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Abstract

This paper studies the effects of discounting on plant-level and aggregate investment.

We study a number of date based processes to represent the state dependent discount

factor. Empirically, the stochastic discount factor is procyclical. The investment decision

at the plant level is sensitive to the specification of the stochastic discount factor. Non-

convexities in adjustment costs at the plant level have aggregate implications: lumpy

investment is not smoothed.

1 Motivation

This paper studies the dependence of plant-level and aggregate investment on the stochastic

discount factor when adjustment costs are non-convex. It asks two questions. First, what

are the effects of alternative representations of the stochastic discount factor on plant-level

investment? Second, do non-convexities at the plant-level have aggregate implications?

The specification of the stochastic discount factor (SDF) is significant: plant-level invest-

ment behavior is sensitive to the SDF. Model-based specifications are at odds with the SDF

inferred from data. Our analysis highlights these differences and studies their implications for

plant-level and aggregate investment.

As is now understood from a number of studies, investment at the establishment level is

characterized by periods of only minimal changes in the capital stock coupled with intermittent
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periods of large capital adjustments. These patterns are difficult if not impossible to mimic

in the standard quadratic adjustment cost model. Instead, these patterns are captured in

models which rely on the presence of non-convex adjustment costs.1

The aggregate implications of these plant-level nonconvexities though remain in dispute.

Following the lead of Thomas (2002), Khan and Thomas (2003) and Khan and Thomas

(2008), one might conjecture that the non-convexities at the plant-level are not important

for aggregate investment. In those papers, state dependent interest rates are determined in

equilibrium. A striking result from this literature is that the absence of aggregate effects of

lumpy investment: the aggregate model with non-convexities at the micro-level is essentially

indistinguishable from an aggregate model without non-convexities. A key to the result, as

noted by Thomas (2002), is the response of the interest rate to aggregate shocks and the

evolution of the capital stock.2

Those results, however, do not address the question we raise here. The issue is the process

for the stochastic discount factor (interest rate). Our focus is on the effects of the stochastic

discount factor inferred from the data, rather than that created in the underlying equilibrium

of a stochastic business cycle model. It is entirely conceivable that the equilibrium smoothing

of plant-level investment through interest rate movements does not arise in a model economy

with an empirically relevant stochastic discount factor.

The problem is that the interest rate process from the standard RBC model does not

match the data well, as discussed, for example, in Beaudry and Guay (1996).3 Thus, the

smoothing of lumpy investment through interest rate movements produced in these models

might be both theoretically of interest and model-consistent, but not empirically based.

Our analysis is conducted in a model with two key features. The first, as in Cooper

and Haltiwanger (2006), is the presence of non-convexities in the capital adjustment process.

The model of plant-level adjustment costs is taken from Cooper and Haltiwanger (2006). As

discussed below, the specification of adjustment costs includes an opportunity cost which

is independent of the magnitude of investment, a quadratic adjustment cost and a form of

irreversibility.

The second feature is a SDF that is empirically based rather than the outcome of a partic-

ular stochastic equilibrium model. A number of empirically based representations of the SDF

are considered.

One approach begins with a specification of household utility and to infer the stochastic

discount factor from a household Euler equation. In this case, the SDF is mildly countercycli-

1See, for example, the results reported in Caballero and Engel (1999) and Cooper and Haltiwanger (2006).
2Cooper and Haltiwanger (2006) find some, but not complete, smoothing by aggregation arising from

idiosyncratic shocks when interest rates are held constant.
3This point appears in Thomas (2002) as well: Table 5 indicates a correlation of -0.385 between the real

interest rate and output in the data but a correlation of 0.889 in the benchmark model.
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cal, with minimal variability.4 The version of the SDF is similar to that obtained from the

standard RBC model.

In contrast, the SDF can be inferred directly from asset prices from portfolio choice based

upon standard orthogonality conditions. This version of the SDF is strongly procyclical and

variable. The behavior of plant-level and aggregate investment is very different for this version

of the SDF compared to the one inferred from the household Euler equation.

The results indicate that investment behavior at the plant-level is sensitive to the spec-

ification of the SDF. Further, non-convexities at the plant-level have aggregate implications

for empirically consistent stochastic discount factors. These effects are particularly prominent

when the SDF is inferred from portfolio choices.

2 Dynamic Capital Demand

Our approach is to begin with a dynamic capital demand problem at the plant level, following

Cooper and Haltiwanger (2006) for the specification of the adjustment costs. But, in contrast

to that analysis, we allow the discount factor to be state dependent rather than constant. The

stochastic discount factor is inferred from data.

2.1 Plant Level: Dynamic Optimization

The dynamic programming problem is specified as:

V (ε, k, Z) = max{V i(ε, k, Z), V a(ε, k, Z)}, ∀(ε, k, Z) (1)

where ε is the idiosyncratic productivity shock, k represents the beginning of period capital

stock at the plant, and Z is a vector of aggregate variables, including aggregate productivity,

A. The superscripts refer to active investment “a,” where the plant undertakes investment

to obtain capital stock k′ in the next period, and inactivity, “i,” where no gross investment

occurs.

The options in (4) are defined by:

V i(ε, k, Z) = Π(ε, k, Z) + Eε′,Z′|ε,Z

[
β̃(Z,Z ′)V (ε′, k(1− δ), Z ′)

]
(2)

and

V a(ε, k, Z) = max
k′

{
Π(ε, k, Z)− C(ε, k, Z, k′) + Eε′,Z′|ε,Z

[
β̃(Z,Z ′)V (ε′, k′, Z ′)

]}
(3)

4To be precise, the cyclical properties depend on the the specification of the utility function and the method
of detrending as discussion below.
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In this problem, the state variables (ε, k, Z) directly impact the profit flow of the plant in

the current period. Other aggregate variables, included in Z, are in the state vector insofar

as they provide information on the stochastic discount factor, denoted β̃(Z,Z ′). In principle,

higher order moments of the cross sectional distribution of the capital stock and profitability

as well as measures of aggregate uncertainty could appear in Z.

The model includes three types of adjustment costs which, as reported in Cooper and

Haltiwanger (2006), are the leading types of estimated adjustment costs:

C(ε, k, Z, k′) =

disruption cost︷ ︸︸ ︷
(1− λ) Π(ε, k, Z) +pb(I > 0)(k′ − (1− δ)k)

− ps(I < 0)((1− δ)k − k′)︸ ︷︷ ︸
irreversibility

+
ν

2

(
k′ − (1− δ)k

k

)2

k︸ ︷︷ ︸
convex cost

The first is a disruption cost parameterized by Λ. If Λ < 1, then any level of gross

investment implies that a fraction of revenues is lost. The second is the quadratic adjustment

cost parameterized by ν. The third is a form of irreversibility in which there is a gap between

the buying, pb, and selling, ps, prices of capital. These are included in (3) by the use of the

indicator function for the buying (I > 0) and selling of capital (I < 0).

