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Abstract. Since Manski’s (1975) seminal work, the maximum score method for discrete choice

models has been applied to various econometric problems. Kim and Pollard (1990) established the

cube root asymptotics for the maximum score estimator. Since then, however, econometricians posed

several open questions and conjectures in the course of generalizing the maximum score approach,

such as (a) asymptotic distribution of the conditional maximum score estimator for a panel data

dynamic discrete choice model (Honoré and Kyriazidou, 2000), (b) convergence rate of the modified

maximum score estimator for an identified set of parameters of a binary choice model with an

interval regressor (Manski and Tamer, 2002), and (c) asymptotic distribution of the conventional

maximum score estimator under dependent observations. To address these questions, this article

extends the cube root asymptotics into four directions to allow (i) criterions drifting with the sample

size typically due to a bandwidth sequence, (ii) partially identified parameters of interest, (iii) weakly

dependent observations, and/or (iv) nuisance parameters with possibly increasing dimension. For

dependent empirical processes that characterize criterions inducing cube root phenomena, maximal

inequalities are established to derive the convergence rates and limit laws of the M-estimators. This

limit theory is applied not only to address the open questions listed above but also to develop a

new econometric method, the random coefficient maximum score. Furthermore, our limit theory is

applied to address other open questions in econometrics and statistics, such as (d) convergence rate

of the minimum volume predictive region (Polonik and Yao, 2000), (e) asymptotic distribution of

the least median of squares estimator under dependent observations, (f) asymptotic distribution of

the nonparametric monotone density estimator under dependent observations, and (g) asymptotic

distribution of the mode regression and related estimators containing bandwidths. Finally, our limit

theory validates the use of subsampling for inference of parameters in such models.

1. Introduction

In a seminal paper, Manski (1975) introduced the maximum score method to estimate parameters

in discrete choice models without imposing parametric assumptions on the error terms. Indeed the

maximum score estimator is the first semiparametric estimator for limited dependent variable models

and has been drawing considerable attention in various contexts of econometrics. One distinguishing

feature of the maximum score estimator is that it obeys the cube root asymptotics instead of the

conventional squared root (Kim and Pollard, 1990). This feature has also inspired several research
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agenda in econometrics, such as the smoothed maximum score method (Horowitz, 1992) and failure

of bootstrap (Abrevaya and Huang, 2005).

A key of the maximum score method is to explore median or quantile restrictions in disturbances

of latent variable models to construct a population criterion that identifies structural parameters

of interest. Since Manski (1975), this idea has been generalized to various contexts to cope with

different data environments, and these generalizations succeed in producing consistent estimators

for the parameters of interest. However, their theoretical properties beyond consistency are often

unknown perhaps because the limit theory of Kim and Pollard (1990) is not applicable. There are

at least three important examples. First, Honoré and Kyriazidou (2000) considered estimation of

a dynamic panel data discrete choice model with unknown error distribution and developed the

conditional maximum score estimator. Although they showed consistency of the estimator, its

convergence rate and limiting distribution are unknown. The theory of Kim and Pollard (1990)

cannot be applied directly due to a bandwidth sequence in the criterion to deal with the unknown

error distribution. Second, Manski and Tamer (2002) studied the problem of partial identification

for regression models with interval data. For a binary choice model with an interval regressor,

Manski and Tamer (2002) proposed the modified maximum score estimator for the identified set

of structural parameters. Although they showed consistency of the set estimator, its convergence

rate is unknown. The theory of Kim and Pollard (1990) cannot be applied directly due to partial

identification of the parameter of interest. In addition, Manski and Tamer’s (2002) set estimator

contains estimated nuisance parameters for a nonparametric component, which are not allowed in

Kim and Pollard (1990). Third, the original maximum score estimator by Manski (1975) calls

for extensions to more general data environments. For example, de Jong and Woutersen (2011)

studied the asymptotic property of the smoothed maximum score estimator (Horowitz, 1992) under

dependent observations. Moon (2004) derived consistency of the maximum score estimator under

nonstationary observations. To best of our knowledge, however, the convergence rate and limiting

distribution of the original maximum score estimator under dependent observations is still an open

question. The limit theory of Kim and Pollard (1990) is not applicable because it is confined to

independent observations.

It should be emphasized that addressing these open questions has considerable impacts on the

econometrics literature. In the first example, we investigate whether there is a nonparametric

counterpart of the cube root asymptotics (i.e., (nhn)1/3-rate with a bandwidth hn). To best of our

knowledge, there is no paper that establishes such a non-standard rate and limiting distribution.

Development of such limit theory would be useful for inference and bandwidth selection. In the

second example, we complement the set estimation theory of Chernozhukov, Hong and Tamer (2007)

by investigating the maximum score-type criterions that involve discontinuities. It is crucial for set

estimation to establish its convergence rate since it clarifies the basic requirement on the cutoff

value of level set estimation. In the third example, we can study the issue of how data dependence

2



will change the limiting distribution from the independent case. In particular, (lack of) emergence

of the long-run covariance in the cube root context has not been explored yet.

To address at least these issues, we extend the scope of cube root asymptotics for M-estimators

into four directions to allow (i) criterions drifting with the sample size typically due to a bandwidth

sequence, (ii) partially identified parameters, (iii) weakly dependent observations, and/or (iv) nui-

sance parameters with possibly increasing dimension. We first establish point estimation theory. In

particular, we consider an absolutely regular dependent process characterized by β-mixing coeffi-

cients and study asymptotic properties of the M-estimator for a class of criterion functions, named

the generalized cube root class, which induces the (nonparametric) cube root asymptotics and al-

lows the criterions to depend on the sample size. In this setup, we establish maximal inequalities

to derive the (possibly nonparametric) cube root rate and weak convergence of the normalized

process of the criterion so that a continuous mapping theorem for maximizing values of the cri-

terions delivers limit laws of the M-estimators. We establish the (nhn)1/3-rate of convergence of

the M-estimator, where hn usually means a bandwidth sequence, and derive a non-normal limiting

distribution. The limit theory is also extended to the M-estimation problems where the criterions

contain estimated nuisance parameters. We emphasize that the limit theory with the nonparametric

cube root (nhn)1/3-rate is new in the econometrics and statistics literature.

Also, based on the point estimation theory, we extend the generalized cube root class to accom-

modate partially identified models (named partially identified cube root class), such as Manski and

Tamer (2002). As in Manski and Tamer (2002) and Chernozhukov, Hong and Tamer (2007), we

consider the set estimator defined by a level set of a criterion function. By modifying the maxi-

mal inequalities to deal with the partially identified class, we characterize the convergence rate of

the set estimator under the Hausdorff distance. In our setup, the set estimator converges at the

(nhn)1/4/
√

log(nhn)-rate. In contrast to Chernozhukov, Hong and Tamer (2007), our theory allows

nuisance parameters with increasing dimension (which is required to cover the model of Manski and

Tamer, 2002). We emphasize that even if we do not have a nonparametric nuisance component,

it is not trivial to verify the high level assumptions of Chernozhukov, Hong and Tamer (2007),

particularly their Condition C.2 (computation of polynomial minorant), in the partially identified

cube root class. The verification involves the maximal inequality developed in this paper.

Our limit theory is general enough to cover the open questions listed above. In particular, we

derive the limiting distribution of Honoré and Kyriazidou’s (2000) estimator for the dynamic panel

discrete choice model, convergence rate of Manski and Tamer’s (2002) set estimator for the binary

choice model with an interval regressor, and limiting distribution of Manski’s (1975) estimator un-

der dependent observations. Furthermore, our theory can be applied to investigate a new model.

As an example, we extend the maximum score estimator for a binary choice model to allow ran-

dom coefficients (or unknown functions of observables) and derive its asymptotic distribution. In

addition, our limit theory is applied to address other open questions in econometrics and statis-

tics. In particular, we establish the convergence rate of the minimum volume predictive region by
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Polonik and Yao (2000). Polonik and Yao (2000) established consistency of their predictive region

and conjectured its convergence rate. We confirm their conjecture. Also, we derive the asymptotic

distribution of the least median of squares estimator (Rousseeuw, 1984) and nonparametric mono-

tone density estimator (Prakasa Rao, 1969) under dependent observations. Finally, we investigate

the mode regression and related estimator (Lee, 1989) and establish the limiting distribution of the

Hough transform estimator (Goldenshluger and Zeevi, 2004) under drifting tuning constants. All

these extensions are important and novel in the literature.1 Our limit theory also guarantees that

subsampling can be applied to conduct inference on parameters for such models.

The paper is organized as follows. In Section 2, we introduce two workhorse examples, Honoré

and Kyriazidou’s (2000) estimator for dynamic panel discrete choice and Manski and Tamer’s (2002)

estimator of identified set for regression with interval regressor. These examples are used to illustrate

the concepts and results in Sections 3 and 4, respectively. Section 3 considers point estimation

and develops general cube root asymptotic theory. We also consider the case where the criterion

contains estimated nuisance parameters. Section 4 extends the obtained theory to partially identified

models. Section 5 presents further illustrations of our cube root asymptotic theory on conventional

maximum score under dependent observations (Section 5.1), maximum score estimator with random

coefficients (Section 5.2), minimum volume predictive region (Section 5.3), least median of squares

(Section 5.4), monotone density estimator (Section 5.5), and mode and related estimators (Section

5.6). All obtained results are new in the econometrics and statistics literature. Proofs are contained

in the Appendix.

2. Two examples

To begin with, we present two running examples that are open in the literature but can be solved

by our general cube root asymptotic theory in the next sections. Further examples are presented

in Section 5.

Example HK. [Honoré and Kyriazidou’s (2000) estimator for dynamic panel discrete

choice] Consider a dynamic panel data model with a binary dependent variable

P{yi0 = 1|xi, αi} = F0(xi, αi),

P{yit = 1|xi, αi, yi0, . . . , yit−1} = F (x′itβ0 + γ0yit−1 + αi),

for i = 1, . . . , n and t = 1, 2, 3, where yit is binary, xit is a k-vector, and both F0 and F are unknown

functions. We observe {yit, xit} but do not observe αi. Honoré and Kyriazidou (2000) proposed the

1For the least median of squares, Zinde-Walsh (2002) employed a generalized function approach to characterize
the limiting behavior of the least median of squares estimator under dependent observations by using a smoothed
estimator. The asymptotic analysis based on empirical process theory as in Kim and Pollard (1990) under dependent
observations is still open.
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conditional maximum score estimator for (β0, γ0),

(β̂, γ̂) = arg max
β,γ

n∑
i=1

K

(
xi2 − xi3

bn

)
(yi2 − yi1)sgn{(xi2 − xi1)′β + (yi3 − yi0)γ}, (1)

where K is a kernel function and bn is a bandwidth. In this case, nonparametric smoothing is

introduced to deal with the unknown link function F . Honoré and Kyriazidou (2000) obtained

consistency of this estimator but the convergence rate and limiting distribution are unknown. Since

the criterion for the estimator varies with the sample size due to the bandwidth bn, the cube root

asymptotic theory of Kim and Pollard (1990) is not applicable. We modify the class of criterion

functions to cover such situations and Theorem 1 below answers the open questions. �

Example MT. [Manski and Tamer’s (2002) estimator of identified set for regression

with interval regressor] Consider the binary choice model y = I{x′θ0 +w+ u ≥ 0}, where x is a

vector of observable regressors, w is an unobservable regressor, and u is an unobservable error term

satisfying P{u ≤ 0|x,w} = α (we set α = .5 to simplify the notation). Instead of w, we observe

the interval [wl, wu] such that P{wl ≤ w ≤ wu} = 1. Here we normalize that the coefficient of w to

determine y equals one. In this setup, the parameter θ0 is partially identified and its identified set

is written as (Manski and Tamer 2002, Proposition 2)

ΘI = {θ ∈ Θ : P{x′θ + wu ≤ 0 < x′θ0 + wl or x′θ0 + wu ≤ 0 < x′θ + wl} = 0}.

Let x̃ = (x′, wl, wu)′ and qν̂(x̃) be an estimator for P{y = 1|x̃} with the estimated parameters ν̂.

Suppose P{y = 1|x̃} = qν0(x̃). By exploring the maximum score approach, Manski and Tamer

(2002) developed the set estimator for ΘI , that is

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Sn(θ)− Sn(θ) ≤ εn}, (2)

where

Sn(θ) = Pn(y − .5)[I{qν̂(x̃) > .5}sgn(x′θ + wu) + I{qν̂(x̃) ≤ .5}sgn(x′θ + wl)].

Manski and Tamer (2002) established the consistency of Θ̂ to ΘI under the Hausdorff distance. To

establish the consistency, they assumed the cutoff value εn is bounded from below by the (almost

sure) decay rate of supθ∈Θ |Sn(θ) − S(θ)|, where S(θ) is the limiting object of Sn(θ). As Manski

and Tamer (2002, Footnote 3) argued, characterization of the decay rate is a complex task because

Sn(θ) is a step function and I{qν̂(x̃) > .5} is a step function transform of the nonparametric estimate

of P{y = 1|x̃}. Therefore, it has been an open question. Obtaining the lower bound rate of εn is

important because we wish to minimize the volume of the estimator Θ̂ without losing the asymptotic

validity. By applying Theorem 4 below, we can explicitly characterize the decay rate for the lower

bound of εn and establish the convergence rate of this estimator. �
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3. General cube root asymptotics

This section extends Kim and Pollard’s (1990) main theorem on the cube root asymptotics of

the M-estimator to allow for nonparametric criterions typically due to a bandwidth sequence and

dependent data. Consider the M-estimator θ̂ that maximizes the random criterion

Pnfn,θ =
1

n

n∑
t=1

fn,θ(zt),

where {fn,θ : θ ∈ Θ} is a sequence of classes of functions indexed by a subset Θ of Rd and {zt}
is a strictly stationary sequence of random variables with marginal P . We characterize a class of

criterion functions that induce cube root phenomena (or “sharp edge effects” in the sense of Kim

and Pollard, 1990), which is general enough to cover the examples discussed in the introduction.

Let Pf =
´
fdP for a function f , | ·| be the Euclidean norm of a vector, and ‖·‖2 be the L2(P )-norm

of a random variable. The class of criterions of our interest is defined as follows.

Definition (Generalized cube root class). A class of functions {fn,θ : θ ∈ Θ} is called the

generalized cube root class if Conditions (i)-(iii) below are satisfied with a sequence {hn} of positive

numbers such that nhn →∞.

(i): {hnfn,θ : θ ∈ Θ} is a class of uniformly bounded functions. Also, limn→∞ Pfn,θ is uniquely

maximized at θ0 and Pfn,θ is twice continuously differentiable at θ0 for all n large enough

and admits the expansion

P (fn,θ − fn,θ0) =
1

2
(θ − θ0)′V (θ − θ0) + o(|θ − θ0|2) + o((nhn)−2/3), (3)

for a negative definite matrix V.

(ii): There exist positive constants C and C ′ such that

|θ1 − θ2| ≤ Ch1/2
n ‖fn,θ1 − fn,θ2‖2 ,

for all n large enough and all θ1, θ2 ∈ {θ ∈ Θ : |θ − θ0| ≤ C ′}.
(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ′|<ε

hn|fn,θ − fn,θ′ |2 ≤ C ′′ε,

for all n large enough, ε > 0 small enough, and θ′ in a neighborhood of θ0.

This definition covers not only the case of hn = 1 where the criterion function fn,θ does not vary

with n (called the non-drifting case), but also the case of hn → 0 where it does due to the sequence

hn (called the nonparametric case). For the nonparametric case, the sequence {hn} is usually a

bandwidth sequence to deal with some nonparametric component. Kim and Pollard (1990) focused

on the non-drifting case with independent observations. Compared to Kim and Pollard (1990),

our conditions consist of directly verifiable moment conditions without demanding knowledge on
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the empirical process theory such as “uniform manageability”. This is due to the insight that the

envelope condition (iii) is sufficient to control the size of entropy.

