quency, the least squares estimators Bj LN 0, hence maxj<;<p {BJQ} 0. Using this property,

we propose a max test statistic:

. N2
T = 11%1%)(}1 (\/TLwTLJﬂJ) , (2.7)



where {wr, ; : j = 1,...,h} is a sequence of o(X (7, — k) : k > 1)-measurable Ly-bounded
non-negative scalar weights with non-random probability limits {w;}. As a standardization, we
assume Z?Zl wr, j = 1 without loss of generality. When we do not have any prior information
about the weighting structure, a straightforward choice of wr, ; is the non-random flat weight
1/h. We can consider any other weighting structure by choosing desired {wr, 1,...,wr, 4},
and other measurable mappings from R” to [0,00) like the average E?zl(\/TLwTL,ij)Q (cfr.
Andrews and Ploberger (1994)). Finally, we will also need to make an assumption about how

many models j = 1, ..., h we run to perform the test, namely:

Assumption 2.5. The number of models h used to compute 7 in (2.7) satisfies, h > pm.

2.1.1 Asymptotics under Non-Causality from High-to-Low Frequency

We stack all parameters across the h models (2.6) and write:
0=10]....6,,
and construct a selection matrix R such that

,65[51,...,Bh]’:R0.

Therefore, R is an h x (g +1)h matrix with R; ,41); = 1 for j = 1,..., h, and all other elements
are zero. Let Wy, j be an h x h diagonal matrix whose diagonal elements are wr, 1, ..., W7, -
Similarly, let W}, be an h x h diagonal matrix whose diagonal elements are wy, ..., wy.

Under Assumptions 2.1-2.4, it is not hard to prove the asymptotic normality of 6 and hence

B. A simple weak convergence argument then suffices for the max test statistic.

Theorem 2.1. Let Assumptions 2.1-2.4 hold. Under Hy : b = Oppx1, we have that T i>
maxlgjgh./\ff as Ty, — oo, where N' = [Nq,...,N}] is distributed N(0p,x1, V) with positive

definite covariance matrix:

V = 0i W, RSR'W), € R"*", (2.8)
where 0% = E[e2 ()], and
2171 e 217}1
S=| .| eRUIIMEIVR g 3, =T TT ) € RUTDXOHD,
EhJ e Eh,h
Oixq 1 -+ v 0O1xq O
I‘]’,i =F [:Bj(TL — l)mi(TL - 1),} S R<q+1)x(q+1) and R = . .. S th(qul)h.
Oixq 0 -+ -+ Oixq 1
(2.9)

Proof. See Appendix B.



2.1.2 Simulated P-Value

The mixed frequency max test statistic 7 has a non-standard limit distribution under Hy that

can be easily simulated in order to compute an approximate p-value. Let VTL be a consistent esti-

mator of V' (see below), and draw R samples ND . NE) independently from N(Opx1, VTL).
(r)

Now compute artificial test statistics T) = maxlgjgh(./\/ j )2. An asymptotic p-value approxi-

mation for 7 is

Since N) are i.i.d., and R can be made arbitrarily large, by the Glivenko-Cantelli Theorem p
can be made arbitrarily close to P(T™ > 7).

Define the max test limit distribution under Hy: F°(c) = P(maxlgjgh(Ngr))2 < ¢). The
asymptotic p-value is therefore FO(T) =1 — FO(T) = P(maxlgjgh(./\/y))Q > 7). By an argu-
ment identical to Theorem 2 in Hansen (1996), we have the following link between the p-value

approximation P(7T™M > T) and the asymptotic p-value for 7.

Theorem 2.2. Under Assumptions 2.1 - 2.4 P(T!) > T) = FO(T) + 0,(1), hence p = F(T)
+ op(1).

Proof. See Appendix C.

A consistent estimator of V' in (2.8) is easily obtained. Simply note that the weights Wy, 2
W), by assumption, and f‘]z =1/T1 fole x;(t, — Day(rp, — 1) N I';; under Assumptions
2.1-2.4. Consistent estimators 2” LS Y, and S % 8 can then be obtained directly from (2.9).
Next, a consistent estimator 62 of 07 = FE[e? ()] can be obtained by computing residuals
ér(rz) from model (2.4). Note, though, that we only require consistency for the true o under
Hy since power only requires an estimator with a constant finite probability limit. As a bonus,
estimating O'% under Hy can be done simply by fitting an AR(q) model for z; and computing

the sample variance of the residuals.

2.1.3 Identification of Null and Alternative Hypotheses

We now show that as long as the number of high frequency lags h used across the parsimonious
regression models (2.5) is at least as large as the dimension pm of the parameters b from the
true DGP (2.3), then the parsimonious regression parameters 3 identify null and alternative
hypotheses in the sense b = Opmx1 if and only if B3 = Opx1. Under the condition h > pm the
max test statistic 7~ then has its intended limit properties under either hypothesis.

If there is Granger causality then the estimator Bj of B; in (2.5) is in general not Fisher
consistent for the true b; in DGP (2.2) due to omitted regressors. The next result shows
that the least squares first order equations for (2.5) identify some so-called pseudo-true values
B* = [Bf,...,B;), which are identically the probability limits of Bj- Since this in turn is a
function of underlying parameters a, b, and O‘%, as well as population moments of zg and xp,

the resulting relationship can be exploited to identify null and alternative hypotheses.



Stack again all parameters 6; from (2.6) and write @ = [6],...,6;], and let 0 be the least

squares estimator.

Theorem 2.3. Let 2.1-2.4 hold. Then 6 & 6* = [ T/, .. .,9,’:/]’, the unique pseudo-true value
of @ that satisfies

[ aT?] ] —al-
Op.j p .
07 = |ajy ;| = | 0|+ [Ezi(re — V(e —V']] 7 x Ezj(rp — 1) Xu (1 — 1)’lb, (2.10)
: =T} (¢+1)x(g+1) =Cj: (¢+1)xpm
Qg
L B 1 L0

where (7, — 1) is a vector of all regressors in each parsimonious regression model (cfr. (2.6))
while Xz (77, — 1) is a vector of pm high frequency lags of z (cfr. (2.3)). Therefore 3 5 3* =
RO*.

Proof. See Appendix D.

Remark 2.5. Although tedious, the population covariance terms I'; ; and C; can be charac-
terized by the underlying parameters a, b, and a%. For an example, see the local asymptotic

power analysis in Section 4.

Theorem 2.3 provides useful insights on the relationship between the underlying coefficient
b and the pseudo-true value B* of 3 in general. First, as noted in the discussion leading to
Theorem 2.1, trivially 8* = 0p,x1 whenever there is non-causality (i.e b = Op,x1), regardless
of the relative magnitude of A and pm. Second, as the next result proves, b = 0y,,x1 whenever
B* = Opx1, provided h > pm. This follows ultimately from Assumption 2.1 which ensures
covariance matrices of Xéq) () and Xp (1) are non-singular, which in turns allows us to
exactly identify the null, and therefore identify when a deviation from the null takes place. Of
course, we cannot generally identify the true 3; in model (2.4) under the alternative, but we can

identify that the alternative must be true: that some 3; in (2.4) is non-zero.

Theorem 2.4. Let Assumptions 2.1, 2.2, 2.4 and 2.5 hold. Then 3* = 04, implies b = 0pp, 1,
hence B* = Opx1 if and only if b = Opypxi.

Proof. See Appendix E.

Theorems 2.1 and 2.4 together imply the max test statistic has its intended limit properties
under either hypothesis. Assume the weight limits w; > 0 for all j =1,...,h so that we have a
non-trivial result under the alternative. In view of Theorem 2.4, we also assume 5 is sufficiently

large to allow the parsimonious regression models to identify the hypotheses.
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We first tackle the limit when Hj is false in order to definitively show that the max test
statistic null distribution limit holds if and only if Hy is true. The max test statistic construction
(2.7) with non-trivial weights w; > 0 for all j = 1,...,h indicates that T 5 oo if and only if
B* # O0px1, and by Theorems 2.3 and 2.4 B EN B* # 0p 1 under a general alternative hypothesis

Hy : b # Opyx1, given h > pm. This proves consistency of the mixed frequency max test.

Theorem 2.5. Let Assumptions 2.1-2.5 hold, and assume w; > 0 for all j = 1,...,h. Then
T4 if and only if Hy : b # Oppx1 is true.

As an immediate consequence of the limit distribution Theorem 2.1, identification Theorem
2.4 and consistency Theorem 2.5, is that the limiting null distribution arises if and only if Hy

is true.

Corollary 2.6. Let Assumptions 2.1-2.5 hold, and assume w; > 0 for all j = 1,...,h. Then

T A maxlgjgh./\/j? as 17, — oo if and only if Hy: b = Opy,x1 is true.

If we choose h < pm then it is possible for asymptotic power to be less than unity, as the

following example reveals.

Example 2.2 (Inconsistency due to Small h). Consider a simple DGP with m = 2 and p = 1:

xg(Tr,1) 0 0 Of |xg(r —1,1) e, 1)
xyg(t,2)| = 0 0 0] xg(rp —1,2)| + |eg(71,2) (2.11)
zr(7L) —1/p 1.0 xr(tp — 1) er,(r)
1 p O
€(7r) e (0341,92), Q= |p 1 0|, p#0, |p <Ll
0 0 1

If (¢,h) = (1,1) then asymptotic power of the max test is zero (above the nominal size), and if
(¢, h) = (1,2) the asymptotic power is 1. See Appendix E for a proof.

Assume p > 0 for simplicity. The simple explanation behind the lack of power is that the
positive impact of xg (77, — 1,2) on 1 (71), the negative impact of zg (7, — 1,1) on x(7z), and

the positive autocorrelation of xx all offset each other to make the pseudo-true g7 = 0.

2.2 Low Frequency Approach

The mixed frequency Wald test based on (2.4) and the mixed frequency max test based on model
(2.5) are consistent as long as h > pm. If we instead work with an aggregated xy, then under
DGP (2.1) neither test would be consistent no matter how many low frequency lags of zy we
included.

This is verified by using the following linear aggregation scheme for the high frequency

variable:

xp(T) = Z5ij(TL,j) where §; > 0 for all j =1,...,m and Z5j =1,
j=1 j=1

11



where J; is a user chosen quantity which determines the aggregation scheme. The scheme is
sufficiently general for most economic applications since it includes flow sampling (i.e. 6; = 1/m
for j=1,...,m) and stock sampling (i.e. §; = I(j =m) for j =1,...,m) as special cases.

We impose Assumption 2.4 such that ¢ > p in order to focus on testing for causality.

2.2.1 Low Frequency Naive Regression : Wald Test
The low frequency naive regression model is:

h

wr(rn) =Y oprp(r, — k) + Y Bizn(rr — j) + un(rr)
k=1

j=1

a1

«
1 -|—uL(7'L)

= (XD 1Y 2y (rp — 1),...,zp(r, — h)] 5 (2.12)

=Xy (rp—-1)

L5

~——
Eg(LF)

= [XEI) (t0 — 1)/>XH(TL - 1)’] 0L 4 ur ().

=z(r—1)

Note that X 5 (7 — 1) is an h x 1 vector stacking aggregated xp, and (7 — 1) isa (¢+h) x 1

vector of all regressors. The superscript “LF” in (&)

emphasizes that we are working on a low
frequency model here.”
Since (2.1) governs the data generating process, the pseudo-true value for 0LF)  denoted

OLE)* can be derived easily:

[ af ] [ ay ]
ap ap
00 = oy = | 0 |+ [etr ~ V(s = 1)) B ot~ D Xutr ~ 1)]b, 213
: =r~!: (g+h)x(q+h) =C: (q:h)Xpm
Qg 0
L :6* i _0h><1_
where 8* =[5}, ..., B;]". The derivation of (2.13) is omitted since it is similar to the proof of
Theorem 2.3.

9Technically “LF” should also be put on a’s, #’s, and ur(7r) since they are generally different from the
parameters and error term in the mixed frequency naive regression model (2.4). We refrain from doing so for the
sake of notational brevity.
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A low frequency Wald statistic W is simply a classic Wald statistic with respect to the
restriction 3 = [B1, ..., Br] = Opx1. Consistency requires Wi p 2 50 whenever there is high-to-
low non-causality b # Op,x1 in (2.3). We present a counter-example where high-to-low Granger
causality exists such that b # 0p,x1, yet in the LF model (2.13) 8* = Opx1.

Example 2.3 (Inconsistency of Low Frequency Wald Test). Consider an even simpler DGP
than (2.11) with m =2 and p = 1:

SL‘H(TL,I) 0 0 O ,TH(TL—Ll) EH(TL71)
ey(rp,2)| =0 0 0| |zulr —1.2)| + |en(r1,2) |, €(rr) ™ (0351, Tsx1), b# 01, (2.14)
xr (1) b b1 0 xr(tp — 1) er(7r)

The linear aggregation scheme when m = 2 is xy(7z) = hzg(mr,1) + (1 — 61)zg (7L, 2).

