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Abstract

This paper considers an economy where players have heteroge-

neous beliefs about the uncertain consequences of their collective

actions. The roles of beliefs and preferences are examined, fol-

lowed by a detailed investigation of the impacts of information in

the presence of belief heterogeneity and ambiguity. In particular,

it is shown that new information can worsen the free-riding prob-

lem, even when it better reflects the correct risk than the players’

beliefs. When beliefs are highly heterogeneous, adding informa-

tion noise can be Pareto-improving, for which the degree of risk

and ambiguity aversion play asymmetric roles.
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1 Introduction

In this paper, we develop a simple model of public bads where players
have heterogeneous beliefs about the consequences of their collective
actions. In our model, players can reduce the negative impact of public
bads at a private cost. While the private cost is certain, the damage
from public bads is subject to deep uncertainty. Uncertainty exists not
only in the sense that the damage has a probability distribution, but
also in the sense that the distribution itself is unknown. In other words,
players are faced with ambiguity in terms of what would happen in
the absence of action against public bads. The difficulty in estimating
the true distribution of damage leads to disagreements among players
about the risk of not taking action. Such heterogeneous beliefs result in
the uncoordinated actions of players, which might be a source of addi-
tional inefficiency. The availability of public information and the partial
resolution of ambiguity that follows could then mitigate the inefficiency
by facilitating the convergence of beliefs.

Our model encompasses various problems of public-bad nature. Per-
haps the most relevant application would be global environmental prob-
lems, such as climate change. Although recent decades have shown
considerable progress in the scientific basis of climate change (IPCC,
2007), state-of-the-art knowledge has yet to provide a clear picture of
the possible consequences of increasing carbon concentration in the at-
mosphere. For instance, an important metric called climate sensitivity,
which measures the change in temperature due to a doubling of car-
bon concentration, is known to be inherently uncertain (Roe and Baker,
2007). While a number of scientific studies have estimated the possible
values of this important parameter, the proposed risks are not neces-
sarily in agreement with each other (Meinshausen et al., 2009). On one
hand, this implies that addressing climate change involves decision-
making under ambiguity.

The lack of clear-cut consensus among scientists, on the other hand,
allows people to have different beliefs. It is left to the subjective inter-
pretation of individuals as to how credible each of the proposed risk
estimates is. Some people choose to be optimistic about the impacts
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Figure 1: Percentage of respondents who consider climate change to be
a threat (Pelham, 2009).

of climate change, arguing that the climate system is not as sensitive
to human-induced carbon emission as is predicted by some scientific
studies. Others are decidedly pessimistic, believing that catastrophic
scenarios are more likely than predicted by optimistic risk estimates. In
fact, according to a survey conducted in 127 countries, the public’s per-
ception of climate change significantly varies across countries (Pelham,
2009). For example, more than 90% of the respondents in Japan believe
that climate change is caused by human activities. In the United States,
on the other hand, less than one in two people think that the problem
is human-induced. In France, 75% of people perceive climate change as
a serious threat, whereas the percentage sharply drops to only 21% in
China. Figure 1 illustrates the diversity of climate-related risk percep-
tion.

The discrepancy in beliefs consequently creates an obstacle to col-
lective risk prevention. Since the cause and consequence of public
bads stretch across different players, the actions of independent play-
ers should be coordinated if the problem is to be efficiently addressed.
However, when facing the threat of climate change, individual coun-
tries react in quite different ways. Countries in the European Union, for
example, are relatively more willing to curb carbon dioxide emission.
In the United States, on the other hand, the consequential value of low-
ering carbon emissions is less appreciated. Some developing countries,
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such as China and India, are even more reluctant to engage in mitiga-
tion activities. These uncoordinated actions at least partly reflect the
heterogeneity in their beliefs, since the expected benefit of carbon mit-
igation is affected by their subjective beliefs. Therefore, heterogeneity
of beliefs adds inefficiency of a different kind on top of the externality
associated with public bads.

A question of interest is whether new information can mitigate the
inefficiency by encouraging an update of subjective beliefs of players.
In the context of climate change, continuous efforts have been made to
resolve the ambiguity in climate science and, as a result, new findings
about the true risks of climate change become available from time to
time. These occasional findings, if integrated into players’ beliefs, could
have a significant influence on the formation of domestic and interna-
tional climate policy, as exemplified by the series of influential reports
of the Intergovernmental Panel on Climate Change (IPCC). The impact
of new information is, of course, dependent upon a number of factors.
It depends on how players initially perceive the risks and what kind
of information becomes newly available. The players’ preference with
respect to risk and ambiguity also plays a role. With our framework,
these issues can be investigated in a tractable way.

We do not explicitly model how the subjective and possibly incorrect
beliefs emerge from ambiguity. Mounting evidence, however, identifies
a set of psychological biases that distort people’s beliefs in various eco-
nomic situations. The experimental evidence summarized by DellaVi-
gna (2009), for instance, suggests that people have systematically incor-
rect beliefs and most people underestimate the probability of negative
events. More recently, Hommes (2012) reported the persistent emer-
gence of irrational and heterogeneous beliefs in laboratory experiments.
Despite the existing evidence and its potentially important implications,
the role of heterogeneous beliefs has only been investigated in a limited
number of economic models1. In particular, the consideration of strate-
gic incentives is largely absent in the analysis of heterogeneous beliefs.

1There is literature that studies the implications of heterogeneous beliefs in a fi-
nancial market (Harrison and Kreps, 1978; Varian, 1985; Detemple and Murthy, 1994).
The role of ambiguity has also been investigated in this literature (Condie, 2008).
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Following the seminal work of Samuelson (1954), a myriad of pa-
pers have studied the issue of strategic incentives associated with public
goods and public bads. While the implication of uncertainty to public
good provision is not generally straightforward, the existence of un-
certainty is known to affect the free-riding incentive of players under
certain circumstances (Gradstein et al., 1992, 1993). Sandler et al. (1987),
for instance, showed that the players’ voluntary contribution to public
good would increase in the presence of uncertainty if the utility func-
tion has a certain property regarding its third derivative. In relation to
ambiguity, Eichberger and Kelsey (2002) examined the effect of ambi-
guity in symmetric games with externalities and found that ambiguity
will either increase or decrease the equilibrium strategy, depending on
the nature of the strategic interaction. More recently, Bramoullé and
Treich (2009) examined the effect of uncertainty on pollution emissions
and welfare in a strategic context. They found that emissions are always
lower under uncertainty, which is a demonstration of risk-reducing con-
siderations. In this strand of literature, however, the possibility of het-
erogeneous beliefs has not been taken into account.

Our analysis also complements the growing literature on the value
of public information. Based on the model of a beauty contest, Mor-
ris and Shin (2002) showed that disseminating public information can
decrease social welfare when players receive a private signal in addi-
tion to publicly observable information. Since this pioneering work, the
welfare implications of public information have been vigorously exam-
ined by Angeletos and Pavan (2004), Cornand and Heinemann (2008),
and James and Lawler (2011), among others. Since our model does
not involve private information, the analysis of the present paper is not
directly comparable to these other studies. Unlike the existing stud-
ies, however, we clarify how heterogeneous priors are translated into
equilibrium behavior and identify in what condition the value of pub-
lic information becomes negative under ambiguity. In this regard, our
paper is related to the recent contribution of Koufopoulos and Kozhan
(2014), who presents an example where an increase in ambiguity leads
to a strict Pareto improvement in insurance markets.

The structure of the paper is as follows. Section 2 is devoted to the
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description of the model. Based on a fairly general framework, Section 3
examines characteristics of the equilibrium. Section 4 demonstrates how
the framework presented in this paper can be used to investigate prob-
lems of interest, such as the value of information. To this end, we focus
on a particular class of models where risk and beliefs are both rep-
resented by normal distributions. This class of models, together with
the exponential specification of utility function, allows us to solve the
equilibrium in a closed form.

We then show that the arrival of new information can worsen the
free-riding problem, both in terms of the amount of public bads and
the level of individual welfare. This happens even if the newly available
information more accurately reflects the correct risk of public bads than
the players’ beliefs. We also consider the situation where an authori-
tative scientific community can add some information noise before the
news (i.e., scientific findings) becomes available to players. It is shown
that adding information noise will never mitigate the public-bad nature
of the problem if the heterogeneity only exists in the mean of priors.
When the beliefs are highly heterogeneous, however, a certain amount
of information noise can be Pareto-improving. Section 5 concludes.

2 Model

This section explains the structure of the model and introduces its ba-
sic assumptions. To establish the context, we interpret the model as
representing a global environmental problem such as climate change.

2.1 Basic game

Our stylized economy consists of n ≥ 2 identical players. They interact
with each other only through a negative production externality. Let yi ∈
R+ be the amount of output produced by player i and e(yi) ∈ R+ be the
level of pollution associated with output yi. For the sake of simplicity,
we abstract the production process and assume that the output ȳ > 0
is exogenously given and identical across players. Accordingly, we take
the baseline level ē := e(ȳ) of pollution as given.
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The amount of pollution is reduced by abatement ai ∈ R+, which is
chosen independently by each player. The abatement effort requires a
cost C(ai) at a local level. The cost function satisfies C′ := ∂C/∂ai > 0,
C′′ := ∂2C/∂a2

i > 0, and C(0) = 0. The net emission E at the aggregate
level is then given by E = ∑n

i=1(ē − ai) = nē − A, where A := ∑n
i=1 ai.

The aggregate net emission determines the damage D(E; β) from pollu-
tion, for which we assume D′ := ∂D/∂E > 0 and D′′ := ∂2D/∂E2 ≥ 0.
Notice that D is influenced by the parameter β. This parameter is meant
to be a proxy of climate sensitivity. The damage D(E; β) and marginal
damage D′(E; β) of pollution are both increasing in β. The damage
and the abatement costs are subtracted from output ȳ, the remainder
of which is consumed by the players. Consumption xi of player i is
therefore determined by

xi = ȳ − D(E; β)− C(ai). (2.1)

We assume ȳ is sufficiently large so that xi > 0 and E > 0 are satis-
fied at equilibrium. To ensure an interior solution, it is also assumed
that D′(nē; β) > C′(0) and n−1C′(ē) > D′(0; β). When there is no un-
certainty, the utility of player i is then determined by u(xi) for some
strictly increasing and strictly concave function u : R+ → R.