Condition (i) contains boundedness and point identification conditions. Boundedness of the class

{hnfn,θ : θ ∈ Θ} is a major requirement. In our analysis, boundedness is required to establish a

maximal inequality for the cube root convergence rate (Lemma M below). In particular, bounded-

ness is used to guarantee the norm equivalence relationship between the L2(P )-norm ‖fn,θ − fn,θ0‖2
and so-called L2,β(P )-norm ‖fn,θ − fn,θ0‖2,β using β-mixing coefficients for the observations {zt}
(defined in (22) in the Appendix). It should be noted that ‖fn,θ − fn,θ0‖2 = ‖fn,θ − fn,θ0‖2,β for

independent observations.2 See a remark on Theorem 1 for further discussion. The identification

condition for θ0 is standard and similar to Kim and Pollard (1990, Conditions (ii) and (iv)) of their

main theorem. This condition should be checked for each application. In the next section we relaxes

the point identification assumption.

When the criterion fn,θ involves a kernel estimate for a nonparametric component, hn is consid-

ered as a bandwidth parameter. In this case, the criterion typically takes the form of fn,θ(z) =
1
hn
K
(
x−c
hn

)
m(y, x, θ) for z = (y, x) with some function m and kernel K (see Example HK and Sec-

tions 5.2 and 5.3). In this case, boundedness of {hnfn,θ : θ ∈ Θ} means that of K
(
x−c
hn

)
m(y, x, θ).

The expansion in (3) is understood as a restriction for the integral P (fn,θ−fn,θ0) =
´ ´

K (a)m(y, c+

hna, θ)pyx(y, c + hna)dady by a change of variables, where pyx is the joint density of (y, x). The

reasons for multiplications of h
1/2
n in Condition (ii) and hn in Condition (iii) are understood in the

same manner.

Condition (ii) is required not only for the maximal inequality to derive the convergence rate of

the M-estimator but also for finite dimensional convergence to derive the limiting distribution. In

particular, this condition is used to relate the L2(P )-norm ‖fn,θ − fn,θ0‖2 of the contrast of criterions

to the Euclidean norm |θ − θ0| over Θ. This condition is implicit in Kim and Pollard (1990,

Condition (v)) on non-degeneracy of the covariance kernel combined with the norm equivalence

‖fn,θ − fn,θ0‖2 = ‖fn,θ − fn,θ0‖2,β under independent observations. Condition (ii) is often verified

in the course of verifying the expansion (3) in Condition (i).

Condition (iii) is an envelope condition for the class {fn,θ − fn,θ′ : |θ − θ′| ≤ ε} of contrasts.

Similar to the case of independent observations, this condition plays a key role for the cube root

asymptotics. It should be noted that for the familiar squared root asymptotics, the upper bound

in Condition (iii) is of order ε2 instead of ε. This condition merges three conditions in Kim and

Pollard (1990): their envelope conditions ((vi) and (vii)) and uniform manageability of the class

{fn,θ − fn,θ0 : |θ − θ0| ≤ ε}. It is often the case that verifying the envelope condition for arbitrary

θ′ in a neighborhood of θ0 is not more demanding than for θ0.
3

2Because of this norm equivalence, Kim and Pollard (1990) (focused on the non-drifting case with independent
observations) did not need to impose boundedness.
3Condition (iii) may be relaxed slightly as follows. The upper bound in Condition (iii) is C′′ε for θ′ = θ0 and is

C′′ε1/p with some p > 0 for θ′ 6= θ0.
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Hereafter we focus on the generalized cube root class, which typically involves some indicator

functions. There is a strand of literature that employs smoothing on the indicator functions by

the integrated kernel or averaging as in e.g. Horowitz (1992), Jun et al. (2015), and Wan and

Xu (2015). We note that such criterion functions involving smoothed indicators do not belong to

the generalized cube root class because those criterions typically satisfy Condition (iii) with the

envelope ε2b−1
n , where bn is the bandwidth for the smoothed indicators. These estimators typically

achieve faster convergence rates than the original ones without smoothing on the indicators, but

demand more stringent assumptions on smoothness of the distributions of data. See Pollard (1993)

for instance. We do not consider these smoothed or averaged estimators in the current work.

Example HK (cont’d). Let z = (z′1, z2, z
′
3)′ with z1 = x2 − x3, z2 = y2 − y1, and z3 = ((x2 −

x1)′, y3 − y0). Also define x21 = x2 − x1. The criterion function of Honoré and Kyriazidou’s (2000)

estimator θ̂ = (β̂′, γ̂)′ in (1) is written as

fn,θ(z) = b−kn K(b−1
n z1)z2{sgn(z′3θ)− sgn(z′3θ0)}

= en(z)(I{z′3θ ≥ 0} − I{z′3θ0 ≥ 0}), (4)

and en(z) = 2b−kn K(b−1
n z1)z2. Based on Honoré and Kyriazidou (2000, Theorem 4), we impose the

following assumptions.

(a): {zi}ni=1 is an iid sample. z1 has a bounded density which is continuously differentiable

at zero. The conditional density of z1|z2 6= 0, z3 is positive in a neighborhood of zero, and

P{z2 6= 0|z3} > 0 for almost every z3. Support of x21 conditional on z1 in a neighborhood

of zero is not contained in any proper linear subspace of Rk. There exists at least one j ∈
{1, . . . , k} such that β

(j)
0 6= 0 and x

(j)
21 |x

j−
21 , z1, where xj−21 = (x

(1)
21 , . . . , x

(j−1)
21 , x

(j+1)
21 , . . . , x

(k)
21 ),

has everywhere positive conditional density for almost every xj−21 and almost every z1 in a

neighborhood of zero. E[z2|z3, z1 = 0] is differentiable in z3. E[z2sgn((β′0, γ0)′z3)|z1] is

continuously differentiable at z1 = 0. F is strictly increasing.

(b): K is a bounded symmetric density function with
´
sjsj′K(s)ds < ∞ for any j, j′ ∈

{1, . . . , k}. As n→∞, it holds nbkn/ lnn→∞ and nbk+3
n → 0.

We verify that {fn,θ} belongs to the generalized cube root class with hn = bkn. We first check

Condition (ii). By the definition of z2 = y2−y1 (which can take −1, 0, or 1) and change of variables

a = b−1
n z1, we obtain

E[en(z)2|z3] = 4h−1
n

ˆ
K(a)2p1(bna|z2 6= 0, z3)daP{z2 6= 0|z3},
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almost surely for all n, where p1 is the conditional density of z1 given z2 6= 0 and z3. Thus under

(a), hnE[en(z)2|z3] > c almost surely for some c > 0. Pick any θ1 and θ2. Note that

h1/2
n ‖fn,θ1 − fn,θ2‖2 =

(
P
{
hnE[en(z)2|z3]|I{z′3θ1 ≥ 0} − I{z′3θ2 ≥ 0}|

})1/2
≥ c1/2P |I{z′3θ1 ≥ 0} − I{z′3θ2 ≥ 0}|

≥ c1|θ1 − θ2|,

for some c1 > 0, where the last inequality follows from the same argument to the maximum score

example in Section 5.1 below using (a). Similarly, Condition (iii) is verified as

hnP sup
|θ−ϑ|<ε

|fn,θ − fn,ϑ|2 ≤ C1P sup
|θ−ϑ|<ε

|I{z′3θ ≥ 0} − I{z′3ϑ ≥ 0}| ≤ C2ε,

for some positive constants C1 and C2 and all ϑ in a neighborhood of θ0 and n large enough. We

now verify Condition (i). Since hnfn,θ is clearly bounded, it is enough to verify (3). A change of

variables a = b−1
n z1 and (b) imply

Pfn,θ =

ˆ
K(a)E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = bna]p1(bna)da

= p1(0)E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = 0]

+b2n

ˆ
K(a)a′

∂2E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = t]p1(t)

∂t∂t′

∣∣∣∣
t=ta

ada,

where ta is a point on the line joining a and 0, and the second equality follows from the dominated

convergence and mean value theorems. Since b2n = o((nbkn)−2/3) by (b), the second term is negligible.

Thus, for the condition in (3), it is enough to derive a second order expansion of E[z2{sgn(z′3θ) −
sgn(z′3θ0)}|z1 = 0]. Let Zθ = {z3 : I{z′3θ ≥ 0} 6= I{z′3θ0 ≥ 0}}. Honoré and Kyriazidou (2000, p.

872) showed that

−E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = 0] = 2

ˆ
Zθ
|E[z2|z1 = 0, z3]|dFz3|z1=0 > 0,

for all θ 6= θ0 on the unit sphere and that sgn(E[z2|z3, z1 = 0]) = sgn(z′3θ0). Therefore, by applying

the same argument as Kim and Pollard (1990, pp. 214-215), we obtain ∂
∂θE[z2sgn(z′3θ)|z1 = 0]

∣∣
θ=θ0

=

0 and

−∂
2E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = 0]

∂θ∂θ′
=

ˆ
I{z′3θ0 = 0}κ̇(z3)′θ0z3z

′
3p3(z3|z1 = 0)dµθ0 ,

where κ̇(z3) = ∂
∂z3

E[z2|z3, z1 = 0], p3 is the conditional density of z3 given z1 = 0, and µθ0 is the

surface measure on the boundary of {z3 : z′3θ0 ≥ 0}. Combining these results, the condition in (3)

is satisfied with the negative definite matrix

V = −2p1(0)

ˆ
I{z′3θ0 = 0}κ̇(z3)′θ0z3z

′
3p3(z3|z1 = 0)dµθ0 . (5)

�
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Throughout this section, let {fn,θ : θ ∈ Θ} be a generalized cube root class. We now study the

limiting behavior of the M-estimator, which is precisely defined as a random variable θ̂ satisfying

Pnfn,θ̂ ≥ sup
θ∈Θ

Pnfn,θ − op((nhn)−2/3). (6)

The first step is to establish weak consistency of the M-estimator, i.e., θ̂ converges in probability to

the unique maximizer θ0 of limn→∞ Pfn,θ. The technical argument to derive the weak consistency

is rather standard and usually shown by establishing uniform convergence of the objective function

supθ∈Θ |Pnfn,θ −Pfn,θ|
p→ 0. Thus, in this section we assume the consistency of θ̂. See illustrations

in Section 5 for details to verify consistency.

The next step is to derive the convergence rate of θ̂. A key ingredient for this step is to obtain

the modulus of continuity of the centered empirical process {Gnh
1/2
n (fn,θ − fn,θ0) : θ ∈ Θ} by

certain maximum inequality, where Gnf =
√
n(Pnf − Pf) for a function f . For non-drifting

criterion functions under independent observations, several maximal inequalities are available in

the literature (see, e.g., Kim and Pollard, 1990, p. 199). For nonparametric criterion functions

under possibly dependent observations, to best of our knowledge, there is no maximal inequality

which can be applied to the generalized cube root class. Our first task is to establish a maximal

inequality for the generalized cube root class with dependent observations.

To proceed, we now characterize the dependence structure of data. Among several notions

of dependence, this paper focuses on an absolutely regular process.4 Let F0
−∞ and F∞m be σ-

fields of {. . . , zt−1, z0} and {zm, zm+1, . . .}, respectively. Define the β-mixing coefficient as βm =
1
2 sup

∑
(i,j)∈I×J |P{Ai ∩ Bj} − P{Ai}P{Bj}|, where the supremum is taken over all the finite

partitions {Ai}i∈I and {Bj}j∈J respectively F0
−∞ and F∞m measurable. Throughout the paper, we

impose the following assumption on the observations.

Assumption D. {zt} is a strictly stationary and absolutely regular process with β-mixing coeffi-

cients {βm} such that βm = O(ρm) for some 0 < ρ < 1.

Obviously this assumption covers the case of independent observations studied in Kim and Pol-

lard (1990). Assumption D says the mixing coefficient βm should decay at an exponential rate.5 For

example, various Markov, GARCH, and stochastic volatility models satisfy this assumption (Car-

rasco and Chen, 2002). This assumption is required not only to establish the maximal inequality

in Lemma M below but also to establish a central limit theorem in Lemma C for finite dimensional

convergence.

Under Assumption D, we obtain the following maximal inequality for the empirical process

Gnh
1/2
n (fn,θ − fn,θ0) of the generalized cube root class.

4See Doukhan, Massart and Rio (1995) for a detail on empirical process theory of absolutely regular processes.
5Indeed, the polynomial decay rates of βm are often associated with strong dependence and long memory type behavior
in sample statistics. See Chen, Hansen and Carrasco (2010) and references therein. In this case, asymptotic analysis
for the M-estimator will become very different.
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Lemma M. There exist positive constants C and C ′ such that

P sup
θ∈Θ:|θ−θ0|<δ

|Gnh
1/2
n (fn,θ − fn,θ0)| ≤ Cδ1/2,

for all n large enough and δ ∈ [(nhn)−1/2, C ′].

This maximal inequality is applied to obtain the following lemma.

Lemma 1. For each ε > 0, there exist random variables {Rn} of order Op(1) and a positive constant

C such that

|Pn(fn,θ − fn,θ0)− P (fn,θ − fn,θ0)| ≤ ε|θ − θ0|2 + (nhn)−2/3R2
n,

for all θ ∈ Θ satisfying (nhn)−1/3 ≤ |θ − θ0| ≤ C.

Based on Lemma 1, the convergence rate of θ̂ is obtained as follows. Suppose |θ̂−θ0| ≥ (nhn)−1/3.

Then we can take a positive constant c such that

op((nhn)−2/3) ≤ Pn(fn,θ̂ − fn,θ0) ≤ P (fn,θ̂ − fn,θ0) + ε|θ̂ − θ0|2 + (nhn)−2/3R2
n

≤ (−c+ ε)|θ̂ − θ0|2 + o(|θ̂ − θ0|2) +Op((nhn)−2/3),

for each ε > 0, where the first inequality follows from the definition of θ̂ in (6), the second inequality

follows from Lemma 1, and the third inequality follows from Condition (i). Taking ε small enough

to satisfy c− ε > 0 yields the convergence rate θ̂ − θ0 = Op((nhn)−1/3).

Given the convergence rate of θ̂, the final step is to derive the limiting distribution. To this

end, we apply a continuous mapping theorem of an argmax element (e.g., Kim and Pollard, 1990,

Theorem 2.7). A key ingredient for this argument is to establish weak convergence of the centered

and normalized empirical process

Zn(s) = n1/6h2/3
n Gn(fn,θ0+s(nhn)−1/3 − fn,θ0),

for |s| ≤ K with any K > 0. Weak convergence of the process Zn may be characterized by its finite

dimensional convergence and tightness (or stochastic equicontinuity). If fn,θ does not vary with n

and {zt} is independently and identically distributed as in Kim and Pollard (1990), a classical central

limit theorem combined with the Cramér-Wold device implies finite dimensional convergence, and

a maximal inequality on a suitably regularized class of functions guarantees tightness of the process

of criterion functions. We adapt this approach to our generalized cube root class under possibly

dependent observations satisfying Assumption D.

For finite dimensional convergence, we employ the following central limit theorem, which is based

on Rio’s (1997, Corollary 1) central limit theorem for an α-mixing array. Let β(·) be a function

such that β(t) = β[t] if t ≥ 1 and β(t) = 1 otherwise, and β−1(·) be the càdlàg inverse of β(·). Also

let Qg(u) be the inverse function of the tail probability function x 7→ P{|g(zt)| > x}.

11



Lemma C. Suppose Pgn = 0 and

sup
n

ˆ 1

0
β−1(u)Qgn(u)2du <∞. (7)

Then Σ = limn→∞Var(Gngn) exists and Gngn
d→ N(0,Σ).

The finite dimensional convergence of Zn follows from Lemma C by setting gn as any finite

dimensional projection of the process {gn,s−Pgn,s : s} with gn,s = n1/6h
2/3
n (fn,θ0+s(nhn)−1/3−fn,θ0).

