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Abstract
This paper presents a central limit theorem for a pre-averaged version of the realized covariance estimator
for the quadratic covariation of a discretely observed semimartingale with noise. The semimartingale possibly
has jumps, while the observation times show irregularity, non-synchronicity, and some dependence on the ob-
served process. It is shown that the observation times’ effect on the asymptotic distribution of the estimator is
only through two characteristics: the observation frequency and the covariance structure of the noise. This is
completely different from the case of the realized covariance in a pure semimartingale setting.
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rem; time endogeneity.

1 Introduction

The quadratic covariation matrix of a semimartingale is one of the fundamental quantities in statistics of
semimartingales. In the context of the estimation of the diffusion coeflicient of an Itd process observed discretely
in a fixed interval, limit theorems associated with the discretized quadratic covariation play a key role, and such
research has a long history (cf. [17, 19]). Furthermore, in recent years such an asymptotic theory has been applied
to measuring the covariance structure of financial assets from high-frequency data. This was pioneered by [4, 7],
and has become one of the most active areas in financial econometrics. In such a context the discretized quadratic
covariation is also called the realized covariance.

However, raw high frequency data typically deviates from the ideal situation where we observe a continuous
semimartingale at equidistant times, and this motivates statisticians to develop the theory in more complicated
settings. One topic is the treatment of measurement errors in the data. For financial high-frequency data such
errors originate from market microstructure noise and have attracted vast attention in the past decade; among
various studies see e.g. [5, 46, 47, 52, 54]. In the univariate context, central limit theorems under irregular sampling
settings have also been studied by many authors, especially assuming the independence between the observed process
and the observation times; see e.g. [19, 22, 42]. In the multivariate case, the irregularity of the observation times
causes the non-synchronicity which makes the analysis more complicated. The prominent works on this topic are
the Fourier analysis approach of [40], the sampling design kernel method of [23] and the quasi-likelihood analysis of
[44]. In addition, recently various approaches to deal with these issues simultaneously have been proposed by many
authors; see e.g. [1, 6, 8, 9, 15, 51].

Another important issue is incorporating jumps into the model. In such a situation interest is often paid to
estimating the integrated volatility and the integrated covariance matrix, i.e. the integrated diffusion coefficient,
and there are many studies on this issue in various settings. Regarding the central limit theories, see e.g. Chapters
11 and 13 of [31] for the basic setting, [45] for the noise setting, [34] for the non-synchronous observation setting,
and [13] for the noisy and non-synchronous observation setting.

In contrast, turning to the entire quadratic covariation estimation in the presence of jumps, there are fewer



works. A central limit theorem for the realized covariance of an equidistantly observed Lévy process has been
proved in Jacod and Protter [30] in the context of the analysis of the Euler scheme. This result has been extended
to general It6 semimartingales in Jacod [27] as a special case of the asymptotic results on various functionals of
semimartingale increments. The situation where measurement errors are present has been treated by Jacod et al.
[29] who focus on the “pre-averaging” counterparts of the functionals discussed in [27], which were introduced in
Podolskij and Vetter [46] to extend classical power variation based methods to a noisy observation setting. The
theory requires a different treatment in the absence of the diffusion coefficient, and this case has been studied in
Diop et al. [16].