The profit function is

Π(A, ε, k) = Aεkθ. (4)

Here A is an aggregate shock and ε is an idiosyncratic shock to plant-level profitability.

This is a reduced-form profit function which can be derived from an optimization problem

over flexible factors of production (i.e. labor, materials, etc.). The parameter θ reflects factor

shares as well as the elasticity of demand for the plant’s output.

3 Stochastic Discount Factors

The optimization problem given in (4) includes a stochastic discount factor, β̃t+1 ≡ β̃(Zt, Zt+1).

General equilibrium models tie the stochastic discount factor of the plant to the intertemporal

preferences of the households. Empirically, it is natural to use asset pricing conditions to infer

the stochastic discount factor.

The standard asset pricing formula of

Et

[
β̃t+1R

j
t+1

]
= 1 (5)

for any asset j provides the framework. The idea is to first infer the stochastic discount factor
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from observations on returns using (5). This representation of the household based SDF

is mapped into the state space for (4) and the values of the various options for plant-level

optimization are evaluated.

The analysis presents three different strategies for determining β̃(Zt, Zt+1). One is based

upon a household Euler equation, thereby replacing β̃t+1 with some version of an intertemporal

marginal rate of substation for a representation household.

A second approach dispenses with the direct link between household utility and β̃(Zt, Zt+1).

Instead, this approach estimates a parameterized model of the stochastic discount factor

directly from asset pricing data. The final approach looks directly at interest rates.

For each, we are interested in a state space including aggregate capital, aggregate produc-

tivity and other elements of Z. This form of state dependence is immediate in versions of the

stochastic growth model with capital and a technology shock in the state vector. Once there

are nonlinearities in adjustment costs as well as plant-specific shocks, the state vector is more

complex, potentially including measures of the cross sectional distribution of capital.

The appendix provides a detailed discussion of our data. For our analysis, we consider

At to be total factor productivity in period t. With a focus on business cycle dynamics, we

model a stationary specification of the shock process, which we parameterize from annual data

after detrending using the H-P filter. As discussed in the appendix, our results depend on the

choice of the parameter of the H-P filter, denoted λ. The choice of this parameter determines

directly the serial correlation of the total factor productivity process and consequently the

dependence of β̃t+1 on the state vector (Zt, Zt+1). The mapping from the values of λ to the

serial correlation of the aggregate shock, ρA, is given in Table 13 in the Appendix. We report

results for two distinct values of λ: ρA = 0.14 results from the band-pass filter, approximated

on annual data by setting λ = 7, while ρA = 0.84 comes from removing a linear trend,

approximated by setting λ = 100, 000.

For this analysis, we initially assume Zt = (At, Kt). Thus we exclude higher order moments

of the cross sectional distribution of capital and plant-level profitability shocks. Under the

null established by the results of Thomas (2002), the mean of the aggregate capital stock, Kt

along with the aggregate profitability shock, At, suffice to characterize the current state of

the system. This will be an issue we return to below.

3.1 Household Based SDF

As is customary within a stochastic equilibrium model in which households do not face costs

of adjusting their portfolios, rates of return are linked to household preferences through an

Euler equation. In that case, β̃t+1 is the ex post marginal rate of substitution for consumption
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across two periods. Hence (5) becomes

Et

[
βu′(ct+1)

u′(ct)
Rj
t+1

]
= 1 (6)

for asset j = 1, 2, ...J where ct is household consumption in period t and u(·) represents utility

for a representative household.

Using data on consumption and some assumptions on preferences, (6) will generate a time

series for β̃t+1. For this exercise, assume u(c) = log(c) and set β = 0.95.5

With this parameterization it is easy to extract β̃t+1 = β ct
ct+1

from the data. To compute the

empirical relationship between the stochastic discount factor and observables corresponding

to key state variables in our model, we regress this stochastic discount factor on measures

of the capital stock, current and future productivity: (At, At+1, Kt). The inclusion of both

current period and future period values of the aggregate shock, At, are required since β̃t+1

measures the realized real return between periods t and t+ 1. The future value of the capital

stock is excluded as it is determined from (At, Kt) through the law of motion of the capital

stock and is thus implicit in our approach.

Our results for this specification are presented in the first block of Table 1, labeled ‘HE’

(Household Euler). The columns indicate the regression coefficients and goodness of fit mea-

sures. The results ignore the capital stock since the inclusion of Kt is not statistically signifi-

cant and adds very little to the empirical model.

Table 1: Stochastic Discount Factor: Household Euler Equation

SDF Specification ρA At At+1 R2 dEt[β̃(·)]
dAt

HE 0.14 0.21 -0.61 0.46 0.12
(0.09) (0.09)

0.84 0.34 -0.46 0.56 -0.04
(0.05) (0.06)

The table reports coefficients from a log-linear regression of the stochastic discount factor on aggregate
productivity in the current year and next year using annual data from 1948 to 2008. The coefficient representing
the constant is not reported. The final column reports the elasticity of the expected discount factor with respect
to current productivity. Results are reported for two stationary specifications: 1) an approximation of the
band-pass filter (ρA = 0.14) and 2) an approximation of linear detrending (ρA = 0.84).

These results indicate that this measure of the SDF varies positively with period t (lagged)

aggregate productivity and negatively with period t + 1 (current) productivity. As is made

clear in the table, the magnitude of the coefficient depends on the choice of ρA. A lower value

5This is not the result of estimation of (6). Rather the log utility specification is common in the RBC
literature and thus allows for comparison.
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of this parameter leads to more dependence on At and less, in absolute value, dependence

on At+1 in the second block of results. This will be important later when we study how

investment responds to productivity shocks.

3.2 Inferring the SDF from Asset Prices

Many studies have pointed to the difficulty in rationalizing asset prices within the standard

specifications of household utility.6 This has led to research on alternative representations of

preferences, such as recursive utility models, as well as the inclusion of internal and external

habits.

Instead of linking the stochastic discount factor to a richer model of household optimiza-

tion, an alternative is to go directly to data on asset prices to infer the stochastic discount

factor directly. The approach follows Zhang (2005), Bansal and Viswanathan (1993) Gal-

lant and Hong (2007) and is based upon (5), Et

[
β̃t+1R

j
t+1

]
= 1.7 Specifically, suppose that

β̃(A,K,A′, K ′) is a logistic function, so that the discount factor lies in (0, 1):

β̃(At, Kt, At+1, Kt+1) =
e(α0+α1At+α2At+1+α3Kt+α4Kt+1)

1 + e(α0+α1At+α2At+1+α3Kt+α4Kt+1)
. (7)

The assets, indexed by j, represent six Fama-French portfolios adjusted for inflation and the

1-year Treasury rate adjusted for inflation.8 Note that the portfolios include firm equity and

hence include the variations similar to those produced in our estimated model.