Test consistency requires that 3* # 0y, for any deviation b # 02«1 from the null hypothesis.
Below we show that, for any given aggregation scheme 41, there exists b # 0241 such that
B* = 0p,x1 for any lag length h. Given (2.14) it follows that:'®

0 1-6; 0 --- 0

QEE[@(TL—l)XH(TL—l)/]: 0 5 0 --- 0

Once we choose 41 we can find a deviation from the null b # 02x1 such that Cb = 0,1 1)x;1-
Simply let by = 0 and be # 0 if §; = 0; let by # 0 and by = —b1(1 — d1)/d1 if 61 € (0,1); or let
b1 # 0 and bg = 0 if 61 = 1. In each case Cb = 0(;4.1)x1 hence 8" = 0y in view of (2.13).

An intuition behind the above choice of b is that the impact of g (77, — 1,1) on x(77) and
the impact of xg(r, — 1,2) on zp(77) are inversely proportional to the aggregation scheme.

Hence, high-to-low causal effects are offset by each other after temporal aggregation.

2.2.2 Low Frequency Parsimonious Regression : Max Test

Now consider regressing x;, onto its own low frequency lags and only one low frequency lag of
aggregated xg:

q
rr(tn) = Z koL (T — k) + Bijxa(te — j) +ur (71)
k=1

0417]'
. : . 2.15
= [Xéq)(TL — U,z =5 | | +tur;(rn), j=1,...,h ( )
=z (10, —1)’ “aj
—J /8]
——

YEquation (2.14) immediately implies that =y (7, — 1) = bieg (1 — 2,2) + baem(tr — 2,1) + er(r — 1)
and therefore E[:EL(TL — 1)1’H(TL — 1,2)} = blE[EH(TL — 2,2)61{(7’[, — 1,2)] + ng[EH(TL — 2, 1)6H(TL — 1,2)} —+
er(te — Ven (. — 1,2) = 0. Similarly, Elzr (7 — 1)zu(rr — 1,1)] = 0. In addition, assuming a general linear
aggregation scheme, Elzy (11 — j)za(tn — 1,2)] = E[(biza(te — 4,1) + (1 — 01)zu (1 — §,2)zu (. — 1,2)] =
(1—-01)I(j =1). Similarly, E[zg (72 — j)zu (7 —1,1)] = 611(j = 1). Therefore, the second row of C is [1 — 41, 61]
and all other rows are zeros.
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Under the mixed frequency DGP (2.1) the pseudo-true value OJ(.LF)* for 0

derived by replacing @x;(7, — 1) with (77, — 1)" in (2.10):

(LF)

; can be easily

i aj ; i a1
i = | = | 0|+ Bz - V(- 1] Elz(rp - D)X p(rp - 1)Tb. (2.16)
: =I; b (q+1)x(g+1) =C;: (¢+1)xpm
Qg ; 0
L 57 ] L 0]

The low frequency max test statistic is constructed in the same way as (2.7):

T = e (VT 16
The limit distribution of 7) under Hy : b = 0py,x1 has the same structure as the distribution
limit in Theorem 2.1, except that x;(r, — 1) replaces x;(7 — 1), hence the Gaussian limit
distribution covariance V = U%WhRSR/ Wj, € R"" in (2.8) is now defined with a different S
based on gj(TL —1). In the spirit of Example 2.3, we can easily show that TEF) s inconsistent:
asymptotic power is not one in all deviations from the null hypothesis for all linear aggregation

schemes.

3 Low-to-High Frequency Data Granger Causality

We now consider testing for Granger causality from low frequency xj to high frequency s,
both in mixed and low frequency settings. The null hypothesis based on model (2.1) is Hy : ¢
= Opmx1. Under the MF-VAR(p) data generating process (2.1) we derive Wald and max test

statistics, and discuss an additional dimension reduction step based on MIDAS polynomials.

3.1 Mixed Frequency Approach

A natural extension of Sims’ (1972) two-sided regression model to the mixed frequency framework
allows for a simple Wald test. The model regresses x, onto ¢ low frequency lags of xr, h high
frequency lags of g, and r > 1 high frequency leads of xy:

q h r
rr(tL) = Zakl‘L(TL — k) + Zﬁij(TL —1m+1-j)+ Z’YNCH(TL +Lj) +ur(rr).  (3.1)
k=1 j=1 j=1
Low-to-high non-causality ¢ = Opmx1 in model (2.1) therefore implies v = [y1,...,7% ] = Opx1.
Under Hy : ¢ = 0py,x1 a Wald statistic derived from a least squares estimator of + has a X?
limit distribution under Assumptions 2.1-2.4, as long as ¢ > p and h > pm which ensures (3.1)
contains the true DGP.
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3.1.1 Parsimonious Regressions: Max Test

Parsimonious regression models inspired by (3.1) are, for j =1,...,7:
q h
xL(TL) = Za;me(TL - k‘) + Zﬁk,ij(TL — 1,m +1-— ki) +’Yj£CH(TL + 1,j) + ’LLL’j(TL) (3.2)
k=1 k=1

hence only the j* high frequency lead of zf is included. As before, we abuse notation since
under causation «; in (3.1) and (3.2) are generally not equivalent.

Let n = ¢+ h + 1 denote the number of regressors in each model, and define n x 1 vectors
yj(rp — 1) = [zp(rp = 1), ..., (. — q), zu(t —1,m+1-1), ..., zg(rp, —1,m+1—h),
zp(tr +1,7)) and @ = [a1j, ..., aqj, Pij, ---» Bhy, ;) - Therefore y;(rr, — 1) is a vector of

all regressors, and ¢; is a vector of all parameters in model j, hence we can write:
wr(rp) = y;(to — 1) + up;(7r).

Now stack the least squares estimator 4; for ; into 4 = [41, ..., %]". Low-to-high non-causality
Hy : ¢ = Opyx1 implies v = 0,51 for any r > 1, which justifies a mixed frequency max test

statistic for low-to-high causality:

- 2

U= max (\/TLwTL,jﬁ/j) . (3.3)
1<j<r

The asymptotic null distribution of U can be derived in the same way as in Theorem 2.1

under Assumptions 2.1-2.5, hence the proof is omitted.

Theorem 3.1. Let Assumptions 2.1-2.5 hold. Under Hy : ¢ = 0py,x1 we have that U i)
maxlgjgrj(ff as Tp, — oo, where N = [N1,..., N,] is distributed N (0,1, V) with positive
definite covariance matrix: V = 07 W, RSR'W, € R™" where 07 = E[e?(11)]; S is defined
the same way as S in (2.9) by replacing the regressors x;(r;, — 1) with y;(7;, — 1); and selection

matrix R is a r-by-(q + h + 1)7 matrix that picks [y1,..,7,] out of [@}, ..., #L] .

Remark 3.1. We require Assumption 2.5, such that the number of high frequency lags h in
models (3.1) and (3.2) is at least as large as the true lag length pm, in order to ensure that the
true DGP is contained in the two-sided models (3.2) under the null hypothesis of no causation
from low-to-high frequency: under no causation 4 20 only if the model is otherwise correctly
specified vis-a-vis DGP (2.1). Conversely, the high-to-low frequency max test limit distribution
in Theorem 2.1 applies without h > pm precisely because for any h > 1 the coefficients 3 are
identically 0 under the null of no causality from high-to-low frequency. We imposed h > pm
solely to deduce by Corollary 2.6 that the limit distribution applies if and only if no causation

from high-to-low frequency is true.

Remark 3.2. In general, it cannot be shown that v # 0,1 in (3.2) follows under low-to-high

causality ¢ # Oppx1, even if » > pm. Therefore, consistency of the low-to-high Wald and max
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tests is an open question, and evidently not yet resolved by our methods.

3.1.2 MIDAS Polynomials in the Max Test

In a low-to-high frequency causality test the max statistic only operates on the lead parameters
74, while our simulation study reveals a large lag h can prompt size distortions. In general a
comparatively large low frequency sample size is needed for the max test empirical size to be
very close to the nominal level.!!

One option is to use a bootstrap procedure for p-value computation, but we find that a wild

bootstrap similar to Gongalves and Killian’s (2004) does not alleviate size distortions.

Another approach is to exploit a MIDAS polynomial for the high-to-low causality part in
order to reduce the impact of large h, and keep the low-to-high causality part unrestricted
(cfr. Ghysels, Santa-Clara, and Valkanov (2006), Ghysels, Sinko, and Valkanov (2007), among
others). The model now becomes:

q h
zp (1) = ZakmL(TL —k)+ Zwk(ﬂ')mH(TL —1L,124+1—k)+vjzu(re +1,5) +ur(re), j=1,...,m, (3.4)
k=1 k=1

where wy () represents a MIDAS polynomial with a parameter vector w € R® of small dimension
s < h.

There are a variety of possible polynomials in the literature (see e.g. Technical Appendix A
of Ghysels (2014)). In our simulation study we use the Almon polynomial wy(mw) = Y7, mk',
hence model (3.4) is linear in 7, allowing for least squares estimation. Another important
characteristic of the Almon polynomial is that it allows negative and positive values in general
(e.g. wi(mw) > 0 for k < 3 and wy(w) < 0 for k > 4, etc.). Many other MIDAS polynomials, like
the beta probability density or exponential Almon, assume a single sign for all lags.

MIDAS regressions, of course, may be misspecified. Therefore, the least squares estimator
of v may not be consistent for 0 under the null, but rather may be consistent for some non-zero
pseudo-true value identified by the resulting first order moment conditions. Nevertheless, we
show that a model with mis-specified MIDAS polynomials leads to a dramatic improvement in
empirical size, even though the max test statistic for that model does not have its intended null
limit distribution. We also show that size distortions vanish with a large enough sample size
(cfr. Footnote 11).

"1n our simulation study where m = 12, we find T, € {40,80} is not large enough but T > 120 is large
enough for sharp max test empirical size. If the low frequency is years, such that there are m = 12 high frequency
months, then 77, = 120 years is obviously too large for practical applications in macroeconomics and finance,
outside of deep historical studies. If the low frequency is quarters such that the high frequency is approximately
m = 12 weeks, then Tt = 120 quarters, or 30 years, is reasonable.
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3.2 Low Frequency Approach

Consider a low frequency counterpart to the parsimonious regression models (3.2), with aggre-
gated high frequency variable xy () = >_%, d;z (1L, j):

hrLr

q
IL(TL) = Zak7j:17L(7'L — k) + Zﬂk’ij(TL — k) =+ ’yjl‘H(TL +]) + UL,j(TL), ] = ]., ..., TLF. (35)
k=1 k=1

The subscript “LF” on h and r emphasizes that these are the number of low frequency lags and
leads of aggregated zy. We estimate the parsimonious model (3.5) by least squares, and use a

low frequency max test statistic as in (3.3):

U = max (/Trwr, i4)%

1<j<rrFr

(LF) under Hy : x;, - xg requires an assumption in

Deriving the limit distribution of u
addition to Assumptions 2.1-2.5. Under the null hypothesis of low-to-high non-causality, a
correctly specified two-sided MF regression reduces to (2.3). In general, each low frequency
parsimonious regression model (3.5) does not contain (2.3) as a special case. The true high-
to-low causal pattern based on the non-aggregated xp, i.e. Ef:l bixg(t, —1,m+1—1), may
not be fully captured by the low frequency lags of aggregated z g, i.e. Zzg Br,jru (T, — k), no
matter what the lag length hpr is. See Examples 3.1 and 3.2 below.

In order to find a condition that ensures each low frequency parsimonious regression model
contains (2.3) as a special case, we elaborate the relationship between the (non)aggregated causal
terms Y )" by (1, —1,m+1—1) and Zzg B jx i (tr, — k). In the following we write [, instead
of B ; since it is irrelevant which 4t lead term of xp is included in the model. Observe that

the aggregated high frequency variable is:

hrp hrr m
D Bren(t—k) = By dwu(rL —k,1)
k=1 =1 1=1

:,BlémJZH(TL—1,m+1—1)+"'+,61(51$H(TL—1,m+1—m)
+"'+ﬁhLF5mCCH(TL—hLF,m+1— 1)+"'+,8hLF(S1IL’H(TL—hLF,m-l-l—m)

hrrm

- Z BrymOnmimr1—wa(tL —1L,m+1-1),
=1

(3.6)

where [z] is the smallest integer not smaller than z. The last equality exploits the notational
convention that the second argument of zz can go below 1 (see Appendix A). Now compare the
last term in (3.6) with the true high-to-low causal pattern > 1"y bz g (7, — 1,m + 1 — ). The
following assumption gives a sufficient property for the true b in model (2.3) in order for the

parsimonious regressions with aggregated z g to contain the true DGP under the null.

Assumption 3.1. Fix the linear aggregation scheme § = [01,...,0,]’, and fix the true causal
pattern from xy to xz: b = [b1,...,bpy)'. There exists B* = [B], ..., 8] such that b =
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BFl/méfl/meJrH for all I € {1,...,pm} provided a sufficiently large lag length hrp > p is

chosen.