When we further focus on the situation where the observation times are irregular, at least to the best of the
author’s knowledge, there is no comprehensive study on the central limit theory for the quadratic covariation
estimation, except for the recent work of Bibinger and Vetter [12] and Bibinger and Winkelmann [13]; the former
have derived central limit theorems for the realized covariance and the Hayashi-Yoshida estimator of [23] for a
general It6 semimartingale observed irregularly and non-synchronously, while the latter have established a central
limit theorem for an adjusted version of the spectral covariance estimator of [11] in a non-synchronous and noisy
observation setup, focusing on asymptotically regular observation times in the sense that they satisfy conditions in
Proposition 2.54 of [43]. The aim of this study is to develop such a theory in the situation where the observation data
is contaminated by noise and the observation times are as general as possible. More precisely, we derive a central
limit theorem for the pre-averaged version of the realized covariance proposed in Christensen et al. [14] (called the
modulated realized covariance) under an irregular sampling setting in the presence of jumps. The main finding of this
paper is that in the synchronous case the observation times’ effect on the asymptotic distribution of the estimator
is only through their conditional expected durations, provided that the limit of such quantities are well-defined. In
other words, the irregularity of the observation times has no impact on the asymptotic distribution of the estimator
because the conditional expected durations of the observation times naturally link with the magnitude of the
observation frequency, and thus their effect is not due to the irregularity. This is completely different from the pure
semimartingale setting of [12] where the distribution of the durations around the jump times of the semimartingale
directly affects the asymptotic distribution of the realized covariance.

To deal with non-synchronous observations we rely on a data synchronization method proposed in Ait-Sahalia
et al. [1], which also matches the proposal of Section 3.6 of [14]. The non-synchronicity naturally links with the
covariance structure of the noise, hence it affects the asymptotic distribution through that relation. On the other
hand, the interpolations to the synchronized sampling times do not matter asymptotically. This can be seen as a
counterpart of the finding of Bibinger [8] in the continuous case.

Another issue we attempt to solve is how the dependence between the observed process and the observation times
(called the time endogeneity) affects the asymptotic theory in our setting. This issue has recently been highlighted
by several authors such as [18, 37, 38, 50] in various settings, and it is indeed known that such dependence possibly
causes a non-standard limit theorem even in the continuous semimartingale setting. In this paper, this issue is
partly solved in the sense that we do not rule out the dependence between the continuous component of the process
and the observation times, but partly rule out the dependence between the jump component and the observation
times. The result shows that the time endogeneity is also immaterial in our setting.

This paper is organized as follows. Section 2 presents the mathematical model and the construction of the
estimator we are focusing on. Section 3 is devoted to the main result of this paper. Section 4 provides some
illustrative examples of the observation times, while Section 5 provides a simulation study. All proofs are given in

Section 6.



2 The set up

Given a stochastic basis B = (9(0)7]_—(0)7 (-Ft(O))tZOa P(O)), we consider a d-dimensional semimartingale X =
(X¢)ter, of the form

i t
X :X0+/ bSdS-l-/ Udes+(51{|\5|\§1})*(M_V)t+(51{\|5\|>1})*,ut,
0 0

where W is a d’-dimensional (ft(o))—standard Brownian motion, p is an (ft(o))—Poisson random measure on Ry x E
with F being a Polish space, v is the intensity measure of u of the form v(d¢,dz) = dt® A(dz) with X being a o-finite
measure on F, b is an (ft(o))—progressively measurable R%valued process, o is an (]—"t(o))—progressively measurable
R? © RY -valued process, and § is an (‘Fgo))-predictable R%valued function on Q) x R, x E. Also, « denotes the
integral (either stochastic or ordinary) with respect to some (integer-valued) random measure. Here and below we
use standard concepts and notation in stochastic calculus, which are described in detail in e.g. Chapter 2 of [31].
Our aim is to estimate the quadratic covariation matrix process [X, X] = ([X*, X'])1<k <4 of X from noisy and
discrete observation data of X.

The observed process Y is subject to additional measurement errors as follows:
S/t == Xt + €.

The mathematical construction of the noise process € is explained later. We observe the components of the d-

dimensional process Y = (Y!,...,Y?) discretely and non-synchronously. For each k¥ = 1,...,d the observation
times for Y* are denoted by &, % ... i.e. the observation data (Ks?)ieh is available. We assume that (%)% is