2.2 Uncertainty and decision making

The true value of β is unknown. Let B ⊂ R be the set of all possible val-
ues of β and ∆(B) be the set of all probability density functions defined
over B. If the density function of β is known to be f ∈ ∆(B), then the
expected utility of player i is given by

E[u(xi)] =
∫

B
u(ȳ − D(E; β)− C(ai)) f (β)dβ. (2.2)

As mentioned in the introduction, however, the value of β is uncertain,
not only in the sense that the parameter has a probability distribution,
but also because the distribution itself is not known. To be more specific,
we restrict ourselves to a particular case of ambiguity where the value
of β has been estimated by several scientific studies and a variety of
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possible distributions of β have been proposed. Let Θ ⊂ R be the set
of all such studies. We denote by f (·|θ) ∈ ∆(B) the probability density
function proposed by a particular scientific study θ ∈ Θ.

To players, there is no a priori information available. Then, players
subjectively form beliefs about the relative credibility of each of the
possible distributions. Denote by gi ∈ ∆(Θ) the subjective prior of
player i defined over the set Θ of all proposed distributions. Notice
that here we divert from the standard assumption of common prior
and allow for the possibility of priors being heterogeneous. Moreover,
we assume that the profile {gi}n

i=1 ∈ ×n
i=1∆(Θ) of subjective priors is

common knowledge. In other words, players are assumed to agree to
disagree on the reliability of each scientific study. The heterogeneity
does not come from asymmetric information, but rather from intrinsic
differences in how to view the world. Otherwise, the priors would be
necessarily identical, due to the combination of the common knowledge
assumption and the rationality of players.

In the absence of additional information, players choose their abate-
ment level based on their own beliefs, given the knowledge of the set
{ f (·|θ)}θ∈Θ of distributions and the profile {gi}n

i=1 of subjective priors.
To formalize this process, we follow Klibanoff et al. (2005) and assume
that players’ decision utility Vi under ambiguity is given by

Vi :=
∫

Θ
ϕ (E [ui|θ]) gi(θ)dθ with E [ui|θ] :=

∫
B

u(xi) f (β|θ)dβ, (2.3)

where ϕ : R → R is a strictly increasing and concave function. With
this representation, players’ attitudes towards risk and ambiguity can
be separately incorporated. Just as in the case of the standard expected
utility model, the strength of risk aversion is measured by the concavity
of function u. Similarly, the strength of ambiguity aversion is measured
by the concavity of function ϕ.

2.3 Information structure

The true value of parameter β is inherently unknown and will continue
to be so in the foreseeable future, such as in the case of climate sen-
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sitivity. We assume, on the other hand, that there is a ‘correct’ risk
assessment of β. In other words, there is the unique scientific study
θ∗ ∈ Θ, such that the corresponding risk estimate f (·|θ∗) correctly cap-
tures the inherent risk of β. Although it is unknown which scientific
study provides the correct risk estimate, new information about index
θ∗ becomes available through occasional scientific discoveries. This new
information is modeled as a signal µ∗ ∈ Θ, the value of which is real-
ized according to

µ∗ = θ∗ + η, where η ∼ N(0, σ2
∗). (2.4)

The variance σ2
∗ ≥ 0 represents the uncertainty remaining in the state-

of-the-art scientific knowledge in pinning down the index θ∗.
Suppose, for the moment, that the signal-generating process (2.4)

is entirely known to players. Once the signal µ∗ is observed, play-
ers can update their belief based on the Bayes’ rule. The posterior
gi(·|µ∗) ∈ ∆(Θ) is then given by gi(θ|µ∗) ∝ L(µ∗|θ)gi(θ), where L is
the likelihood function of normal distribution with mean µ∗ and vari-
ance σ2

∗ . Notice that the posterior gi(·|µ∗) is irrational in the sense that
it is influenced by the purely subjective priors, even after the objectively
reliable information becomes available. This reflects the behavioral evi-
dence that players have systematically biased beliefs (DellaVigna, 2009).

2.4 Equilibrium and welfare

Since both the priors and posteriors are common knowledge, the model
is essentially a game with complete information. Thus, the standard
Nash equilibrium is sufficient as the solution concept. To be more pre-
cise, we define the equilibrium by the action profile a := (ai)

n
i=1, such

that
ai ∈ argmax

ai

Vi(ai, a−i) given a−i := (aj)j ̸=i (2.5)

for all i.
The objective function Vi is defined as in (2.3), whose dependence on

the action profile is now made explicit. The prior gi is replaced by the
posterior gi(·|µ∗) when the signal µ∗ is received by players. To distin-
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guish the equilibria before and after the information becomes available,
we denote by ã := (ãi)

n
i=1 the equilibrium action profile corresponding

to signal µ∗.
Since the correct risk of β is represented by f (·|θ∗), the players’ wel-

fare (as opposed to decision utility) is given by

Wc
i (a) := ϕ(E [ui|θ∗]) with E [ui|θ∗] :=

∫
B

u(xi) f (β|θ∗)dβ. (2.6)

The index θ∗, however, is not known. The only reliable information
about θ∗ is the realized value of µ∗. Thus, we evaluate the players’ wel-
fare based on the objectively-determined expected value of Wi, namely,

Wi(a) := E[Wc
i (a)|µ∗] =

∫
Θ

ϕ (E [ui|θ]) g∗(θ)dθ, (2.7)

where g∗ ∈ ∆(Θ) is the density of θ∗, conditional on µ∗. Notice that g∗ is
the density function of a normal distribution whose mean and variance
are given by µ∗ and σ2

∗ , respectively. We call g∗ the rational belief in
the sense that it purely represents the objective information about the
value of θ∗. Also worth noting is that the welfare function is identical
across the different players. Since the cost function is strictly convex,
efficiency therefore requires that the abatement level be the same for all
players. Concavity of u and ϕ implies that there exists a unique level
of efficient aggregate abatement, which we denote by A∗. The existence
and uniqueness of such A∗ is discussed in Appendix B.1. The efficient
level of individual abatement is given by a∗ = A∗/n.

3 General characteristics of equilibrium

Let us first focus on the case where the new information is not yet
available to players. At equilibrium, the first-order condition implies

C′(ai) =
∫

B
D′(E; β) fi(β)dβ. (3.1)
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Here, fi is the density function defined by

fi(β) :=
∫

Θ
f̂i(β|θ)ĝi(θ)dθ, (3.2)

where

f̂i(β|θ) ∝ u′(xi) f (β|θ), ĝi(θ) ∝ ϕ′(E[u(xi)|θ])E[u′(xi)|θ]gi(θ). (3.3)

Notice first that the left-hand side of (3.1) is the marginal abatement
cost. The right-hand side is a weighted average of the marginal abate-
ment benefit. If the players’ preference is neutral, both in terms of risk
and ambiguity, then the density fi in (3.2) coincides with the pure sub-
jective risk f c

i :=
∫

Θ f (β|θ)gi(θ)dθ. In this case, (3.1) simply means that
players choose their abatement effort so that the marginal abatement
cost and the purely subjective expected marginal benefit are equalized.

However, when players are not risk or ambiguity neutral, the ex-
pected marginal benefit on the right-hand side of (3.1) is ‘distorted’. It
is distorted in the sense that the expectation is not taken based on the
pure subjective risk f c

i , but instead based on some other density fi. The
density fi reflects the players’ subjective risk assessment, just like the
pure subjective risk f c

i . However, it is adjusted according to their pref-
erence regarding risk and ambiguity, as is seen in (3.3). This suggests
that in order to characterize the equilibrium, we should clarify how be-
liefs and preferences are translated into the adjusted subjective risk fi.

To further characterize the equilibrium, we impose a certain struc-
ture to the set of scientific risk estimates.

Assumption 1. The family { f (·|θ)}θ∈Θ of probability density functions
has a strict monotone-likelihood-ratio property. Namely,

f (β′|θ′) f (β|θ)− f (β′|θ) f (β|θ′) > 0 ∀β′ > β, ∀θ′ > θ. (3.4)

To interpret this assumption, notice that under Assumption 1, θ′ > θ

implies that f (·|θ′) strictly dominates f (·|θ) in the sense of first-degree
stochastic dominance. In particular, since D(E; β) is strictly increasing
in β,

∫
B D(E; β) f (β|θ′)dβ >

∫
B D(E; β) f (β|θ)dβ for any E. In other
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words, scientific study θ′ is unambiguously more pessimistic than θ in
terms of the expected damage from pollution. Thus, what is required
by Assumption 1 is that the set of available scientific risk estimates can
be ranked from the most optimistic to the most pessimistic one.

With this interpretation in mind, we can then characterize a belief
as being more optimistic when it puts relatively heavier weight on the
scientific studies with smaller index numbers. Our first proposition
shows that optimistic subjective beliefs are, quite intuitively, translated
into a weaker willingness to abate pollution.

Proposition 1. If
gi(θ)gj(θ

′)− gi(θ
′)gj(θ) > 0 (3.5)

for all θ′ > θ, then f j strictly first-degree stochastically dominates fi and
therefore, player i abates less than player j ̸= i at equilibrium.

Proof. See Appendix A.2.

If condition (3.5) is satisfied, then the expected damage and the expected
marginal damage of pollution for a given level of abatement effort are
smaller for player i than for player j. In other words, player i is unam-
biguously more optimistic than player j. We should mention that this
is a sufficient condition, but not a necessary condition, for one player
to be less willing to abate pollution than the other. In fact, once the
functional forms are specified, the relationship between the equilibrium
abatement effort and beliefs can be characterized based on a much less
restrictive condition.

Since there exists the production externality in the economy, the
equilibrium abatement effort is likely to be insufficient relative to the
efficient level A∗. This might not be the case, of course, when some
or all of the players have highly pessimistic priors. Such an unrealistic
case, however, is not of interest in this study. To exclude such cases, we
restrict our analysis to the set of ‘realistic’ beliefs. To be formal, denote
the collection of all belief profiles by G(g∗) ⊂ ×n

i=1∆(Θ), such that the
corresponding equilibrium outcome is insufficient.