The requirement in (7) is an adaptation of the Lindeberg-type condition of Rio’s (1997, Corollary 1)

central limit theorem to our setup. The condition (7) excludes polynomial decay of βm. Therefore,

exponential decay of βm is required not only for the maximal inequality in Lemma M but also for the

finite dimensional convergence in Lemma C. Also, Doukhan, Massart and Rio (1994, Theorem 5)

showed that any polynomial mixing rate will destroy the asymptotic normality of Gngn. It should be

noted that for the rescaled object gn,s = n1/6h
2/3
n (fn,θ0+s(nhn)−1/3 − fn,θ0) based on the generalized

cube root class {fn,θ}, the (2 + δ)-th moments P |gn,s|2+δ for δ > 0 typically diverge. This happens

because the generalized cube root class {fn,θ} typically involves the indicator function. Thus we

cannot apply central limit theorems for mixing sequences with higher than second moments. The

Lindeberg condition is one of the weakest conditions, if any, for the central limit theorem of mixing

sequences without moment conditions higher than two. To verify the Lindeberg-type condition (7),

the following lemma is often useful.

Lemma 2. Suppose there is a positive constant c such that P{|gn,s| ≥ c} ≤ c(nh−2
n )−1/3 for all n

large enough and s. Then (7) holds true.

Note that in the generalized cube root class, gn,s is typically a difference between two indicators

multiplied by n1/6h
2/3
n and possibly a kernel weight. Therefore, gn,s is zero or close to zero with

high probability so that the condition P{|gn,s| ≥ c} ≤ c(nh−2
n )−1/3 can be satisfied.

Example HK (cont’d). We verify the condition of Lemma 2 for the estimator by Honoré and

Kyriazidou (2000) in (1). In this case, the normalized criterion is written as

gn,s(z) = n1/6b2k/3n en(z)An,s(z3),

where en(z) = 2b−kn K(b−1
n z1)z2 and An,s(z3) = I{z′3(θ0 + sn−1/3b

−k/3
n ) ≥ 0} − I{z′3θ0 ≥ 0}. Since

|z2| ≤ 1 and |An,s(z3)| takes only 0 or 1, it holds

P{|gn,s| ≥ c} ≤ P
{
|K(b−1

n z1)| ≥ 2−1cn−1/6bk/3n

∣∣∣ |An,s(z3)| = 1
}
P{|An,s(z3)| = 1}

≤ CE
[
|K(b−1

n z1)|
∣∣ |An,s(z3)| = 1

]
(nbkn)−1/3

≤ C ′(nb−2k
n )−1/3,

for some C,C ′ > 0, where the second inequality follows from the Markov inequality and the fact

that P{|An,s(z3)| = 1} is proportional to (nbkn)−1/3, and the last inequality follows from a change
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of variables and boundedness of the conditional density of z1 given |An,s(z3)| = 1 (by (a)). Since

hn = bkn in this example, we can apply Lemma 2 to conclude that the condition (7) holds true. �

To establish tightness of the normalized process Zn, we show the following maximal inequality.

Lemma M’. Consider a sequence of classes of functions Gn = {gn,s : |s| ≤ K} for some K > 0

with envelope functions Gn. Suppose there is a positive constant C such that

P sup
s:|s−s′|<ε

|gn,s − gn,s′ |2 ≤ Cε, (8)

for all n large enough, |s′| ≤ K, and ε > 0 small enough. Also assume that there exist 0 ≤ κ < 1/2

and C ′ > 0 such that Gn ≤ C ′nκ and ‖Gn‖2 ≤ C ′ for all n large enough. Then for any σ > 0, there

exist δ > 0 and a positive integer Nδ such that

P sup
|s−s′|<δ

|Gn(gn,s − gn,s′)| ≤ σ,

for all n ≥ Nδ.

Tightness of the process Zn follows from Lemma M’ by setting gn,s = n1/6h
2/3
n (fn,θ0+s(nhn)−1/3 −

fn,θ0). Note that the condition (8) is satisfied by Condition (iii) of the generalized cube root class.6

Compared to Lemma M used to derive the convergence rate of θ̂, Lemma M’ is applied only to

establish tightness of the process Zn. Therefore, we do not need an exact decay rate on the right

hand side of the maximal inequality.7

Based on finite dimensional convergence and tightness of Zn shown by Lemmas C and M’, re-

spectively, we establish weak convergence of Zn. Then a continuous mapping theorem of an argmax

element (Kim and Pollard, 1990, Theorem 2.7) yields the limiting distribution of the M-estimator

θ̂. The main theorem of this section is presented as follows.

Theorem 1. Let {fn,θ : θ ∈ Θ} be a generalized cube root class. Suppose that Assumption D holds,

θ̂ defined in (6) converges in probability to θ0 ∈ intΘ, and (7) holds with gn,s − Pgn,s for each s,

where gn,s = n1/6h
2/3
n (fn,θ0+s(nhn)−1/3 − fn,θ0). Then

(nhn)1/3(θ̂ − θ0)
d→ arg max

s
Z(s), (9)

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V s/2, and covari-

ance kernel H(s1, s2) = limn→∞
∑n

t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

This theorem can be considered as an extension of the main theorem of Kim and Pollard (1990) to

the cases where the criterion function fn,θ can vary with the sample size n and/or the observations

{zt} can obey a dependent process. To best of our knowledge, the cube root (nonparametric)

convergence rate (nhn)1/3 with hn → 0 is new in econometrics and statistics literature. It is

6The upper bound in (8) can be relaxed to ε1/p for some 1 ≤ p <∞. However, for the generalized cube root class it
is typically satisfied with p = 1.
7In particular, the process Zn itself does not satisfy Condition (ii).
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interesting to note that similar to standard nonparametric estimation, nhn still plays a role as

the “effective sample size.” Also, similar to Kim and Pollard (1990), the limiting distribution is

characterized by the maximizer of the Gaussian process Z. However, the covariance kernel H takes

the form of the long-run variance. On the other hand, when the condition of Lemma 2 holds true,

the maximal inequality in Lemma M’ often implies that the asymptotic temporal covariances are

negligible. For example, in Section 5.1, we find that the covariance kernel H of the maximum score

estimator under dependent observations is same as the independent case.

Example HK (cont’d). We have already verified that the criterion (4) of Honoré and Kyriazidou’s

(2000) estimator belongs to the generalized cube root class and satisfies the Lindeberg-type condition

(7). Therefore, Theorem 1 implies the limiting distribution of Honoré and Kyriazidou’s (2000)

estimator as in (9). The matrix V is given in (5). The covariance kernel H is obtained in the same

manner as Kim and Pollard (1990). That is, decompose z3 into r′θ0 + z̄3 with z̄3 orthogonal to θ0.

Then it holds H(s1, s2) = L(s1) + L(s2)− L(s1 − s2), where

L(s) = 4p1(0)

ˆ
|z̄′3s|p3(0, z̄3|z1 = 0)dz̄3.

�

Once we show that the M-estimator has a proper limiting distribution, Politis, Romano and Wolf

(1999, Theorem 3.3.1) justify the use of subsampling to construct confidence intervals and make

inference. Our mixing condition in Assumption D satisfies the requirement of their theorem and thus

subsampling inference based on b consecutive observations with b/n → ∞ is asymptotically valid.

See Politis, Romano and Wolf (1999, Section 3.6) for a discussion on data-dependent choices of b.

Another candidate to conduct inference based on the M-estimator is the bootstrap. However, even

for independent observations, it is known that the naive nonparametric bootstrap is typically invalid

under the cube root asymptotics (Abrevaya and Huang, 2005, and Sen, Banerjee and Woodroofe,

2010). It is beyond the scope of this paper to investigate bootstrap inference in our setup.

We now discuss the boundedness requirement on hnfn,θ in Condition (i). Boundedness is used to

show the maximal inequality in Lemma M particularly to guarantee the norm relation ‖·‖2,β ≤ C ‖·‖2
for some positive constant C (see (25) in the Appendix). Note that it always holds ‖·‖2 ≤ ‖·‖2,β
(Doukhan, Massart and Rio, 1995, Lemma 1). Thus, boundedness of hnfn,θ is used to guarantee the

norm equivalence relationship between the L2(P )- and L2,β(P )-norms. Without boundedness, the

L2,β(P )-norm is bounded from above only by the L2+η(P )-norm with any η > 0 (Doukhan, Massart

and Rio, 1995, pp. 403-404). Therefore, instead of Lemma M, the resulting maximal inequality will

be

P sup
θ∈Θ:|θ−θ0|<δ

|Gnh
1/2
n (fn,θ − fn,θ0)| ≤ Cδ1/(2+η),
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provided Condition (iii) is replaced with

P sup
θ∈Θ:|θ−θ′|<ε

h1+η/2
n |fn,θ − fn,θ′ |2+η ≤ C ′′ε,

for some positive constant C ′′ and all n large enough, ε > 0 small enough, and θ′ in a neighborhood

of θ0. By applying a similar argument to show Lemma M, we can show θ̂−θ0 = Op((nhn)
− 1

4
− 1

6(2+η) )

for any η > 0 without boundedness of hnfn,θ. However, this convergence rate may not be sharp.

Also note that the exponential decay of the mixing coefficient βm in Assumption D is used to

show the norm equivalence (25) in the Appendix. Instead of Assumption D (which imposes βm =

O(ρm)), Lemma M can be shown under a slightly weaker condition: sup0<x≤1 x
−1
´ x

0 β
−1(u)du <

∞.8 However, this weaker condition already excludes polynomial decay of βm.

Let us close this section with an extension of Theorem 1. It is often the case that the crite-

rion function contains some nuisance parameters which can be estimated with rates faster than

(nhn)−1/3. For the rest of this section, let θ̂ and θ̃ satisfy

Pnfn,θ̂,ν̂ ≥ sup
θ∈Θ

Pnfn,θ,ν̂ + op((nhn)−2/3),

Pnfn,θ̃,ν0 ≥ sup
θ∈Θ

Pnfn,θ,ν0 + op((nhn)−2/3),

respectively, where ν0 is a vector of nuisance parameters and ν̂ is its estimator satisfying ν̂ − ν0 =

op((nhn)−1/3). Theorem 1 is extended as follows.

Theorem 2. Let {fn,θ,ν0 : θ ∈ Θ} be a generalized cube root class and {fn,θ,ν : θ ∈ Θ, ν ∈ Λ}
satisfies Condition (iii). Suppose there exists some negative definite matrix V1 such that

P (fn,θ,ν − fn,θ0,ν0) =
1

2
(θ − θ0)′V1(θ − θ0) + o(|θ − θ0|2) +O(|ν − ν0|2) + o((nhn)−2/3), (10)

for all θ and ν in neighborhoods of θ0 and ν0, respectively. Then θ̂ = θ̃+op((nhn)−1/3). Additionally,

if (7) holds with (gn,s − Pgn,s) for each s, where gn,s = n1/6h
2/3
n (fn,θ0+s(nhn)−1/3,ν0

− fn,θ0,ν0), then

(nhn)1/3(θ̂ − θ0)
d→ arg max

s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V1s/2 and covari-

ance kernel H(s1, s2) = limn→∞
∑n

t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

4. Partial identification

In this section, we relax the assumption of point identification of θ0, the maximizer of the limiting

population criterion limn→∞ Pfn,θ, and consider the case where the limiting criterion is maximized

at any element of a set ΘI ⊂ Θ. The set ΘI is called the identified set. In order to estimate ΘI , we

8For example, consider the case where g is a binary function (takes 0 or 1). In this case, we have ‖g‖2,β =

‖g‖2
√
x−1
´ x
0
β−1(u)du with x = P{g(zt) = 1}. Therefore, we cannot bound ‖g‖2,β from the above unless

sup0<x≤1 x
−1
´ x
0
β−1(u)du <∞.
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consider a collection of approximate maximizers of the sample criterion function Pnfn,θ, that is

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Pnfn,θ − Pnfn,θ ≤ ĉ(nhn)−1/2},

i.e., the level set based on the criterion fn,θ from the maximum with a cutoff value ĉ(nhn)−1/2. This

section studies the convergence rate of Θ̂ to ΘI under the Hausdorff distance defined below. We

assume that ΘI is convex. Then the projection πθ = arg minθ′∈ΘI |θ′−θ| of θ ∈ Θ on ΘI is uniquely

defined. To deal with the partially identified case, we modify the definition of the generalized cube

root class as follows.

Definition (Partially identified cube root class). A class of functions {fn,θ : θ ∈ Θ} is called

the partially identified cube root class if Conditions (i)-(iii) below are satisfied with a sequence {hn}
of positive numbers such that nhn →∞.

(i): {hnfn,θ : θ ∈ Θ} is a class of uniformly bounded functions. Also, limn→∞ Pfn,θ is max-

imized at any θ in a bounded convex set ΘI . There exist positive constants c and c′ such

that

P (fn,πθ − fn,θ) ≥ c|θ − πθ|
2 + o(|θ − πθ|2) + o((nhn)−2/3), (11)

for all n large enough and all θ ∈ {θ ∈ Θ : 0 < |θ − πθ| ≤ c′}.
(ii): There exist positive constants C and C ′ such that

|θ − πθ| ≤ Ch1/2
n ‖fn,θ − fn,πθ‖2 ,

for all n large enough and all θ ∈ {θ ∈ Θ : 0 < |θ − πθ| ≤ C ′}.
(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:0<|θ−πθ|<ε

hn|fn,θ − fn,πθ |
2 ≤ C ′′ε,

for all n large enough and all ε > 0 small enough.

For the non-drifting case, we set as hn = 1. Similar comments to the generalized cube root class

apply. The main difference is that the conditions are imposed on the contrast fn,θ − fn,πθ using

the projection πθ. Condition (i) contains boundedness and expansion conditions. The inequality in

(11) can be verified by a one-sided Taylor expansion based on the directional derivative. Conditions

(ii) and (iii) play similar roles and are verified by similar arguments to the point identified case. In

contrast to the point identified case, Condition (iii) does not require θ′ in a neighborhood of θ0.

Example MT (cont’d). A little algebra shows that Manski and Tamer’s (2002) set estimator in

(2) is written as

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Pnfθ,ν̂ − Pnfθ,ν̂ ≤ ĉn−1/2},

where z = (x′, w, wl, wu, u)′, h(x,w, u) = I{x′θ0 + w + u ≥ 0} − I{x′θ0 + w + u < 0}, and

fθ,ν(z) = h(x,w, u)[I{x′θ + wu ≥ 0, qν(x̃) > .5} − I{x′θ + wl < 0, qν(x̃) ≤ .5}]. (12)
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We impose the following assumptions. Let ∂ΘI be the boundary of ΘI , κu(x̃) = (2qν0(x̃) −
1)I{qν0(x̃) > .5}, and κl(x̃) = (1− 2qν0(x̃))I{qν0(x̃) ≤ .5}.

(a): {xt, wt, wlt, wut, ut} satisfies Assumption D. x|wu has a bounded and continuous condi-

tional density p(·|wu) for almost every wu. There exists an element xj of x whose conditional

density p(xj |wu) is bounded away from zero over the support of of wu. The same condition

holds for x|wl. The conditional densities of wu|wl, x and wl|wu, x are bounded. qν(·) is

continuously differentiable at ν0 a.s. and the derivative is bounded for almost every x̃.

(b): For each θ ∈ ∂ΘI , κu(x̃) is non-negative for x′θ + wu ≥ 0, κl(x̃) is non-positive for

x′θ + wl ≤ 0, κu(x̃) and κl(x̃) are continuously differentiable, and it holds

P{x′θ + wu = 0, qν0(x̃) > .5, (θ′∂κu(x̃)/∂x)p(x|wl, wu) > 0} > 0, or

P{x′θ + wl = 0, qν0(x̃) ≤ .5, (θ′∂κl(x̃)/∂x)p(x|wl, wu) > 0} > 0.