The coefficients α ≡ (α0, α1, α2, α3, α4) are estimated from (5) using GMM to bring the

sample analogue of (5) as close as possible to zero. For this estimation, the coefficients on the

capital variables were initially included but, as in ‘HE’ model, were statistically insignificant.9

Hence we report the coefficients only for current and lagged aggregate productivity. The

instruments used were a constant along with period t consumption and capital. The parameter

estimates are shown in Table 2 for the row ‘Portfolio FF’.

Following Zhang (2005), the block labeled ‘Portfolio Z’ is from a specification of the SDF

that highlights the countercyclical pricing of risk. Here the SDF is calibrated to match a

number of cross-sectional asset pricing facts. It is modeled as

logβ̃t+1 = logβ + (logAt − logAt+1)[α1 + α2(logAt − Ā)] (8)

6See, for example, the discussion and references in Cochrane (2011).
7Thanks to Ron Gallant, Monika Piazzesi and Lu Zhang for discussions on this approach.
8The data are taken from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html.
9For the exercises with Kt in the state vector, the choice model was supplemented with a transition equation

for aggregate capital taken from the data. In principle, other moments from the cross-sectional distribution
of (ki, εi) could be included as well.
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Table 2: Stochastic Discount Factor: Nonlinear asset-based specifications

SDF Specification ρA α1 α2

Portfolio FF 0.14 72.48 10.94
(15.35) (16.83)

0.84 66.11 -68.92
(38.37) (40.34)

Portfolio Z 0.14 4.84 -4.65
(1.27) (745.46)

0.84 3.83 -2.70
(9.63) (390.03)

The table reports coefficients NL2SLS estimations of two portfolio-based specifications of the stochastic
discount factor using annual data from 1948 to 2008. The specification for Portfolio FF is given by (7). The
specification for Portfolio Z is from Zhang (2005) and given by (8). The coefficient representing the constant
is not reported. Results are reported for two stationary specifications: 1) an approximation of the band-pass
filter (ρA = 0.14) and 2) an approximation of linear detrending (ρA = 0.84).

where Ā is the mean of log(A). This specification of the SDF is used in (5) along with the

Fama-French portfolios to estimate (α1, α2).

The results of the estimation are shown in the ‘Portfolio Z’ block of Table 2.10 For both

values of ρA, the SDF responds positively to variations in lagged productivity and negatively

with current productivity.

The results in Table 1 related the stochastic discount factor from the household Euler

equation to the state variables through a log-linear regression. The coefficients in Table 3

represent a log linear approximation of the two empirical SDFs from Table 2, making the

results comparable to Table 1. The patterns from the ‘HE’ model appear in this representa-

tion as well: for ρA = 0.84, the SDF is procyclical with respect to lagged productivity and

countercyclical with respect to current productivity.

3.3 Market Rates

Instead of working through an asset pricing equation, the last two blocks of Table 3 report

a measure of β̃t+1 based upon observed returns on different assets. In this way, we can look

directly at interest rates that a firm might use to discount profits. These are ex ante rates

and thus depend on current At but not At+1.

We study two real interest rates, the 30-day T bill and a long term AAA bond. These are

ex ante rates and thus depend on the current state, At. The real rates are constructed by

10Zhang (2005) does not estimate this relationship but rather sets α0 = 50 and α1 = −1000 to match some
moments.
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Table 3: Stochastic Discount Factors: Log-linear representations of asset-based specifications

SDF Specification ρA At At+1 R2 dEt[β̃(·)]
dAt

Portfolio FF 0.14 7.12 0.73 0.74 7.22
0.63 0.63

0.84 4.60 -4.67 0.60 0.67
0.57 0.60

Portfolio Z 0.14 4.85 -4.82 1.00 4.18
0.02 0.02

0.84 3.81 -3.80 1.00 0.62
0.02 0.02

30-day T-bill rate 0.14 -0.37 0.05 0.36
(0.23)

0.84 -0.25 0.19 0.24
(0.07)

AAA LT bond yield 0.14 -0.27 0.03 0.25
(0.21)

0.84 -0.40 0.57 0.37
(0.05)

The table reports coefficients from a log-linear regression of the stochastic discount factor for each specifi-
cation on aggregate productivity in the current year and next year using annual data from 1948 to 2008. The
coefficient representing the constant is not reported. The final column reports the elasticity of the expected
discount factor with respect to current productivity. Results are reported for two stationary specifications: 1)
an approximation of the band-pass filter (ρA = 0.14) and 2) an approximation of linear detrending (ρA = 0.84).

subtracting realized inflation for the 30-day T bill and long-term inflation expectations from

the Survey of Professional Forecasters for the AAA bond from the respective nominal rate.

Importantly, the response of the return to a variation in At is generally negative and it is

significant for the larger values of λ. Since the interest rate is inversely related to the stochastic

discount factor, high realizations of productivity translate into higher discount factors. That

is, once again the SDF is procyclical.

3.4 Response of the expected SDF to productivity

While the specifications differ, with the exception of the ‘HE’ case, the various estimates have

a common feature: the SDF is procyclical. Though the plant-level optimization problem does

include a covariance of future values with the stochastic discount factor, the response of the

expected discount factor to variations in current productivity will be a key element in the

results that follow.

To see this procyclicality, Tables 1 and 3, report the elasticity of Et[β̃(At, At+1)] with

9



respect to At.
11 The results appear in the last column of those tables.

For the β̃(·) estimates using the household Euler equation, corresponding to ρA = 0.14,

the expected stochastic discount factor is increasing in current productivity. The response is

slightly negative at ρA = 0.84 as the negative coefficient on At+1 is given more weight due to

the higher serial correlation of the shock.

For all of the other specifications, the expected SDF is positively related to current pro-

ductivity. This is true for both of the estimated models as well as the market interest rates

reported in Table 3. Generally, the procyclicality is lower for ρA = 0.84 compared to ρA = 0.14.

The pro cyclicality of the two market based SDFs is consistent with evidence of countercyclical

real interest rates, as carefully documented in Beaudry and Guay (1996).

The procyclical SDF adds another dimension to the response of plant-level investment to

an increase in A. First, as profitability increases, current profits increase as well. This alone

has no affect on investment. Second, the conditional expectation of A
′

is increasing in A and

this creates an incentive to invest more as A increases. Third, the expected SDF is increasing

in A: as profitability increases, plant’s discount less and invest more. Not surprisingly, the

serial correlation of the profitability shock is central to the response of investment to variations

in A.