Proposition 2. The collection G(g∗) is nonempty for any g∗ ∈ ∆(Θ). In
particular, if gi = g∗ for all i, then the equilibrium abatement corresponding
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to this belief profile is insufficient in the sense that A < A∗.

Proof. See Appendix A.3.

Proposition 2 shows that even if every player has the rational belief,
the equilibrium outcome is still insufficient (and thus inefficient). This
is due to the existence of externality. As a result, G(g∗) is always
nonempty. Hence, it makes sense to restrict our attention to only the
belief profiles in G(g∗).

Proposition 2 indicates that inefficiency arises at equilibrium as long
as the profile of beliefs is contained in a neighborhood of g∗. In par-
ticular, when the risk of pollution-induced damage is underestimated
relative to the rational belief, the outcome is even less efficient than in
the case of the rational belief being shared by every player. Consider,
for example, a hypothetical scenario where all players have an identical
belief represented by some g ∈ ∆(Θ). Combining Propositions 1 and 2
yields the following result.

Proposition 3. If
g(θ)g∗(θ′)− g(θ′)g∗(θ) > 0 (3.6)

for all θ′ > θ, then the equilibrium outcome is Pareto-dominated by the case
where every player has the correct belief as their prior.

Proof. See Appendix A.4.

In light of Proposition 1, condition (3.6) means that players underesti-
mate the risk in the sense that their homogeneous belief g puts heavier
weight on relatively optimistic risk estimates than the rational belief g∗
does. In such a case, the equilibrium abatement effort will be far from
sufficient and the players will end up with a lower-than-possible level
of welfare.

When beliefs are heterogeneous, on the other hand, inefficiency of
a different kind arises, in addition to the existence of externality and
the underestimation of risk. As Proposition 1 indicates, heterogeneity
in beliefs is likely to be translated into heterogeneity of behaviors at
equilibrium. Such uncoordinated behaviors, combined with the con-
vexity of cost function, lead to inefficient abatement efforts at the ag-
gregate level. To see this, let (ai)

n
i=1 be the equilibrium abatement,
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such that aj ̸= ai for some j ̸= i. Then the Jensen’s inequality shows
n−1 ∑n

i=1 C(ai)− C(A/n) =: ∆C > 0 and for each i

xi = ȳ − D(E; β)− C(ai) < ȳ − D(E; β)− C(A/n) + ∆xi (3.7)

for any realization of β, where ∆xi := C(A/n) − C(ai) + ∆C. Notice
that (∆xi)

n
i=1 is a feasible reallocation scheme because ∑n

i=1 ∆xi = 0.
Hence, by choosing the average abatement level A/n instead of ai and
reallocating consumption according to (∆xi)

n
i=1, all players will be better

off.
Assuming that the equilibrium abatement is insufficient, the ques-

tion of importance is whether or not new scientific discoveries can facil-
itate the players’ abatement efforts. The observations above suggest that
the new information could play a positive role in reducing the existing
inefficiency. In particular, when the risk is underestimated and/or there
is a discrepancy in priors, then a public signal containing some informa-
tion of the correct risk estimate would have a desirable consequence by
encouraging the update of otherwise optimistic priors and expediting
the convergence of heterogeneous beliefs.

As we will see in the next section, however, the story is not that sim-
ple. Even if players underestimate the risk of pollution-induced damage
and there exists heterogeneity in their priors, there can still be a case
where new information unambiguously worsens the situation. This is
largely due to the fact that once new information becomes available, the
situation becomes less ambiguous, which in turn weakens the incentive
of risk/ambiguity-averse players to reduce pollution. Therefore, what
plays a key role here is the preference for risk and ambiguity aversion.

To understand how the players’ preference is translated into their
equilibrium behavior, let us first focus on f̂i in (3.3). Recall that f (·|θ)
is the objective probability density proposed by a particular scientific
study θ. The expression (3.3) indicates that this objective risk estimate
is not directly used in evaluating the expected marginal benefit. Before
being applied to the final evaluation of expected damage, it is ‘reinter-
preted’ by players as f̂i(·|θ) based on their risk preference. The follow-
ing lemma clarifies how f̂i and f are related to each other.
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Lemma 1. For each θ ∈ Θ, f̂i(·|θ) strictly dominates f (·|θ) in the sense of
first-degree stochastic dominance if and only if u is strictly concave.

Proof. See Appendix A.5.

Lemma 1 states that in choosing their abatement efforts, risk avert-
ers reinterpret the scientific risk estimates in a pessimistic way. The
reinterpretation is pessimistic in the sense that

∫
D(E; β) f̂i(β|θ)dβ >∫

D(E; β) f (β|θ)dβ, namely, the expected damage is conceived as larger
than it was originally meant to be for each θ. The converse is true for
players with a risk-loving preference.

Similarly, the expression ĝi in (3.3) indicates that when players ag-
gregate the set of reinterpreted risks { f̂i(·|θ)}θ∈Θ, they do not directly
use their own belief gi, but instead use their preference-adjusted belief
ĝi. In other words, they ‘update’ their belief gi into ĝi in accordance with
their risk and ambiguity attitude. How this update is done is clarified
by the following lemma.

Lemma 2. If u and ϕ are concave and at least one of the concavities is strict,
then ĝi strictly dominates gi in the sense of first-degree stochastic dominance.

Proof. See Appendix A.6.

If ĝi first-degree stochastically dominates gi, it roughly means that the
former gives larger weight to relatively more pessimistic risk estimates
than the latter does. Hence, what is indicated by Lemma 2 is that players
behave as if they were more pessimistic than they actually are when
their preference is risk or ambiguity-averse.

Combining these lemmas yields the following proposition.

Proposition 4. Suppose u is strictly concave and ϕ is concave. Then, the
preference-adjusted subjective risk fi strictly first-degree-stochastically domi-
nates the pure subjective risk f c

i . As a result, the aggregate abatement at equi-
librium is greater than in the case of risk- and ambiguity-neutral preference.

Proof. See Appendix A.7.

Moreover, as the next proposition shows, the players’ preference for
stronger ambiguity aversion is translated into a greater abatement in-
centive.
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Proposition 5. The more ambiguity averse that players are, the larger the
aggregate abatement is at equilibrium.

Proof. See Appendix A.8.

What is suggested by Propositions 4 and 5 is that risk- and ambiguity-
averse players have an extra incentive to engage in pollution abatement
as long as the situation is ambiguous. Then, reducing the existing am-
biguity in any way weakens the players’ abatement incentive. If the
publication of new scientific information significantly reduces the exist-
ing ambiguity, then the weakening of abatement incentive that follows
will at least partially offset the positive effects of the scientific discov-
ery. When the degree of ambiguity aversion is sufficiently large, this
side effect of public information might even outweigh all of its positive
impacts combined. As a consequence, the society could end up with
lower welfare than in the absence of the new scientific information.

When and in what condition does such a paradoxical consequence
follow from newly available information? Clarifying these conditions
would have profound policy implications and it is this task to which we
turn in the next section.

4 Value of information

In this section, we focus on a class of models where risk and beliefs are
both represented by normal distributions. This class of models, together
with exponential specification of utility functions, allows us to solve the
equilibrium in a closed form.

4.1 Specifications

We henceforth specify the functional forms of u and ϕ as

u(x) := −1
α

e−αx and ϕ(u) := − 1
1 + ξ

(−u)1+ξ (4.1)

for some α > 0 and ξ > −1. Notice that α is the index of constant ab-
solute risk aversion and ξ corresponds to the index of constant relative
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ambiguity aversion. Also, for analytical tractability, we assume that the
damage and cost functions are of the forms

D(E; β) := βδE and C(ai) :=
ν

2
a2

i (4.2)

for some constants δ, ν > 0.
Furthermore, we focus our attention to the case where the proposed

risks and the players’ priors are both well represented by normal distri-
butions. To be more precise, f (·|θ) is the density of normal distribution
N(θ, σ2

u) for some σ2
u > 0. Note that this satisfies Assumption 1. With

this specification, θ can be regarded as the point estimate of β provided
by scientific study θ. The variance σ2

u reflects an inevitable inaccuracy
associated with the estimation procedure commonly used in the scien-
tific literature. Prior gi is represented by the density of normal distri-
bution N(µi, σ2

i ) for some µi > 0 and σ2
i > 0. The mean µi ∈ Θ can be

interpreted as the index of the most reliable scientific study for player
i. The variance σ2

i captures the lack of confidence in player i’s prior. A
profile of priors is represented by Γ := {µi, σ2

i }n
i=1.

A bit of tedious computation then yields

Vi(a) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)vi(a), vi(a) := ȳ − δµiE − δ2

2
γiE2 − ν

2
a2

i ,

(4.3)
where γi := α

[
σ2

u + (1 + ξ)σ2
i
]
. The derivation is given in Appendix B.2.

Note that γi summarizes player i’s attitude towards uncertainty (σ2
u)

and ambiguity (σ2
i ), the latter of which is magnified by the index of

ambiguity aversion, ξ.
The first-order condition then boils down to

ai = ρµi + Eρδγi, (4.4)

where ρ := δ/ν > 0. This implies that

A =
n−1

n−1 + ρδγ̄
nρµ̄ +

ρδγ̄

n−1 + ρδγ̄
nē, E =

ē − ρµ̄

n−1 + ρδγ̄
, (4.5)

where µ̄ := n−1 ∑i µi and γ̄ := n−1 ∑i γi. The equilibrium level of
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abatement is therefore

ai = ρµi +
ē − ρµ̄

n−1 + ρδγ̄
ρδγi. (4.6)

The right-hand side of (4.6) is an increasing function of µi. Hence, just
as expected from Proposition 1, the more pessimistic players are, the
more stringent their abatement efforts would be. Also, as predicted by
Propositions 4 and 5, the right-hand side of (4.6) is an increasing func-
tion of α, ξ, and σ2

i . Players become more willing to reduce pollution
in the presence of risk and ambiguity. A relatively less confident player
consequently bears a relatively large share of the global effort to reduce
pollution.