Remark 3.3. Assumption 3.1 is in some sense a low frequency version of Assumption 2.5,
but with a deeper restriction that the DGP can be aggregated and still retain identification of
underlying causal patterns. It ensures that there exists a pseudo-true B* such that ZZS{ By
zp(tp —k) = Y07 by xg(tp —1,m+1—1), in which case each parsimonious regression model
(3.5) is correctly specified under Hy : 1, - xp. Therefore, for a given aggregation scheme ¢ it
assumes the DGP itself, and therefore b = [by,...,byy)’, allows for identification of the DGP

under low-to-high non-causality using an aggregated high frequency variable ;.

If there is high-to-low non-causality, that is b = Oppx1 in (2.3), then Assumption 3.1 is
trivially satisfied by choosing any hrr € N and letting 5} = 0 for all k € {1,...,hrr}. Under
high-to-low causality b # Opmx1, however, Assumption 3.1 is a relatively stringent restriction
on the DGP. The following examples show that some DGP’s cannot satisfy Assumption 3.1,
in particular that a low frequency test may not be able to reveal whether there is low-to-high

frequency causation.

Example 3.1 (Causality with Stock Sampling). Assume the sampling frequency ratio is m = 3,
the AR order is p = 2, and in model (2.3) consider lagged causality b, = b x I(l = 4) for
l€{l1,...,6} with b # 0. This causal pattern can be captured by the low frequency parsimonious
regression models if and only if the aggregation scheme is stock sampling.

A proof of this claim is as follows. Since stock sampling is represented as §; = I(l = 3) for [ €
{1,2, 3}, the summation term included in each parsimonious regression models, Zg Brr (T, —
k), can be rewritten as ZZiq Brrm (T, — k, 3). Therefore, we can simply choose hpr = 2, 5 =0,
and 35 = b to replicate the true causal pattern.

Conversely, assume ¢; > 0 for all [ € {1,2,3}, 3 < 1, and Zf’zl é; = 1, which allows for
any aggregation exzcept stock sampling. Since d3 < 1, either §; and/or d2 should have a positive
value, so assume d; > 0 without loss of generality. Assumption 3.1 therefore requires by = (3503
and bg = (501, but the true causal pattern implies by = b # 0 and bg = 0. Since 6; > 0, there

does not exist any 35 that satisfies all four equalities.

Example 3.2 (Flow Sampling). Under flow sampling we have §; = 1/m for all [ € {1,...,m},
in which case Assumption 3.1 requires b; = B’[“l Jm] /m, hence by =+ = by, b1 = -+ = bop,
and so on. In other words, Assumption 3.1 holds only when all m high frequency lags of zz in
each low frequency period have an identical coefficient. This is quite severe since empirical evi-
dence (here and elsewhere) points to more nuanced patterns of inter-period dynamics, including
parameter values with different signs, lagged causality (some parameters values are zeros), or

decaying causality (parameter values decline).

The limit distribution of 2/(EF) is straightforward to derive under Hy : 1, —» xp. Define an
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n X 1 vector of all regressors in model j:

y.(TL—l) = [xL(TL—1),...,(13L(TL—q),fL’H(TL—1),...,xH(TL—h),l’H(TL —|-j)]l.

(LF)

Under Assumptions 2.1 - 2.4 and 3.1, the asymptotic distribution of U under Hy : x;, - xg

is identical to that in Theorem 3.1, except we replace regressors y; (77, — 1) with Y, (rp — 1).

4 Local Asymptotic Power Analysis for Tests of High-to-Low
Non-Causality

The results of Section 2 characterize the asymptotic global power properties of MF and LF
Wald and max tests of high-to-low frequency non-causality. The MF max and Wald tests are
consistent as long as the selected number of high frequency lags h is larger than or equal to
the true lag order pm. Conversely, the LF tests are sensitive to the chosen aggregation scheme:
for some DGP’s and aggregation schemes power is trivial, hence these tests are not generally
consistent. In this section we study the local power properties of each test for the high-to-low
case. We do not treat the low-to-high frequency case since identification of causation within
Sims’ (1972) two-sided regression model is unresolved.

As Example 2.3 suggests, the LF tests have asymptotic power of one in some cases depending
on the aggregation scheme and DGP, even though these tests do not have asymptotic power of
one against all deviations from non-causality. An advantage of LF tests of course is that they
require fewer parameters than MF tests, hence in some cases local power for LF tests may be
actually higher than for MF tests.

We impose Assumptions 2.1-2.4, and consider the usual mixed frequency DGP (2.1). The
high-to-low non-causality null hypothesis is Hy : b = Oy, %1, hence the local alternative hypoth-

esis under regular asymptotics is

HYb=v/VTy,

where v = [v1, ..., Vpy) is the drift parameter. Under HE, model (2.3) becomes
:L‘L(TL) = XL(TL — 1)'a + XH(TL — 1), (1l/> + GL(TL) (4.1)
VT
where as before X (7, — 1) = [zp(r — 1),...,2(rp — )], Xg(rp — 1) = [z — 1,m+1—

1),...,zp( —1,m+1—pm)], and @ = [a1, ..., ap]"

4.1 Local Power for Tests with Mixed Frequency Data
4.1.1 Mixed Frequency Max Test

Our first result gives the asymptotic distribution of the max statistic under H¥. Define covariance
matrices T j = Elzj(r, — 1)x;j(rp —1)] and C; = Elzj(1, — 1) X g (7 — 1)']), and recall the
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weighting scheme W), in (2.7) and selection matrix R in (2.9).

Theorem 4.1. Under Assumptions 2.1-2.4 and HlL we have T 4 maxi<i<p ./\/ll2 as 17, — oo,
where M = [M1, ..., M}]" is distributed N(u, V), V is defined in (2.8), and

]._‘17&01
nw=W,R : v e R (4.2)
-1
Fh,hCh
Proof. See Appendix F.

In order to compute local power we need the Gaussian law mean p and therefore explicit

characterizations of I'; ; and Cj in terms of underlying parameters (A1, ..., A,) and Q in (2.1).

Lemma 4.2. Let Assumptions 2.1 and 2.2 hold, and define f(j) = [(j — m)/m] and g(j) =
mf(j)+m+1—j, where [z] is the smallest integer not smaller than x. Let Tx(s,t) be the (s,t)
element of X, = F[X (7,) X (7, — k)']. Then, for j,i € {1,...,h}:

Tlfl(K7K) Tlfq(KaK) T—f(z)(g(l)vK)
I\j7i _ . ) . . . ,
Y, (K K) ... Y, (K K Yooy (g(d), K
D ) g—1( ‘) g—q( ) | (q—1) f()(g(l) .)
Tro)(K,9() - Tiiy—q-0 K 9())  Yriy—s)(9(i), 9(4))
(4.3)
Yy (K, g(1)) Tt (pm) (K, g(pm))
C] _ N . .
~~ Try—q-n I 9(1) oo Tpmy—(g—1) (K, g(pm))
(g+1)xpm : :
Yiiiy—ry(9(1),9() - Tiy—fom) (9(pm), g(5))

Proof. See Appendix G.

Remark 4.1. Considering that Yy is (m + 1) x (m + 1), it must be the case that g(j) takes
a natural number between 1 and m + 1 for any 5 € N. We verify this in Table T.1 of the
supplemental material Ghysels, Hill, and Motegi (2015). By definition, f(j) is a step function
taking 0 for j =1,...,m, 1 for j=m+1,...,2m, 2 for j =2m+1,...,3m, etc. g(j) takes m,
m—1, ..., 1as jruns from (k—1)m+ 1 to km for any k € N. Hence, the matrices in (4.3) are

always well-defined.

Remark 4.2. Let X be a pK x pK matrix whose (i, j) block is X;_; for 4,5 € {1,...,p}. Let
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Q be a pK x pK matrix whose (1,1) block is €2 and all other blocks are Oy . Define

A ... Ay, A,
A Iy ... Orgxkx Ogxk o RPEXPK
Ok ... Ik OxxK

Using the discrete Lyapunov equation, Y for £ € {1 — p,...,p — 1} can be computed by the

following well-known formula:
vec|Y] = (Ippgy — A® A)f1 vec[€2], (4.4)

where vec[-] is a column-wise vectorization operator, and ® is the Kronecker product. Y} for
k > p can be recursively computed by the Yule-Walker equation: Y = Zle A; Y. Finally,

the covariance stationarity of X (7,) ensures X, = X', for k < —p.

Local asymptotic power can be easily computed numerically for a given DGP. See Section

4.3 for numerical experiments.

Step 1 Calculate p and V' from underlying parameters (A, ..., A,), and € in model (2.1) by

using Theorems 2.1 and 4.1, and Lemma 4.2.

Step 2 Draw random vectors {[N l(-r)] bV independently from N(0p1, V), and calculate test
statistics T, = maxlgigh(./\fl(.r))2, where Ry is a large integer. The 100(1 — «)% empirical
quantile gf of {T- 7{3;11 is an asymptotically valid approximation of the a-level asymptotic

critical value of 7.

Step 3 Draw random vectors {[M T)]?zl}fil independently from N(u, V'), and calculate test

(
i
statistics 7, = maxlggh(MEr))Q, where Ry is a large integer. Empirical local asymptotic
power is computed as P = (1/Rg) Y272 I(T, > qg,)-

By construction ¢f estimates the 100(1 —«)% quantile ¢* of the max test statistic limit law
maxi<;<p /\/'iz. By independence of the sample draws, gf, TN q® as Ry — oo. Indeed, since we
can choose { Ry, R2} to be arbitrarily large, and the samples are independently drawn, empirical
power P can be made arbitrarily close to local asymptotic power lim7, o P(7A‘ > q0‘|H1L) by
the Glivenko-Cantelli theorem. See the proof of Theorem 2.2 for related details.

4.1.2 Mixed Frequency Wald Test

Rewrite model (2.4) in matrix form:

aq ﬁl
:CL(TL):[mL(TLfl),...,ZEL(TL*Q)} +[ZCH(TL*1,m+1*1),...,:€H(TL71,m+17h)] +uL(TL)

o Bn
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_ [x;@(m —1) XWP(r - 1)’] X L up(r) = 2l — 1)'© +ur (). (4.5)

Xgl)(TL — 1) is a vector stacking h high frequency lags of xp, while X g (7, — 1) is a vector
stacking pm high frequency lags of xy.

Let W denote the least squares based Wald statistic for testing Hy : b = Opppx1, and Assump-
tions 2.1-2.4 hold. Then W is asymptotically X3 (k) distributed under HE, where x? (k) denotes
the noncentral x? distribution with degrees of freedom h and noncentrality & that is a function of
drift v, and the covariance matrices I' = E[z(1,—1)x(rp,—1)'] and C = Elx(r,— 1) X g (7 —1)'].
In particular £ = 0 if and only if v = 0 such that the null is true. The covariances I' and C
can be derived in terms of underlying parameters, analogous to Lemma 4.2. See Section B.1
in the supplemental material Ghysels, Hill, and Motegi (2015) for complete derivations of the
Wald statistic, covariance matrices, and noncentrality parameter.

Since W has asymptotic x? distributions under Hy and H{, local power of the mixed fre-
quency Wald test is P = 1 — Fy[F; '(1 — )], where a € (0,1) is the nominal size, Fy is the
asymptotic null X%L distribution, and F} is the asymptotic local alternative X%L(/{) distribution.
Noncentrality x is computed from v, T' and C, and therefore from (Aq,..., Ap) and €, cfr.

Theorem B.1 and Lemma B.2 in the supplemental material.

4.2 Low Frequency Approach

As usual, we impose Assumption 2.4 that ¢ > p, but we do not assume anything about the

magnitude of the number of included high frequency lags h relative to the true lag order pm.

4.2.1 Low Frequency Parsimonious Regression

We compute the low frequency max test statistic TEE) based on h low frequency parsimonious
regression models (2.15): (1) = (17 — 1)'9§-LF) +upj(r), where z;(7, — 1) = [vr (1 —
1),...,zp(tp—q), xa(t—j)]’ with aggregation z g (1p,—j) = Y%, dizm (7, —74,1). The asymptotic
distribution of 7F) under Hf : b = (1//Ty,)v is the same as in Theorem 4.1, except a; (77, — 1)
there is replaced with x; (17, —1). Computing local power for the low frequency max test therefore
requires an analytical characterization of I'; ; = E[gj(TL —1ax,;(r, — 1)'] and C,= E[gj (tp —
1) X g (1, — 1)']. See Section B.2 in the supplemental material Ghysels, Hill, and Motegi (2015).

4.2.2 Low Frequency Naive Regression

The low frequency naive regression model is (2.12): z (1) = z(r7, — 1)'0F) + wy (11), where
z(r, — 1) =[zp(rp = 1),...,2p(r — @), zp(t, — 1),...,zg (7, — h)]".