Figure 1 summarizes these results for the ρA = 0.84 case. The top panel displays the SDF

from the household Euler specification as well as the two market interest rates. The bottom

panel displays the SDF for the two portfolio specifications. In both panels, the expected SDF,

conditional on current productivity, is graphed. The solid line is aggregate productivity.12

Importantly, the SDF for the ‘HE’ case is relatively flat. As we shall see, this case creates

investment behavior not too different from a specification with a fixed discount factor.

The other series are procyclical, peaking in the mid-1960s and showing some volatility over

the sample. In fact, despite the differences in the estimated coefficients, the ex ante SDFs are

very similar for these cases.13

4 Plant-level Implications

Using these processes for the stochastic discount factor, we study the response of investment

to shocks. We do so first at the plant-level and then study aggregate effects in the next section.

To obtain these results, we solve (4) for different specifications of the stochastic discount

factor reported in Tables 1 and 3.14 We then study investment choices at the plant-level and

11Recall these are log-linear regressions.
12At ρA = 0.84, there is only one peak in the series and one trough.
13But they can have different implications on plant-level investment if their covariance with the value of

capital differs. This will be included in the analysis of the plant-level dynamic optimization problem.
14These tables include a case labeled “Model-CC” which we explain below.
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Figure 1: Stochastic Discount Factors.
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A
 = 0.84

 

 
Aggregate profitability shock
E[β]: Household Euler
E[β]: 30−day T−bill
E[β]: AAA LT bond
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E[β]: Portfolio FF
E[β]: Portfolio Z

This figure shows the relationship between the various measures of the stochastic
discount factor and aggregate productivity.

in aggregate. Thus the investment choices depend on empirically relevant representations of

the stochastic discount factor, both through the conditional expectation emphasized in Tables

1 and 3 and the covariance between the aggregate state and the value of the plant, V (ε, k, Z),

from (4).
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Table 5: Plant-level investment regression on simulated data: Ii(A,K, εi, ki)

SDF Specification ρA A K εi ki R2

Fixed β 0.84 24.11 29.61 -0.43 0.36
(1.21) (0.27) (0.00)

HE 0.84 14.68 29.82 -0.43 0.36
(1.21) (0.27) (0.00)

Portfolio FF 0.84 65.88 7.90 -0.25 0.28
(0.79) (0.13) (0.00)

Portfolio Z 0.84 156.15 14.64 -0.30 0.34
(1.51) (0.22) (0.00)

30-day T-bill rate 0.84 90.47 24.95 -0.39 0.35
(1.32) (0.25) (0.00)

AAA LT bond yield 0.84 118.29 21.61 -0.36 0.35
(1.39) (0.24) (0.00)

Model-CC 0.84 14.57 0.38 28.94 -0.43 0.36
(1.48) (0.02) (0.26) (0.00)

Model-KPR 0.84 13.41 0.41 28.87 -0.42 0.36
(1.39) (0.02) (0.26) (0.00)

The table reports coefficients from an OLS regression of plant-level investment on the state variables of
the plant’s dynamic optimization decision. Data are produced from a simulation of 1000 plants for 1000
periods under various specifications of the stochastic discount factor. All variables are expressed in logs for
the regression.

For these simulations, we follow Cooper and Haltiwanger (2006) and assume α = 0.58,

ρε = 0.885 σε = 0.1 for the idiosyncratic shock process.15 The adjustment costs are given by

Λ = 0.8, ν = 0.15, ps = 0.98. In the simulated data set, we follow 1000 plants for 500 periods.

Table 4 reports moments at the plant-level for different interest rate processes. These are

the moments used in Cooper and Haltiwanger (2006) for the estimation of adjustment cost

parameters.16 There is an important point to gather from this table: these plant-level moments

are essentially independent of the representation of the stochastic discount factor. Hence the

parameter estimates from Cooper and Haltiwanger (2006), which assumes a constant discount

factor, are robust to an analysis allowing a stochastic discount factor.

This does not imply though that the investment decision is independent of the specification

of the stochastic discount factor. Table 5 reports results of plant-level regressions on current

state variables for different measures of the SDF, with ρA = 0.84.

15In Cooper and Haltiwanger (2006) the estimates of the aggregate and idiosyncratic shock processes cor-
respond to profitability shocks, as technology, cost and demand shocks cannot be separately identified.

16In that analysis, the correlation of productivity and investment was used rather than the correlation of
plant-specific productivity and investment. In the data, these correlations are about the same.
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Table 6: Plant-level investment regression (Adjusters only): Ii(A,K, εi, ki)

SDF Specification ρA A K εi ki R2

Fixed β 0.84 25.48 28.79 0.04 0.98
(0.51) (0.22) (0.00)

Household Euler 0.84 18.94 28.77 0.05 0.98
(0.44) (0.21) (0.00)

Portfolio FF 0.84 77.46 12.35 0.19 0.94
(0.89) (0.13) (0.01)

Portfolio Z 0.84 209.15 25.44 -0.09 0.74
(4.44) (0.47) (0.01)

30-day T-bill rate 0.84 80.33 26.18 0.06 0.93
(1.61) (0.36) (0.01)

AAA LT bond yield 0.84 111.61 25.50 0.04 0.88
(2.50) (0.42) (0.01)

Model-CC 0.84 22.76 0.31 26.83 0.08 0.97
(0.66) (0.01) (0.24) (0.01)

Model-KPR 0.84 20.82 0.30 26.80 0.07 0.97
(0.66) (0.01) (0.25) (0.01)

The table reports coefficients from an OLS regression of plant-level investment on the state variables of the
plant’s dynamic optimization decision for all observations with nonzero. Data are produced from a simulation
of 1000 plants for 1000 periods under various specifications of the stochastic discount factor. Only observations
with nonzero investment are included in the regression. All variables are expressed in logs for the regression.

There are three important results here. First, investment increases in response to an

increase in idiosyncratic profitability. Second, the response of investment to current aggregate

productivity depends on the specification of the stochastic discount factor. Third, though not

shown explicitly, this response depends on ρA.

Investment is less responsive to A in the ‘HE’ model compared to the fixed β case since

the SDF is countercyclical in the ‘HE’ case. The response for these two specification is muted

compared to the other SDF models. For the portfolio based SDF specifications as well as the

market rates, the coefficient on aggregate productivity is considerably larger. This procyclical

SDF amplifies the response of plant-level investment to A, relative to the fixed β and ‘HE’

cases.

These responses depend on ρA = 0.84. The persistence of the shock has two affects.

First, it increases the conditional expectation of A′, thus increasing the returns to investment.