A similar computation yields

Wi(a) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)wi(a), wi(a) := ȳ − δµ∗E − δ2

2
γ∗E2 − ν

2
a2

i ,

(4.7)
where γ∗ := α

[
σ2

u + (1 + ξ)σ2
∗
]
. Hence, the efficient level A∗ of aggre-

gate abatement is uniquely determined by

A∗ =
n−2

n−2 + ρδγ∗
n2ρµ∗ +

ρδγ∗
n−2 + ρδγ∗

nē (4.8)

and the corresponding individual abatement effort is a∗ = A∗/n. A
brief inspection reveals that A < A∗, even if µi = µ∗ and σ2

i = σ2
∗ for all

i. However, without any restriction on the set of possible priors, every
outcome, including the efficient one, can be supported as an equilib-
rium. In what follows, we restrict our analysis to a set of reasonable
priors. In particular, let us assume that the risk of climate change is
underestimated, in the sense that µi < µ∗ and σ2

i < nσ2
∗ for all i. This

ensures that the equilibrium abatement level satisfies A < A∗. In this
case, publishing new scientific findings apparently makes sense.

4.2 Impact of new information

The question of particular interest is whether the new information µ∗

mitigates or amplifies the free-riding problem. More importantly, what
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is the welfare implication of the new information? The observation in
the preceding section suggests that there might be a case where new
information actually harms the society. We say that the value of infor-
mation is negative if every player is worse off after players obtain the
information. Similarly, we say that the value of information is positive if
every player is better off under the updated beliefs. Below, we clarify a
condition in which the value of information is unambiguously negative.

Before presenting the result, we note that once the signal µ∗ is ob-
served, the players’ posterior gi(·|µ∗) is given by a normal distribution
whose mean µ̃i and variance σ̃2

i are given by

µ̃i =
σ2
∗

σ2
∗ + σ2

i
µi +

σ2
i

σ2
∗ + σ2

i
µ∗ and σ̃2

i =
σ2
∗

σ2
∗ + σ2

i
σ2

i , (4.9)

respectively. These expressions already indicate that the new informa-
tion has three distinct effects. First, the mean of the posterior gets closer
to the mean of the rational belief, in the sense that |µ̃i − µ∗| < |µi − µ∗|.
This rationalization effect helps improve efficiency because the risk is un-
derestimated in the priors. The second and closely related effect is the
convergence effect. Since the beliefs are updated based on the common
public information, the posteriors are less heterogeneous than the pri-
ors. For instance, in the extreme case where the precision 1/σ2

∗ of the
new information is infinite, the players’ posteriors completely coincide
with one another. This achieves a welfare gain by eliminating the in-
efficiency associated with uncoordinated actions. The last effect, which
we call the confidence effect, works in the opposite direction. Having ob-
tained the additional information, players become more confident about
their beliefs. In fact, (4.9) shows that σ̃2

i ≤ min{σ2
i , σ2

∗} for all i, which
results in the players’ weaker willingness to abate pollution.

The value of information is determined by these three effects, which
in turn depend on the priors and preference of the players. Let Ã :=

∑n
i=1 ãi be the equilibrium aggregate abatement after the information

µ∗ becomes available and W̃i be the corresponding welfare of player
i. The following proposition gives a sufficient condition in which the
confidence effect outweighs the combined effects of rationalization and
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convergence.

Proposition 6. For each (α, ξ), there exist ∆µ > 0 and ∆σ2 > 0 such that

(i) if ∑i |µ∗ − µi| < ∆µ, then Ã < A, and

(ii) if furthermore ∑i |σ2
∗ − σ2

i | < ∆σ2, then W̃i < Wi for all i.

Moreover, ∆µ is increasing in α and ξ.

Proof. See Appendix A.9.

Proposition 6 first shows that if the underestimation of the risk in the
priors is not very significant, then the total abatement will decline as a
result of new information. Even if the underestimation is significant,
the abatement will still decline when players are highly risk- and/or
ambiguity-averse. Moreover, if the heterogeneity in the priors is not
very significant, in the sense that σ2

i is close to σ2
∗ for all i, then the equi-

librium outcome under new information is strictly Pareto-dominated
by the original outcome. This can be the case even if the risk is under-
estimated in the priors.

These results have a profound implication on information policy un-
der ambiguity and heterogeneous beliefs. Suppose, for instance, that
there is an authoritative community of scientists whose role is to make
the recent scientific findings accessible to the general public. A real-
world example of such a community is IPCC in the context of climate
change. The science behind climate change is so complex that it is not
easy to convey the precise message of the recent findings to those who
are not familiar with the scientific literature. This implies that if new
scientific findings are to be well understood by the general public, they
need to be summarized and endorsed by a credible scientific authority.
This is why IPCC publishes assessment reports concerning the risk of
climate change and updates the information on a regular basis. Inter-
preted in line with our model, the information contained in the assess-
ment report is signal µ∗.

One important implication of our results is that regularly publish-
ing assessment reports with minor updates might do more harm than
good. Once an assessment report is published, the updated mean of
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the players’ beliefs become closer to that of rational belief, which is
likely to increase the willingness to reduce pollution when the risk is
initially underestimated. Also, since heterogeneity in beliefs always
causes inefficiency, facilitating belief convergence by publishing the in-
formation appears to be a good idea. The first assessment report will
most likely work as desired because, in many cases, the risk is sig-
nificantly underestimated or the risk is even unknown by the general
public when the public-bad problem first emerges. The second assess-
ment report might also work if there remains a wide gap between the
correct risk and people’s beliefs. At some point, however, as the gap
becomes narrower, publishing new assessment reports will eventually
end up with a weaker incentive to abate pollution. This is especially the
case when players are highly ambiguity-averse. Moreover, as the beliefs
become less heterogeneous, the resulting outcome can in fact be Pareto-
dominated by the status quo. Therefore, instead of routinely summa-
rizing the recent developments in scientific literature, the assessment
reports should be published only when significantly novel findings are
available, relative to the already well-publicized knowledge.

4.3 Pareto-improving ambiguity

To further investigate the consequence of new information, let us mod-
ify the information structure and now suppose that after signal µ∗ ma-
terializes, some information noise can be credibly added to the signal
before it becomes available to players. In other words, while the signal-
generating process (2.4) itself is known to the players, the variance σ2

∗
is unknown. The authoritative scientific community can then at least
partially manipulate the variance of the signal; this could be done by
choosing unclear phrasing or ambiguous wording in their assessment
report. Accordingly, instead of µ∗, players receive a noisy signal µε

∗,
such that

µε
∗ = µ∗ + ε, ε ∼ N(0, σ2

ε ). (4.10)

The variance σ2
ε ≥ 0 captures the strength of information noise.

Given the possibility of information being manipulated, the most
satisfactory model needs to incorporate the strategic interaction be-
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tween players and the scientific community. However, for the sake of
simplicity, we assume that players are naive in the sense that they do not
consider the possibility of noise being added to the signal. Simple alge-
bra then tells us that the posterior gi(·|µε

∗) is represented by N(µ̃i, σ̃2
i ),

where

µ̃i =
σ2

i
σ2
∗ + σ2

ε + σ2
i

µ∗ +
σ2
∗ + σ2

ε

σ2
∗ + σ2

ε + σ2
i

µi, σ̃2
i =

σ2
∗ + σ2

ε

σ2
∗ + σ2

ε + σ2
i

σ2
i . (4.11)

The information noise affects players’ behavior in two ways. On one
hand, the accuracy of the newly available information might be under-
estimated by the players. Therefore, information noise potentially al-
lows optimistic players to remain more optimistic than they should be.
On the other hand, it provides ambiguity averters with an additional
incentive to abate pollution by making the situation more ambiguous.

Notice that the analysis of the preceding section can be nested as a
special case of this information structure. When σ2

ε = 0, the informa-
tion structure boils down to the one in the preceding section. At the
opposite extreme is the infinite amount of information noise, σ2

ε = ∞,
which corresponds to the case where the information is not published
in the first place. We are interested in whether adding a positive and fi-
nite amount of information noise can be Pareto-improving. To be more
precise, we say that Pareto-improving ambiguity is possible if there exists
σ2

ε ∈ (0, ∞), such that

W̃i > W̃i
∣∣
σ2

ε =0 > W̃i
∣∣
σ2

ε =∞ (4.12)

for all i. The second inequality requires that the value of information
be positive. In this case, publishing new information without any noise
subsequently makes players better off. When Pareto-improving ambi-
guity is possible, it is even better to add a certain amount of information
noise upon the publication of the information.
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4.3.1 Heterogeneity only in µi

To see the impact of information noise on the equilibrium, observe that

∂ãi

∂σ2
ε
= ρ

∂µ̃i

∂σ2
ε
+ (nē − Ã)δρ

∂γ̃i

∂σ2
ε
− δργ̃i

∂Ã
∂σ2

ε
. (4.13)

The first and second terms on the right-hand side of (4.13) represent
the direct impacts of information noise. Since ∂µ̃i/∂σ2

ε is negative, the
first term represents the fact that noisy signals weaken the rationaliza-
tion effect of the new information. On the other hand, ∂γ̃i/∂σ2

ε in the
second term is positive, reflecting the fact that the confidence effect is
also weakened. What is captured by the third term is the free-riding or
the strategic substitution effect. The larger the value of δργ̃i > 0, the
stronger the substitution effect among the players’ abatement will be.
The impact on the total abatement is

∂Ã
∂σ2

ε
=

(
1 + δρ ∑

i
γ̃i

)−1{
ρ ∑

i

∂µ̃i

∂σ2
ε
+ (nē − Ã)δρ ∑

i

∂γ̃i

∂σ2
ε

}
. (4.14)

Notice that this impact would be smaller when the strategic substitution
effect, δρ ∑i γ̃i, is larger. The welfare implication of information noise
can be seen in

∂w̃i

∂σ2
ε
= δ

{
µ∗ + Ẽδγ∗

} ∂Ã
∂σ2

ε
− δ

{
µ̃i + Ẽδγ̃i

} ∂ãi

∂σ2
ε

. (4.15)

This expression suggests that if adding information noise is to be Pareto-
improving, it must increase Ã to a sufficiently large extent relative to the
corresponding changes of ãi. This would be difficult when the strategic
substitution effect is significantly large.