Let W(EE) denote the Wald statistic for testing Hop : b = Opmx1. The asymptotic distribution
of W&EE) jg X;% under Hyp, and X}% (k) under H f, where noncentrality £ depends on the covariances
I'=Flz(rp, — 1)x(rp —1)] and C = Elz(r, — 1) X g (7, — 1)’]. Complete analytical details are

presented in Section B.3 of the supplemental material Ghysels, Hill, and Motegi (2015).
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4.3 Numerical Examples

We now compare the local power of MF and LF max and Wald test.

4.3.1 Design

We work with a structural MF-VAR(1) process with m = 12 (e.g. the LF increment is one year
and the HF increment is one month):

1 0 ... ... ... 0
. : . 0 o d
—d 1 o T D] |, 0 | [erL -1 [aaGLD)
ez
0 —d . . : =1 Do : + , (4.6)
. zp(Tr,12) 0 0 0 zg(rp —1,12) N (T, 12)
] zr(7L) 2 zr(t — 1) nr(TL)
0 0 —~d — = b b b
L O 0 0 0 1 =X(rr) —nr =X (r,-1) =n(rL)
=N
where n(71,) ~ (013x1,I13) is an mds with respect to increasing F,, = o(X(7) : 7 < 71).

Coefficient a governs the autoregressive property of xy, d governs the autoregressive property
/

of g, ¢ = [c1,...,c12) represents Granger causality from x to xp, and our interest lies in
b=1[b1,...,b12) since it expresses Granger causality from xy to xy. Since
1 0 0]
0 0 ... d Lodt e
d 1 0 o 2d e
0 0 d i d e
2
Nl = |4 d thus A=N"'M=|: : ; ., (47)
. . 0 0 a2 g
dll le N d 0 612 b11 b1 a
i 0 0 e 0 0 1_

the reduced form of (4.6) is X (71)
Q = Ele(ry)e(r) ] = N"IN~V,
We consider three types of drift v = [vy,..

AX(p — 1) + €(71), where €(r,) = N~'n(7,) and

(—1)7=1 x 2.5/j for j

1,...,12, hence there is decaying causality from xg to xy, with hyperbolic decay and alternating

. v12)'. First, v;

signs. Second, lagged causality with v; = 2 x I(j = 12) for j = 1,...,12, hence only v12 # 0.
Third, sporadic causality with (vs, v, v11) = (2.1, —2.8,1.9) and all other v;’s are zeros.!?

Other parameters in the DGP are as follows. Since local power is not significantly affected
by the choice of a, we simply set a = 0.2 such that the autoregressive property for zy, is fairly
weak. There are two values for the persistence of xpg: d € {0.2,0.8}, and decaying causality
with alternating signs for low-to-high causality: ¢; = (—1)7=! x 0.8/j for j = 1,...,12.

In the regression models used as the premise for the four tests, we include two low frequency
lags of zz, (i.e. ¢ = 2), although ¢ = 1 would suffice since the true DGP is MF-VAR(1). Max
text local power is then computed using draws of 100,000 random variables from the limit

distributions under Hy and H¥, and a flat weight: W}, = (1/h) x I;. We use a flat weight as

12Such relationships may exist in macroeconomic processes due to lagged information transmission, seasonality,
feedback effects, and ambiguous theoretical relations in terms of signs.
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a convention in the absence of information about the relative magnitudes of the parsimonious
regression slopes f3;.

The number of high frequency lags of xy used in the mixed frequency tests is hyp €
{4,8,12}, and the number of low frequency lags of aggregated xy used in the low frequency
tests is hpp € {1,2,3}. In the low frequency tests, for aggregating xxy we use flow sampling (i.e.
O =1/12 for k =1,...,12) and stock sampling (i.e. §x = I(k = 12) for k = 1,...,12). Finally,

the nominal size « is 0.05.

4.3.2 Results

Table 1 contains all local power results. We distinguish different cases which we characterize as

follows:

Decaying Causality, Low Persistence in zg: d = 0.2 The MF max and Wald tests have
moderately high power between 0.346 and 0.570 (e.g. max and Wald tests with hj;p = 4 have
respective power 0.487 and 0.570).

The LF tests with flow sampling have very little power above nominal size, regardless of
the number of lags hrr € {1,2,3}, since alternating signs in v; and flow aggregation combine
together to offset causality. The lowest value is 0.063 and the largest value is 0.076. Under stock
sampling, however, local power is much larger, ranging from 0.495 to 0.643. For example, the
LF Wald test with stock sampling and hyr = 1 has power 0.643, while the MF Wald test power
is .570. The reason for the improved performance is the largest coefficient v; = 2.5 is assigned
to xg (7 — 1,12), which is precisely the regressor included in the low frequency models with

stock sampling.

Decaying Causality, High Persistence in zy: d = 0.8 Local power rises in general when
there is high persistence in the high frequency variable, but otherwise the above results carry

over qualitatively.

Lagged Causality Consider the high persistence case d = 0.8 (low persistence leads to similar
results with lower power). Mixed frequency tests have power that is increasing in hysp, for
example max-test power is 0.075, 0.181, and 0.769 when hjsr is 4, 8, and 12. This reflects the
causal pattern that only the coefficient 119 on xg (77, — 1,1) is 2 and all other v’s are zeros. It
is thus important to include sufficiently many lags when we apply MF tests.

The LF tests with flow sampling have reasonably high power regardless of hrr, ultimately
because the low frequency models work on an aggregated xy and hence taking only a few lags
tends to be enough. The power of the LF max test, for instance, is 0.455, 0.468, and 0.415 when
hrr is 1, 2, and 3, respectively. Another important reason for this good performance is that
the causal effect is unambiguously positive; we have one large positive coefficient 1o = 2 and

no negative coefficients, while flow aggregation preserves such causality.
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The LF tests with stock sampling, by contrast, have nearly no power at hyr = 1. This is
expected since xp (7, — 1,12) has a zero coefficient by construction. They have high power,
however, when hyr = 2 (0.676 for max test and 0.664 for Wald test) because the extra regressor
g (7, —2,12) has a strong correlation with the adjacent term 2 (77 — 1, 1), which has a nonzero
coefficient v15 = 2. Such spillover monotonically adds to local power as the persistence of xp

(i.e. d) is larger.

Sporadic Causality The case of sporadic causality highlights the advantage of the mixed
frequency approach. Consider low persistence in the high frequency variable: d = 0.2. The MF
max test has power 0.391, 0.323, and 0.677 when hp;r is 4, 8, and 12, and MF Wald test power
is 0.365, 0.291, and 0.761. Their power declines when switching from hj;r = 4 to hprr = 8 since
vs, Vg, V7, and vg are all zeros, and thus a penalty arises due to the extra number of parameters.
The LF tests, whether flow sampling or stock sampling, have nearly no power (at most 0.072)

due to their vulnerability to alternating signs and lagged causality as seen above.

Max versus Wald Test It is not clear from Table 1 whether the MF max test with a flat
weight is preferred to the MF Wald test. Across our experiments, the max-test power surpasses
the Wald-test power in 12 cases out of 18. The difference between max and Wald tests takes the
largest value 0.769 — 0.560 = 0.209 for lagged causality with (d, harr) = (0.8,12), and smallest
value 0.690 — 0.872 = —0.182 for sporadic causality with (d, hpsr) = (0.8,12). In the absence
of other experiment designs or weighting schemes, we cannot in general conclude that the max
text dominates the Wald test in terms of local power.!3

This is not surprising since both test statistics are simple functions of least squares estimators,
and local power is asymptotic. Indeed, although the max statistic operates on the largest
estimator across parsimonious regression models, that need not imply higher local power since
the statistic may asymptotically have greater dispersion. As we show below, however, the flat

weighted max text statistic has the advantage of small sample size accuracy and in general

higher power.

5 Monte Carlo Simulations

Our next task is to conduct simulation experiments in order to compare the MF and LF max
and Wald tests.
5.1 High-to-Low Granger Causality

We first investigate tests of high-to-low non-causality Hg : b = Op,x1 against general causality
H1 :b 7& 0pm><1-

131 experiments not reported here, we tried a MF-VAR(2) data generating process as a robustness check, and
obtained qualitative the same results as in MF-VAR(1).
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5.1.1 MF-VAR(1)

We initially work with the MF-VAR(1) process (4.6) with m = 12, which serves as a benchmark.
We consider a MF-VAR(2), below, as a robustness check.

Data Generating Processes The error term m(7z) is mutually and serially independent
standard normal random distributed.

There are four (non)causality cases, similar to those in the local power experiments: non-
causality; decaying causality with alternating signs: b; = (—1)77! x 0.3/j for j = 1,...,12;
lagged causality: bj = 0.3 x I(j = 12) for j = 1,...,12; and sporadic causality: (b3, br,bip) =
(0.2,0.05,—0.3) and all other b; = 0.

As in the local power study, we assume a weak autoregressive property for zy, (i.e. a = 0.2).
See Table T.2 in the supplemental material for high-to-low causality tests when a = 0.8: the
choice of a does not appear to significantly influence rejection frequencies. There are two values
for the persistence of xg: d € {0.2,0.8}, and decaying low-to-high causality with alternating
signs: ¢j = (=1)77t x 0.4/j for j =1,...,12.

Sample size in terms of low frequency is T, € {40,80}. Since m = 12, our experimental
design can be thought as month versus year, or approximately as week versus quarter. In the
latter case, T, = 40 or 80 imply that the low frequency sample size is 10 or 20 years, which are
respectively small and medium spans of time. In the former case Ty, = 40 implies that the low

frequency sample size is a relatively large span of 40 years.

Model Estimation We estimate regression models that in all cases include two low frequency
lags of xy (i.e. ¢ = 2). Setting ¢ = 1 would be sufficient since the true DGP is MF-VAR(1),
but the true lag order is typically unknown. The number of high frequency lags of xzp used in
the MF tests is hyp € {4,8,12} as well as hyp = 24 when 77, = 80, and the number of low
frequency lags of aggregated xp used in LF tests is hpp € {1,2,3} as well as hpp = 4 when
T7, = 80. Low frequency tests use flow and stock sampling for the high frequency variable. The
max test weighting scheme is flat W), = (1/h) x I, and the number of draws from the limit
distributions under Hy is 1,000 for p-value computation.

Given the large ratio m = 12, the MF Wald test (and possibly even the LF Wald test)
may suffer from size distortions if we use the asymptotic chi-square distribution. We therefore
use Gongalves and Killian’s (2004) parametric bootstrap in order to better approximate the
small sample Wald statistic distribution. As a bonus, their bootstrap allows for conditionally
heteroscedastic errors of unknown form, while our innovations are i.i.d. We use their bootstrap
p-value with 499 bootstrap samples in order to match the empirical study below, where the

innovations are unlikely to be i.i.d. 4

1 Consider bootstrapping in the MF case with model (4.5), the LF case being similar. Let © be the unrestricted
least squares estimator for @ in 21 (7) = @ (7L — 1)'© +ur(71), the residual is @r(72), and the Wald statistic is
W. Compute the least squares ®¢ for @ = [a’,01x]" in the null model zr () = & (7. — 1)’O¢ +ur (7). Then

simulate N samples from z 1, (1) = @ (1, — 1) @¢ + @z (11.)v(71.), where v(7r) S N(0,1), and compute the Wald
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The number of Monte Carlo samples drawn is 5,000 for max tests and 1,000 for bootstrapped
Wald tests (due to the added computation time), and size « is fixed at 0.05.

Results Table 2 compiles the simulation results: Panel A contains empirical size, while Panels
B-D contain empirical power. Empirical size in both tests is fairly sharp, ranging across cases
between 0.032 and 0.068. The max tests has sharp size evidently due to its relatively more
parsimonious specification, while the Wald test has sharp size due to bootstrapping the p-value.

Panels B-D provide the same implications for MF versus LF tests as in the local power study,
cfr. Table 1. In particular, MF tests are better capable of detecting complicated causal patterns
like sporadic causality.

Consider the relative power performance of the MF max and Wald tests. In a strong majority
of cases across causal patterns b, lag length hj;p, persistence d, and sample size T}, the max test
has higher power than the Wald test. In a few exceptions the differences are negligible, where
the greatest spread being 0.482 —0.527 = —0.045 when there is decaying causality, hy;r = 4 and
T, = 80 (Panel B.1.2). In the cases where the max test performs better, the difference in power
is often substantial. Under lagged causality with (d, Tr, hasr) = (0.8,40,12), for example, max
test power is 0.576 but Wald test has power is only 0.255 (Panel C.2.1). Similarly, max and Wald
tests have powers 0.907 and 0.498 under lagged causality with (d, Ty, hasrr) = (0.8,80,24) (Panel
C.2.2). The apparent reason is the bootstrapped Wald test achieves a size corrected power that
approximates the size corrected power of the asymptotic test (cfr. Davidson and MacKinnon
(2006)). In simulations not reported here we find large to massive size distortions for the Wald
test, hence the bootstrapped version has sharp size and comparatively low power. Therefore, in

view of relatively sharp size for both tests, the max test dominates in general.