Second, from Table 3, it tends to reduce the procyclicality of the SDF, thus reducing the

response to investment to A.

Tables 6 and 7 break the investment response into two components: the intensive margin

14



Table 7: Linear probability regression using plant-level simulated data (extensive margin)

SDF Specification ρA A K εi ki R2

Fixed β 0.84 1.04 1.27 -0.80 0.37
(0.05) (0.01) (0.01)

Household Euler 0.84 0.61 1.27 -0.81 0.37
(0.05) (0.01) (0.01)

Portfolio FF 0.84 4.98 0.58 -0.54 0.29
(0.06) (0.01) (0.01)

Portfolio Z 0.84 6.62 0.60 -0.53 0.35
(0.07) (0.01) (0.01)

30-day T-bill rate 0.84 3.98 1.07 -0.72 0.36
(0.06) (0.01) (0.01)

AAA LT bond yield 0.84 5.16 0.92 -0.66 0.36
(0.06) (0.01) (0.01)

Model-CC 0.84 0.55 0.65 1.25 -0.80 0.37
(0.07) (0.03) (0.01) (0.01)

Model-KPR 0.84 0.48 0.73 1.25 -0.79 0.37
(0.06) (0.03) (0.01) (0.01)

The table reports coefficients from an OLS regression of the plant-level extensive margin for investment
on the state variables of the plant’s dynamic optimization decision for all observations with nonzero. Data
are produced from a simulation of 1000 plants for 1000 periods under various specifications of the stochastic
discount factor. All explanatory variables are expressed in logs for the regression.

indicating the investment response of the adjusters and the extensive margin regarding the

choice to invest or not.

Comparing the intensive margin regressions in Table 6 with the results in Table 5, there are

a couple of points to note. For the fixed β case, the response to A is positive for the adjusters.

Once the selection effect from the extensive margin is removed, investment is increasing in

productivity.

For the intensive margin the response to ki is almost zero. The explanation for the inverse

relationship between investment rates and the stock of capital, shown in Table 5, must come

from the extensive margin.

Comparing the extensive margin regressions in Table 7 from the linear probability model

with results in Table 5, the adjustment probability is increasing in At for all specifications.

To stress an important point, the response to variations in A in the fixed β and ‘HE’ cases are

muted compared to those obtained from the portfolio and market based models of the SDF.

The negative effects of high capital on the adjustment choice is very strong. The procyclical

adjustment rate is consistent with evidence from Cooper, Haltiwanger and Power (1999).
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5 Aggregate Implications

We aggregate our simulated data to study aggregate investment with different specifications

of the stochastic discount factor. There are a couple of main findings. First, the stochastic

discount factor matters for the behavior of aggregate investment. As noted earlier, the different

models of the stochastic discount factor translate into different sensitivities of the expected

discount factor to variations in current aggregate productivity. Through this mechanism, the

response of aggregate investment to profitability shocks depends on the SDF representation.

Second, the non-convexities at the plant level have aggregate implications. By this we

mean that the aggregate investment produced by the model with non-convexities is not the

same as that produced by a model with quadratic adjustment costs.

5.1 Aggregate Moments

Table 8: Correlation of key variables with aggregate productivity (A)

Data or Aggregate variables Extensive margin Intensive margin
Model ρA

I
K

K ′ Fract. of adjusters mean( Ii
ki
| Ii
ki
> 0.2)

Data 0.84 0.37 0.13 0.19 NA
Fixed β 0.84 0.43 0.95 0.45 0.10

Household Euler 0.84 0.42 0.93 0.41 0.71
Portfolio FF 0.84 0.44 0.83 0.42 0.52
Portfolio Z 0.84 0.42 0.85 0.49 -0.01

30-day T-bill rate 0.84 0.43 0.94 0.48 -0.85
AAA LT bond yield 0.84 0.42 0.91 0.49 -0.87

Model-CC 0.84 0.55 0.45 0.52 0.48
Model-KPR 0.84 0.52 0.53 0.49 0.45

For the data results, the method used to construct the productivity data is described in the appendix.
The other measures are constructed from the Census Bureau’s Annual Survey of Manufacturers (ASM)
as reported and described in Gourio and Kashyap (2007). The results in the first two rows are based
on annual data from 1974 to 1998. The other results are based on simulated data from the model. The
threshold used for the extensive and intensive margins is an investment rate (I/K) greater than 20 percent
in absolute value.

Table 8 presents some basic correlations from the data as well as aggregated simulated

data from the model.17 A key point is how these aggregate moments depend on the SDF.

For the data, productivity is measured as describe in the appendix. The other measures

are constructed from the Census Bureau’s Annual Survey of Manufacturers (ASM) as reported

and described in Gourio and Kashyap (2007). This data source is used because it provides

17Starting with this table, results are shown only for the ρA = 0.84 case.
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important evidence for this analysis regarding the extensive margin investment decisions of

manufacturing establishments. The reported statistics are based on annual data from 1974 to

1998.

In the data there are positive, but small, correlations between productivity and most

of the aggregate series. The correlation between productivity and aggregate investment is

modestly positive. The correlation between productivity and the fraction of establishments

with investment rates greater than 20 percent is approximately 0.2. The correlation between

productivity and the capital stock is negative.

The correlations between productivity and aggregate variables from the simulated data

depend on the specification of the stochastic discount factor. For the investment rate, the

correlations are surprisingly not too sensitive to the specification of the SDF.18 The correlations

of productivity with the adjustment rate are all positive, with a slight magnification for the

portfolio based measures.

Table 9: Aggregate investment rate regression: OLS regression of It
Kt

on At and Kt

Model ρA At Kt R2

Fixed β 0.84 0.63 -0.51 0.91
(0.01) (0.01)

Household Euler 0.84 0.38 -0.47 0.82
(0.01) (0.01)

Portfolio FF 0.84 3.45 -0.33 0.57
(0.14) (0.02)

Portfolio Z 0.84 4.08 -0.37 0.60
(0.15) (0.02)

30-day T-bill rate 0.84 2.46 -0.49 0.85
(0.05) (0.01)

AAA LT bond yield 0.84 3.19 -0.45 0.76
(0.08) (0.01)

Model-CC 0.84 0.37 -0.07 0.40
(0.02) (0.01)

Model-KPR 0.84 0.31 -0.07 0.39
(0.02) (0.01)

A different perspective appears when looking at aggregate regressions. Table 9 reports

regressions of the aggregate investment rate, defined as the ratio of aggregate investment to

the aggregate capital stock, on the current state for alternative specifications of the stochastic

discount factor. Consistent with the correlations reported in Table 8, the coefficients on At

18At ρA = 0.14, more differences appear.
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Figure 2: Aggregate Investment Rate with Non-convex Adjustment Costs.
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This figure shows aggregate investment rate, defined as aggregate investment divided
by the aggregate capital stock, and the aggregate shock for the model of non-convex
adjustment costs under different specifications of the stochastic discount factor for the
case of ρA = 0.84.

are all positive. But the magnitudes vary considerably across the SDF specifications. The

response of the aggregate investment rate is relatively muted in the fixed β and ‘HE’ models

compared to the portfolio based specifications. The coefficient on capital is negative for all

the models.