To examine the possibility of Pareto-improving ambiguity, let us first
consider the case where heterogeneity only exists in the means of priors.
In this case, we have the following clear-cut result.

Proposition 7. If there is no heterogeneity in {σ2
i }n

i=1, then Pareto-improving
ambiguity is impossible.

Proof. See Appendix A.10
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Proposition 7 states that as long as players are equally confident
about their priors, adding information noise to the public signal would
never be a good idea. Since the equilibrium abatement is insufficient in
the absence of new information, information noise is Pareto-improving
only if ∂Ã/∂σ2

ε > 0. On the other hand, the value of information is
positive only if Ã > A. This suggests that Pareto-improving ambiguity
is possible only when ∂Ã/∂σ2

ε > 0 and Ã > A are simultaneously
satisfied for some σ2

ε ≥ 0. However, when there is no heterogeneity in
σ2

i , Appendix A.10 shows that for any σ2
ε ≥ 0, ∂Ã/∂σ2

ε > 0 is equivalent
to Ã < A. This means that the impact of information noise on the
total abatement is monotonic. In other words, information noise can
improve welfare only if the value of information is negative. However,
if the value of information is negative, then the information should not
be published in the first place. Conversely, whenever the value of new
information is positive, the information should be publicized as clearly
as possible if there is no heterogeneity in the players’ confidence.

4.3.2 Heterogeneity both in µi and σ2
i

When the priors are highly heterogeneous, in the sense that not only the
means, but also the variances are different across the players, there does
exist a case in which Pareto-improving ambiguity is possible. Before
providing the main proposition, we present a couple of preliminary
results.

Proposition 8. If

µ∗ − µ̄

σ̄2 >
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ) >
1
n ∑

i

µ∗ − µi

σ2
i

, (4.16)

there then exists s̄ > 0 such that for any σ2
∗ < s̄,

∂Ã
∂σ2

ε

∣∣∣∣
σ2

ε =0
> 0 and Ã

∣∣
σ2

ε =0 > A. (4.17)

Proof. See Appendix A.11.

Proposition 8 shows that unlike the case with homogeneous confi-
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Figure 2: Non-monotonic relationship between equilibrium total abate-
ment and information noise. (n = 20, ē = 40, δ = 0.0005, ν = 0.0020,
σ2

u = 1.0, α = 1.5, ξ = 2.1) Numerical specification of priors is provided
in Figure 3.

dence, the impact of information noise on the total abatement can be
non-monotonic as long as the true precision of new information is suffi-
ciently high. A sufficient condition for such a non-monotonicity is given
by (4.16). Notice that the inequalities (4.16) never hold when there is no
heterogeneity in σ2

i because, in that case, the very left- and right-hand
sides of the inequalities coincide. When condition (4.16) holds, (4.17)
shows that the total abatement increases for a small amount of infor-
mation noise and decreases for a large amount of noise. A numerical
example of this non-monotonic relationship is provided in Figure 2.

Proposition 8 is only meaningful if there exists a reasonable set of
parameter values that satisfy (4.16). The purpose of the following two
propositions is to clarify a necessary and sufficient condition for the
existence of such parameters. As it turns out, the parametric condition
implied by (4.16) is not as restrictive as it might appear.

Proposition 9. For a given profile Γ of priors, define RΓ ⊂ R2 by

RΓ := {(α, ξ) ∈ (0, ∞)× (−1, ∞) | (4.16) holds}. (4.18)
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RΓ is nonempty if and only if Γ satisfies

µ∗ − µ̄

σ̄2 >
1
n ∑

i

µ∗ − µi

σ2
i

. (4.19)

Proof. See Appendix A.12

Proposition 10. For any µ∗ > 0, there exists a prior profile such that (a)
µ∗ > µi > 0 for all i, (b) σ2

i > 0 for all i, and (c) (4.19) is satisfied.

Proof. See Appendix B.3.

Proposition 9 shows that there always exists a pair (α, ξ) that is consis-
tent with (4.16) if and only if the inequality (4.19) is satisfied. Propo-
sition 10 then shows that there always exists a profile Γ of priors that
satisfies (4.19), as well as a reasonable set of requirements.

Condition (4.19) is crucial for the non-monotonic relationship be-
tween the aggregate abatement and information noise. If (4.19) is to be
satisfied, then there must exist heterogeneity both in µi and σ2

i .

Proposition 11. If prior profile Γ satisfies (4.19), then it must be the case that
µi ̸= µj for some i, j, σ2

i ̸= σ2
j for some i, j, and

n

∑
i=1

{
1 − µ∗ − µi

µ∗ − µ̄

}
1
σ2

i
> 0. (4.20)

Proof. See Appendix B.4.

The inequality (4.20) means that σ2
i must be large if µ∗− µi is large. This

requires that relatively more optimistic players must be relatively less
confident, while relatively more pessimistic players must be relatively
more confident.

The profile of priors depicted in Figure 3, for instance, satisfies (4.19).
In this example, there are two groups of players. The first group consists
of those who have beliefs with larger µi and smaller σ2

i . One could label
those players as being confident pessimists. On the other hand, the sec-
ond group consists of players whose beliefs have smaller µi and larger
σ2

i . They could be referred to as less confident optimists. Those groups are
affected differently by the newly available information in two distinct
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Figure 3: An illustration of heterogeneous priors (n = 20)

ways. First, the rationalization effect is smaller for the pessimists and
is likely to be outweighed by the confidence effect. Adding informa-
tion noise, which weakens the confidence effect, will therefore increase
the equilibrium abatement of pessimists. An analogous argument sug-
gests that the optimists will decrease their abatement as the information
becomes noisy. Second, since the pessimists are more confident about
their original priors, their beliefs are effectively updated only if the pre-
cision of new information is sufficiently high. This implies that when
the information is noisy, the impact on the optimists’ priors dominates,
creating a downward slope, as in Figure 2. As the information becomes
precise, the impact on the pessimists’ priors kicks in and as a result, the
upward slope in Figure 2 appears for small values of σ2

∗ + σ2
ε .

For the numerical example of Γ in Figure 3, the corresponding set RΓ

of (α, ξ) is illustrated in Figure 4. It is worth noting here that set RΓ oc-
cupies a non-negligible part of the α-ξ plane. Hence, the non-monotonic
relationship between the total abatement and information noise identi-
fied in Proposition 8 is not an exceptional case. What is also clear from
the figure is that such a non-monotonic relationship emerges only when
the degrees of risk and ambiguity aversion are not simultaneously large.
If players are highly risk- and ambiguity-averse, then the existence of
ambiguity provides a strong incentive to pollution mitigation. In such
a case, information noise, which adds extra ambiguity, always works
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Figure 4: An illustration of set RΓ in the α-ξ plane. Numerical specifi-
cation is the same as in Figures 2 and 3.

in favor of increasing total abatement. As a result, the equilibrium total
abatement would be a monotonically increasing function of information
noise.

We now turn to the main result of this section.

Proposition 12. Suppose the number n of players is sufficiently large and the
prior profile Γ satisfies (4.19) so that RΓ is nonempty. There exists a nonempty
open subset R′

Γ ⊂ RΓ and for each pair (α, ξ) ∈ R′
Γ, there exists s̄ > 0 such

that for any σ2
∗ < s̄, Pareto-improving ambiguity is possible.

Proof. See Appendix A.13.

We note that even if adding some information noise increases the
total abatement, it does not necessarily imply that every player is better
off. A larger total abatement can be achieved by extra ambiguity at the
expense of the welfare of some highly ambiguity-averse players. What
is shown by Proposition 12 is that as long as the prior profile Γ satisfies
(4.19), then there are cases in which players are in fact all better off due
to a small amount of information noise. Figure 5 provides a numerical
example of such a case. Notice that in this example, W̃i|σ2

ε =0 > W̃i|σ2
ε =∞

for all i. This means that the value of information is positive in the
absence of information noise. When σ2

∗ is sufficiently small, there is
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Figure 5: Welfare implication of information noise with α = 1.5 and
ξ = 2.1. Numerical specification is the same as in Figures 2 and 3.

a positive and finite level σ2
ε ∈ (0, ∞) of information noise, such that

W̃i > W̃i|σ2
ε =0 > W̃i|σ2

ε =∞ for all i.
We should emphasize that the roles played by the degrees of risk-

and ambiguity-aversion are not symmetric here. For Pareto-improving
ambiguity to be possible, the degree of ambiguity aversion can be arbi-
trarily large, while the degree of risk aversion has an upper bound. The
next corollary formalizes this point.

Corollary 1. The set of ξ included in R′
Γ is not bounded above, while the set

of α included in R′
Γ is bounded above.

Proof. See Appendix A.14.

The asymmetric roles of risk and ambiguity aversions emerge due to
the strategic substitution effect we discussed earlier. Higher degrees of
risk and ambiguity aversion both amplify the strategic substitution ef-
fect through the corresponding increases of δρ ∑i γ̃i in (4.14). As is seen
in (4.14) and (4.15), intensification of the strategic substitution effect
in turn makes it difficult for information noise to be Pareto-improving.
However, since γ̃i = α

[
σ2

u + (1 + ξ)σ̃2
i
]
, the influence of ambiguity aver-

sion diminishes when σ̃2
i is small. In other words, preference about

ambiguity only matters when there remains a sufficiently large ambi-
guity. This is why an arbitrarily larger degree of ambiguity aversion
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is consistent with Pareto-improving information noise, as long as the
remaining ambiguity is very small. On the other hand, the influence of
risk aversion remains even if σ̃2

i = 0. Accordingly, when the degree of
risk aversion is sufficiently large, the strategic substitution effect domi-
nates, making Pareto-improving ambiguity impossible. It is important
to note that this result partly depends on our assumption of σ2

u > 0,
which means that the risk of β remains, even after the ambiguity is
completely resolved. Although in a rather narrow context, the present
analysis provides an interesting example where the preferences for risk
and ambiguity aversion play asymmetric roles.