a sequence of (]-'t(o))—stopping times which implicitly depend on a parameter n € N representing the observation
frequency and satisfy that tF 1+ 0o as i — oo and supizo(ti.C At—th [ At) =P 0asn — oo for any t € Ry, with setting
¥, = 0 for notational convenience (hereafter we will refer to such a sequence as a sampling scheme for short).
Now we introduce the precise definition of the noise process €. It is basically the same as the one from Chapter 16
of [31], but we need a slight modification to ensure the (joint) measurability of the process €, which is necessary for
us to consider variables such as €¥,. For any t € Ry there is a transition probability Qt(w® du) from (QO) ]_-t(o))
into R¢ satisfying i th(w(O),du)l = 0 (this will correspond to the conditional distribution of the noise at the
time ¢ given ]_-t(o)). Then, at each frequency n € N, the stochastic basis B = (2, F, (F;)ier,, P) supporting
the observed process Y is constructed in the following manner (for notational simplicity we subtract the index
n from B): We endow the space Q) = (RN with the product Borel o-field F(!) and with the probability
measure Q(w(®,dw™) which is the product ®ieNQ7‘in(w(0))(W(0)7'). Here, (7;")i>0 is the increasing reordering
of total observation times {tf : k = 1,...,d and i € Z,}. More formally, it is defined sequentially by T7* =
ming_y, qt& and 7" = ming_1,__4 min{t? : t? > T} fori =1,2.... Note that 7" is an (Ft(o))—stopping time

since 7" = ming—,.. qinf;>; (tf) where for an (ft(o))—stopping time 7 and a set A € ]-'50), we define 74

(h>Tr )
by 74(w®) = 7(w®) if W@ € A; 74(w®) = 0o otherwise (see I-1.15 of [32]). Then, we define the probability space

(Q, F,P) by
Q=00 x00  F=rOgr®  PAw® dw®)=POdw)Qw®,dw®). (2.1)

After that, the noise process € = (€;);>0 is defined on this probability space by ¢, = eﬁn ( where (€9);en denotes

)
the canonical process on (2, FM) and N, () = 352, l{7n<¢y. Finally, the filtration (ft))tzo is defined as the one
generated by (.Ft(o))tzo and (&)¢>o.

Any variable or process defined on either Q) or Q) is considered in the usual way as a variable or a process
on . Specifically, our noisy process Y = (Y;);>0 is the process defined as the sum of the latent process X on )

and the noise process € on 2.



Remark 2.1. To ensure that the probability measure P in (2.1) is well-defined, we further need the measurability
of the map w(® — Q(w(®, A) for any Borel subset A of R?. This is ensured by the progressive measurability of
the process (Q(-, A));>0 which we will assume later (see assumption [A4]). This assumption also ensures that B
is the very good filtered extension of B(®), which is necessary to apply the version of Jacod’s stable limit theorem
described by Theorem 2.2.15 of [31].

To deal with the non-synchronicity of the observation times we rely on a data synchronization method, which is
commonly used in the literature; see e.g. [1, 6, 14, 53]. Let (1},)52 and (77)52, (k = 1,...,d) be sampling schemes
such that

Té“ <Tp and T, < T[’f <T, foranyp>1andanyk=1,...,d. (2.2)

We assume that the observation data (Y%, )yez, is available for every k = 1,...,d, i.e. {7} : p >0} C {t}' : i > 0},
and construct statistics based on this s;nchromzed data set (YA, )pez+, k= 1,...,d. In Ait-Sahalia et al. [1]
this type of synchronization method is called the Generalized Synchmmzatzon method and (Tp)f,io is called the
Generalized Sampling Time. One way to implement such synchronization is the so-called refresh time sampling
method introduced by Barndorff-Nielsen et al. [6] to this area. Namely, we first define the refresh times Ty, Ty, . ..
of the sampling schemes {(tF)}¢_, sequentially by Ty = max{t},...,td} and T, = maxy—1,__gmin{tF : ¢tk > T, 1}
for p=1,2,.... After that, for each k, (7)) is defined by interpolating the next-ticks into (7)) as follows:

70 =t¢ and 7 =min{t! ¢} >T,1}, p=12,....

Note that 7 is an (]-"t(o))—stopping time due to an analogous reason to that for 7;".