5.1.2 MF-VAR(2)

As a robustness check, we use observations drawn from a structural MF-VAR(2) NX (17) =
S22 M X (r1,—i)+n(rr) with m = 12. Relative to the MF-VAR(1) in (4.6), the extra coefficient
matrix My is parameterized as

O12x1 ... O12x1 O12x1

M, =
b24 . b13 0

The four causal patterns are non-causality: b = 024x1; decaying causality: b; = (—1)-1x0.3/5
for j =1,...,24; lagged causality: bj = 0.3 x I(j = 24) for j =1,...,24; and sporadic causality:
(bs, b12, b17,b19) = (—0.2,0.1,0.2, —0.35) and all other b; = 0.

Other quantities are similar to those used above: a = 0.2; d € {0.2,0.8}; ¢; = (—1)771x 0.4/
for j =1,...,12; ¢ = 2; W), = (1/h) x Iy; Tr, € {40,80}; and size is a = 0.05. Rejection
frequencies are similar when a = 0.8: see Table T.3 in the supplemental material Ghysels,
Hill, and Motegi (2015). The number of high frequency lags of zy used in the MF tests is

statistic W;. The bootstrapped p-value is py = [1 + S~ | I(W; > W)]/(N + 1).
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hayrr € {16,20,24}, while the number of low frequency lags of aggregated xzx used in LF tests
is hpr € {1,2,3}.

Rejection frequencies are compiled in Table 3. There are no serious size distortions as in
the MF-VAR(1) case, and the relative performance of MF and LF tests is also the same. In
a vast majority of cases the MF max test has higher empirical power than the MF Wald test,
and the power advantage is often quite large. For example, fixing (d, T, hyr) = (0.8,80,24),
empirical power under lagged causality is 0.896 for the max test and 0.480 for the Wald test
(Panel C.2.2). There are two exceptions where the max test is less powerful than the Wald
test, but the power differences are negligible: 0.284 — 0.290 = —0.006 (Panel B.1.2: decaying
causality) and 0.621 — 0.655 = —0.034 (Panel D.2.2: sporadic causality). Therefore, again the
max test dominates, and it has an even greater advantage precisely in a model with greater
parameter proliferation. In general, therefore, the max test is best for MF high-to-low causality

tests.

5.2 Low-to-High Granger Causality

Our focus now is low-to-high causality ¢ = [c1,...,c12] in the structural MF-VAR(1) in (4.6)
with m = 12.

5.2.1 Design

We use the usual four causality patterns. In each case we need to be careful about how ¢
is transferred to the upper-right block [23:1 d* e, ..., Zil d'?=ic;]" of A1, the low-to-high
causality pattern in the reduced form (4.7), where d is the AR(1) coefficient of zp. For non-
causality ¢ = 0121, the upper-right block of A; is a null vector regardless of d. A similar pattern
arises for decaying causality c; = (—1)771x0.45/7 for j = 1,...,12, assuming d = 0.2. For lagged
causality ¢; = 0.4 x I(j = 12) for j = 1,...,12, the upper-right block of A; is identically ¢
regardless of d. In the case of sporadic causality (c3,c7,c10) = (0.4,0.25, —0.5) a similar pattern
arises, assuming d = 0.2. Consult Figure 1 for a graphical representation.

We impose weak autoregressive properties a = d = 0.2 for xy, and zp, and decaying high-
to-low causality with alternating signs: b; = (—1)/~! x 0.2/j for j = 1,...,12. Sample size is
T, € {40,80}.

As a benchmark, the Wald test is based on the MF naive regression model (3.1) with a
bootstrapped p-value and 499 bootstrapped samples, and the MF max test is based on MF
parsimonious regression model (3.2).

In small samples 77, = 40 the max test exhibits relatively large size distortions due to
the number of included high frequency lags. The asymptotic distribution is therefore a poor
approximation of the small sample distribution. In larger samples 77, > 120, however, size
distortions decrease precipitously: see the discussion below. In view of our relatively small
sample sizes, as a second max test we use the MF parsimonious regression models with a MIDAS

polynomial on the high frequency lags, as in (3.4), as an ad hoc attempt to tackle remaining
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parameter proliferation. We use the Almon polynomial of dimension s = 3 (cfr. Section 3.1). In
order to make a direct comparison with the Wald test, we also perform the Wald test on MF

naive regression model (3.1) with lags of 2 replaced with the Almon polynomial.
Besides the MF max test and MF Wald test, we perform the LF max test based on LF
parsimonious regression models:

hLr
Z‘L(TL):Oél’jLL'L(TL—1)+Zﬁk’j$H(TL—k)+’ijL‘H(TL —l—j)-l—uL’j(TL), i=1...,rpF. (51)
k=1
We do not exploit a MIDAS polynomial since hpr takes small values in our design. We consider

both stock and flow sampling for aggregating zp.
Finally, the LF bootstrapped Wald test is based on a LF naive regression model:

hrr TLF

ep(rp) = arxp(r, — 1)+ > Bern(re — k) + > yau(rn +§) + ur(r), (5.2)
k=1 j=1
and 499 bootstrapped samples.

The estimated MF models use leads and lags of xy taken from hyp,rap € {4,8,12}, and
the estimated LF models use leads and lags of aggregated x g taken from hpp,rpr € {1,2,3}.
We compute flat weighted max statistics, and use 1,000 draws from the asymptotic distribution
under low-to-high non-causality for p-value computation. The number of Monte Carlo samples
drawn is 5,000 for max tests and 1,000 for Wald tests, and size is fixed at 5%.

5.2.2 Results

Table 4 presents the results. First, the MF max test exhibits large (small) size distortions
when T7, is 40 (80). At worst, empirical size is 0.225 at the 5% level (Panel A.2.1: Ty, = 80
and hyp = ryp = 24), and at best size is 0.058 (Panel A.2.1: Tp = 80, hyyp = 4 and
ryr = 8), logically since fewer parameters align with sharper empirical size. If T, = 80, then
sizes are between 0.058 and 0.097 for hyrp € {4,8,12}, generally revealing greater parameter
proliferation is aligned with a greater size distortion. If we increase the sample size to 177, = 120,
then empirical size is much sharper: see Table T.4 in the supplemental material Ghysels, Hill,
and Motegi (2015).

Second, the max test with MIDAS polynomials exhibits relatively sharp empirical size, de-
spite the inherent mis-specification of the estimated model. The Wald test works well with or
without the MIDAS polynomials: without the mis-specified polynomials, empirical size is sharp
due to the bootstrapped p-value.

In the case of decaying causality (Panel B), we see a clear advantage of MF tests compared
to LF tests when hyp € {4,8,12}. For example, when 77, = 80 the MF max test without
MIDAS has size adjusted empirical power of at least 0.728-0.097 = 0.631 (see Panel A.2.1 for
size and B.2.1 for power), while the LF test has unadjusted empirical power at most at 0.137

across both stock and flow sampling (see Panel B.2.4: max test with flow sampling). In order
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to understand why, consider stock sampling first. As seen in (5.1) and (5.2), lead terms used
in those tests are xy(rp + 1,12), xg (7 + 2,12),...,xy(7p + rpr, 12) and all these terms have
small coefficients due to the decaying structure of true causality. The LF test statistics, in other
words, are missing the most important lead term x g (77,41, 1) and thus suffer from a poor signal
relative to noise. In the case of flow sampling, averaging z (77 + 1,1) through xg(r7, + 1,12)
makes positive impacts and negative impacts offset each other, hence again there is a very poor
causation signal. This has been well documented in the literature: temporal aggregation can
obfuscate or eliminate true underlying causality.

Next, consider lagged causality (Panel C). Consider T;, = 80 and hyrp < 12 so that size
distortions are less an issue. The MF tests have no or little power net of size, when ryp = 4
or ryp = 8. This is understandable since the only relevant term is xg (77 + 1,12) by con-
struction. When rj;rp = 12 then power improves sharply, but parametric proliferation evidently
augments noise in the least squares estimator and therefore diminishes power in either max
or Wald test statistics. If Tp, = 80, for example, then the MF max test has empirical power
within [0.563,0.581] without MIDAS and [0.582,0.592] with MIDAS, while the MF Wald test
has empirical power within [0.415,0.456] without MIDAS and [0.497,0.516] with MIDAS (see
Panels C.2.1 and C.2.2). LF tests with stock sampling, by contrast, obtain much higher power,
within [0.683,0.919] (see Panel C.2.3). This occurs precisely because the LF models contain the
relevant lead term z g (77, + 1,12), and requires fewer estimated parameters.

Lastly, under sporadic causality (Panel D) MF tests exhibit very high power, especially
when the number of lead terms is rj;p = 12 since this takes into account c¢;g = —0.5, the largest
coefficient in absolute value. When 77, = 80, hyp € {4,8,12} and rpp = 12, the MF max
test has size corrected power above 0.81 (0.87) without (with) a MIDAS polynomial (see Panels
D.2.1 and D.2.2). LF tests, by contrast, have no or negligible power in all cases. The low
frequency leads and lags of xp are too coarse to capture the complicated causality pattern with
unevenly-spaced lags, alternating signs, and non-decaying structure.

Finally, the max test has higher power than the Wald test in a strong majority of cases.
Hence, based on our simulation design, the MF max and Wald tests are roughly equally powerful
under decaying causality, but the max test is more powerful under lagged and sporadic causality.
Therefore, the max test again dominates overall as a test of causality when there is parameter

proliferation.!?

6 Empirical Application

As an empirical illustration, we study Granger causality between a weekly term spread (short
and long term interest rate spread) and quarterly real GDP growth in the U.S. We analyze both
high-to-low causality (i.e. from spread to GDP) and low-to-high causality (i.e. from GDP to

spread), although we are particularly interested in the former. A decline in the interest rate

'5In Table T.5 of the supplemental material Ghysels, Hill, and Motegi (2015), we try MF-VAR(2) as a data
generating process. The results are generally similar to the MF-VAR(1) case.
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spread has historically been regarded as a strong predictor of a recession, but recent events place
doubt on its use for such prediction. Recall that in 2005 the interest rate spread fell substantially
due to a relatively constant long-term rate and an increasing short-term rate (also known as
”Greenspan’s Conundrum”), yet a recession did not follow immediately. The subprime mortgage
crisis started nearly 2 years later, in December 2007, and therefore may not be directly related
to the 2005 plummet in the interest rate spread.

We use seasonally-adjusted quarterly real GDP growth as a business cycle measure. In order
to remove potential seasonal effects remaining after seasonal adjustment, we use annual growth
(i.e. 4 quarter log-difference In(y;) — In(y;—4)). The short and long term interests rates used
for the term spread are respectively the federal funds (FF) rate and 10-year Treasury constant
maturity rate. We aggregate each daily series into weekly series by picking the last observation
in each week (recall that interest rates are stock variables). The sample period is January 5,
1962 to December 31, 2013, covering 2,736 weeks or 208 quarters.'6

Figure 2 shows the weekly 10-year rate, weekly FF rate, their spread (10Y - FF), and
quarterly GDP growth from January 5, 1962 through December 31, 2013. The shaded areas
represent recession periods defined by the National Bureau of Economic Research (NBER). In
the first half of the sample period, a sharp decline of the spread seems to be immediately followed
by a recession. In the second half of the sample period there appears to be a weaker association,
and a larger time lag between a spread drop and a recession.

Table 5 contains sample statistics. The 10-year rate is about 1% point higher than the FF
rate on average, while average GDP growth is 3.15%. The spread has a relatively large kurtosis
of 5.61, whereas GDP growth has a smaller kurtosis of 3.54.

The number of weeks contained in each quarter 77, is not constant, which we denote as m(rr,):
13 quarters have 12 weeks each, 150 quarters have 13 weeks each, and 45 quarters have 14 weeks
each. While the max test can be applied with varying m(7r ), we simplify the analysis by forcing
a constant m = 12 by taking a sample average at the end of each 7z, resulting in the following
modified spread {z% (71, j)}}2

=1

x (T, 7) for j=1,...,11,

vy (70,7) = o |
mzkié)lﬂ(m,k) for j=12.

This modification gives us a dataset with 77, = 208, m = 12, and thus T' = mT}, = 2,496 high
frequency observations.

In view of our 52-year sample period, we implement a rolling window analysis with a window
width of 80 quarters (i.e. 20 years). The first subsample covers the first quarter of 1962 through
the fourth quarter of 1981 (written as 1962:1-1981:1V), the second one is 1962:11-1982:1, and
the last one is 1994:1-2013:1V, equaling 129 subsamples. The trade-off between small and large

window widths is that the latter is more likely to contain a structural break, but a 20 year window

16 A1l data are downloaded from the Saint Louis Federal Reserve Bank data archive.
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allows us to include more leads and lags in our models. Furthermore, our simulation experiments
in Section 5.1.2 reveal our tests work well for similar parsimonious and naive regression models

with 17, = 80.