5 Conclusions

This paper developed a model of public bads where players have het-
erogeneous beliefs about the consequences of their collective actions.
Based on a simple analysis of the model, we were able to shed light
on an important trade-off associated with information policies. In the
presence of belief heterogeneity and ambiguity, the value of informa-
tion depends on the rationalization effect, the convergence effect, and
the confidence effect. Depending on the players’ preference about risk
and ambiguity, as well as on the players’ subjective beliefs, one effect
dominates the other.

Among the most interesting implications is that regularly publishing
new information with minor updates might do more harm than good,
especially if the players are highly ambiguity-averse. Instead, the new
information should be published only when significantly novel findings
are available. Moreover, as long as players are equally confident about
their beliefs, adding noise to the public information is never a good idea.
When the players’ beliefs are highly heterogeneous, on the other hand,
Pareto improvement can be achieved by choosing unclear phrasing or
ambiguous wording in the published information.

There are several directions for future research that appear fruitful.
First, it would be of interest to investigate the implications of heteroge-
neous beliefs and ambiguity to the possible cooperation among players.
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This line of analysis will be straightforward, given the simplicity and
the tractability of our model. Another interesting direction would be
the consideration of strategic interaction between the players and the
policy makers. While the additional layer of strategic interplay might
compromise the tractability of the model, such an extension will surely
be realistic and would provide economically useful insights.
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A Proofs

A.1 Lemma for propositions

To prove the propositions in the main text, it is useful to sumarize the
following result as a lemma, which is reminiscent of the classical result
of Milgrom (1981).

Lemma 3. Let Z ⊂ R. For any pair ψk : Z → R++, k ∈ {0, 1} of functions,
the following are equivalent:

(a) For any probability density h with support Z̄ ⊂ Z,∫
s≤z

ĥ1(s)ds <
∫

s≤z
ĥ0(s)ds ∀z < sup Z̄, (A.1)

where ĥk(z) ∝ ψk(z)h(z) for k = 0, 1.

(b) For any z ∈ Z, ψ1(z′)ψ0(z)− ψ1(z)ψ0(z′) > 0 for all z′ > z.
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Proof. Suppose (a) is true. Fix z ∈ Z. For each z′ > z, consider a density
function h with support Z̄ = {z, z′} such that h(z) = h(z′) = 1/2. Then
(a) implies

ψ1(z)
ψ1(z) + ψ1(z′)

<
ψ0(z)

ψ0(z) + ψ0(z′)
(A.2)

and hence ψ1(z′)ψ0(z)− ψ1(z)ψ0(z′) > 0 for all z′ > z.
Conversely, suppose (b) is true. Choose an arbitrary density function

h with support Z̄ ⊂ Z. If Z̄ is a singleton, the claim of (a) is vacuously
true. Assume that Z̄ contains more than two elements. Then choose
z∗ ∈ Z̄ such that z∗ < sup Z̄. Then (b) implies

ψ1(z′)h(z′)
ψ1(z)

>
ψ0(z′)h(z′)

ψ0(z)
(A.3)

if z′ > z∗ ≥ z. Hence,

1
ψ1(z)

∫
z′>z∗

ψ1(z′)h(z′)dz′ >
1

ψ0(z)

∫
z′>z∗

ψ0(z′)h(z′)dz′, (A.4)

for all z ≤ z∗. It follows that∫
z≤z∗ ĥ1(z)dz

1 −
∫

z≤z∗ ĥ1(z)dz
=

∫
z≤z∗ ĥ1(z)dz∫

z′>z∗ ĥ1(z′)dz′
<

∫
z≤z∗ ĥ0(z)dz∫

z′>z∗ ĥ0(z′)dz′
=

∫
z≤z∗ ĥ0(z)dz

1 −
∫

z≤z∗ ĥ0(z)dz
,

which in turn implies∫
z≤z∗

ĥ1(z)dz <
∫

z≤z∗
ĥ0(z)dz. (A.5)

Since z∗ < sup Z̄ is arbitrarily chosen, (a) follows.

A.2 Proof of Proposition 1

Since the cost functions are identical among players, it suffices to show
that the expected marginal abatement benefit is larger for player j than
i when both players choose the same level of abatement. Fix arbitrary
levels of total and individual abatement as A and a = ai = aj, respec-
tively. Then clearly xi = xj and thus f̂i(·|θ) = f̂ j(·|θ) for all θ ∈ Θ. To see
the relationship between ĝi and ĝj, consider a special case of Lemma 3
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in Appendix A.1 where Z = Θ, ψ1 := gj, ψ0 := gi, and specify the den-
sity h by h(θ) ∝ ϕ′(E[u|θ])E[u′|θ]. Then ψ1(θ

′)ψ0(θ) − ψ1(θ)ψ0(θ
′) =

gj(θ
′)gi(θ) − gi(θ)gi(θ

′) > 0 for any θ′ > θ. Lemma 3 shows that ĝj

strictly first-degree stochastically dominates ĝi. Hence, for any β ∈ B,

∫
β′≤β

fi(β′)dβ′ =
∫

θ∈Θ

[∫
β′≤β

f̂ j(β′|θ)dβ′
]

ĝi(θ)dθ (A.6)

>
∫

θ∈Θ

[∫
β′≤β

f̂ j(β′|θ)dβ′
]

ĝj(θ)dθ =
∫

β′≤β
f j(β′)dβ′,

where the first equality follows from f̂i = f̂ j and the strict inequality fol-
lows from the stochastic dominance of ĝj against ĝi. This shows that f j

strictly first-degree stochastically dominates fi. Therefore, we conclude∫
B D′(E; β) f j(β)dβ >

∫
B D′(E; β) fi(β)dβ, which proves our claim.

A.3 Proof of Proposition 2

For each A ≥ 0, define the expected marginal benefit by EMB(A) :=∫
B D′(nē − A; β) fA(β)dβ, where fA(β) :=

∫
Θ f̂A(β|θ)ĝA(θ)dθ, f̂A(β|θ) ∝

u′(xA) f (β|θ), ĝA(θ) ∝ ϕ′(E[u(xA)|θ])E[u′(xA)|θ]g∗(θ), and xA := ȳ −
D(nē − A; β) − C(A/n). Since A∗ is the efficient level of aggregate
abatement, it must be the case that n−1C′(A∗/n) = EMB(A∗). On
the other hand, the equilibrium level A of aggregate abatement is de-
termined by C′(A/n) = EMB(A). Since C′ is increasing, this implies
A < A∗.

A.4 Proof of Proposition 3

A similar argument as in Proposition 1 shows that that the equilibrium
total abatement is smaller than in the case of rational belief being shared
by all players. Since the abatement level is insufficient even in the latter
case and since Wi is a strictly concave function of total abatement, the
result immediately follows.
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A.5 Proof of Lemma 1

Notice that Lemma 1 is a special case of Lemma 3 in Appendix A.1
where Z = B, h = f , ψ0(β) := 1, and ψ1(β) := u′(ȳ − D(E; β) −
C(ai)). By statement (b) of Lemma 3, u′(ȳ − D(E; β′)− C(ai)) > u′(ȳ −
D(E; β) − C(ai)) for all β′ > β, meaning u′ is strictly increasing in β.
Observe

∂

∂β
u′(ȳ − D(E; β)− C(ai)) = −u′′(xi)

∂D(E; β)

∂β
, (A.7)

which is strictly positive if and only if u is strictly concave. Hence, by
Lemma 3, f̂i(·|θ) ∝ u′(xi) f (·|θ) strictly first-degree stochastically domi-
nates f (·|θ) if and only if u is strictly concave.

A.6 Proof of Lemma 2

Consider a special case of Lemma 3 in Appendix A.1 where Z = Θ,
h = gi, ψ0(θ) := 1, and ψ1(θ) := ϕ′(E[u|θ])E[u′|θ]. By Lemma 3, ĝi ∝
ϕ′(E[u|θ])E[u′|θ]gi strictly first-order stochastically dominates gi if and
only if ϕ′(E[u|θ])E[u′|θ] is strictly increasing in θ.

It then suffices to show that ϕ′(E[u|θ])E[u′|θ] is strictly increasing
in θ when u and v are both concave and at least one of the concav-
ities is strict. First notice that under Assumption 1, E[u|θ] is strictly
decreasing in θ because u is strictly decreasing in β. This means that
ϕ′(E[u|θ]) is (strictly) increasing in θ if ϕ is (strictly) concave. Similarly,
E[u′|θ] is (strictly) increasing in θ if u is (strictly) concave. Therefore,
ϕ′(E[u|θ])E[u′|θ] is strictly increasing in θ if ϕ and u are both concave
and at least one of them is strictly concave.
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A.7 Proof of Proposition 4

Notice that Assumption 1 implies that for each β ∈ B,
∫

β′≤β f (β′|θ)dβ′

is strictly decreasing in θ. Hence for any β ∈ B,∫
β′≤β

fi(β′)dβ′ =
∫

θ∈Θ

∫
β′≤β

f̂i(β′|θ)dβ′ ĝi(θ)dθ (A.8)

<
∫

θ∈Θ

∫
β′≤β

f (β′|θ)dβ′ ĝi(θ)dθ (A.9)

<
∫

θ∈Θ

∫
β′≤β

f (β′|θ)dβ′gi(θ)dθ =
∫

β′≤β
f c
i (β′)dβ′,

where the first and second inequalities follow from Lemma 1 and Lemma 2,
respectively. Therefore, fi strictly first-degree stochastically dominates
f c
i . Since D′(E; β) is strictly increasing in β, this means for each level

A of aggregate abatement, the subjective expected marginal benefit is
strictly larger under fi than under f c

i for all i. Then the claim of the
proposition follows from the first-order condition (3.1).