Now the modulated realized covariance (henceforth MRC) estimator we focus on is constructed in the following
way. First, we choose a sequence k,, of positive integers and a number 6 € (0,00) such that k, = 6y/n + o(n'/*)
as n — 0o. We also choose a continuous function g : [0,1] — R which is piecewise C! with a piecewise Lipschitz
derivative ¢’ and satisfies g(0) = g(1) = 0 and fo x)2dz > 0. After that, for any d-dimensional stochastic process
V = (V1,..., VY9 we define the quantity

kn—1
Vf - Z g (Ii) (VTI}M B V"]}w—l) ’ (23)

p=1

and set V; = (Vl . ,Vj)* (hereafter an asterisk denotes the transpose of a matrix). The MRC estimator is defined

ive .

by
. 1 Nt"—kn—i-li ., wl .
MRO[Y]} = ; Vi(Ve) - g WY
where N* = max{p: T, < t}, ¢¥1 = [, ¢'(x)*dx, ¢ = fo r)2dz and
Ny .
v, Y]y = ;A,}Y (AY),  AY = (Yjp AR G ) )

for each t € R,. Here, we set Zg:p = 0if p > ¢ by convention. In the synchronous and equidistant sampling setting,
the asymptotic distribution of the MRC estimator has been derived in Jacod et al. [29] (see Theorem 4.6 of that
paper, and see also Section 4 of Hautsch and Podolskij [21]). Our purpose is to develop the asymptotic distribution
of the MRC estimator in the situation where the observation times are possibly irregular, non-synchronous and

endogenous.



3 Main result
3.1 Notation

In this subsection some notation is introduced in order to state our main result. First we introduce notation
appearing in the assumptions stated in the next subsection. We write X™ 2Py X for processes X" and X to
express shortly that supg<;<r [ X{" — X¢| =7 0 for any T' > 0. @ denotes some (fixed) positive constant. We denote
by (gt(o)) (resp. (G:)) the smallest filtration containing (]Q(O)) (resp. (F¢)) such that géo) (resp. Go) contains the
o-field generated by p, i.e. the o-field generated by all the variables pu(A), where A ranges all measurable subsets
of Ry x E.

Next we introduce some quantities appearing in the representation of the asymptotic variance of the estimator.
We set X3 = o,0% for each s € Ry, i.e. ¥ denotes the diffusion coefficient matrix process. We denote by T, the
covariance matrix of e, i.e. Ty(-) = [uu*Qq(-,du) (we will assume the existence of the second moment of the noise
later, so this matrix always exists). For any real-valued bounded measurable functions u, v on [0, 1], we define the

function ¢y, on [0,1] by ¢y (y) = fl

, W@ —y)v(z)dz. Then, we put

1 1 1
b= [ 6Pl = [ Wiyl Eu= [ oy

0 0 0

On the other hand, for any k,l = 1,...,d we define the process J* by
P
3 = AXFAX! {%20 (Z e, +3Ma,) + % (TEL KL 4 TQ?ZX’;Z)} .

Remark 3.1 (Properties of ¢, ,). We will use the following properties of ¢,, ,: First, for any real-valued bounded
measurable function u on [0,1], ¢, is non-negative. In fact, setting u(z) = 0 for z ¢ [0,1], we have ¢, (y) =
7 u(=(y — 2))u(x)dz for all y € [0,1], and we can extend the domain of ¢y, to the whole real line using this
expression. Then, denoting by f the Fourier transform of a function f on R, we have nguu = |a|*> > 0. Hence
¢u.u 1S a positive definite function and, in particular, ¢, ,(y) > 0 for all y € R. Next, we can easily check that

'g’g = (g, = —Pg 4 and %’,g = —¢g 4. In particular, 19 = fol ¢g/7g(y)2dy due to integration by parts.
3.2 Assumptions

We impose the following condition on the sampling schemes (T)p>0 and (7))p>0 (k=1,...,d):