To apply Theorem 4 below, we verify that {fθ,ν0 : θ ∈ Θ} belongs to the partially identified cube

root class with hn = 1. We first check Condition (i). This class is clearly bounded. From Manski

and Tamer (2002, Lemma 1 and Corollary (a)), Pfθ,ν0 is maximized at any θ ∈ ΘI and ΘI is a

bounded convex set. By applying the argument in Kim and Pollard (1990, pp. 214-215), the second

directional derivative at θ ∈ ∂ΘI with the orthogonal direction outward from ΘI is

−2P

ˆ
I{x′θ = −wu}θ′

∂κu(x̃)

∂x
p(x|wl, wu)(x′θ)2dσu−2P

ˆ
I{x′θ = −wl}θ′

∂κu(x̃)

∂x
p(x|wl, wu)(x′θ)2dσl,

where σu and σl are the surface measures on the boundaries of the sets {x : x′πθ + wu ≥ 0} and

{x : x′πθ + wl ≥ 0}, respectively. Since this matrix is negative definite by (b), Condition (i) is

verified. We next check Condition (ii). By h(x,w, u)2 = 1, observe that

‖fθ,ν0 − fπθ,ν0‖2 ≥
√

2 min

{
P{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}I{qν0(x̃) > .5},
P{x′θ ≥ −wl ≥ x′πθ or x′θ < −wl < x′πθ}I{qν0(x̃) ≤ .5}

}
.

for any θ ∈ Θ. Since the right hand side is the minimum of probabilities for pairs of wedge shaped

regions with angles of order |θ − πθ|, (a) implies Condition (ii). We now check Condition (iii). By

h(x,w, u)2 = 1, the triangle inequality, and |I{qν0(x̃) > 0.5}| ≤ 1, we obtain

P sup
θ∈Θ:0<|θ−πθ|<ε

|fθ,ν0 − fπθ,ν0 |
2

≤ P sup
θ∈Θ:0<|θ−πθ|<ε

I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}

+P sup
θ∈Θ:0<|θ−πθ|<ε

I{x′θ ≥ −wl ≥ x′πθ or x′θ < −wl < x′πθ}, (13)

for any ε > 0. Again, the right hand side is the sum of the probabilities for pairs of wedge shaped

regions with angles of order ε. Thus, (a) also guarantees Condition (iii). �

We establish the following maximal inequality for the partially identified cube root class. Let

rn = nhn/ log(nhn).
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Lemma MS. There exist positive constants C and C ′ < 1 such that

P sup
θ∈Θ:0<|θ−πθ|<δ

|Gnh
1/2
n (fn,θ − fn,πθ)| ≤ C(δ log(1/δ))1/2,

for all n large enough and δ ∈ [r
−1/2
n , C ′].

Compared to Lemma M, the additional log term on the right hand side is due to the fact that the

supremum is taken over the δ-tube (or manifold) instead of the δ-ball, which increases the entropy.

This maximal inequality is applied to obtain the following analog of Lemma 1.

Lemma 3. For each ε > 0, there exist random variables {Rn} of order Op(1) and a positive constant

C such that

|Pn(fθ − fπθ)− P (fθ − fπθ)| ≤ ε|θ − πθ|
2 + r−2/3

n R2
n,

for all θ ∈ {θ ∈ Θ : r
−1/3
n ≤ |θ − πθ| ≤ C}.

We now establish the convergence rate of the set estimator Θ̂ to ΘI . Let ρ(A,B) = supa∈A infb∈B |a−
b| and H(A,B) = max{ρ(A,B), ρ(B,A)} be the Hausdorff distance of sets A,B ⊂ Rd. Based on

Lemmas MS and 3, the asymptotic property of the set estimator Θ̂ is obtained as follows.

Theorem 3. Let {fn,θ : θ ∈ Θ} be a partially identified cube root class, and {h1/2
n fn,θ : θ ∈ ΘI} be

a P -Donsker class. Assume H(Θ̂,ΘI)
p→ 0 and ĉ = op((nhn)1/2). Then

ρ(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4 + r−1/3

n ).

Furthermore, if ĉ→∞, then P{ΘI ⊂ Θ̂} → 1 and

H(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4).

Note that ρ is asymmetric in its arguments. The first part of this theorem says ρ(Θ̂,ΘI) =

Op(ĉ
1/2(nhn)−1/4 + r

−1/3
n ). On the other hand, in the second part, we show P{ΘI ⊂ Θ̂} → 1 (i.e.,

ρ(ΘI , Θ̂) can converge to zero at an arbitrary rate) as far as ĉ→∞. For example, we may set at ĉ =

log(nhn). These results are combined to imply the convergence rate H(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4)

under the Hausdorff distance. The cube root term of order r
−1/3
n in the rate of ρ(Θ̂,ΘI) is dominated

by the term of order ĉ1/2(nhn)−1/4.

We next consider the case where the criterion function contains nuisance parameters. In par-

ticular, we allow that the dimension kn of the nuisance parameters ν can grow as the sample size

increases. For instance, the nuisance parameters might be coefficients in sieve estimation. It is

important to allow the growing dimension of ν to cover Manski and Tamer’s (2002) set estimator,

where the criterion contains some nonparametric estimate and its transform by the indicator. The

rest of this section considers the set estimator

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Pnfn,θ,ν̂ − Pnfn,θ,ν̂ ≤ ĉ(nhn)−1/2},
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with some preliminary estimator ν̂ and cutoff value ĉ. To derive the convergence rate of Θ̂, we

establish a maximal inequality over the set Gn = {gn,θ,ν − Pgn,θ,ν : |θ − θ0| ≤ K1, |ν − ν0| ≤
K2an} for some K1,K2 > 0 with envelope functions Gn, where kn → ∞, an → 0, and kna

2/3
n →

0. Let gn,s = gn,θ,ν with s = (θ′, ν ′)′. Suppose the preliminary estimator ν̂ satisfies ν̂ − ν0 =

Op(n
−1/2(kn log kn)1/2). Then, we may set as an = n−1/2(kn log kn)1/2 and gn,s = a

1/2
n h

1/2
n (fn,θ,ν −

fn,θ,ν0), and the condition kna
2/3
n → 0 is guaranteed by k4

n log kn/n→ 0. Lemma MS is modified as

follows.

Lemma MS’. Suppose there exists a positive constant C such that

P sup
s:|s−s′|<ε

|gn,s − gn,s′ |2 ≤ Cε, (14)

for all n large enough and ε > 0 small enough. Also assume that there exist 0 ≤ κ < 1/2 and C ′ > 0

such that Gn ≤ C ′nκ and ‖Gn‖2 ≤ C ′ for all n large enough. Then for any σ > 0, there exist δ > 0

and a positive integer Nδ such that

(log kn)−1P sup
|s−s′|<δ

|Gngn,s −Gngn,s′ | ≤ σ,

for all n ≥ Nδ.

Similar comments to Lemma M’ apply. The term (log kn)−1 is the cost due to the growing

dimension of nuisance parameters. Based on this lemma, the convergence rate of the set estimator

Θ̂ is characterized as follows.

Theorem 4. Let {fn,θ,ν0 : θ ∈ Θ} be a partially identified cube root class, and {h1/2
n fn,θ,ν0 : θ ∈ ΘI}

be a P -Donsker class. Suppose there exists a positive constant C ′′ such that

P sup
|ν−ν0|<ε

sup
θ∈Θ:|θ−πθ|<ε

hn|fn,θ,ν − fn,πθ,ν0 |
2 ≤ C ′′ε, (15)

for all n large enough and all ε > 0 small enough. Assume ρ(Θ̂,ΘI)
p→ 0, ĉ = op((nhn)1/2),

kn →∞, |ν̂ − ν0| = op(an) for some {an} such that hn/an →∞ and kna
2/3
n → 0. Furthermore, for

some ε > 0 and for each θ ∈ {θ ∈ Θ : |θ − πθ| < ε} and ν in a neighborhood of ν0, it holds

P (fn,θ,ν − fn,θ,ν0)− P (fn,πθ,ν − fn,πθ,ν0) = o(|θ − πθ|2) +O(|ν − ν0|2 + r−2/3
n ). (16)

Then

ρ(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4 + r−1/3

n + (nhna
−1
n )−1/4(log kn)1/2) + o(an). (17)

Furthermore, if ĉ→∞, then P{ΘI ⊂ Θ̂} → 1 and

H(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4 + (nhna

−1
n )−1/4(log kn)1/2) + o(an). (18)

Compared to Theorem 3, we have an extra term in the convergence rate of H(Θ̂,ΘI) due to

(nonparametric) estimation of ν0. For example, if hn = 1 and ν̂ is a vector of coefficients for sieve
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estimation, then it is often the case that an = o(n−1/4) (see, e.g., Chen, 2007).9 In this case, the

convergence rate under the Hausdorff distance becomes H(Θ̂,ΘI) = Op(n
−1/4ĉ1/2) as far as ĉ→∞.

For example, we can set as ĉ = log n. The envelope condition in (15) allows for step functions

containing some nonparametric estimates.

We now discuss the relationship to Chernozhukov, Hong and Tamer (2007), which established

general asymptotic theory for the criterion-based set inference method. First, our Theorem 3 ba-

sically verifies their high level condition (Condition C.2 of Chernozhukov, Hong and Tamer, 2007)

for the convergence rate of the general level set estimator in the partially identified cube root class.

Second, as motivating examples, they focused on the moment condition models (Section 4 of Cher-

nozhukov, Hong and Tamer, 2007) and applied their general set inference theory. Here we focus on

the criterion for the M-estimation. Consider the non-drifting case hn = 1. Although the GMM-

type criterion function is typically of order Op(n
−1) on ΘI , the M-estimation criterion is of order

Op(n
−1/2). This difference yields a rather slower convergence rate H(Θ̂,ΘI) = Op((log n)1/2n−1/4)

in Theorem 3 instead of H(Θ̂,ΘI) = Op((log n)1/2n−1/2) in Chernozhukov, Hong and Tamer (2007,

Theorem 4.1). However, in our setup, this is an efficient rate in the sense of the fastest conver-

gence rate that preserves consistency. Third, we allow the criterion to contain the nonparametric

bandwidth hn and nuisance parameters with increasing dimension. Finally, the maximal inequal-

ity in Lemma MS’ and the assumption that {h1/2
n fn,θ,ν0 : θ ∈ ΘI} is P -Donsker are sufficient to

verify Conditions C.4 and C.5 of Chernozhukov, Hong and Tamer (2007). Thus their subsampling

confidence set is also valid in our setup.

Example MT (cont’d). Since we have already verified that {fn,θ,ν0 : θ ∈ Θ} in (12) belongs to the

partially identified cube root class, it remains to check (15) and (16). The condition (15) is verified

in the same manner as Condition (iii) by modifying the bound in (13). Let Iν(x̃) = I{qν(x̃) > .5 ≥
qν0(x̃) or qν(x̃) ≤ .5 < qν0(x̃)}. For (16), note that

|P (fθ,ν − fθ,ν0)− P (fπθ,ν − fθ,ν0)|

≤ P I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}Iν(x̃)

+P I{x′θ ≥ −wl ≥ x′πθ or x′θ < −wl < x′πθ}Iν(x̃), (19)

for each θ ∈ {θ ∈ Θ : |θ − πθ| < ε} and ν in a neighborhood of ν0. For the first term of (19), the

law of iterated expectation and an expansion of qν(x̃) around ν0 based on (a) imply

P I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}Iν(x̃)

≤ P I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}A(wu, x)|v − ν0|,

for some bounded function A. The second term of (19) is bounded in the same manner. Therefore,

|P (fθ,ν − fθ,ν0)− P (fπθ,ν − fθ,ν0)| = O(|θ − πθ||v − ν0|) and (16) is verified. Since all conditions of

9Alternatively ν0 can be estimated by some high-dimensional method (e.g. Belloni, Chen, Chernozhukov and Hansen,

2012), which also typically guarantees an = o(n−1/4).
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Theorem 4 are verified, we conclude that the convergence rate of Manski and Tamer’s (2002) set

estimator Θ̂ in (2) is characterized by (17) and (18).

Manski and Tamer (2002) proved the consistency of Θ̂ to ΘI in terms of the Hausdorff dis-

tance. We provide a sharper lower bound on the their tuning parameter εn, which is in our no-

tation ĉn−1/2 with ĉ → ∞. For example, if we set ĉ = log n, then the convergence rate becomes

H(Θ̂,ΘI) = Op(n
−1/4(log n)1/2). As we discussed in the end of Section 3, this rather slow conver-

gence rate comes from the stochastic order of the criterion function on ΘI . We basically verify the

high level assumption of Chernozhukov, Hong and Tamer (2007, Condition C.2) in the cube root

context. However, we mention that in the above setup, the criterion contains nuisance parameters

with increasing dimension and the result in Chernozhukov, Hong and Tamer (2007) is not directly

applicable. �

5. Further examples

5.1. Dependent observations . As an application of Theorem 1, consider the maximum score

estimator for the regression model yt = x′tθ0 + ut, that is

θ̂ = arg max
θ∈S

n∑
t=1

[I{yt ≥ 0, x′tθ ≥ 0}+ I{yt < 0, x′tθ < 0}],

where S is the surface of the unit sphere in Rd. Since θ̂ is determined only up to scalar multiples, we

standardize it to be unit length. We impose the following assumptions. Let h(x, u) = I{x′θ0 + u ≥
0} − I{x′θ0 + u < 0}.

(a): {xt, ut} satisfies Assumption D. xt has compact support and a continuously differentiable

density p. The angular component of xt, considered as a random variable on S, has a

bounded and continuous density, and the density for the orthogonal angle to θ0 is bounded

away from zero.

(b): Assume that |θ0| = 1, median(u|x) = 0, the function κ(x) = E[h(xt, ut)|xt = x] is non-

negative for x′θ0 ≥ 0 and non-positive for x′θ0 < 0 and is continuously differentiable, and

P{x′θ0 = 0, κ̇(x)′θ0p(x) > 0} > 0.

Except for Assumption D, which allows dependent observations, all assumptions are similar to the

ones in Kim and Pollard (1990, Section 6.4). First, note that the criterion function is written as

fθ(x, u) = h(x, u)[I{x′θ ≥ 0} − I{x′θ0 ≥ 0}].

We can see that θ̂ = arg maxθ∈S Pnfθ and θ0 = arg maxθ∈S Pfθ. Existence and uniqueness of θ0

are guaranteed by (b) (see, Manski, 1985). Also the uniform law of large numbers for an absolutely

regular process by Nobel and Dembo (1993, Theorem 1) implies supθ∈S |Pnfθ−Pfθ|
p→ 0. Therefore,

θ̂ is consistent for θ0.

We next compute the expected value and covariance kernel of the limit process (i.e., V and H

in Theorem 1). Due to strict stationarity (in Assumption D), we can apply the same argument to
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Kim and Pollard (1990, pp. 214-215) to derive the second derivative

V =
∂2Pfθ
∂θ∂θ′

∣∣∣∣
θ=θ0

= −
ˆ

I{x′θ0 = 0}κ̇(x)′θ0p(x)xx′dσ,

where σ is the surface measure on the boundary of the set {x : x′θ0 ≥ 0}. The matrix V is negative

definite under the last condition of (b). Now pick any s1 and s2, and define qn,t = fθ0+n−1/3s1
(xt, ut)−

fθ0+n−1/3s2
(xt, ut). The covariance kernel is written as H(s1, s2) = 1

2{L(s1, 0)+L(0, s2)−L(s1, s2)},
where

L(s1, s2) = lim
n→∞

n4/3Var(Pnqn,t) = lim
n→∞

n1/3{Var(qn,t) +

∞∑
m=1

Cov(qn,t, qn,t+m)}.