6.1 Granger Causality from Interest Rate Spread to GDP Growth

We first consider causality from the high frequency interest rate spread (z7;) to low frequency
GDP growth (). We use an MF-VAR(2) specification since the resulting residuals from the
naive model (6.2), below, appear to be serially uncorrelated (all models also include a constant
term). The MF max test operates on parsimonious regression models:

2
xL(TL):aO,j+Zak,ij(TL_k)+ﬁj«T;[(TL_1;12+1_j)+uL,j(TL)- g=1,...,24, (61)
k=1
which includes two quarters of lagged GDP growth (zz) hence ¢ = 2, and 24 weeks or about 2
quarter) of lagged interest rate spread (z7;) hence hyp = 24.
The MF Wald test operates on:

2 24
wp(r) = a0+ > aprp(tp — k) + Y Bwi(rL — 1,12+ 1 — §) + ug(7z). (6.2)
k=1 =1

The LF max test is based on parsimonious models:

2
wr(rn) = a0 + > angan(tp — k) + Bak (t — §) +uri(r), j=1,2,3, (6.3)
k=1
which has two quarters of lagged x, (i.e. ¢ = 2) and three quarters of lagged z7; (i.e. hpp = 3).

Since the interest rate spread is a stock variable, we let the aggregated high frequency variable
be z};(tr) = 2};(71,12). Finally, the LF Wald test is performed on:

2 3
zr(TL) = ao + ZakwL(TL — k) + Zﬁjﬁq(TL = J) +ur(7y). (6.4)
k=1 j=1

Wald statistic p-values are computed based on Gongalves and Killian’s (2004) bootstrap,
with N = 999 replications. Max statistic p-values are computed based on 100,000 draws from
the limit distributions under non-causality.

We perform the Ljung-Box @ tests of serial uncorrelatedness of the least squares residuals
from the MF model (6.2) and LF model (6.4) in order to check whether these models are well
specified. Since the true innovations are not likely to be independent, we use Horowitz, Lobato,
Nankervis and Savin’s (2006) double blocks-of-blocks bootstrap with block size b € {4, 10, 20}.
The number of bootstrap samples is M; = 999 for the first stage and My = 249 for the second
stage. In each of the 129 windows and for each model we implement the ) tests with 4, 8, or

12 lags.
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When b = 4, the null hypothesis of residual uncorrelatedness in the MF case is rejected at
the 5% level in {13, 5, 1} windows out of 129 for tests with {4, 8, 12} lags, suggesting the MF
model is well specified. In the LF case, the null hypothesis is rejected at the 5% level in {51,
23, 33} windows with {4, 8, 12} lags, hence the LF model may not be well specified. For larger
block size b € {10, 20}, the MF model again produces fewer rejections than the LF model. (See
Table T.6 of Ghysels, Hill, and Motegi (2015) for complete results.) Overall, the MF model
seems to yield a better fit than the LF model in terms of residual uncorrelatedness.

Figure 3 plots p-values for tests of non-causality over the 129 subsamples. Unless otherwise
stated, the significance level is 5%. All tests except for the MF Wald test find significant causal-
ity in early periods. The MF max test detects significant causality prior to 1981:1V-2001:I1I,
the LF max test detects significant causality prior to 1980:111-2000:1I, and the LF Wald test
detects significant causality prior to 1974:111-1994:I1. The MF max test has the longest period
of significant causality, arguably due to its high power, as shown in Section 5.1. These three
tests all agree that there is non-causality in recent periods, possibly reflecting some structural
change in the middle of the entire sample.

The MF Wald test, in contrast, suggests that there is significant causality at the 5% level
only after subsample 1990:111-2010:1I, which is somewhat counter-intuitive. This result may
stem from parameter proliferation. As seen from (6.1)-(6.4), the MF naive regression model
has many more parameters than any other model. The MF Wald test does, however, give weak
evidence of causality through the 1973:11-1993:1, where we reject non-causality at levels below
10% for a few early windows. In view of the intuitive test results, the MF max test seems to be

preferred to the MF Wald test when the ratio of sampling frequencies m is large.

We also implement the four tests for the full sample covering 52 years from January 1962
through December 2013. We try models with more lags than in the rolling window analysis,
taking advantage of the greater sample size: (q, hasp, hrr) = (4,48, 6). This specification means
that (i) each model has 4 quarters of low frequency lags of xr, (ii) each mixed frequency model
has 48 weeks of high frequency lags of x%,;, and (iii) each low frequency model has 6 quarters of
low frequency lags of x7;. The number of bootstrap replications for the Wald tests is 9,999.

We first implement the bootstrapped Ljung-Box @) test with 4, 8, or 12 lags on the least
squares residuals from MF and LF models. When block size is b = 4, p-values from the MF
model are {.107, .180, .084} for lags {4, 8, 12}. The null hypothesis of residual uncorrelatedness
is not rejected at the 5% level for any lag (although it is rejected at the 10% level for lag 12).
The MF model is therefore well specified in general. P-values from the LF model are {.021,
.066, .024} for lags {4, 8, 12}, suggesting that the LF model is not well specified. Similar results
appear when we change the block size to 10 or 20. As in the rolling window analysis, the MF
model yields a better fit than the LF model in terms of residual uncorrelatedness.

The p-value for the MF max test is .000, hence we strongly reject causality. Conversely,
we fail to reject non-causality at any conventional level by the MF Wald test (p-value .465),

possibly due to lower power relative to the max test in view of parameter proliferation. The LF
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p-values are .001 for the max test and .086 for the Wald test, demonstrating stronger evidence
of causality by the max test, and the strongest by the MF max test. Overall, there is strong
evidence for causality from interest rate spread to GDP based on the max test, and only weak

or partial evidence based on Wald tests.

6.2 Granger Causality from GDP Growth to Interest Rate Spread

We now consider causality from GDP growth to the interest rate spread, hence low-to-high
causality. The MF max test is either based on the unrestricted parsimonious regression models:

2 24

JZL(TL) = ao,; + ZakijL‘L(TL — k) + Zﬂkx*H(TL - 1,12+ 1 — k) +’yjI;I(TL + 1,j) —|—uL,j(7'L), 7=1,...,24
k=1 k=1

or the restricted models with Almon polynomial wy () of order 3:

2 24

wr(ro) =ao;+ Y owyrr(re —k)+ > wk(m)ah (o — 1,124 1 — k) + ya5 (e + 1,§) +ur (), j=1,...,24.
k=1 k=1

We include two quarters of lagged xy, (i.e. ¢ = 2), 24 weeks of lagged z7}; (i.e. hyp = 24), and

24 weeks of led a7, (i.e. ryp = 24).
The Wald test is based on either an unrestricted naive regression model:

2 24

24
zr(tL) = ap + Zaka(TL —k)+ Zﬂkx}kﬁ](TL —112+1-k)+ Z’ijfq(ﬁ +1,7) +ur(re),
k=1

k=1 j=1

or a restricted model with Almon polynomial wy,(7r):

2 24 24
wp(rp) =00+ Y oprp(rn — k) + > wp(m)ay(r — L1241 - k) + > vak(ro +1,5) + ur(rp).
k=1 k=1 j=1

The LF max test is based on the unrestricted parsimonious regression models z,(77) = ao ;
3 awgar(tn — k) + i By (tp — k) + vt (tn + §) + upj(rr), j =1,2,3. Since
the rate spread is a stock variable, we let x%(7r) = x};(71,12). We include two quarters of
lagged xy, (i.e. ¢ = 2), three quarters of lagged z7}; (i.e. hpr = 3), and three quarters of lead
xy (i.e. rpp = 3). Finally, the LF Wald test uses the naive regression model: xr(77) = ap +
iy aner(tn — k) + o, Beayy(tn — k) + o v (o + 5) + ur(rr).

As usual, Wald test p-values are bootstrapped with N = 999 bootstrap samples, and the max
test p-values are computed using 100,000 draws from limit distributions under non-causality.
Bootstrapped Ljung-Box @ tests with lags 4, 8, or 12 suggest that the MF models produce
uncorrelated residuals in more windows than the LF model.'”

Figure 4 plots p-values for the causality tests over the 129 subsamples. While MF tests

"When the block size is b = 4, the MF model without a MIDAS polynomial rejects the null hypothesis of
uncorrelated residuals at the 5% level in {4, 8, 5} windows out of 129 for lags {4, 8, 12}. When a MIDAS
polynomial is used, the null hypothesis is rejected in {25, 14, 16} windows. In the LF model the null hypothesis
is rejected in {31, 17, 26} windows. If we raise the block size to 10 or 20, rejections occur in only a few windows
across all models. See Table T.6 of Ghysels, Hill, and Motegi (2015) for complete results.
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without MIDAS polynomial find significant causality in some subsamples (cfr. Panels (a) and
(b)), MF tests with MIDAS polynomial find non-causality in all subsamples (cfr. Panels (c)
and (d)). The LF max test shows significant causality in only a few subsamples around 1984:1-
2003:IV (cfr. Panel (e)). The LF Wald test shows significant causality starting in subsample
1989:1V-2009:111, amounting to roughly the last 15% of the subsamples (cfr. Panel (f)).

Finally, we conduct the four tests on the full sample based on one specification
(¢, hprr,rs hor, ror) = (2,24,24,3,3), hence: (i) each model has 2 quarters of low frequency
lags of xp, (ii) each MF model has 24 weeks of high frequency leads and lags of x7; each, and
(iii) each LF model has 3 quarters of low frequency leads and lags of 2}; each. Considering that
we already have 52 total leads and lags, we do not treat another specification with more lags.
The number of bootstrap replications for the Wald test is 9,999. Bootstrapped Ljung-Box Q
tests again suggest that residuals from the MF models have a weaker degree of autocorrelation
than residuals from the LF model.!®

The MF max and Wald tests without a MIDAS polynomial have p-values .036 and .261,
respectively, and with a MIDAS polynomial the p-values are .090 and .689. The LF max and
Wald test have p-values .098 and .222. Therefore, the max test leads to the strongest evidence
for causality, and overall the clearest evidence comes from the max test in a model without a
MIDAS polynomial.

7 Conclusions

This paper proposes a new mixed frequency Granger causality test that achieves high power
even when the ratio of sampling frequencies m is large. This is accomplished by exploiting
multiple parsimonious regression models where the j** model regresses a low frequency variable
xy, onto the 7™ lag or lead of a high frequency variable 2 for j € {1,...,h}. Our resulting max
test statistic then operates on the largest j** lag or lead estimated parameter. This method of
inference extends to any regression setting where many parameters have the value zero under
the null hypothesis, and should therefore be of general interest when many possibly irrelevant
regressors are available.

Although the max test statistic follows a non-standard asymptotic distribution under the
null hypothesis of non-causality, a p-value can be easily computed by drawing a large number
observations from the null limit distribution. We prove the MF max test obtains an asymptotic
power of one for a test of non-causality from high to low frequency, but consistency in the case
of low to high frequency remains as an open question.

Our max test has wider applicability. One can easy generalize the test for an increasing

number of parameters, and would therefore apply to, for example, nonparametric regression

8When the block size is b = 4, the p-values for the MF model without a MIDAS polynomial are {.076, .280,
.054} for lags {4, 8, 12}. When a MIDAS polynomial is used the p-values are {.035, .179, .019}. In the LF model
the p-values are {.043, .041, .001}. If we raise the block size to 10 or 20, we observe larger p-values (i.e. weaker
rejections of the null hypothesis of residual uncorrelatedness) in general.

35



models using Fourier flexible forms (Gallant and Souza (1991)), Chebyshev, Laguerre or Hermite
polynomials (see e.g. Draper, Smith, and Pownell (1966)), and splines (Rice and Rosenblatt
(1983), Friedman (1991)) - where our test has use for determining whether a finite or infinite
number of terms are redundant. Similarly, a max test of white noise is another application since
bootstrapped Q-tests have comparatively lower power. These are only a few examples involving
a large - possibly infinite - set of parametric zero restrictions. We leave this as an area of future
research.

In terms of the specific application in this paper - we can summarize the findings as follows.
Through local asymptotic power analysis and Monte Carlo simulations, we compare the max
and Wald tests based on mixed or low frequency data. We show that MF tests are better able
to detect complex causal patterns than LF tests in both local asymptotics and finite samples.
The MF max and Wald tests have roughly the same local asymptotic power, but the max test
is generally more powerful, and in many cases substantially more powerful, than the Wald test
in finite samples since (i) only bootstrapping the Wald test can correct for size distortions due
to parameter proliferation, and (ii) size-corrected bootstrapped power for the Wald test is only
as good as size-corrected asymptotic test power, which is generally low due to the asymptotic
test size distortions.

We study causality patterns between a weekly interest rate spread and real GDP growth
in the U.S., over rolling sample windows. The MF max test yields an intuitive result that the
interest rate spread causes GDP growth until about the year 2000, after which causality vanishes,
while Wald and LF tests yield mixed results.
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Technical Appendices

A Double Time Indices

Consider low and high frequency variables xj, and xg. x1,(71) obviously only requires a single time index
7, € Z. xg(7L,J), however, has two time indices: the low frequency increments 7;, € Z and the higher
frequency increment j € {1, ...,m}, e.g. m = 3 for low frequency quarter 7, and high frequency month
jed{l,...,m}.