Figure 2 further highlights the importance of the stochastic discount factor for aggregate

investment in the baseline non-convex adjustment cost case. The figure shows simulated

aggregate investment rates (deviation from trend) series as well as simulated aggregate prof-

itability. As suggested by Table 8, the aggregate investment rate series respond very differently

to variations in aggregate productivity depending on the SDF.

From the top panel, the fixed β and HE cases are quite similar. This is to be expected

given that these two representations of the SDF are very similar. The aggregate investment

rate is procyclical for these cases.
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The bottom panel shows the aggregate investment rates for the two portfolio and the T-

bill rate versions of the SDF. These are strongly procyclical. These series are considerably

more volatile than either the fixed β or HE induced series. This is consistent with the relative

magnitude of the coefficients in Table 9.

5.2 Do Non-convexities Matter for Aggregate Investment?

In this section we explore the aggregate implications of a model with non-convex adjustment

costs. The section addresses two related questions. First, are the non-convexities at the plant-

level smoothed by variations in the empirically based SDF? Second, is there a specification of

the SDF such that smoothing occurs?

Based upon the contributions of Thomas (2002), Khan and Thomas (2003) and Khan

and Thomas (2008), the behavior of aggregate investment can be very well approximated by a

standard real business cycle (RBC) model even if investment is lumpy at the plant level. Our

interest here is to see whether those findings apply in our environment with: (i) a different

model of non-convexity at the plant-level and (ii) an empirically based SDF.

For this exercise, we search over the parameters of a log-linear representation of β̃(A,A′, K),

denoted ΘB, and well as a quadratic adjustment cost parameter, ν, to minimize the dis-

tance between the aggregate investment behavior of two models. The first, denoted ‘NC’ for

non-convex model, is the baseline model from Cooper and Haltiwanger (2006) solved with a

stochastic discount factor parameterized by ΘB. The second, denoted ‘QAC’, assumes plants

are homogeneous and have only quadratic adjustment costs parameterized by ν. The homo-

geneous plants in the QAC case utilize the same stochastic discount factor parameterized by

ΘB.

Given (ΘB, ν), each of the models can be solved and simulated using the same aggregate

shocks, creating two times series for aggregate investment. A goodness of fit measure, R2, is

computed between these two series. The procedure finds (ΘB, ν) to maximize the goodness

of fit.

If the goodness of fit is near 1, we conclude that there does exist a stochastic discount

factor that would make the NC model essentially identical to the QAC model. In that case,

complete smoothing is feasible. If the goodness of fit is not near 1, then smoothing does

not arise.19 This addresses the second question of the existence of a SDF that smooths the

non-convexities.

The first question is answered by comparing the parameters of ΘB against those found in

the data based models of the SDF. If these parameters are (close to) identical, then smoothing

in fact will occur with that representation of the SDF.

19This statement, of course, is conditional on searching in the class of log linear models.
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Table 10: Goodness of Fit: QAC vs Nonconvex Adjustment Costs

Model ΘB(A) ΘB(A′) ΘB(K) ν R2

Best Fit 0.39 -0.41 na 0.15 0.832
Best Fit 0.38 -0.72 0.096 0.075 0.868

Fixed β 0 0 0 0.187 0.723
HE 0.34 -0.46 na 0.194 0.559
Portfolio FF 4.60 -4.67 na 0.202 0.460
Portfolio Z 3.81 -3.80 na 0.285 0.522
30-day T-bill -0.25 na na 0.185 0.770
Model-CC 0.43 -0.64 0.09 0.157 0.656
Model-KPR 0.37 -0.59 0.09 0.195 0.673

The results are reported in Table 10. The first row reports estimates of ΘB imposing

the restriction that the coefficient on K is zero. The estimate from this exercise is ν = 0.15

with an R2 = 0.832.20 The parameter estimates of ΘB are 0.39 for the coefficient on At and

-0.41 for the coefficient on At+1. This implies a derivative of the expected SDF with respect

to A of 0.046. In comparison to the parameters of ΘB shown in Tables 1 and 3 for the HE

and portfolio-based specifications, this stochastic discount factor with the best smoothing

properties is more procyclical than the HE specification and less procylical than the other

specifications.

The second row of the table adds K to the model. The fit improves slightly and the

dependence on At+1 is larger in absolute value. Also the estimated quadratic adjustment cost

is lower.21

In both cases, the quadratic adjustment cost model does not fit the aggregate data pro-

duced by the model with non-convex adjustment costs very well. The R2 are all well below

unity. Perhaps a better fit would be obtained if the model of the SDF included moments of

the cross sectional distribution of (ki, εi). The significance of these moments would, by itself,

indicate that the nonconvexities have aggregate implications.

This leads to two conclusions. First, none of the SDF representations lead to complete

smoothing of aggregate investment: the best fitting ΘB differs from these representations.

Second, movements in the SDF do not smooth the lumpy investment: the fit of the best

model is significantly less than unity.

Using this procedure, we study the goodness of fit between the ‘QAC’ and ‘NC’ models

20This estimated quadratic adjustment cost and goodness of fit are close to those reported Cooper and
Haltiwanger (2006) for minimizing the distance between the NC model with a fixed β and the QAC model.
In that paper, the reported estimate is ν = 0.195 with an R2 = 0.859.

21A word of caution is in order. In contrast to the specification excluding K, the objective function in this
case is relatively insensitive to variations in parameters, indicating an identification problem.
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for each of the other specifications of the stochastic discount factor. This gives us a sense of

how much smoothing is induced by the various measure of the SDF, rather than the one that

produces the most smoothing. For each specification of the SDF, we simulate to create an

aggregate investment series and compare it against the series produced by the ‘QAC’ model

using the same SDF.22 The parameter ν is re-estimated for each of the SDF specifications.

Our results are summarized in the bottom part of Table 10.

Here we find that the stochastic discount factors generate less smoothing than a fixed

discount specification. This again reflects the procyclical nature of these representations of

the SDF. So while the estimation above demonstrates that there exists a specification of the

stochastic discount factor that generates more smoothing than in a model with a fixed discount

specification, the results in the table show that the ‘HE’ , ‘Portfolio FF’ and ‘Portfolio Z’

specifications generate considerably less smoothing. The exception is the 30-day T-bill, which

generates a better fit than the fixed β model.