The limit of n1/3Var(qn,t) is given in Kim and Pollard (1990, p. 215). For the covariance Cov(qn,t, qn,t+m),

note that qn,t can take only three values, −1, 0, or 1. By the definition of βm, Assumption D implies

|P{qn,t = j, qn,t+m = k} − P{qn,t = j}P{qn,t+m = k}| ≤ n−2/3βm,

for all n,m ≥ 1 and j, k = −1, 0, 1, i.e., {qn,t} is a β-mixing array whose mixing coefficients are

bounded by n−2/3βm. In turn, this implies that {qn,t} is an α-mixing array whose mixing coefficients

are bounded by 2n−2/3βm. Thus, by applying the α-mixing inequality, the covariance is bounded

as

Cov(qn,t, qn,t+m) ≤ Cn−2/3βm ‖qn,t‖2p ,

for some C > 0 and p > 2. Note that

‖qn,t‖2p ≤ [P |I{x′(θ0 + s1n
−1/3) > 0} − I{x′(θ0 + s2n

−1/3) > 0}|]2/p = O(n−2/(3p)).

Combining these results, n1/3
∑∞

m=1 Cov(qn,t, qn,t+m) → 0 as n → ∞. Therefore, the covariance

kernel H is same as the independent case in Kim and Pollard (1990, p. 215).

We now verify that {fθ : θ ∈ S} belongs to the generalized cube root class with hn = 1. Condition

(i) is already verified. By Jensen’s inequality,

‖fθ1 − fθ2‖2 =
√
P |I{x′θ1 ≥ 0} − I{x′θ2 ≥ 0}| ≥ P{x′θ1 ≥ 0 > x′θ2 or x′θ2 ≥ 0 > x′θ1},

for any θ1, θ2 ∈ S. Since the right hand side is the probability for a pair of wedge shaped regions

with an angle of order |θ1− θ2|, the last condition in (a) implies Condition (ii). For Condition (iii),

pick any ε > 0 and observe that

P sup
θ∈Θ:|θ−ϑ|<ε

|fθ − fϑ|2 = P sup
θ∈Θ:|θ−ϑ|<ε

I{x′θ ≥ 0 > x′ϑ or x′ϑ ≥ 0 > x′θ},

for all ϑ in a neighborhood of θ0. Again, the right hand side is the probability for a pair of wedge

shaped regions with an angle of order ε. Thus the last condition in (a) also guarantees Condition

(iii). Since {fθ : θ ∈ S} belongs to the generalized cube root class, Theorem 1 implies that even

if the data obey a dependence process specified in Assumption D, the maximum score estimator

possesses the same limiting distribution as the independent sampling case.
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5.2. Random coefficient: New econometric model . As a new econometric model which can

be covered by our cube root asymptotic theory, let us consider the regression model with a random

coefficient yt = x′tθ(wt) + ut. We observe xt ∈ Rd, wt ∈ Rk, and the sign of yt. We wish to estimate

θ0 = θ(c) at some given c ∈ Rk.10 In this setup, we can consider a localized version of the maximum

score estimator

θ̂ = arg max
θ∈S

n∑
t=1

K

(
wt − c
bn

)
[I{yt ≥ 0, x′tθ ≥ 0}+ I{yt < 0, x′tθ < 0}],

where S is the surface of the unit sphere in Rd. We adapt the assumptions in Section 5.1 for the

maximum score estimator to localized counterparts. Let h(x, u) = I{x′θ0 +u ≥ 0}−I{x′θ0 +u < 0}.

(a): {xt, wt, ut} satisfies Assumption D. The density p(x,w) of (xt, wt) is continuous at all x

and w = c. The conditional distribution x|w = c has compact support and continuously

differentiable conditional density. The angular component of x|w = c, considered as a

random variable on S, has a bounded and continuous density, and the density for the

orthogonal angle to θ0 is bounded away from zero.

(b): Assume that |θ0| = 1, median(u|x,w = c) = 0, the function κ(x,w) = E[h(xt, ut)|xt =

x,wt = w] is continuous at all x and w = c, κ(x, c) is non-negative for x′θ0 ≥ 0 and non-

positive for x′θ0 < 0 and is continuously differentiable in x, and P{x′θ0 = 0,
(
∂κ(x,w)
∂x

)′
θ0p(x,w) >

0|w = c} > 0.

(c): K is a bounded symmetric density function with
´
s2K(s)ds < ∞. As n → ∞, it holds

nbk
′
n →∞ for some k′ > k.

Note that the criterion function is written as

fn,θ(x,w, u) =
1

hn
K

(
w − c
h

1/k
n

)
h(x, u)[I{x′θ ≥ 0} − I{x′θ0 ≥ 0}],

where hn = bkn. We can see that θ̂ = arg maxθ∈S Pnfn,θ and θ0 = arg maxθ∈S limn→∞ Pfn,θ.

Existence and uniqueness of θ0 are guaranteed by the change of variables and (b) (see, Manski,

1985). Also the uniform law of large numbers for an absolutely regular process by Nobel and

Dembo (1993, Theorem 1) implies supθ∈S |Pnfn,θ − Pfn,θ|
p→ 0. Therefore, θ̂ is consistent for θ0.

We next compute the expected value and covariance kernel of the limit process (i.e., V and H

in Theorem 1). Due to strict stationarity (in Assumption D), we can apply the same argument to

Kim and Pollard (1990, pp. 214-215) to derive the second derivative

V = lim
n→∞

∂2Pfn,θ
∂θ∂θ′

∣∣∣∣
θ=θ0

= −
ˆ

I{x′θ0 = 0}
(
∂κ(x, c)

∂x

)′
θ0p(x, c)xx

′dσ(x),

10Gautier and Kitamura (2013) studied identification and estimation of the random coefficient binary choice model,
where θt = θ(wt) is unobservable. Here we study the model where heterogeneity in the slope is caused by the
observables wt.
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where σ is the surface measure on the boundary of the set {x : x′θ0 ≥ 0}. The matrix V is

negative definite under the last condition of (b). Now pick any s1 and s2, and define qn,t =

fn,θ0+(nhn)−1/3s1
(xt, wt, ut)−fn,θ0+(nhn)−1/3s2

(xt, wt, ut). The covariance kernel is written asH(s1, s2) =
1
2{L(s1, 0) + L(0, s2)− L(s1, s2)}, where

L(s1, s2) = lim
n→∞

(nhn)4/3Var(Pnqn,t) = lim
n→∞

(nhn)1/3{Var(qn,t) +

∞∑
m=1

Cov(qn,t, qn,t+m)}.

The limit of (nhn)1/3Var(qn,t) is obtained in the same manner as Kim and Pollard (1990, p. 215).

For the covariance, the α-mixing inequality implies

|Cov(qn,t, qn,t+m)| ≤ Cβm ‖qn,t‖2p = O(ρm)O((nhn)
− 2

3ph
2(1−p)
p

n ),

for some C > 0 and p > 2, where the equality follows from the change of variables and Assumption

D. Also, by the change of variables |Cov(qn,t, qn,t+m)| = |Pqn,tqn,t+m − (Pqn,t)
2| = O((nhn)−2/3).

By using these bounds (note: if 0 < A ≤ min{B1, B2}, then A ≤ B`
1B

1−`
2 for any ` ∈ [0, 1]), there

exists a positive constant C ′ such that

(nhn)1/3
∞∑
m=1

|Cov(qn,t, qn,t+m)| ≤ C ′(nhn)−
1
3

+
2(p−1)`

3 h
− 2(p−1)`

p
n

∞∑
m=1

ρ`m,

for any ` ∈ [0, 1]. Thus, by taking ` sufficiently small, we obtain limn→∞(nhn)1/3
∑∞

m=1 Cov(qn,t, qn,t+m) =

0 due to nbk
′
n →∞.

We now verify that {fn,θ : θ ∈ S} belongs to the generalized cube root class with hn = bkn.

Condition (i) is already verified. By the change of variables and Jensen’s inequality (also note that

h(x, u)2 = 1), there exists a positive constant C such that

h1/2
n ‖fn,θ1 − fn,θ2‖2 =

√ˆ ˆ
K(s)2|I{x′θ1 ≥ 0} − I{x′θ2 ≥ 0}|p(x, c+ sbn)dxds

≥ CE
[
|I{x′θ1 ≥ 0} − I{x′θ2 ≥ 0}|

∣∣w = c
]

= CP{x′θ1 ≥ 0 > x′θ2 or x′θ2 ≥ 0 > x′θ1|w = c},

for all θ1, θ2 ∈ S and all n large enough. Since the right hand side is the conditional probability

for a pair of wedge shaped regions with an angle of order |θ1 − θ2|, the last condition in (a) implies

Condition (ii). For Condition (iii), pick any ε > 0 and there exists a positive constant C ′ such that

P sup
θ∈Θ:|θ−ϑ|<ε

hn|fn,θ − fn,ϑ|2

=

ˆ ˆ
K(s)2 sup

θ∈Θ:|θ−ϑ|<ε
|[I{x′θ ≥ 0} − I{x′ϑ ≥ 0}]|2p(x, c+ sbn)dxds

≤ C ′E

[
sup

θ∈Θ:|θ−ϑ|<ε
|[I{x′θ ≥ 0} − I{x′ϑ ≥ 0}]|2

∣∣∣∣∣w = c

]
,
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for all ϑ in a neighborhood of θ0 and n large enough. Again, the right hand side is the conditional

probability for a pair of wedge shaped regions with an angle of order ε. Thus the last condition in

(a) also guarantees Condition (iii). Since {fn,θ : θ ∈ S} belongs to the generalized cube root class,

Theorem 1 implies the limiting distribution of (nhn)1/3(θ̂ − θ0) for the random coefficient model.

5.3. Minimum volume predictive region . As an illustration of Theorem 2, consider a minimum

volume predictor for a strictly stationary process proposed by Polonik and Yao (2000). Suppose we

are interested in predicting y ∈ R from x ∈ R based on the observations {yt, xt}. The minimum

volume predictor of y at x = c in the class I of intervals of R at level α ∈ [0, 1] is defined as

Î = arg min
S∈I

µ(S) s.t. P̂ (S) ≥ α,

where µ is the Lebesgue measure and P̂ (S) =
∑n

t=1 I{yt ∈ S}K
(
xt−c
hn

)
/
∑n

t=1K
(
xt−c
hn

)
is the

kernel estimator of the conditional probability P{yt ∈ S|xt = c}. Since Î is an interval, it can be

written as Î = [θ̂ − ν̂, θ̂ + ν̂], where

θ̂ = arg max
θ
P̂ ([θ − ν̂, θ + ν̂]), ν̂ = inf{ν : sup

θ
P̂ ([θ − ν, θ + ν]) ≥ α}.

To study the asymptotic property of Î, we impose the following assumptions.

(a): {yt, xt} satisfies Assumption D. I0 = [θ0− ν0, θ0 + ν0] is the unique shortest interval such

that P{yt ∈ I0|xt = c} ≥ α. The conditional density γy|x=c of yt given xt = c is bounded

and strictly positive at θ0±ν0, and its derivative satisfies γ̇y|x=c(θ0−ν0)−γ̇y|x=c(θ0+ν0) > 0.

(b): K is bounded and symmetric, and satisfies lima→∞ |a|K(a) = 0. As n → ∞, nhn → ∞
and nh4

n → 0.

For notational convenience, assume θ0 = 0 and ν0 = 1. We first derive the convergence rate for ν̂.

Note that ν̂ = inf{ν : supθ ĝ([θ − ν, θ + ν]) ≥ αγ̂(c)}, where ĝ(S) = 1
nhn

∑n
t=1 I{yt ∈ S}K

(
xt−c
hn

)
and γ̂(c) = 1

nhn

∑n
t=1K

(
xt−c
hn

)
. By applying Lemma M’ and a central limit theorem, we can obtain

uniform convergence rate

max

{
|γ̂(c)− γ(c)|, sup

θ,ν
|ĝ([θ − ν, θ + ν])− P{yt ∈ [θ − ν, θ + ν]|xt = c}γ(c)|

}
= Op((nhn)−1/2+h2

n).

Thus the same argument to Kim and Pollard (1990, pp. 207-208) yields ν̂−1 = Op((nhn)−1/2 +h2
n).

Let θ̂ = arg minθ ĝ([θ − ν̂, θ + ν̂]). Consistency follows from uniqueness of (θ0, ν0) in (a) and the

uniform convergence

sup
θ
|ĝ([θ − ν̂, θ + ν̂])− P{yt ∈ [θ − 1, θ + 1]|xt = c}γ(c)| p→ 0,

which is obtained by applying Nobel and Dembo (1993, Theorem 1).
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Now let z = (y, x)′ and

fn,θ,ν(z) =
1

hn
K

(
x− c
hn

)
[I{y ∈ [θ − ν, θ + ν]} − I{y ∈ [−ν, ν]}].

Note that θ̂ = arg maxθ Pnfn,θ,ν̂ . We apply Theorem 2 to obtain the convergence rate of θ̂. For the

condition in (10), observe that

P (fn,θ,ν − fn,0,1) = P (fn,θ,ν − fn,0,ν) + P (fn,0,ν − fn,0,1)

= −1

2
{−γ̇y|x(1|c) + γ̇y|x(−1|c)}γx(c)θ2 + {γ̇y|x(1|c) + γ̇y|x(−1|c)}γx(c)θν + o(θ2 + |ν − 1|2) +O(h2

n).

The condition (10) holds with V1 = {γ̇y|x(1|c) − γ̇y|x(−1|c)}γx(c). Condition (iii) for {fn,θ,ν : θ ∈
R, ν ∈ R} is verified in the same manner as in Section 5.4 below. It remains to verify Condition (ii)

for the class {fn,θ,1 : θ ∈ R}. Pick any θ1 and θ2. Some expansions yield

hn ‖fn,θ1,1 − fn,θ2,1‖
2
2

=

ˆ
K(a)2

∣∣∣∣∣ Γy|x(θ2 + 1|x = c+ ahn)− Γy|x(θ1 + 1|x = c+ ahn)

+Γy|x(θ2 − 1|x = c+ ahn)− Γy|x(θ1 − 1|x = c+ ahn)

∣∣∣∣∣ γx(c+ ahn)da

≥
ˆ
K(a)2{γy|x(θ̇ + 1|x = c+ ahn) + γy|x(θ̈ − 1|x = c+ ahn)}γx(c+ ahn)da|θ1 − θ2|,

where Γy|x is the conditional distribution function of y given x, and θ̇ and θ̈ are points between θ1 and

θ2. By (a), Condition (ii) is satisfied. Therefore, we can conclude that ν̂− ν0 = Op((nhn)−1/2 +h2
n)

and θ̂− θ0 = Op((nhn)−1/3 +hn). This result confirms positively the conjecture of Polonik and Yao

(2000, Remark 3b) on the exact convergence rate of Î.

5.4. Least median of squares . As another application of Theorem 2, consider the least median

of squares estimator for the regression model yt = x′tβ0 + ut, that is

β̂ = arg min
β

median{(y1 − x′1β)2, . . . , (yn − x′nβ)2}.

We impose the following assumptions. Except for Assumption D, which allows dependent observa-

tions, all assumptions are similar to the ones in Kim and Pollard (1990, Section 6.3).

(a): {xt, ut} satisfies Assumption D. xt and ut are independent. P |xt|2 <∞, Pxtx
′
t is positive

definite, and the distribution of xt puts zero mass on each hyperplane.

(b): The density γ of ut is bounded, differentiable, and symmetric around zero, and decreases

away from zero. |ut| has the unique median ν0 and γ̇(ν0) < 0.

It is known that θ̂ = β̂ − β0 is written as θ̂ = arg maxθ Pnfθ,ν̂ , where

fθ,ν(x, u) = I{x′θ − ν ≤ u ≤ x′θ + ν},

and ν̂ = inf{ν : supθ Pnfθ,ν ≥ 1
2}. Let ν0 = 1 to simplify the notation. Since {fθ,ν : θ ∈ Rd, ν ∈

R} is a VC subgraph class, Arcones and Yu (1994, Theorem 1) implies the uniform convergence
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supθ,ν |Pnfθ,ν − Pfθ,ν | = Op(n
−1/2). Thus, the same argument to Kim and Pollard (1990, pp.