It is often useful to use a notation convention that allows the second argument of zy to be any
integer. It is, for example, understood that g (71,0) = 2 (7, — 1,m), xy(rr, —1) =axy(rp — 1,m —1),
and xy(r,m+ 1) = g (7, + 1,1). In general, the following notation can be used as a high frequency
simplification: _ _

rutre,g) = { b Ll 43 270 (A1)
v (o + |5 i —m [ 5]) iz m 4l
[x] is the smallest integer not smaller than x, while |z] is the largest integer not larger than z. Any
integer put in the second argument of zy can be transformed to a natural number between 1 and m
by modlfymg the first argument appropriately. Indeed, m{ W +j € {l,...,m} when j < 0, and
j—m|= J e {1,...,m} when j > m+ 1.

Since the high frequency simplification allows both arguments of xy to be any integer, we can verify

the following low frequency simplification:

vy (tp —4,§) = 2 (t,j —im), Vi, j, 11 € Z. (A.2)

Therefore, any lag or lead 7 in the first argument of g can be deleted by modifying the second argument
appropriately. The second argument may therefore become an integer that is non-positive or larger than
m, but such a case is covered by the high frequency simplification.

B Proof of Theorem 2.1

Parsimonious regression model j is written as x (1) = x;(7 — 1)'0; + ur (1), where (177 — 1) =
wr(tp —1),...,20(tL — @), za (7o —1,m+1—73)]" and 0; = [a15,..., 045, 0;]". Write 8 = [07,...,0)]".
Recall Wy, j is an h x h diagonal matrix whose diagonal elements are the stochastic max test
weightswr, 1, ..., wr, ». Similarly, let W}, be an h x h diagonal matrix whose diagonal elements are the
max test weight non-random probability limits wyq, ..., wp.
In order to characterize the distribution limit of 7 = maxlgjgh(\/ﬁwn,jﬁj)z , we must show

convergence of the finite dimensional distributions of [wTLyjﬁAj]?zl and tightness (e.g. Theorem 7.1 in
Billingsley (1999)). Since j is discrete valued, tightness is trivial (e.g. Theorem 1.3 in Billingsley (1999)).
Hence, we only need the to show the finite dimensional distributions for any h are \/TLWTL,hB LS
N(0px1,V) where V = 02 W, RSR'W),. The claim maxlgjgh(\/TLwTL’jﬂAj)g S maxlgjgh/\/'f, where
N = [N,...,N}] is a vector-valued random variable drawn from N (0x1, V), then follows instantly
from the continuous mapping theorem.

B.1 Convergence in Finite Dimensional Distributions

It is easier to work with the identity 3 = R@, where the selection matrix R € R?*(@+Dh satisfies R; (a+1)j
=1for j =1,...,h and all other elements are zero. Let 0 be the least squares estimators and define 0=
6:,...,6,]. We begin by deriving the finite dimensional distributions of {6; My under Hy : b= Oppx1-
Under Hy the parsimonious model parameters 3 = [51,...,0,] = 0, so define 6y ; = [o1j,...,Qq,,0]
and 0y = [0 1,...,0; ]’

Under the null we may write z1,(1r,) = @, (1, — 1)'60; + €1, (7). Therefore, by the construction of 6;
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for the parsimonious model (2.6), and law of large numbers (B.4):

—1
T, Ty,

\/TL (éj 700,]') = \/TL Z :Ej(TLfl):I:j(TLf].), Z mj(TLfl)éL(TL) (B].)
T, =1 TL=1
1 &
7\ —1
= (Efxj(rn — Daj(r — 1 (rp—1 1
(B [;(re — Da;(re — 1)]) \/TTTLzz:le(TL Jer(re) + op(1)
Y
= F-_’-i :B]'(TL—l)6L(TL)+Op(1).
253 TL =
Therefore, for any X = [A],..., AL, A’ = 1:
R | Ik ] I
X xVTL(0—60) = SO NI et —1)en(rn)+op(1) = > X(r—=1,N)er(re)+0p(1), (B.2)
Ty rL=1j=1 VT r=1
say. Now define T';; = E[x; (7 — 1)@; (7o — 1)’], and note that:
h h ho h
B [X( — L] = 30 SO MDA = 33T A, A~ XS,
j=14i=1 j=11i=1

where & € RFDh*@+Dh hag (7 5) block S;,; = 3 ;, and is 3, ; defined by (2.9). Under Assumptions 2.1-2.3 it
is easily verified that S is positive definite. Now apply central limit theorem (B.5) to (B.2) in order to obtain that

N % V/Tr (6—80) % N(0, X' (628) A). Hence, by the Cramér-Wold theorem /77 (8 —80) 5 N(0gs1)nx1,02S).
Now use wr, ,; % w; and the constructions B = RO and 0 = B = RO, under Hy to deduce

VTLWr, 1B = VTL Wi, nR(6 — 00) = VILWLR(0 — 05) + 0,(1) 5 N (041, V) (B.3)

where V' = 02 W, RSR'W,. Finally, V is positive definite by the positive definiteness of &, the assumption
W), # 0, and by the construction of R.

B.2 LLN and CLT

The Assumption 2.3 a-mixing property implies mixing in the ergodic sense, hence ergodicity. Therefore, by
stationarity, square integrability, and the ergodic theorem:

T
1
o > @i(re = Daj(ro — 1) B E [@;(r0 — D, (. — 1)']. (B.4)
Tr=1
Next, we want a central limit theorem for 1//T7, ZILLzl ?:1 rhx;(t,—1)er(rr) for {r;}'_, r/r; = 1 under

Hy. Under Ho : b = Oppmx1 it follows zr,(72) = Xr(7 — 1)'a + er(71) with mds €1, (1), and by Assumption 2.3
and measurability, 2?21 rjx;(t — 1)er(r1) is a-mixing with coefficients > ;7 ) aon < 0o. Further, by the mds
property Z?Zl ri@; (1L — 1)er (1) is square integrable white noise, measurable with respect to strictly increasing

o-fields F;, , and therefore has variance

2

h h h
E ZT;’:B]'(TL -1 | er(m)| = Z riEx(rp — Vai(te — 1) 7 x 0f = Z rT;iri x 07 > 0.
=1 ij=1 ij=1

Hence Z?zl rjx;(t — 1)er () has a spectral density f(\) that satisfies f(0) > 0. In view of Theorem 1.a of
Bradley (1993) it therefore follows that Theorem 2.2 of Ibragimov (1975) applies, hence

Ty, h h
\/% Z ZT;ZCJ'(TL - 1)6L(TL) i) N (O, Z 'r;I“j,i'ri x E [ei(TL)}> . (B5)

=1 j=1 ij=1
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C Proof of Theorem 2.2

The max test statistic 7 = maxy<i<p(vVITLwr, 7]-/3’]-)2 operates on a discrete valued stochastic function

g1, (j) = wr, jBj. Therefore, weak convergence for {gr, (j) :j € {1,...,h}} is identical to convergence
in the finite dimensional distributions of {gr, (j) :j € {1,..., h}}, cfr. Theorem 1.3 in Billingsley (1999).
Hansen’s (1996) proof of his Theorem 2 therefore carries over to prove the present claim.

D Proof of Theorem 2.3

Recall the parsimonious regression model j is z(71) = @, (7, — 1)'8; + ur, ;(71). In view of stationarity,
square integrability, and ergodicity (see Appendix B), the least squares estimator satisfies éj LN 03*-, where:

07 = [B[a;(rr — Vaj(r — 1]~ B [w;(7s — Dap(r)].

Now, recall the DGP zp(11) = Xp(7p, — 1)a + Xg (7, — 1)’b + €,(71). Therefore:

0; = [E [a;(re — Davj(ro — 1)']] " B [a;(re — 1) {Xo(re = 1)'a+ Xu(re — 1)'b+er(rn)}]
= [E [@;(tL — Da;(ro — 1)']]71 {E[z;j(r. - 1)Xr(re = 1) a+ E [x;(ro. — 1) Xnu(rL — 1)'] b},

(D.1)

where the second equality holds from the mds assumption of €. By Assumption 2.4, the number of
autoregressive lags ¢ in the parsimonious models (2.6) is at least as large as the true lag order p in the
true data generating process (2.3). Therefore, the low frequency regressor set from (2.3) satisfies:

XL(TL — 1) = [Ip, Opx(q_p+1)}mj(TL — 1) (DQ)
hence
Elz;(r — V)Xp(rp —1)] = E[2;(rp — D)a;(rz — 1)] {%ﬁlw} . (D.3)

Substituting (D.3) into (D.1), we obtain the desired result (2.10).

E Proof of Theorem 2.4 and Example 2.2

Proof of Theorem 2.4 Pick the last row of (2.10). The lower left block of {E [x; (7, — 1)a;(m, — 1)/}
is

0 B o (ry = Lm0 = DX (r - )| [B X (7 - )X (7 - 1)/”71
while the lower right block is simply nj_l, where
nj=E [zy(rp —1,m+1—j)?]
— B len(r = 1m+ 1= )X (1) [ {B [ X0 (- DX (7~ 1)) }71
x E [ng)(q —Vaglp —1Lm+1- j)] .

Hence, the last row of [E[z;(1, — V)x;(tr — 1)']]7'x Elz;(r, — 1) X (7, — 1)'] appearing in (2.10) is
nj_ld;7 where

di =F [ Xg(rp — Dag(t, —1,m+1—j)]
— B[ Xp(r — )X (= )| { B[ X[ (2~ )X (7~ 1| }71 (E.1)

% E [ng)m Vgl —1,m+1 —j)} .
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If B* = Op 1 then nfld;b = 0 in view of (2.10). Since n; is a nonzero finite scalar for any j =1,...,h by
the nonsingularity of E'[z;(7z — 1)z;(rz — 1)'], it follows d}b = 0. Stacking these h equations, we have
that Db = 0p,x1 and thus b’ D' Db = 0, where D = [dy,...,d].

The claim b = 0y, «1 follows provided we show that D’D is positive definite. It is sufficient to
show that D is of full column rank pm. Since we are assuming that A > pm, we only have to show that
D,,, = [d1,...,dpy] , the first pm rows of D, is of full column rank pm or equivalently non-singular.
Equation (E.1) implies that

Dpm =E [Xu(to — ) Xu(rz —1)']
B [XH(TL _ 1)X£q)(TL _ 1)/] [E [X(Lq)(TL _ 1)X£q>(TL — 1)’]] -1 E [Xéq)(TL - 1) Xnu(rr — 1)/} .

Now define
X\~ 1)
XH(TL — 1)

A is trivially non-singular by Assumption 2.1. But D,,, is the Schur complement of A with respect to

A=E H ] (X (1) Xl 1)/}] .

E[Xg]) (rp, — 1)X£q) (1, — 1)']. Therefore, by the classic argument of partitioned matrix inversion, D,
is non-singular as desired. QED

Proof of Example 2.2 We require inverses of I'y 1 = Efz1(7 — 1)&1 (7, — 1)'], where @1 (7, — 1) =
[zp(t — 1),z (1, — 1,2)]" as defined in (2.6) and (2.10, and I's o = Efza(1, — 1)x2(7r — 1)'], where
xo(rr, — 1) = [z (1 — 1), 2m (7 — 1,1)]". By construction I'; o = I'y ;. Under (2.11) we have Elx g (11, —
1,1)?] = Elzp(rr — 1,2)?) = 1, Bler(rn — 1)) = 1/p?, and Bl ar(rp — 1) au(tp — 1,2) | = E [ (=
SCH(TL -2, 1) + SCH(TL — 2,2) + GL(TL - ].)) IH(TL - ].,2)] = 0, hence

1/p* 0 - 20
I‘171=|: /Op 1]andI‘1&:{p0 1:|

Next, recall Xy (1, — 1) = [zg(r — 1,2), 2z (7 — 1,1)]" in (2.3). Then

Ci=Elzi(rp — 1) Xu(rp —1)]
_ |: E[I'L(TLfl)LEH(TLfl,Q)] E[SL‘L(TLfl)LEH(TLfl,l)] :l _ |:0 0:|
E[I'H(TL—172)$H(TL—1,2)] E[:L‘H(TL—172)$H(TL—1,1)] 1 P
and
Cg = E [iL’Q(TL — 1)XH(TL — 1)/]
_ |: E[Z‘L(TLf].)I’H(TLf].,2)] E[Z‘L(TLf].)IH(TLf].,].)] :| _ |:0 O:|
E[:L'H(TLf].,].)l’H(TLf].,2)] E[:L'H(TLf].,].)l’H(TLf].,].)] P 1)

Now use (2.10) to deduce:

3 o R R 3 R (| P | A R P
Bi 0 1] |t p] [-1/p 0 B 0 1] |p 1] [-1/p p—1/p]"
Hence 87 = 0 and 85 = p —1/p # 0 since |p| < 1. Therefore, if h = 1 then the MF max test statistic

T converges to the Theorem 2.1 asymptotic null distribution, resulting in no power (above the nominal
size). However, h = 2 and assign positive weight ws > 0 to f2, then T4 0. Q€D

42



F Proof of Theorem 4.1

This argument mirrors the proof of Theorem 2.1. The DGP under H{ : b = (1//TL)v is described in
(4.1). Hence (B.1) becomes

VTL(0; — 60) =T} Cyv +T; 1 (1/V/Ty) Z x;(rp — Der () + op(1),

Tr,=1
where T'; ; = Elx;(1p — 1)x;(1z — 1)'] and C; = Elx;(1r — 1) X (72 — 1)’]. Repeating (B.2), we get
N xVTL(6—80) 5 N(Nu, N(a2E)A), for any XA = 1, where u = (T 1Cy), - - , (T}, ,Cn)'I'v, hence

by the Cramér-Wold theorem +/T7(6 — 6y) < N(u, 02X). Now repeat (B.3) to get v/TrWr, 13 A
N(p, V), where p = Wj,Ru and V = 02 W;, RER'W),. The remainder of the proof proceeds along the
lines of the proof of Theorem 2.1.