A.8 Proof of Proposition 5

Suppose players become more ambiguity averse and their ambiguity
attitude is represented by ϕM instead of ϕ. This means there exists an
increasing and strictly concave function M : R → R such that ϕM(u) =
M(ϕ(u)). Let ĝM

i (·) and ĝi(·) be the preference-adjusted prior of players
with ϕM and ϕ, respectively. Then for any θ′ > θ

ĝM
i (θ)

ĝM
i (θ′)

=
M′(ϕ(E[u(xi)|θ]))
M′(ϕ(E[u(xi)|θ′]))

ϕ′(E[u(xi)|θ])E[u′(xi)|θ]gi(θ)

ϕ′(E[u(xi)|θ′])E[u′(xi)|θ′]gi(θ′)
(A.10)

<
ϕ′(E[u(xi)|θ])E[u′(xi)|θ]gi(θ)

ϕ′(E[u(xi)|θ′])E[u′(xi)|θ′]gi(θ′)
=

ĝi(θ)

ĝi(θ′)
, (A.11)

which means that relatively pessimistic study θ′ obtains a larger weight
when individuals become more ambiguity averse. In particular, ĝM

i
strictly first-order stochastically dominates ĝi. Then the statement of
the proposition follows from the same argument as in Proposition 4.
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A.9 Proof of Proposition 6

Observe

Ã − A =
n−1ρ

n−1 + ρδγ̃

n

∑
i=1

σ2
i

σ2
∗ + σ2

i

{
(µ∗ − µi)−

ē − ρµ̄

n−1 + ρδγ̄
δα(1 + ξ)σ2

i

}
.

Notice that the right-hand side is continuous and strictly increasing in
(µ∗ − µi) for each i. Since the entire term is strictly negative when µ∗ −
µi = 0 for all i, the first assertion of the proposition follows. Observe
that the second term in the brace is increasing in α and ξ, which shows
that ∆µ is larger for larger values of α and ξ.

To prove the second assertion, notice

w̃i − wi

ν2−1 = (A − Ã)(ai + ãi)

[
ai − ãi

A − Ã
− µ∗ + µ∗ + (nē − A)δγ∗ + (nē − Ã)δγ∗

µi + µ̃i + (nē − A)δγi + (nē − Ã)δγ̃i

]
.

Since µ∗ > µ̃i > µi and γ∗ > γ̃i, the second term in the square bracket
is greater than one when γi = γ∗, which is implied by σ2

i = σ2
∗ . If µi is

close to µ∗, the result (i) shows A > Ã. If furthermore σ2
i is sufficiently

close to σ2
∗ , then ãi is close to Ã/n and thus ai > ãi for all i. This in turn

implies A − Ã > ai − ãi > 0 for all i. Therefore, the first term in the
square bracket is strictly smaller than one, which completes the proof.

A.10 Proof of Proposition 7

Notice first

w̃i − wi =
δ

2

{
µ∗ +

ē − ρµ̃

n−1 + δργ̃
δγ∗ + µ∗ +

ē − ρµ̄

n−1 + δργ̄
δγ∗

}
(Ã − A)

− δ

2

{
µ̃i +

ē − ρµ̃

n−1 + δργ̃
δγ̃i + µi +

ē − ρµ̄

n−1 + δργ̄
δγi

}
(ãi − ai),

(A.12)

where

Ã − A =
n−1

n−1 + δργ̃ ∑
i

σ2
i

σ2
∗ + σ2

ε + σ2
i

ρ

{
(µ∗ − µi)−

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)σ2

i

}
,

(A.13)
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and

ãi − ai =
σ2

i
σ2
∗ + σ2

ε + σ2
i

ρ

{
(µ∗ − µi)−

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)σ2

i

}
− n−1δργ̃i

n−1 + δργ̃ ∑
j

σ2
j

σ2
∗ + σ2

ε + σ2
j

ρ

{
(µ∗ − µj)−

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)σ2

j

}
.

(A.14)

We prove the proposition by combining the following two lemmas.

Lemma 4. For a given level of σ2
ε ≥ 0,

1. if ∂w̃i/∂σ2
ε > 0 for all i, then it must be the case that ∂Ã/∂σ2

ε > 0;

2. if w̃i > wi for all i, then it must be the case that Ã > A.

Proof. Suppose, by way of contradiction, ∂w̃i/∂σ2
ε > 0 for all i and

∂Ã/∂σ2
ε ≤ 0. Then (4.15) implies ∂ãi/∂σ2

ε < 0 for all i and ∂Ã/∂σ2
ε =

∑i ∂ãi/∂σ2
ε < 0. Hence ∂w̃i/∂σ2

ε > 0 and (4.15) imply

µ∗ +
ē−ρµ̃

n−1+δργ̃
δγ∗

µ̃i +
ē−ρµ̃

n−1+δργ̃
δγ̃i

<
∂ãi/∂σ2

ε

∂Ã/∂σ2
ε

< 1. (A.15)

But this is impossible because µ∗ > µ̃i and σ2
∗ > σ̃2

i for all i.
To see the latter part of the proposition suppose, by way of contra-

diction, w̃i > wi for all i and Ã ≤ A. Then (A.12) implies ãi < ai for all
i and Ã < A. Then it follows from w̃i > wi and (A.12) that for each i

µ∗ +
ē−ρµ̃

n−1+δργ̃
δγ∗ + µ∗ +

ē−ρµ̄

n−1+δργ̄
δγ∗

µ̃i +
ē−ρµ̃

n−1+δργ̃
δγ̃i + µi +

ē−ρµ̄

n−1+δργ̄
δγi

<
ãi − ai

Ã − A
< 1, (A.16)

which is impossible since µ∗ > µ̃i, σ2
∗ > σ̃2

i for all i and A < A∗.

Lemma 5. Suppose σ2
i = σ̄2 > 0 for all i. For a given level of σ2

ε ≥ 0,
∂Ã/∂σ2

ε > 0 if and only if Ã < A.
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Proof. Since σ2
i = σ̄2 > 0 for all i, combining (4.14) and (A.13) yields

Ã − A = −
(

1 +
ρδα(1 + ξ)

n−1 + δργ̃

[
σ̄2

σ2
∗ + σ2

ε + σ̄2

]
σ̄2
)−1

(σ2
∗ + σ2

ε + σ̄2)
∂Ã
∂σ2

ε
,

(A.17)
from which the result follows.

A.11 Proof of Proposition 8

We note limσ2∗ ,σ2
ε →0 µ̃i = µ∗, limσ2∗ ,σ2

ε →0 σ̃2
i = 0, limσ2∗ ,σ2

ε →0 γ̃i = ασ2
u, and

lim
σ2∗ ,σ2

ε →0

∂µ̃i

∂σ2
ε
= −µ∗ − µi

σ2
i

, lim
σ2∗ ,σ2

ε →0

∂γ̃i

∂σ2
ε
= α(1 + ξ). (A.18)

Hence,

lim
σ2∗ ,σ2

ε →0

∂Ã
∂σ2

ε
=

ρ

n−1 + δρασ2
u

{
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ)− 1
n ∑

i

µ∗ − µi

σ2
i

}
,

(A.19)

lim
σ2∗ ,σ2

ε →0

∂ãi

∂σ2
ε
=

1
n

lim
σ2∗ ,σ2

ε →0

∂Ã
∂σ2

ε
+ ρ

(
1
n ∑

j

µ∗ − µj

σ2
j

− µ∗ − µi

σ2
i

)
, (A.20)

lim
σ2∗ ,σ2

ε →0
Ã − A =

ρ

n−1 + δρασ2
u

{
µ∗ − µ̄

σ̄2 − ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)

}
σ̄2,

(A.21)

lim
σ2∗ ,σ2

ε →0
ãi − ai = ρ

{
µ∗ − µi

σ2
i

− ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)

}
σ2

i

− ρ
δρασ2

u
n−1 + δρασ2

u

{
µ∗ − µ̄

σ̄2 − ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)

}
σ̄2.

(A.22)

Observe that (A.19) implies

lim
σ2∗ ,σ2

ε →0

∂Ã
∂σ2

ε
> 0 ⇐⇒ ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ) >
1
n ∑

i

µ∗ − µi

σ2
i

. (A.23)
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On the other hand, (A.21) implies

lim
σ2∗ ,σ2

ε →0
Ã > A ⇐⇒ µ∗ − µ̄

σ̄2 >
ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ) (A.24)

⇐⇒ µ∗ − µ̄

σ̄2 >
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ). (A.25)

By (A.23) and (A.25), limσ2∗ ,σ2
ε →0 Ã > A and limσ2∗ ,σ2

ε →0 ∂Ã/∂σ2
ε > 0 if

and only if (4.16) is satisfied. Hence, if (4.16) is satisfied, there exists
s̄ > 0 such that limσ2

ε →0 Ã > A and limσ2
ε →0 ∂Ã/∂σ2

ε > 0 for any σ2
∗ < s̄,

which completes the proof.

A.12 Proof of Proposition 9

Define for each α ∈ R++

ξ(α) :=
(

µ∗ − µ̄

σ̄2

)
n−1 + δρασ2

u
δα(ē − ρµ∗)

− 1 > −1, (A.26)

ξ(α) :=

(
1
n ∑

i

µ∗ − µi

σ2
i

)
n−1 + δρασ2

u
δα(ē − ρµ∗)

− 1 > −1 (A.27)

so that for each α ∈ R++,

µ∗ − µ̄

σ̄2 >
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ) >
1
n ∑

i

µ∗ − µi

σ2
i

(A.28)

if and only if ξ(α) > ξ > ξ(α). Then R = ∪α∈R++
{{α} × (ξ(α), ξ(α))}.

Since ξ(α) < ξ(α) if and only if (4.19) is satisfied, the set R is nonempty
if and only if (4.19) is satisfied.