6 A General Equilibrium Approach

Thus far our analysis has focused on empirically based representations of the stochastic dis-

count factor, rather than those emerging from a stochastic general equilibrium model. That

is, our model excludes the household optimization that would support the stochastic discount

factor uncovered from the data. This does not imply that our approach is inconsistent with a

general equilibrium structure. Rather, we focus on the response of plants to shocks given the

SDF process inferred from data.

The results stand in contrast to those of Thomas (2002) and the literature that followed.

The aggregate investment series produced by our model of non-convex adjustment costs and

the empirical based SDF are not well approximated by a quadratic adjustment cost model.

This section contrasts the empirically based representations of the SDF with those coming

from a RBC model, and does so for different models of adjustment costs. We first present a

model-based version of the stochastic discount factor and then turn to whether non-convexities

at the plant level are smoothed through aggregation and movements in the model-based

stochastic discount factor. We then move away from the Cooper and Haltiwanger (2006)

model of adjustment costs to study the aggregate implications of other specifications.

6.1 Model-Based SDF

We study three model based SDFs. Throughout the model-based approach, the utility function

is log(c). Table 11 reports results for three models. For each model, we use three different

22The entry in Table 10 for the ‘Portfolio FF’ case is the log-linear representation. The analysis uses the
non-linear representation from Table 2.
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values of ρA corresponding to those used in the empirical specification.

The first model, labeled ‘RBC’, is the standard real business cycle model, building from

King, Plosser and Rebelo (1988). It forms the basis of comparison in Thomas (2002) and the

work that followed.

But that model is based upon perfect competition while one interpretation of the curvature

in the profit function is market power. Hence we study a second model, labeled ‘Model-CC’ and

taken from Chatterjee and Cooper (1993), which studies a stochastic real business cycle model

with monopolistic competition. This environment is closer to the underlying market structure

assumed in Cooper and Haltiwanger (2006). The results for the Model-CC specification in

Table 11 come from a model with no entry and exit and a markup of 25 percent.23

The third model, labeled ‘Model-GK’, represents the Gourio and Kashyap (2007) speci-

fication of the model proposed by Thomas (2002). The relationship in Table 11 is only an

approximation of the true stochastic discount factor because the state space for the Gourio

and Kashyap (2007) model includes the cross-sectional distribution of capital vintages as well

as the capital stock and productivity shocks. Thus, the stochastic discount factor should, in

principal, depend on the cross-sectional distribution.

However, given that the real allocations from the Thomas (2002) model with lumpy in-

vestment are so close to the stochastic growth model, one would conjecture that the process

for the stochastic discount factor would be close to that of the RBC and/or Model-CC specifi-

cations. The coefficients shown in Table 11 for ‘Model-GK’, are estimated based on simulated

data from the model using the Gourio-Kashyap specification of the underlying parameters.

So while the model-based stochastic discount factor is a function of a larger set of state vari-

ables accounting for underlying heterogeneity, the simpler representation that includes only

productivity and the capital stock captures 99.1% of the variation in the stochastic discount

factor, as measured by the R2 in the regression.

For the RBC, model the return responds positively to both the current productivity shock

and the capital stock and negatively with future productivity for all values of ρA. The Model-

CC results are quite similar to those in the standard RBC model. The Model-GK results are

close to the RBC model, though the SDF is a bit more responsive to At.

As discussed earlier, a key issue is the sensitivity of the expected SDF to variations in

current productivity. From the model based results, the expected stochastic discount factor is

countercyclical for the ρA = 0.84 case and procyclical for ρA = 0.14. This response is more

countercyclical than in the empirical based results. Recall that for the portfolio based SDF,

the expected SDF was always procyclical and for the household Euler equation approach, the

SDF was countercyclical with a response of −0.04.

23The markup is based on a CES specification where the elasticity of substitution is set to 5 for both
consumption and capital goods.
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Table 11: Model-based relationship between state variables and discount factor

Model ρA At At+1 Kt
dEt[β̃(At,At+1,Kt)]

dAt

RBC 0.14 0.08 -0.39 0.09 0.031
0.84 0.37 -0.59 0.09 -0.121

Model-CC 0.14 0.09 -0.41 0.09 0.032
0.84 0.43 -0.64 0.09 -0.110

Model-GK 0.14 0.11 -0.35 0.10 0.062
0.84 0.43 -0.59 0.10 -0.066

These differences between data and model are consistent with earlier findings, such as

Beaudry and Guay (1996), on the inability of the standard RBC model to match interest rate

movements. Our interest here is not in these deviations between data and models per se but

rather their implications for aggregate investment.

The current capital stock enters into the SDF as well. For all models, the coefficient on

Kt is positive and about 0.1.

Figure 3 complements Figure 1 by showing the comovement of a model-based SDF, Model-

CC and two of the empirically based SDFs, HE and Portfolio FF, over the sample period.

Note that the model based SDF and that obtained from the household Euler equation are

quite similar and, as noted earlier, quite smooth and less procyclical than the Portfolio FF

specification.

6.2 Moments

It is useful to compare the moments from a model-based SDF with those from the empirically-

based representations. We use Model-CC and KPR for this comparison.

Given that the stochastic discount factor depends, in these models, on the current capital

stock, a law of motion for the aggregate capital stock is needed so that the optimizing plant

can predict future capital and thus discount appropriately in future periods. Denote this

function as K ′ = Γ(A,K). For the experiments using Model-CC, for example, the log linear

representation of Γ(A,K) from that solution is used to frame the expectations at the plant-

level:

K̂t+1 = 0.840Ât + 0.366K̂t. (9)

A comparable equation is used for the KPR based simulations.

The plant-level moments, as noted earlier, are largely independent of the SDF. This holds

for the model-based representations as well as shown in the last block of Table 4. Plant-level
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Figure 3: Model Based Stochastic Discount Factors
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This figure shows the relationship between the various measures of the stochastic
discount factor and aggregate productivity for two model based representations of the
SDF as well as the Portfolio FF case..

investment is increasing in A, with procyclical adjustments on both the extensive and intensive

margins. Further, with K in the state space for the SDF, investment is increasing in K as

well.

The investment regressions, reported in Table 5, are similar to those produced by the HE

specification. This the case for the response on the extensive margin as well, as in Table 7.

The magnitude of the response to variations in A, particularly on the extensive margin, is

much lower for the Model-CC and KPR cases compared to the other SDF representations.

From Table 8, the investment rate, as well as the extensive and intensive margins, are

correlated with aggregate productivity for the model-based SDF. The correlations are in line

with the other specifications of the SDF.