207-208) yields the convergence rate ν̂ − 1 = Op(n
−1/2).

By expansions, the condition in (3) is verified as

P (fθ,ν − f0,1) = P |{Γ(x′θ + ν)− Γ(ν)} − {Γ(x′θ − ν)− Γ(−ν)}|

+P |{Γ(ν)− Γ(1)} − {Γ(−ν)− Γ(−1)}|

= γ̇(1)θ′Pxx′θ + o(|θ|2 + |ν − 1|2). (20)

To check Condition (iii) for {fθ,ν : θ ∈ Rd, ν ∈ R}, pick any ε > 0 and decompose

P sup
(θ,ν):|(θ,ν)−(θ′,ν′)|<ε

|fθ,ν − f(θ′,ν′)|2 ≤ P sup
(θ,ν):|(θ,ν)−(θ′,ν′)|<ε

|fθ,ν − fθ,ν′ |2 + P sup
θ:|θ−θ′|<ε

|fθ,ν′ − fθ′,ν′ |2,

for (θ′, ν ′) in a neighborhood of (0, 1). By similar arguments to (20), these terms are of order |ν−ν ′|2

and |θ − θ′|2, respectively, which are bounded by Cε with some C > 0.

We now verify that {fθ,1 : θ ∈ Rd} belongs to the generalized cube root class with hn = 1. By

(b), Pfθ,1 is uniquely maximized at θ0 = 0. So Condition (i) is satisfied. Since Condition (iii) is

already shown, it remains to verify Condition (ii). Some expansions (using symmetry of γ(·)) yield

‖fθ1,1 − fθ2,1‖
2
2 = P |Γ(x′θ1 + 1)− Γ(x′θ2 + 1) + Γ(x′θ1 − 1)− Γ(x′θ2 − 1)|

≥ (θ2 − θ1)′P γ̇(−1)xx′(θ2 − θ1) + o(|θ2 − θ1|2),

i.e., Condition (ii) is satisfied under (b). Therefore, {fθ,1 : θ ∈ Rd} belongs to the generalized cube

root class.

We finally compute the covariance kernel H. Pick any s1 and s2. The covariance kernel is

written as H(s1, s2) = 1
2{L(s1, 0) +L(0, s2)−L(s1, s2)}, where L(s1, s2) = limn→∞ n

4/3Var(Pngn,t)
and gn,t = I{|x′ts1n

−1/3−ut| ≤ 1}−I{|x′ts2n
−1/3−ut| ≤ 1}. By a similar argument to the maximum

score example in Section 5.1, we can show that H is the same as the one for the independent case

derived in Kim and Pollard (1990, p. 213). Therefore, by Theorem 2, we conclude that n1/3(β̂−β0)

converges in distribution to the argmax of Z(s), a Gaussian process with expected value γ̇(1)s′Pxx′s

and the covariance kernel H.

5.5. Nonparametric monotone density estimation . Preliminary results (Lemmas M, M’, C,

and 1) to show Theorem 1 may be applied to establish weak convergence of certain processes. As

an example, consider estimation of a decreasing marginal density function of zt with support [0,∞).

We impose Assumption D for {zt}. The nonparametric maximum likelihood estimator γ̂(c) of the

density γ(c) at a fixed c > 0 is given by the left derivative of the concave majorant of the empirical

distribution function Γ̂. It is known that n1/3(γ̂(c) − γ(c)) can be written as the left derivative of

the concave majorant of the process Wn(s) = n2/3{Γ̂(c + sn−1/3) − Γ̂(c) − γ(c)sn−1/3} (Prakasa

Rao, 1969). Let fθ(z) = I{z ≤ c+ θ} and Γ be the distribution function of γ. Decompose

Wn(s) = n1/6Gn(fsn−1/3 − f0) + n2/3{Γ(c+ sn−1/3)− Γ(c)− γ(c)sn−1/3}.
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A Taylor expansion implies convergence of the second term to 1
2 γ̇(c)s2 < 0. For the first term

Zn(s) = n1/6Gn(fsn−1/3 − f0), we can apply Lemmas C and M’ to establish the weak convergence.

Lemma C (setting gn as any finite dimensional projection of the process {n1/6(fsn−1/3 − f0) : s})
implies finite dimensional convergence of Zn to projections of a centered Gaussian process with the

covariance kernel

H(s1, s2) = lim
n→∞

n1/3
n∑

t=−n
{Γ0t(c+ s1n

−1/3, c+ s2n
−1/3)− Γ(c+ s1n

−1/3)Γ(c+ s2n
−1/3)},

where Γ0t is the joint distribution function of (z0, zt). For tightness of Zn, we apply Lemma M’ by

setting gn,s = n1/6(fsn−1/3 − f0). The envelope condition is clearly satisfied. The condition in (8) is

verified as

P sup
s:|s−s′|<ε

|gn,s − gn,s′ |2

= n1/3P sup
s:|s−s′|<ε

|I{z ≤ c+ sn−1/3} − I{z ≤ c+ s′n−1/3}|

≤ n1/3 max{Γ(c+ sn−1/3)− Γ(c+ (s− ε)n−1/3),Γ(c+ (s+ ε)n−1/3)− Γ(c+ sn−1/3)}

≤ γ(0)ε.

Therefore, by applying Lemmas C and M’, Wn weakly converges to Z, a Gaussian process with

expected value 1
2 γ̇(c)s2 and covariance kernel H.

The remaining part follows by the same argument to Kim and Pollard (1990, pp. 216-218)

(by replacing their Lemma 4.1 with our Lemma 1). Then we can conclude that n1/3(γ̂(c) − γ(c))

converges in distribution to the derivative of the concave majorant of Z evaluated at 0.

5.6. Mode and related estimator . As a final illustration, we consider estimation of mode and

related methods. In a seminal paper, Chernoff (1964) studied the asymptotic property of the mode

estimator that maximizes
∑n

t=1 I{|yt − β| ≤ h} with respect to β for some fixed h. Indeed this is

a first example of the cube root asymptotics. By extending this approach, Lee (1989) proposed

the mode regression estimator for a regression model with a truncated dependent variable that

maximizes
∑n

t=1 I{|yt − max{x′tβ, c + h}| ≤ h} with respect to β for some fixed h and known

truncation point c. Lee (1989) established the consistency of the mode regression estimator and

conjectured the cube root convergence rate. Also, in the statistics literature on computer vision

algorithm, Goldenshluger and Zeevi (2004) investigated the so-called Hough transform estimator

for the regression model

β̂ = arg max
β

n∑
t=1

I{|yt − x′tβ| ≤ h|xt|}, (21)

where xt = (1, x̃t)
′ for a scalar x̃t and h is a fixed tuning constant. Goldenshluger and Zeevi (2004)

derived the cube root asymptotics for β̂. All these papers treat the tuning constant h as fixed and

discuss carefully about the practical choice of h. However, for these estimators, h plays a role of the
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bandwidth and the analysis for the case of hn → 0 is a substantial open question (see, Goldenshluger

and Zeevi, 2004, pp. 1915-1916). Here we focus on the Hough transform estimator in (21) with

h = hn → 0 and study its asymptotic property. The estimators by Chernoff (1964) and Lee (1989)

can be analyzed in the same manner. Indeed Condition (iii) of the generalized cube root class is

not satisfied for these cases and we show how to modify our framework.

Let us impose the following assumptions.

(a): {xt, ut} satisfies Assumption D. xt and ut are independent. P |xt|3 <∞, Pxtx
′
t is positive

definite, and the distribution of xt puts zero mass on each hyperplane. The density γ of ut

is bounded, continuously differentiable in a neighborhood of zero, symmetric around zero,

and strictly unimodal at zero.

(b): As n→∞, hn → 0 and nh5
n →∞.

Let z = (x, u). Note that θ̂ = β̂ − β0 is written as θ̂ = arg maxθ Pnfn,θ, where

fn,θ(z) = h−1
n I{|u− x′θ| ≤ hn|x|}.

The consistency of θ̂ follows from the uniform convergence supθ |Pnfn,θ − Pfn,θ|
p→ 0 by applying

Nobel and Dembo (1993, Theorem 1).

In order to apply Theorem 1, we verify that {fn,θ} belongs to the generalized cube root class.

Obviously hnfn,θ is bounded. Since limn→∞ Pfn,θ = 2Pγ(x′θ)|x| and γ is uniquely maximized at

zero (by (a)), limn→∞ Pfn,θ is uniquely maximized at θ = 0. Since γ is continuously differentiable

in a neighborhood of zero, Pfn,θ is twice continuously differentiable at θ = 0 for all n large enough.

Let Γ be the distribution function of γ. An expansion yields

P (fn,θ − fn,0) = h−1
n P{Γ(x′θ + hn|x|)− Γ(hn|x|)} − h−1

n P{Γ(x′θ − hn|x|)− Γ(−hn|x|)}

= γ̈(0)θ′P (|x|xx′)θ{1 +O(hn)}+ o(|θ|2),

i.e., the condition in (3) holds with V = γ̈(0)P (|x|xx′). Note that γ̈(0) < 0 by (a). Therefore,

Condition (i) is satisfied.

For Condition (ii), pick any θ1 and θ2 and note that

hn ‖fn,θ1 − fn,θ2‖
2
2 = 2P{γ(x′θ1) + γ(x′θ2)}|x|

−2h−1
n P{x′θ1 − hn|x| < u < x′θ2 + hn|x|, − 2hn|x| < x′(θ2 − θ1) < 0}

−2h−1
n P{x′θ2 − hn|x| < u < x′θ1 + hn|x|, − 2hn|x| < x′(θ1 − θ2) < 0}.

Since the second and third terms converge to zero (by a change of variable), Condition (ii) holds

true.

However, we can see that Condition (iii) is not satisfied in this case. Although Theorem 1 is not

directly applicable, Condition (iii) can be modified as follows.
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(iii)’: There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ′|<ε

h2
n|fn,θ − fn,θ′ |2 ≤ C ′′ε,

for all n large enough, ε > 0 small enough, and θ′ in a neighborhood of θ0.

Compared to Condition (iii), this condition assumes a larger envelope for the class {|fn,θ − fn,θ′ |2 :

|θ − θ′| < ε}. Thus, Lemma M in Section 3 is modified as follows.

Lemma M1. Suppose that Assumption D holds and {fn,θ} satisfies Condition (ii) of the generalized

cube root class and Condition (iii)’ above. Then there exist positive constants C and C ′ such that

P sup
|θ−θ0|<δ

|Gnh
1/2
n (fn,θ − fn,θ0)| ≤ Ch−1/2

n δ1/2,

for all n large enough and δ ∈ [(nh2
n)−1/2, C ′].

We now check Condition (iii)’. Observe that

P sup
θ∈Θ:|θ−ϑ|<ε

h2
n|fn,θ − fn,ϑ|2 ≤ P sup

θ∈Θ:|θ−ϑ|<ε
I{|u− x′ϑ| ≤ hn|x|, |u− x′θ| > hn|x|}

+P sup
θ∈Θ:|θ−ϑ|<ε

I{|u− x′θ| ≤ hn|x|, |u− x′ϑ| > hn|x|},

for all ϑ in a neighborhood of 0. Since the same argument applies to the second term, we focus on

the first term (say, T ). If ε ≤ 2hn, then an expansion around ε = 0 implies

T ≤ P{(hn − ε)|x| ≤ u ≤ hn|x|} = Pγ(hn|x|)|x|ε+ o(ε).

Also, if ε > 2hn, then an expansion around hn = 0 implies

T ≤ P{−hn|x| ≤ u ≤ hn|x|} ≤ Pγ(0)|x|ε+ o(hn).

Therefore, Condition (iii)’ is satisfied.

Finally, the covariance kernel is obtained by a similar way as Section 5.1. Let rn = (nh2
n)1/3 be

the convergence rate in this example. The covariance kernel is written by H(s1, s2) = 1
2{L(s1, 0) +

L(0, s2) − L(s1, s2)}, where L(s1, s2) = limn→∞Var(r2
nPngn,t) with gn,t = fn,s1/rn − fn,s2/rn . An

expansion implies n−1Var(r2
ngn,t)→ 2γ(0)P |x′(s1 − s2)|. We can also see that the covariance term

n−1
∑∞

m=1 Cov(r2
ngn,t, r

2
ngn,t+m) is negligible. Therefore, by a similar argument to Theorem 1, the

limiting distribution of the Hough transform estimator with the bandwidth hn is obtained as

(nh2
n)1/3(β̂ − β0)

d→ arg max
s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value γ̈(0)s′P (|x|xx′)s/2,

and covariance kernel H(s1, s2) = 2γ(0)P |x′(s1 − s2)|.
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Appendix A. Mathematical Appendix

Notation: Recall that Qg(u) is the inverse function of the tail probability function x 7→
P{|g(zt)| > x},11 and that {βm} is the β-mixing coefficients used in Assumption D. Let β(·) be a

function such that β(t) = β[t] if t ≥ 1 and β(t) = 1 otherwise, and β−1(·) be the càdlàg inverse of

β(·). The L2,β(P )-norm is defined as

‖g‖2,β =

√ˆ 1

0
β−1(u)Qg(u)2du. (22)

A.1. Proof of Lemma M. Pick any C ′ > 0 and then pick any n satisfying (nhn)−1/2 ≤ C ′ and

any δ ∈ [(nhn)−1/2, C ′]. Throughout the proof, positive constants Cj (j = 1, 2, . . .) are independent

of n and δ.

First, we introduce some notation. Consider the sets defined by different norms:

G1
n,δ =

{
h1/2
n (fn,θ − fn,θ0) : |θ − θ0| < δ for θ ∈ Θ

}
,

G2
n,δ =

{
h1/2
n (fn,θ − fn,θ0) :

∥∥∥h1/2
n (fn,θ − fn,θ0)

∥∥∥
2
< δ for θ ∈ Θ

}
,

Gβn,δ =

{
h1/2
n (fn,θ − fn,θ0) :

∥∥∥h1/2
n (fn,θ − fn,θ0)

∥∥∥
2,β

< δ for θ ∈ Θ

}
.

For any g ∈ G1
n,δ, g is bounded (by Condition (i)) and so is Qg. Thus we can always find a function

ĝ such that ‖g‖22 ≤ ‖ĝ‖
2
2 ≤ 2 ‖g‖22 and

Qĝ(u) =
m∑
j=1

ajI{(j − 1)/m ≤ u < j/m}, (23)

satisfying Qg ≤ Qĝ, for some positive integer m and sequence of positive constants {aj}.
Next, based on the above notation, we derive the set inclusion relationships

Gβn,δ ⊂ G
2
n,δ ⊂ G1

n,C1δ, G1
n,δ ⊂ G

β

n,C2δ1/2
, (24)

for some positive constants C1 and C2. The relation Gβn,δ ⊂ G
2
n,δ follows from ‖·‖2 ≤ ‖·‖2,β (Doukhan,

Massart and Rio, 1995, Lemma 1). The relation G2
n,δ ⊂ G1

n,C1δ
follows from Condition (ii). Pick any

g ∈ G1
δ . The relation G1

n,δ ⊂ G
β

n,C2δ1/2
follows by

‖g‖22,β ≤
m∑
j=1

a2
j

{ˆ j/m

(j−1)/m
β−1(u)du

}
≤

{
m

ˆ 1/m

0
β−1(u)du

}ˆ 1

0
Qĝ(u)2du

≤

{
sup

0<a≤1
a

ˆ 1/a

0
β−1(u)du

}
2 ‖g‖22 ≤ C

2
2δ, (25)

for some positive constant C2, where the first inequality follows from Qg ≤ Qĝ, the second inequality

follows from monotonicity of β−1(u) and
´ 1

0 Qĝ(u)2du = 1
m

∑m
j=1 a

2
j , the third inequality follows by

11The function Qg(u), called the quantile function in Doukhan, Massart and Rio (1995), is different from a familiar
function u 7→ inf{x : u ≤ P{|g(zt)| ≤ x}} to define quantiles.
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´ 1
0 Qĝ(u)2du = ‖ĝ‖22 ≤ 2 ‖g‖22, and the last inequality follows from sup0<a≤1 a

´ 1/a
0 β−1(u)du < ∞

(by Assumption D) and Condition (iii).