A.13 Proof of Proposition 12

Suppose (4.19) is satisfied. Note that

lim
σ2∗ ,σ2

ε →0

∂w̃i

∂σ2
ε
= δ

{
µ∗ +

ē − ρµ∗
n−1 + δρασ2

u
δασ2

u

}(
lim

σ2∗ ,σ2
ε →0

∂Ã
∂σ2

ε
− lim

σ2∗ ,σ2
ε →0

∂ãi

∂σ2
ε

)
,

(A.29)
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which with (A.19) and (A.20) implies

lim
σ2∗ ,σ2

ε →0

∂w̃i

∂σ2
ε
> 0 ⇐⇒ lim

σ2∗ ,σ2
ε →0

∂Ã
∂σ2

ε
> lim

σ2∗ ,σ2
ε →0

∂ãi

∂σ2
ε

⇐⇒ µ∗ − µi

σ2
i

> m(α, ξ),

(A.30)
where

m(α, ξ) :=
(

1 + δρασ2
u

n−1 + δρασ2
u

)
1
n ∑

i

µ∗ − µi

σ2
i

+

(
1 − 1 + δρασ2

u
n−1 + δρασ2

u

)
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ). (A.31)

On the other hand, limσ2∗ ,σ2
ε →0 w̃i − wi > 0 if and only if

µ∗ +
ē−ρµ∗

n−1+δρασ2
u
δασ2

u + µ∗ +
ē−ρµ̄

n−1+δργ̄
δασ2

u

µ∗ +
ē−ρµ∗

n−1+δρασ2
u
δασ2

u + µi +
ē−ρµ̄

n−1+δργ̄
δγi

>
limσ2∗ ,σ2

ε →0 ãi − ai

limσ2∗ ,σ2
ε →0 Ã − A

. (A.32)

Notice that the left-hand side of (A.32) is greater than 1 if and only if

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ) <

µ∗ − µi

σ2
i

. (A.33)

If (A.33) does not hold, then the right-hand side of (A.32) is negative
and (A.32) is satisfied. If (A.33) does hold, (A.32) is satisfied if the right-
hand side of (A.32) is less than or equal to 1, which is equivalent to

µ∗ − µi

σ2
i

≤ mi(α, ξ) =:

(
1 + δρασ2

u
n−1 + δρασ2

u

σ̄2

σ2
i

)
µ∗ − µ̄

σ̄2

+

(
1 − 1 + δρασ2

u
n−1 + δρασ2

u

σ̄2

σ2
i

)
ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ).

(A.34)

Note (A.34) is a sufficient condition for (A.32). By combining (A.30) and
(A.34), we conclude that limσ2∗ ,σ2

ε →0 w̃i > wi and limσ2∗ ,σ2
ε →0 ∂w̃i/∂σ2

ε > 0
if (α, ξ) ∈ R and

m(α, ξ) <
µ∗ − µi

σ2
i

≤ mi(α, ξ). (A.35)

We shall prove the set R′′ := {(α, ξ) ∈ R | (A.35) holds for all i} is nonempty.
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For each α ∈ R++, define ξ̂(α) := 2−1[ξ(α) + ξ(α)] ∈ (ξ(α), ξ(α)) so
that (α, ξ̂(α)) ∈ R for all α ∈ R++. Notice

lim
α→0

m(α, ξ̂(α)) <
µ∗ − µi

σ2
i

< lim
α→0

mi(α, ξ̂(α)) (A.36)

for all i if n is sufficiently large. Therefore, there must exist α > 0 such
that (α, ξ̂(α)) ∈ Int(R′′) for all α < α. Since (α, ξ̂(α)) is an interior
point of R′′ for each α < α, there exists a neighborhood O(α) such that
(α, ξ̂(α)) ∈ O(α) ⊂ R′′ for each α < α. Then R′ :=

∪
α<α O(α) ⊂ R′′ ⊂ R

is a nonempty open subset of R such that for each (α, ξ) ∈ R′,

lim
σ2∗ ,σ2

ε →0
w̃i > wi and lim

σ2∗ ,σ2
ε →0

∂w̃i

∂σ2
ε
> 0, (A.37)

which completes the proof.

A.14 Proof of Corollary 1

The proof of Proposition 12 shows that there exists α > 0 such that
(α, ξ̂(α)) ∈ R′ for all α < α. Since limα→0 ξ̂(α) = ∞, this implies that
the set of ξ included in R′ is not bounded above. On the other hand, let
(αk, ξk)k∈N be an arbitrary sequence in R such that limk→∞ αk = ∞. Since
limk→∞ m(αk, ξk) = n−1 ∑i(µ∗ − µi)/σ2

i , (A.30) implies (αk, ξk) /∈ R′ for
sufficiently large k. Therefore, the set of α included in R′ is bounded
above.
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B Supplements (for online publication)

B.1 Existence and uniqueness of A∗

Observe

dWi(A/n)
dA

=
∫

Θ

(
ϕ′(E[u(x)|θ])E

[
u′(x)

{
D′(E; β)− 1

n
C′(A/n)

} ∣∣∣∣θ] )g∗(θ)dθ.

(B.1)

Since limA→0{D′(E; β)− 1
n C′(A/n)} > 0 and limA→nē{D′(E; β)− 1

n C′(A/n)} <

0 for each β ∈ B, there exists A∗ ∈ (0, nē) such that dWi(A∗/n)/dA = 0.
Also notice

d2Wi(A/n)
dA2 =

∫
Θ

(
ϕ′′(E[u(x)|θ])

{
E
[

u′(x)
{

D′(E; β)− 1
n

C′(A/n)
} ∣∣∣∣θ]}2

+ ϕ′(E[u(x)|θ])E
[

u′′(x)
{

D′(E; β)− 1
n

C′(A/n)
}2

− u′(x)
{

D′′(E; β) +
1
n2 C′′(A/n)

} ∣∣∣∣θ])g∗(θ)dθ,

(B.2)

which is strictly negative because

ϕ′′(E[u(x)|θ])
ϕ′(E[u(x)|θ])

{
E
[

u′(x)
{

D′(E; β)− 1
n

C′(A/n)
} ∣∣∣∣θ]}2

< E
[

u′(x)
(

D′′(E; β) +
1
n2 C′′(A/n)− u′′(x)

u′(x)

{
D′(E; β)− 1

n
C′(A/n)

}2)]
(B.3)

for each θ ∈ Θ. The left-hand side is less than or equal to zero while
the right-hand side is strictly positive. Hence, Wi(A/n) as a function of
A is strictly concave, which implies A∗ must be unique.
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B.2 Derivation of equation 4.3

Notice first that since f (·|θ) is normal,

E [u(xi)|θ] = −1
α

∫
B

e−α(ȳ−βδE−C(ai)) f (β|θ)dβ (B.4)

= −1
α

e−α(ȳ−C(ai))eαδEθ+ 1
2 α2δ2E2σ2

u , (B.5)

and thus

ϕ(E [u(xi)|θ]) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)(ȳ−C(ai)− 1

2 ασ2
uδ2E2)eα(1+ξ)δEθ. (B.6)

Normality of gi then implies

Vi(a) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)(ȳ−C(ai)− 1

2 ασ2
uδ2E2)

∫
Θ

eα(1+ξ)δEθgi(θ)dθ (B.7)

= −α−(1+ξ)

1 + ξ
e−α(1+ξ)vi(a), (B.8)

where

vi(a) := ȳ − δµiE − δ2

2
γiE2 − ν

2
a2

i (B.9)

and γi := α
[
σ2

u + (1 + ξ)σ2
i
]
.

B.3 Proof of Proposition 10

Choose υ1 such that 0 < υ1 < n−1µ∗ and define {µi}n
i=1 by µi := µ∗ −

i · υ1 for each i. Then {µi}n
i=1 satisfies (a). Also, put σ2

i := (i + υ2)υ1 for
some υ2 > 0. Clearly, {σ2

i }n
i=1 satisfies (b).

Observe then

µ∗ − µ̄ =
υ1

n

n

∑
i=1

i, σ̄2 =
υ1

n

n

∑
i=1

i + υ1υ2,
µ∗ − µi

σ2
i

=
i

i + υ2
. (B.10)

Hence

µ∗ − µ̄

σ̄2 =
1
n ∑n

i=1 i
1
n ∑n

i=1 i + υ2
,

1
n

n

∑
i=1

µ∗ − µi

σ2
i

=
1
n

n

∑
i=1

i
i + υ2

. (B.11)
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We note

lim
υ2→0

µ∗ − µ̄

σ̄2 = 1, lim
υ2→0

1
n

n

∑
i=1

µ∗ − µi

σ2
i

= 1, (B.12)

and

∂

∂υ2

{
µ∗ − µ̄

σ̄2

} ∣∣∣∣
υ2=0

= −
(

1
n

n

∑
i=1

i

)−1

> − 1
n

n

∑
i=1

1
i
=

∂

∂υ2

{
1
n

n

∑
i=1

µ∗ − µi

σ2
i

} ∣∣∣∣
υ2=0

,

(B.13)
where the inequality follows from the fact that the Harmonic mean is
always smaller than the Arithmetic mean. Therefore

lim
υ2→0

{
µ∗ − µ̄

σ̄2 − 1
n

n

∑
i=1

µ∗ − µi

σ2
i

}
= 0 (B.14)

and
∂

∂υ2

{
µ∗ − µ̄

σ̄2 − 1
n

n

∑
i=1

µ∗ − µi

σ2
i

} ∣∣∣∣
υ2=0

> 0. (B.15)

This means that there exists ῡ2 > 0 such that for any υ2 ∈ (0, ῡ2)

µ∗ − µ̄

σ̄2 − 1
n

n

∑
i=1

µ∗ − µi

σ2
i

> 0, (B.16)

which completes the proof.

B.4 Proof of Proposition 11

The result that heterogeneity is required both in µi and σ2
i is immediate

from contradiction argument. To see the last part of the proposition,
notice (4.19) is equivalent to

(
1
n

n

∑
i=1

µ∗ − µi

µ∗ − µ̄

1
σ2

i

)−1

>
1
n

n

∑
i=1

σ2
i . (B.17)

On the other hand, since the Harmonic mean is always smaller than the
Arithmetic mean,

1
n

n

∑
i=1

σ2
i ≥

(
1
n

n

∑
i=1

1
σ2

i

)−1

, (B.18)
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where the inequality must be strict because σ2
i ̸= σ2

j . Therefore, we have

(
1
n

n

∑
i=1

µ∗ − µi

µ∗ − µ̄

1
σ2

i

)−1

>

(
1
n

n

∑
i=1

1
σ2

i

)−1

, (B.19)

from which the result follows.
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