Figure 4 shows the aggregate investment rate series created by Model-CC, compared to

the ‘HE’ and ‘Portfolio FF’ specifications. The investment rate predictions from Model-CC

and the ‘HE’ cases are quite similar. In contrast, there is considerable volatility in investment

produced by the ‘Portfolio FF’ case because of the more procyclical SDF in this empirically

based specification.
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Figure 4: Aggregate Investment Rate with Non-convex Adjustment Costs.
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This figure shows aggregate investment rate, defined as aggregate investment divided
by the aggregate capital stock, and the aggregate shock for the model of non-convex
adjustment costs under different specifications of the stochastic discount factor for the
case of ρA = 0.84.

6.3 Does the Model Based SDF Smooth Plant-level Non-convex

Adjustment Costs?

In this section we return to the aggregate implications of a model with non-convex adjustment

costs to see how much smoothing is obtained from the model based SDF. The results are shown

in the last block of Table 10.

For this exercise, we find that the model-based stochastic discount factor does not smooth

aggregate investment. The goodness of fit is significantly below unity. That is, using the SDF

from either Model-CC or KRP does not imply that aggregate investment created in a model

with heterogenous plants and non-convex adjustment costs can be replicated by a model with

homogenous firms and quadratic adjustment costs.

6.4 Alternative Adjustment Costs

Thus far, the non-convexities at the plant-level are not smoothed. This section addresses the

robustness of our findings on the aggregate implications of the plant-level non-convexities by

looking at alternative adjustment costs.24

24We are grateful to Mike Elsby for discussions leading to the development of this section.
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To do so, we study the components of the adjustment costs estimated by Cooper and

Haltiwanger (2006) to determine which key factors in the lack of smoothing. It could be, for

example, that in a model with only irreversible investment, the plant-level lumpiness is indeed

smoothed.

Our findings are summarized in Table 12. Here we present the fit between a quadratic

adjustment cost model with homogenous plants, denoted ‘QAC’ as above, and various models

of adjustment costs. For each model of adjustment costs, we include three specifications of

the SDF.25

There are a couple of key points. First, the fit is not unity for any of the specifications of

the SDF joint with adjustment costs. This is even the case for the non-adjustment cost model.

The fit is best for the case of λ = 1 so that there are only quadratic adjustment costs and

irreversibility. In this case, both the HE and Model-CC specifications of the SDF generate a

fit near the best fit.

Table 12: Goodness of Fit: Alternative Adjustment Costs

Model ΘB(A) ΘB(A′) ΘB(K) ν R2

best fit 0.39 -0.41 na 0.15 0.832
CH
HE 0.34 -0.46 na 0.15 0.51
Portfolio FF 4.60 -4.67 na 0.15 0.41
Model-CC 0.43 -0.59 0.10 0.075 0.555
NO AC
HE 0.34 -0.46 na 0.15 0.386
Portfolio FF 4.60 -4.67 na 0.15 0.258
Model-CC 0.43 -0.59 0.10 0.075 0.636
λ only
HE 0.34 -0.46 na 0.15 0.520
Portfolio FF 4.60 -4.67 na 0.15 0.416
Model-CC 0.43 -0.59 0.10 0.075 0.478
λ = 1
HE 0.34 -0.46 na 0.15 0.841
Portfolio FF 4.60 -4.67 na 0.15 0.617
Model-CC 0.43 -0.59 0.10 0.075 0.847

This table shows the fit between the quadratic adjustment cost model and alternative
models of adjustment costs for three representations of the stochastic discount factor.
This analysis assumes ρA = 0.84.

25The table does not yet include the best-fit for each specification of adjustment costs.
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7 Conclusion

This paper studies the implications of fluctuations in the SDF on plant-level and aggregate

investment. In particular, we highlight how alternative specifications of the SDF influences

the response of investment to variations in aggregate productivity. The smoothing effects of

interest rates depend on the determination of that process.

If, as we have emphasized here, the state dependent discount factor is determined from

the data, then there is little smoothing of investment due to SDF movements. In particular,

the data based measures of the SDF do not smooth the non-convexities.

From this analysis, it appears that investment is very sensitive to the SDF. That is,

relatively small changes in the response of the SDF to, say, variations in productivity, can

have significant effects on aggregate investment.

As this work proceeds, we will turn to an analysis of monetary policy which presumably

underlies the interest rate process uncovered in the data. We can use our model to see how

alternative monetary policies can influence investment behavior. Our results indicate an im-

portant channel for monetary policy: influencing the amount of plant-level lumpy investment

that is smoothed through interest rate movements. When the lumpiness is not smoothed, the

impact of monetary policy can itself be state-dependent.
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8 Appendix: TFP process

The measure of total factor productivity used in this analysis is constructed as a Solow residual

following Stock and Watson (1999). The calculation includes nonfarm real GDP (source:

BEA), nonfarm payroll employment (source: BLS), real nonresidential private fixed capital

stock (source: BEA and authors’ calculations), and a labor share of 0.65. The data sample is

annual frequency from 1948 to 2008.

The profitability shock, denoted At, is calculated as a residual assuming a Cobb-Douglas

production function using raw data on output and factor inputs. Our analysis is focused on

business-cycle dynamics, so here we abstract from long-term growth in TFP by detrending

At. Various approaches have been used in the literature for detrending, so we employ three

different detrending specifications to examine the sensitivity of the results. The first approach

focuses specifically on business cycle frequencies (between 3 and 8 years). For this case, we

detrend using the HP filter with the λ parameter set to 7, which closely approximates a band-

pass filter on annual data. The second approach is to remove a linear trend from the data,

which we approximate by setting the HP filter parameter for λ to 100,000. The third approach

uses an intermediate value of λ that is commonly used to filter annual data, λ = 100.

The parameters of the TFP process are estimated based on a log-normal AR(1) specifica-

tion.

logAt = ρA logAt−1 + εA,t, εA ∼ N(0, σ2
εA

) (10)

Estimates of the shock process parameters are displayed in Table 13 for the three different

detrending specifications. The estimate of serial correlation in TFP, ρA, is very sensitive to

the detrending specification. If focusing on business cycle frequencies, λ = 7, there is little

serial correlation in detrended TFP. On the other hand, detrended TFP has a much higher

serial correlation when approximating the removal of a simple time trend (λ = 100, 000).

We consider the process parameter estimates from the two extreme detrending specifications,

(λ = 7; 100, 000), in our analysis to examine the role of the detrending assumption in modeling

the relationship between interest rates and investment decisions.

Table 13: Parameter estimates for Solow-residual technology process

λ ρA σεA
7 0.14 0.012

100 0.45 0.015
100000 0.84 0.018
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