Third, based on (24), we derive some relationships for the bracketing numbers. Let N[](ν,G, ‖·‖)
be the bracketing number for a class of functions G with radius ν > 0 and norm ‖·‖. Note that

N[](ν,G
β
n,δ, ‖·‖2,β) ≤ N[](ν,G1

n,C1δ, ‖·‖2) ≤ C3

(
δ

ν

)2d

,

for some positive constant C3, where the first inequality follows from Gβn,δ ⊂ G
1
n,C1δ

(by (24)) and

‖·‖2 ≤ ‖·‖2,β (Doukhan, Massart and Rio, 1995, Lemma 1), and the second inequality follows from

the argument to derive Andrews (1993, eq. (4.7)) based on Condition (iii) of the generalized cube

root class (called the L2-continuity assumption in Andrews, 1993). Therefore, by the indefinite

integral formula
´

log xdx = const. + x(log x− 1), there exists a positive constant C4 such that

ϕn(δ) =

ˆ δ

0

√
logN[](ν,G

β
n,δ, ‖·‖2,β)dν ≤ C4δ. (26)

Finally, based on the entropy condition (26), we apply the maximal inequality of Doukhan,

Massart and Rio (1995, Theorem 3), i.e., there exists a positive constant C5 such that

P sup
g∈Gβn,δ

|Gng| ≤ C5[1 + δ−1qGn,δ(min{1, vn(δ)})]ϕn(δ), (27)

where qGn,δ(v) = supu≤v QGn,δ(u)
√´ u

0 β
−1(ũ)dũ with the envelope function Gn,δ of Gβn,δ, and vn(δ)

is the unique solution of
vn(δ)2

´ vn(δ)
0 β−1(ũ)dũ

=
ϕn(δ)2

nδ2
.

Since ϕn(δ) ≤ C4δ from (26), it holds vn(δ) ≤ C5n
−1 for some positive constant C5. Now take some

n0 such that vn0(δ) ≤ 1, and then pick again any n ≥ n0 and δ ∈ [(nhn)−1/2, C ′]. We have

qGn,δ(min{1, vn(δ)}) ≤ C6QGn,δ(vn(δ))
√
vn(δ) ≤ C7(nhn)−1/2, (28)

for some positive constants C6 and C7. Therefore, combining (26)-(28), we obtain

P sup
g∈Gβ

n,C2δ
1/2

|Gng| ≤ C8δ
1/2, (29)

for some positive constant C8. The conclusion follows from the second relation in (24).

A.2. Proof of Lemma 1. Pick any C > 0 and ε > 0. Define An = {θ ∈ Θ : (nhn)−1/3 ≤ |θ−θ0| ≤
C} and

R2
n = (nhn)2/3 sup

θ∈An
{|Pn(fn,θ − fn,θ0)− P (fn,θ − fn,θ0)| − ε|θ − θ0|2}.
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It is enough to show Rn = Op(1). Letting An,j = {θ ∈ Θ : (j−1)(nhn)−1/3 ≤ |θ−θ0| < j(nhn)−1/3},
there exists a positive constant C ′ such that

P{Rn > m}

≤ P
{
|Pn(fn,θ − fn,θ0)− P (fn,θ − fn,θ0)| > ε|θ − θ0|2 + (nhn)−2/3m2 for some θ ∈ An

}
≤

∞∑
j=1

P
{

(nhn)2/3|Pn(fn,θ − fn,θ0)− P (fn,θ − fn,θ0)| > ε(j − 1)2 +m2 for some θ ∈ An,j
}

≤
∞∑
j=1

C ′
√
j

ε(j − 1)2 +m2
,

for all m > 0, where the last inequality is due to the Markov inequality and Lemma M. Since the

above sum is finite for all m > 0, the conclusion follows.

A.3. Proof of Lemma C. First of all, any β-mixing process is α-mixing with the mixing coefficient

αm ≤ βm/2. Thus it is sufficient to check Conditions (a) and (b) of Rio (1997, Corollary 1).

Condition (a) is verified under (7) by Rio (1997, Proposition 1), which guarantees Var(Gngn) ≤´ 1
0 β
−1(u)Qgn(u)2du for all n. Since Var(Gngn) is bounded (by (7)) and {zt} is strictly stationary

under Assumption D, Condition (b) of Rio (1997, Corollary 1) can be written as
ˆ 1

0
β−1(u)Qgn(u)2 inf

n
{n−1/2β−1(u)Qgn(u), 1}du→ 0,

as n → ∞. Pick any u ∈ (0, 1). Since β−1(u)Qgn(u)2 is non-increasing in u ∈ (0, 1), the con-

dition (7) implies β−1(u)Qgn(u)2 < C < ∞ for all n. Therefore, for each u ∈ (0, 1), it holds

n−1/2β−1(u)Qgn(u)→ 0 as n→∞. Then the dominated convergence theorem based on (7) implies

Condition (b).

A.4. Proof of Lemma 2. By Condition (i), it holds |gn,s| ≤ 2C(nh−2
n )1/6 for all n and s, which

implies Qgn,s−Pgn,s(u)2 ≤ 16C2(nh−2
n )1/3 for all n, s, and u ∈ (0, 1). By the condition of this lemma,

it holds Qgn,s(u) ≤ c for all n large enough and u > c(nh−2
n )−1/3. By the triangle inequality and

the definition of Qg,

P{|gn,s − Pgn,s| ≥ Qgn,s(u) + |Pgn,s|} ≤ P{|gn,s| ≥ Qgn,s(u)} = P{|gn,s − Pgn,s| > Qgn,s−Pgn,s(u)},

which implies Qgn,s−Pgn,s(u) ≤ Qgn,s(u) + |Pgn,s|. Thus, for all n large enough, s, and u >

c(nh−2
n )−1/3, it holds

Qgn,s−Pgn,s(u)2 ≤ c2 + |Pgn,s|2 + 2c|Pgn,s|.

Combining these bounds, (7) is verified as
ˆ 1

0
β−1(u)Qgn,s−Pgn,s(u)2du

≤ 16C2(nh−2
n )1/3

ˆ c(nh−2
n )−1/3

0
β−1(u)du+ {c2 + (Pgn,s)

2 + 2c|Pgn,s|}
ˆ 1

c(nh−2
n )−1/3

β−1(u)du <∞,
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for all n large enough, where the second inequality follows by (3) and Assumption D (which guar-

antees supn(nh−2
n )1/3

´ c(nh−2
n )−1/3

0 β−1(u)du <∞, and
´ 1

0 β
−1(u)du <∞).

A.5. Proof of Lemma M’. Pick any K > 0 and σ > 0. Let gn,s,s′ = gn,s − gn,s′ ,

GKn = {gn,s,s′ : |s| ≤ K, |s′| ≤ K},

G1
n,δ = {gn,s,s′ ∈ GKn : |s− s′| < δ},

Gβn,δ = {gn,s,s′ ∈ GKn :
∥∥gn,s,s′∥∥2,β

< δ}.

Since gn,s satisfies the condition (8), there exists a positive constant C1 such that G1
n,δ ⊂ {gn,s,s′ ∈

GKn :
∥∥gn,s,s′∥∥2

< C1δ
1/2} for all n large enough and all δ > 0 small enough. Also, by the same

argument to derive (25), there exists a positive constant C2 such that
∥∥gn,s,s′∥∥2,β

≤ C2

∥∥gn,s,s′∥∥2
for

all n large enough, |s| ≤ K, and |s′| ≤ K. The constant C2 depends only on the mixing sequence

{βm}. Combining these results, we obtain the set inclusion relationship

G1
n,δ ⊂ G

β

n,C1C2δ1/2
, (30)

for all n large enough and all δ > 0 small enough.

Also note that the bracketing numbers satisfy

N[](ν,G
β
n,δ, ‖·‖2,β) ≤ N[](ν,GKn , ‖·‖2) ≤ C3ν

−d/2,

where the first inequality follows from Gβn,δ ⊂ G
K
n (by the definitions) and ‖·‖2 ≤ ‖·‖2,β (Doukhan,

Massart and Rio, 1995, Lemma 1), and the second inequality follows from the argument to derive

Andrews (1993, eq. (4.7)) based on (8) (called the L2-continuity assumption in Andrews, 1993).

Thus, there is a function ϕ(η) such that ϕ(η)→ 0 as η → 0 and

ϕn(η) =

ˆ η

0

√
logN[](ν,G

β
n,η, ‖·‖2,β)dν ≤ ϕ(η),

for all n large enough and all η > 0 small enough.

Based on the above entropy condition, we can apply the maximal inequality of Doukhan, Massart

and Rio (1995, Theorem 3), i.e., there exists a positive constant C3 depending only on the mixing

sequence {βm} such that

P sup
g∈Gβn,η

|Gng| ≤ C4[1 + η−1qGn(min{1, vn(η)})]ϕ(η),

for all n large enough and all η > 0 small enough, where q2Gn(v) = supu≤v Q2Gn(u)
√´ u

0 β
−1(ũ)dũ

with the envelope function 2Gn of Gβn,η (note: by the definition of Gβn,η, the envelope 2Gn does not

depend on η), and vn(η) is the unique solution of

vn(η)2

´ vn(η)
0 β−1(ũ)dũ

=
ϕ2
n(η)

nη2
.
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Now pick any η > 0 small enough so that 2C4ϕ(η) < σ. Since ϕn(η) ≤ ϕ(η), there is a positive

constant C5 such that vn(η) ≤ C5
ϕ(η)
nη2

for all n large enough and η > 0 small enough. Since Gn ≤
C ′nκ by the definition of Gβn,η, there exists a positive constant C6 such that q2Gn(min{1, vn(η)}) ≤
C6

√
ϕ(η)η−1nκ−1/2 with 0 < κ < 1/2 for all n large enough. Therefore, by setting η = C1C2δ

1/2,

we obtain

P sup
g∈Gβ

n,C1C2δ
1/2

|Gng| ≤ σ,

for all n large enough. The conclusion follows by (30).

A.6. Proof of Theorem 1. As discussed in the main body, Lemma 1 yields the convergence rate

of the estimator. This enables us to consider the centered and normalized process Zn(s), which

can be defined on arbitrary compact parameter space. Based on finite dimensional convergence and

tightness of Zn shown by Lemmas C and M’, respectively, we establish weak convergence of Zn.

Then a continuous mapping theorem of an argmax element (Kim and Pollard, 1990, Theorem 2.7)

yields the limiting distribution of the M-estimator θ̂.

A.7. Proof of Theorem 2. To ease notation, let θ0 = ν0 = 0. First, we show that θ̂ =

Op((nhn)−1/3). Since {fn,θ,ν} satisfies Condition (iii) of the generalized cube root class, we can

apply Lemma M’ with gn,s = n1/6h
2/3
n (fn,θ,c(nhn)−1/3 − fn,θ,0) for s = (θ′, c′)′, which implies

sup
|θ|≤ε,|c|≤ε

n1/6h2/3
n Gn(fn,θ,c(nhn)−1/3 − fn,θ,0) = Op(1), (31)

for all ε > 0. Also from (10) and ν̂ = op((nhn)−1/3), we have

P (fn,θ,ν̂ − fn,θ,0)− P (fn,0,ν̂ − fn,0,0) ≤ 2ε|θ|2 +Op((nhn)−2/3), (32)

for all θ in a neighborhood of θ0 and all ε > 0. Combining (31), (32), and Lemma 1,

Pn(fn,θ,ν̂ − fn,0,ν̂) = n−1/2{Gn(fn,θ,ν̂ − fn,θ,0) + Gn(fn,θ,0 − fn,0,0)−Gn(fn,0,ν̂ − fn,0,0)}

+P (fn,θ,ν̂ − fn,θ,0) + P (fn,θ,0 − fn,0,0)− P (fn,0,ν̂ − fn,0,0)

≤ P (fn,θ,0 − fn,0,0) + 2ε|θ|2 +Op((nhn)−2/3)

≤ 1

2
θ′V1θ + 3ε|θ|2 +Op((nhn)−2/3),

for all θ in a neighborhood of θ0 and all ε > 0, where the last inequality follows from (10). From

Pn(fn,θ̂,ν̂ − fn,0,ν̂) ≥ op((nhn)−2/3), negative definiteness of V1, and ν̂ = op((nhn)−1/3), we can find

c > 0 such that

op((nhn)−2/3) ≤ −c|θ̂|2 + |θ̂|op((nhn)−1/3) +Op((nhn)−2/3),

which implies |θ̂| = Op((nhn)−1/3).
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Next, we show that θ̂ − θ̃ = op((nhn)−1/3). By reparametrization,

(nhn)1/3θ̂ = arg max
s

(nhn)2/3[(Pn − P )(fn,s(nhn)−1/3,ν̂ − fn,0,ν̂) + P (fn,s(nhn)−1/3,ν̂ − fn,0,ν̂)] + op(1).

By Lemma M’ (replace θ with (θ, ν)) and ν̂ = op((nhn)−1/3),

(Pn − P )(fn,s(nhn)−1/3,ν̂ − fn,0,0)− (Pn − P )(fn,s(nhn)−1/3,0 − fn,0,0) = op((nhn)−2/3),

uniformly in s. Also (10) implies P (fn,s(nhn)−1/3,ν̂−fn,0,ν̂)−P (fn,s(nhn)−1/3,0−fn,0,0) = op((nhn)−2/3)

uniformly in s. Given θ̂ − θ̃ = op((nhn)−1/3), an application of Theorem 1 to the generalized cube

root class {fn,θ,ν0 : θ ∈ Θ} implies the limiting distribution of θ̂.

A.8. Proof of Lemma MS. First, we introduce some notation. Let

Gβn,δ = {h1/2
n (fn,θ − fn,πθ) :

∥∥∥h1/2
n (fn,θ − fn,πθ)

∥∥∥
2,β

< δ for θ ∈ Θ},

G1
n,δ = {h1/2

n (fn,θ − fn,πθ) : |θ − πθ| < δ for θ ∈ Θ},

G2
n,δ = {h1/2

n (fn,θ − fn,πθ) :
∥∥∥h1/2

n (fn,θ − fn,πθ)
∥∥∥

2
< δ for θ ∈ Θ}.

For any g ∈ G1
n,δ, g is bounded (Condition (i)) and so is Qg. Thus we can always find a function ĝ

such that ‖g‖22 ≤ ‖ĝ‖
2
2 ≤ 2 ‖g‖22 and

Qĝ(u) =
m∑
j=1

ajI{(j − 1)/m ≤ u < j/m},

satisfying Qg ≤ Qĝ, for some positive integer m and sequence of positive constants {aj}. Let rn =

nhn/ log(nhn). Pick any C ′ > 0 and then pick any n satisfying r
−1/2
n ≤ C ′ and any δ ∈ [(r

−1/2
n , C ′].

Throughout the proof, positive constants Cj (j = 1, 2, . . .) are independent of n and δ.