G Proof of Lemma 4.2

We exploit covariance stationarity throughout without explicitly stating so. Recall:

Tk = E[X(TL)X(TL - k‘)/]

Elzg(to, Dau(t — k1)) ... Eleu(r, Dea(rn —k,m)]  Elru(rn, oo (tn — k)]
_ z z : (G-1)
Elzg(to,m)zu (e —k,1)] ... Elza(r,m)za(re —k,m)] Elzg(to,m)zn(te — k)]
Elxr(to)ru(te — k,1)] Elxr(to)zu(me — k, m)] Elzr(m)zr (o — k)]
for k>0, and Yy, =Y’ , for k < 0.
We have for I'; ;:
L), = Elxj(rp — Dai(t, — 1)) = Elz;(t1)zi(m1)’]
IL(TL)
: G.2
=F : [.’L‘L(TL) CL‘L(TL—(q—l)) Z’H(TL,m—f—l—i)]. ( )

rp(tp — (g —1))
xg (o, m+1—j)

Since j and i may be larger than m, the second argument of xy may be smaller than 1, hence it is not
immediately clear which element of I'; ; is identical to which element of Y. In order to ensure that the

second argument of xy lies in {1,...,m}, we use the high frequency simplification (A.1):
, 1—(m+1-—j 1—(m+1—j _
rg(to,m+1—j) =z <7’L — {(mt])—‘ ,m {(m])—‘ +(m+1 —j))

(G.3)

= (= [ o [L] et -5) = 1), 900

where the last equality follows from the definitions f(j) = [(j — m)/m] and g(j) = mf(j) + m+ 1 —j.
Note that f(j) > 0 and g(j) € {1,...,m} for any j as desired. Substituting (G.3) into (G.2), T';; can be
rewritten as follows.

Elzp (rp)rr ()] Eler (rp)en(tp — (¢ — 1))] Eleg (tr, — f(i), 9(i))zr(TL)]
: ) : ; (GA)
Eler(tr, — (¢ — 1)z (7L)] Eler(t, — (¢ — 1))z (7 — (¢ — 1))] Eleg(tp — f(i),9()zL(tp — (¢ — 1))]
Eley(ty — f(3),9G)zL(rL)] ...  Eleg(r — f(G).90U)zL(te — (@ —1)]  Eleg(tr — f(5), 9(G)zu (L — £(i), 9(3))]

Now consider how I';; relates to X, and take as an example Elzg (rr, — f(j),9(j)) zr(7r — (¢ — 1)) ],
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the (¢ + 1, ¢) element of I'; ;. There are two cases: f(j) > ¢—1 or f(j) < ¢ — 1. For the first case:
Eleu (e — f(5),9()xe(re — (¢ — 1)) = Elzu (e — (¢ — 1) = (f() — (¢ = 1)), 9())zL(re — (¢ — 1))]
= Elen (e — (f(5) — (¢ = 1)), 9(3)zL(me)] = T -1 (K, 9(4)),
where T ¢(;)—(q—1) ([, g(j)) denotes the (K, g(j)) element of Y ¢(;)_(4—1), and the third equality follows
from (G.1). For the second case:
Eley(tn — f(5),9()xL(re — (¢ = 1) = Elzna (e — £(5), 9()zL(re — f(G) = (¢ = 1= f(5)))]
= Elwu(re,9(j))zL (TL —(a=1=F())]
(a-1)— () (90): K) = L5y~ (-1) (K 9(7))-

=

where the third equality follows from (G.1). Combine the two cases to deduce E|x gy (t.—f(4), 9(j))xL (T —
(@—1))] = Ts(j)—(q—1) (K, g(j)) for any j. Now apply the same argument to each element of I'; ; appearing
in (G.4) to deduce the claimed representations of I'; ; in (4.3).

Next, consider C; for j € {1,...,h}. We have:

C; = Blaj(ry, = )X (r1, — 1] = Bla; (1) X (1)’
zL(7)
=F . _- (G- 1) [xH(TL,m +1-1) ... zg(p,m+1 7pm)] .
ey (L, m+1—j)

Since the second argument of xy may be non-positive, we apply the high frequency simplification (G.3)
to get:

Elzp(to)zm (o — f(1),9(1))] e Elzp(to)zg (L — f(pm), g(pm))]
Cc; = : - :
’ Elap(tp — (¢ — D)za(te — f(1),9(1))] ... Elzp(rr — (¢ — 1)zu (e — f(pm), g(pm))]
Elzg(to — f(9),9()zu (e — f(1),9(1))] ... Elza(re — f(4),9())zu (e — f(pm), g(pm))]

We now map each element of C; to an appropriate element of Y. Consider Elz (1, — (¢ — 1))z (11, —
f(pm), g(pm))], the (q,pm) element of C;, as an example. In view of (G.4), this quantity is equal to the
(¢+1,q) element of I'y,, ; with an arbitrary :. We already know from (4.3) that the (¢ + 1, ¢) element of
Lpm,i is equal to T f(pm)—(q—1) (K, g(pm)). Applying the same argument to each element of C; to complete
the proof.
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Tables and Figures

Table 1: Local Asymptotic Power of High-to-Low Causality Tests

A. Mixed Frequency

Decaying Causality Lagged Causality Sporadic Causality
d=0.2 d=0.8 d=0.2 d=0.8 d=0.2 d=0.8
hyr | Max Wald | Max Wald | Max Wald | Max Wald | Max Wald | Max Wald
4 487 570 | 773 .736 | .051 .050 | .075 .066 | .391 .365 | .716 .614
8 396 472 | 699 .621 | .052 .050 | .181 .125 | .323 .291 | .667 .679
12 346 407 | 657  .b42 | 247 206 | .769 .560 | .677 .761 | .690 .872

B. Low Frequency with Flow Sampling

Decaying Causality Lagged Causality Sporadic Causality
d=0.2 d=0.8 d=0.2 d=0.8 d=0.2 d=0.8
hrrp | Max Wald | Max Wald | Max Wald | Max Wald | Max Wald | Max Wald
.074 .076 | .301 .302 | .092 .094 | .455 .454 | .072 .070 | .171 .169
.068 .067 | .237 .244 | .080 .080 | .468 .459 | .061 .063 | .132 .132
.063 .063 | .206 .208 | .073 .074 | .415 .402 | .060 .060 | .118 .115

W N =

C. Low Frequency with Stock Sampling
Decaying Causality Lagged Causality Sporadic Causality
d=0.2 d=0.8 d=0.2 d=0.8 d=0.2 d=0.8
hrrp | Max Wald | Max Wald | Max Wald | Max Wald | Max Wald | Max Wald
.638 .643 | .863 .862 | .050 .050 | .061 .059 | .051 .051 | .437  .435
.b54 538 | .801 .786 | .062 .063 | .676 .664 | .052 .051 | .355 .356
495 473 | 754 728 | .059 .060 | .626  .598 | .051 .051 | .306  .305

W N =

The DGP is MF-VAR(1) with a ratio of sampling frequencies m = 12. Panels A, B, and C concern tests in mixed
frequency, low frequency with flow sampling, and low frequency with stock sampling. In each case, from left to
right, there is drift v representing decaying causality v; = (—1)7"' x 2.5/5 for j = 1,...,12, lagged causality
v; =2x I(j =12) for j = 1,...,12, and sporadic causality (v3,ve,v11) = (2.1, —-2.8,1.9) with all other v; = 0.
The high frequency variable xx has low or high persistence: d € {0.2,0.8}, and the low frequency variable xr,
has weak persistence: a = 0.2. Low-to-high causality is decaying with alternating signs: c; = (—1)5‘*1 x 0.8/j for
j =1,...,12. In the models used as the premise for our tests, the number of high frequency lags of xzy for the
mixed frequency tests are harr € {4,8,12}, and the number of low frequency lags of aggregated zy for the low
frequency tests are hpr € {1,2,3}. The max text uses 100,000 draws from the limit distributions under Hy and

HY¥, and the weights are W), = (1/h) x Ij,. Nominal size is o = .05.
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Table 5: Sample Statistics of U.S. Interest Rates and Real GDP Growth

mean median std. dev. skewness kurtosis

weekly 10 Year Treasury constant maturity rate 6.555  6.210 2.734 0.781 3.488
weekly Federal Funds rate 5.563  5.250 3.643 0.928 4.615
spread (10-Year T-bill minus Fed. Funds) 0.991 1.160 1.800 -1.198 5.611
percentage growth rate of quarterly GDP 3.151  3.250 2.349 -0.461 3.543

The sample period is January 5, 1962 through December 31, 2013, covering 2,736 weeks or 208 quarters.

Figure 1: Low-to-High Causal Patterns in Reduced Form

0.6
Decaying

0.4

0.2

-0.2

-0.4 /
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1 2 3 4 5 6 7 8 9 10 11 12

Note: In the low-to-high causality simulation experiment, we start with a structural MF-VAR(1) data generating
process, and transform it to a reduced-form MF-VAR(1). This figure shows how each causal pattern in the
structural form is transformed in the reduced form. The AR(1) parameter of zx is fixed at d = 0.2. The
horizontal axis has the first lag through the twelfth lag in the reduced form, and the vertical axis has a coefficient
of each lag. The blue, solid line with circles is a reduced-form causal pattern implied by decaying causality:
cj = (=1)"7! x 0.45/5. The red, dashed line with squares is a reduced-form causal pattern implied by lagged
causality: ¢; = 0.4 x I(j = 12). The gray, dotted line with triangles is a reduced-form causal pattern implied by

sporadic causality: (cs,cr,c10) = (0.4,0.25,—0.5) and all other ¢’s are zeros.
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Figure 2: Time Series Plot of U.S. Interest Rates and Real GDP Growth
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Note: This figure plots weekly 10-year Treasury constant maturity rate (blue, solid line), weekly effective federal
funds rate (ed, dashed line), their spread 10Y - FF (gray, solid line), and the quarterly real GDP growth from
previous year (yellow, solid line). The sample period covers January 5, 1962 through December 31, 2013, which
has 2,736 weeks or 208 quarters. The shaded areas represent recession periods defined by the National Bureau of
Economic Research (NBER).
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Figure 3: P-values for Tests of Non-Causality from Interest Rate Spread to GDP
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(a) MF Max Test (b) MF Wald Test
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(¢) LF Max Test (d) LF Wald Test

Panel (a) contains rolling window p-values for the MF max test, Panel (b) represents the MF Wald test, Panel (c)
the LF max test, and Panel (d) the LF Wald test. MF tests concern weekly interest rate spread and quarterly GDP
growth, while LF tests concern quarterly interest rate spread and GDP growth. The sample period is January
5, 1962 through December 31, 2013, covering 2,736 weeks or 208 quarters. The window size is 80-quarters. The
shaded area is [0, 0.05], hence any p-value in that range suggests rejection of non-causality from the interest rate
spread to GDP growth at the 5% level for that window.
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Figure 4: Rolling Window P-values for Tests of Non-Causality from GDP to Interest Rate Spread
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(b) MF Wald Test (w/o MIDAS)
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(d) MF Wald Test (w/ MIDAS)
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(f) LF Wald Test

Panel (a) contains rolling window p-values for the MF max test without MIDAS polynomial, Panel (b) represents
the MF Wald test without MIDAS polynomial, Panel (c) the MF max test with MIDAS polynomial, Panel (d)
the MF Wald test with MIDAS polynomial, Panel (e) the LF max test, and Panel (f) the LF Wald test. MF

tests concern weekly interest rate spread and quarterly GDP growth, while LF tests concern quarterly interest

rate spread and GDP growth. The sample period is January 5, 1962 through December 31, 2013, covering 2,736

weeks or 208 quarters. The window size is 80-quarters. The shaded area is [0,0.05], hence any p-value in that

range suggests rejection of non-causality from GDP growth to the interest rate spread at the 5% level for that

window.