Next, based on the above notation, we derive some set inclusion relationships. Let

M = 1
2 sup0<x≤1 x

−1
´ x

0 β
−1(u)du. For any g ∈ G1

δ , it holds

‖g‖22 ≤
ˆ 1

0
β−1(u)Qg(u)2du ≤ 1

m

m∑
j=1

a2
j

{
m

ˆ j/m

(j−1)/m
β−1(u)du

}

≤

{
m

ˆ 1/m

0
β−1(u)du

}ˆ 1

0
Qĝ(u)2du

≤M ‖g‖22 , (33)

where the first inequality is due to Doukhan, Massart and Rio (1995, Lemma 1), the second in-

equality follows from Qg ≤ Qĝ, the third inequality follows from monotonicity of β−1(u), and the

last inequality follows by ‖ĝ‖22 ≤ 2 ‖g‖22. Therefore,

‖fn,θ − fn,πθ‖2 ≤ ‖fn,θ − fn,πθ‖2,β ≤M
1/2 ‖fn,θ − fn,πθ‖2 , (34)
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for each θ ∈ {θ ∈ Θ : |θ − πθ| < δ}, where the first inequality follows from Doukhan, Massart and

Rio (1995, Lemma 1) and the second inequality follows from (33). Based on this, we can deduce

the inclusion relationships: there exist positive constants C1 and C2 such that

G1
n,δ ⊂ G2

n,C1δ1/2
⊂ Gβ

n,M1/2C1δ1/2
, Gβn,δ ⊂ G

2
n,δ ⊂ G1

n,C2δ, (35)

where the relation G1
n,δ ⊂ G2

n,C1δ1/2
follows from Condition (iii) of the partially identified cube root

class and the relation G2
n,δ ⊂ G1

n,C2δ
follows from Condition (ii) of the partially identified cube root

class.

Third, based on the above set inclusion relationships, we derive some relationships for the brack-

eting numbers. Let N[](ν,G, ‖·‖) be the bracketing number for a class of functions G with radius

ν > 0 and norm ‖·‖. By (34) and the second relation in (35),

N[](ν,G
β
n,δ, ‖·‖2,β) ≤ N[](ν,G1

n,C2δ, ‖·‖2) ≤ C3
δ

ν2d
,

for some positive constant C3. Note that the upper bound here is different from the point identified

case. Therefore, for some positive constant C4, it holds

ϕn(δ) =

ˆ δ

0

√
logN[](ν,G

β
n,δ, ‖·‖2,β)dν ≤ C4δ log δ−1. (36)

Finally, based on the above entropy condition, we apply the maximal inequality of Doukhan,

Massart and Rio (1995, Theorem 3), i.e., there exists a positive constant C5 depending only on the

mixing sequence {βm} such that

P sup
g∈Gβn,δ

|Gng| ≤ C5[1 + δ−1qGn,δ(min{1, vn(δ)})]ϕn(δ),

where qGn,δ(v) = supu≤v QGn,δ(u)
√´ u

0 β
−1(ũ)dũ with the envelope function Gn,δ of Gβn,δ (note: Gβn,δ

is a class of bounded functions) and vn(δ) is the unique solution of

vn(δ)2

´ vn(δ)
0 β−1(ũ)dũ

=
ϕn(δ)2

nδ2
.

Since ϕn(δ) ≤ C4δ log δ−1 from (36), it holds vn(δ) ≤ C5n
−1(log δ−1)2 ≤ C5n

−1{log(nhn)1/2}2 for

some positive constant C5. Now take some n0 such that vn0(δ) ≤ 1, and then pick again any n ≥ n0

and δ ∈ [r
−1/2
n , C ′]. We have

qGn,δ(min{1, vn(δ)}) ≤ C6

√
vn(δ)QGn,δ(vn(δ)) ≤ C7n

−1/2 log(nhn)1/2,

for some positive constants C6 and C7. Therefore, combining (36)-(28), the conclusion follows by

P sup
g∈G1n,δ

|Gng| ≤ P sup
g∈Gβ

n,M1/2C1δ
1/2

|Gng| ≤ C8(δ log δ−1)1/2,

where the first inequality follows from the first relation in (35).
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A.9. Proof of Lemma 3. Pick any C > 0 and ε > 0. Then define An = {θ ∈ Θ \ ΘI : r
−1/3
n ≤

|θ − πθ| ≤ C} and

R2
n = r2/3

n sup
θ∈An
{|Pn(fn,θ − fn,πθ)− P (fn,θ − fn,πθ)| − ε|θ − πθ|

2}.

It is enough to show Rn = Op(1). Letting An,j = {θ ∈ Θ : (j − 1)r
−1/3
n ≤ |θ − πθ| < jr

−1/3
n }, there

exists a positive constant C ′ such that

P{Rn > m} ≤ P
{
|Pn(fn,θ − fn,πθ)− P (fn,θ − fn,πθ)| > ε|θ − πθ|2 + r−2/3

n m2 for some θ ∈ An
}

≤
∞∑
j=1

P
{
r2/3
n |Pn(fn,θ − fn,πθ)− P (fn,θ − fn,πθ)| > ε(j − 1)2 +m2 for some θ ∈ An,j

}

≤
∞∑
j=1

C ′
√
j

ε(j − 1)2 +m2
,

for all m > 0, where the last inequality is due to the Markov inequality and Lemma MS. Since the

above sum is finite for all m > 0, the conclusion follows.

A.10. Proof of Theorem 3. Pick any ϑ ∈ Θ̂. By the definition of Θ̂,

Pn(fn,ϑ − fn,πϑ) ≥ max
θ∈Θ

Pnfn,θ − (nhn)−1/2ĉ− Pnfn,πϑ ≥ −(nhn)−1/2ĉ.

Now, suppose H(ϑ,ΘI) = |ϑ−πϑ| > r
−1/3
n . By Lemma 3 and Condition (i) of the partially identified

cube root class,

Pn(fn,ϑ − fn,πϑ) ≤ P (fn,ϑ − fn,πϑ) + ε|ϑ− πϑ|2 + r−2/3
n R2

n

≤ (−c+ ε)|ϑ− πϑ|2 + o(|ϑ− πϑ|2) +Op(r
−2/3
n ),

for any ε > 0. Note that c, ε, and Rn do not depend on ϑ. By taking ε small enough, the convergence

rate of ρ(Θ̂,ΘI) is obtained as

ρ(Θ̂,ΘI) = sup
ϑ∈Θ̂

|ϑ− πϑ| ≤ Op(ĉ1/2(nhn)−1/4 + r−1/3
n ).

Furthermore, for the maximizer θ̂ of Pnfn,θ, then it holds Pn(fn,θ̂ − fn,πθ̂) ≥ 0 and this implies

θ̂ − πθ̂ = Op(r
−1/3
n ).

For the convergence rate of ρ(ΘI , Θ̂), we show P{ΘI ⊂ Θ̂} → 1 for ĉ → ∞, which implies that

ρ(ΘI , Θ̂) can converge at arbitrarily fast rate. To see this, note that

(nhn)1/2 max
θ′∈ΘI

|(max
θ∈Θ

Pnfn,θ − Pnfn,θ′)|

≤ |Gn(fn,θ̂ − fn,πθ̂)|+ (nhn)1/2|P (fn,θ̂ − fn,πθ̂)|+ 2(nhn)1/2| max
θ′∈ΘI

(Pnfn,θ′ − Pfn,θ′)|

= 2h1/2
n | max

θ′∈ΘI
Gnfn,θ′ |+ op(1), (37)
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where the inequality follows from the triangle inequality and the equality follows from Lemmas MS

and 3, Condition (i) of the partially identified cube root class, and the rate θ̂ − πθ̂ = Op(r
−1/3
n )

obtained above. Therefore, since {h1/2
n fn,θ, θ ∈ ΘI} is P -Donsker (Condition (i)), it follows P{ΘI ⊂

Θ̂} → 1 if ĉ→∞.

A.11. Proof of Lemma MS’. Pick any σ > 0. Define gn,s,s′ = gn,s − gn,s′ ,

G1
n = {gn,s,s′ : gn,s ∈ Gn, gn,s′ ∈ Gn},

G1
n,δ = {gn,s,s′ ∈ G1

n : |s− s′| < δ},

Gβn,δ = {gn,s,s′ ∈ G1
n :
∥∥gn,s,s′∥∥2,β

< δ}.

Since gn,s satisfies (14), there exists a positive constant C1 such that G1
n,δ ⊂ {gn,s,s′ ∈ G1

n :∥∥gn,s,s′∥∥2
< C1δ

1/2} for all n large enough and all δ > 0 small enough. Also, by the same ar-

gument to derive (25), there exists a positive constant C2 such that
∥∥gn,s,s′∥∥2,β

≤ C2

∥∥gn,s,s′∥∥2
for

all n large enough, |s| ≤ K and |s′| ≤ K. The constant C2 depends only on the mixing sequence

{βm}. Combining these results, we obtain the set inclusion relationship

G1
n,δ ⊂ G

β

n,C1C2δ1/2
, (38)

for all n large enough and all δ > 0 small enough. Also note that the bracketing numbers satisfy

N[](ν,G
β
n,δ, ‖·‖2,β) ≤ N[](ν,G1

n, ‖·‖2) ≤ N[](ν,Gn, ‖·‖2)2,

where the first inequality follows from Gβn,δ ⊂ G
1
n (by the definitions) and ‖·‖2 ≤ ‖·‖2,β (Doukhan,

Massart and Rio, 1995, Lemma 1). Following the argument to derive Andrews (1993, eq. (4.7))

based on (14), we get a bound for N[](ν,Gn, ‖·‖2) by the covering number of the parameter space,

say, NΘ(ν, [−K1,K1]d×[−K2an,K2an]kn). By direct calculation, this covering number is bounded12

by (2K1)d
(√

d+kn
2ν

)d+kn
(2K2an)kn if ν < K2an

√
d+ kn and by (2K1)d

(√
d+kn
2ν

)d
otherwise. Thus,

ϕn(η) =

ˆ η

0

√
logN[](ν,G

β
n,η, ‖·‖2,β)dν

≤
ˆ K2an

√
d+kn

0
log(2K1)d

(√
d+ kn
2ν

)d+kn

(2K2an)kndν +

ˆ η

K2an
√
d+kn

d log(2K1)d
(√

d+ kn
2ν

)d
dν,

for any η and large n as K2an
√
d+ kn → 0. A straightforward algebra yields that the first term

after the inequality goes to zero as kna
2/3
n → 0, while the second term is bounded by (c1 log kn)η +

c2η(log η + 1) for some c1, c2 > 0. In other words, there is a function ϕ(η) such that ϕ(η) → 0 as

η → 0 and

ϕn(η) =

ˆ η

0

√
logN[](ν,G

β
n,η, ‖·‖2,β)dν ≤ (log kn)ϕ(η),

for all η > 0 small enough and all n large enough.

12The circumradius of the unit s-dimensional hypercube is
√
s/2. Or

√∑s
i=1 a

2
i /2 for the hypercube of side lengths

(a1, . . . , as).
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Based on the above entropy condition, we can apply the maximal inequality of Doukhan, Massart

and Rio (1995, Theorem 3), i.e., there exists a positive constant C3 depending only on the mixing

sequence {βm} such that

P sup
g∈Gβn,η

|Gng| ≤ C4[1 + η−1qGn(min{1, vn(η)})]ϕ(η)(log kn),

for all n large enough and all η > 0 small enough, where q2Gn(v) = supu≤v Q2Gn(u)
√´ u

0 β
−1(ũ)dũ

with the envelope function 2Gn of Gβn,η (note: by the definition of Gβn,η, the envelope 2Gn does not

depend on η), and vn(η) is the unique solution of

vn(η)2

´ vn(η)
0 β−1(ũ)dũ

=
ϕ2
n(η)

nη2
.

Now pick any η > 0 small enough so that 2C4ϕ(η) < σ. Since ϕn(η) ≤ ϕ(η), there is a posi-

tive constant C5 such that vn(η) ≤ C5
ϕ(η)2(log kn)2

nη2
≤ 1 for all n large enough and for any given

η > 0. Since Gn ≤ C ′nκ by the definition of Gβn,η, there exists a positive constant C6 such that

q2Gn(min{1, vn(η)}) ≤ C6ϕ(η)η−1nκ−1/2(log kn) with 0 < κ < 1/2 for all n large enough. Therefore,

by setting η = C1C2δ
1/2, we obtain

P sup
g∈Gβ

n,C1C2δ
1/2

|Gng| ≤ σ log kn,

for all n large enough. The conclusion follows by (38).

A.12. Proof of Theorem 4. To ease notation, let ν0 = 0. By (15), we can apply Lemma MS’

with gn,s =
√
hn/an(fn,θ,v − fn,θ,0) for s = (θ′, v′)′, which implies

sup
|θ−πθ|≤ε,|v|≤anK

√
hn/anGn(fn,θ,v − fn,θ,0) = Op(log kn), (39)

for all small ε > 0 and K <∞. Also from (16), we have

P (fn,θ,ν̂ − fn,θ,0)− P (fn,πθ,ν̂ − fn,πθ,0) = o(|θ − πθ|2) +O(|ν̂|2) +Op(r
−2/3
n ), (40)

for all θ in a neighborhood of ΘI and all ε > 0. Combining (39), (40), and Condition (i) of the

partially identified cube root class, and Lemma 3,

Pn(fn,θ,ν̂ − fn,πθ,ν̂) = n−1/2{Gn(fn,θ,ν̂ − fn,θ,0)−Gn(fn,πθ,ν̂ − fn,πθ,0) + Gn(fn,θ,0 − fn,πθ,0)}

+P (fn,θ,ν̂ − fn,θ,0)− P (fn,πθ,ν̂ − fn,πθ,0) + P (fn,θ,0 − fn,πθ,0)

≤ Op((nhna
−1
n )−1/2 log kn) + ε|θ − πθ|2 +Op(r

−2/3
n )

−c|θ − πθ|2 + ε|θ − πθ|2 +Op(|ν̂|2) +Op(r
−2/3
n ), (41)

for all θ in a neighborhood of ΘI and all ε > 0, where the last inequality follows from (10).
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Let θ̂ = arg maxθ∈Θ Pnfn,θ,v̂. If |θ̂ − πθ̂| > an + r
−1/3
n , then Pn(fn,θ,ν̂ − fn,πθ,ν̂) ≥ 0 and thus by

(41),

|θ̂ − πθ̂| ≤ o(an) +Op(r
−1/3
n ) +Op((nhna

−1
n )−1/4(log kn)1/2). (42)

And for any θ′ ∈ Θ̂, if |θ′ − πθ′ | > an + r
−1/3
n , then

−(nhn)−1/2ĉ ≤ max
θ∈Θ

Pnfn,θ,v̂ − Pnfn,πθ′ ,v̂ − c
−1
n ĉ ≤ Pnfn,θ′,v̂ − Pnfn,πθ′ ,v̂,

and thus by (41),

|θ′ − πθ′ | ≤ o(an) +Op(r
−1/3
n ) +Op((nhna

−1
n )−1/4(log kn)1/2) + (nhn)−1/4ĉ1/2.

It remains to show that P{ΘI ⊂ Θ̂} → 1 for ĉ→∞. Proceeding as in (37), we get

(nhn)1/2 max
θ′∈ΘI

|(max
θ∈Θ

Pnfn,θ,v̂ − Pnfn,θ′,v̂)|

≤ |h1/2
n Gn(fn,θ̂,v̂ − fn,πθ̂,v̂)|+ (nhn)1/2|P (fn,θ̂,v̂ − fn,πθ̂,v̂)|+ 2(nhn)1/2| max

θ′∈ΘI
(Pnfn,θ′,v̂ − Pfn,θ′,v̂)|

= 2| max
θ′∈ΘI

h1/2
n Gnfn,θ′,v̂|+ op(1),

where the first term after the inequality being op(1) is due to (39) and Lemma 3 and the second

term is to (40) and Condition (i) of the partially identified cube root class together with the rate

for θ̂ in (42). Finally, due to (39) and the class {h1/2
n fn,θ, θ ∈ ΘI} being a P -Donsker, we conclude

Pr{ΘI ⊂ Θ̂I} → 1.

A.13. Proof of Lemma M1. The proof is similar to that of Lemma M except that for some

positive constant C ′′′, we have

G1
δ ⊂ G2

C′′h
−1/2
n δ1/2

⊂ Gβ
C′′′h

−1/2
n δ1/2

,

which reflects the component “h2
n” in Condition (iii)’ instead of “hn” in Condition (iii) of the

generalized cube root class. As a consequence of this change, the upper bound in the maximal

inequality becomes Ch
−1/2
n δ1/2 instead of Cδ1/2. All the other parts remain the same.
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