[A1] (T})p>0 and (7))p>0 (k =1,...,d) are sequences of (‘Fgo))—stopping times and satisfy (2.2). It also holds that

o (t) = sup(Ty ANt —Tp_1 At) = 0,(n"*) (3.1)
p=0

as n — oo (note that 71 = 0 by convention) for every ¢ > 0 and every £ € (0,1). Moreover, for each

n we have a ( t(o))—progressively measurable positive-valued process G7, a ( t(o))_

progressively measurable
[0,1]¢ ® [0, 1]%-valued process x? = (x"*)1<r.i<a and a random subset N of Z, satisfying the following
conditions:
(i) {(w,p) € XX Zy : p € N™(w)} is a measurable set of 2 x Z. Moreover, there is a constant x € (0, 3)
such that #(N" N{p: T, <t}) = Oy(n*) as n — oo for every t > 0.
(ii) En(Tp+ — Tp)lgg)] = G7, and E[1{75+1:T£+1}|g£)] = X%’Okl for every n, every p € Zy — N™ and any
ki=1,....d.
(iii) There is a cadlag (}"t(o))—adapted positive valued process G such that
ucp

(iii-a) n¥(G™ — G) — 0,
(ili-b) G¢— > 0 for every ¢t > 0,



(iii-c) G is an Ité semimartingale of the form
t ¢ R
Gy =Gy +/O bsds +/0 osdWs + ((5 {‘6‘<1}) (w—v) + (61{|(§|>1}) * [t

where 35 is a locally bounded and (f,fo))—progressively measurable real-valued process, 75 is a cadlag
(}“t(o))—adapted R @ R% -valued process, and  is an (]—'t(o))—predictable real-valued function on Q(®) x
R4 x E such that there is a sequence (p;) of (ft(o))—stopping times increasing to infinity and, for each
Jj, a deterministic non-negative function 3; on E satisfying [7;(2)?A1A(dz) < co and 10(w®,t,2)] <
7;(z) for all (w®, ¢, 2) with t < p;(w®).

(iv) There is a cadlag (Ft(o))—adapted [0,1]¢® [0, 1]%-valued process x such that n® (x" — x) —= 0 as n — oc.
Furthermore, for each j € N we have a cadlag (f,f(o))—adapted [0,1]¢ ® [0, 1]%-valued process x(j), an
(ffo))—stopping time p;, and a constant A; such that p; 1 00 as j — oo and x(w(®); = x(4)(w®), if
t < p;j(w®) and

E[Ix()a = X062 Fene] < AE [t — 2] 7| Fey nsa]
for every j and any (]—'t(o))—stopping times ¢; and ¢ bounded by j.

Remark 3.2. (i) The assumptions on (T},) are motivated by the concept of the restricted discretization scheme

discussed in detail in Chapter 14 of [31]. In fact, suppose that T},’s are of the form
Tp:Tp*1+9'}l1p,1€(nvp)7 p:1727"'7

where 0" is a cadlag (ffo))—adapted process, (e(n,p))p>1 is a sequence of i.i.d. positive variables independent of b, o,
d, W, u, and such that Ele(n,p)] = 1 and Ele(n,p)"] < oo for every r > 0, and Ty = 0. By constructing the filtration
(ft(o)) suitably, we may assume that e(n,p) is independent of ]-"7(12)_1 for all n,p. Then we have [A1](i)—(ii) regarding
G"™ while we set N™ = () and G™ = n#™. In this case [A1](iii) corresponds to (a weaker version of) Assumption (E)
from [31], and (3.1) follows from Lemma 14.1.5 of [31]. Unlike their setting, however, our assumption does not rule
out the dependence between e(n,p)’s and X (see e.g. Example 4.1 in the next section). The importance of such
dependence has recently been emphasized in econometric literature; see e.g. Renault and Werker [49].

(ii) The assumptions on the quantities 1 {.,-k_TI} are necessary for the treatment of the (F 0). conditional) covariance
between €* 7k and € -1, which is given by T w1 il {rhari} (a similar kind of assumption also appears in Bibinger and
Mykland [10] due to the same reason as ours) Therefore, those assumptions can be dropped when YT* = 0 if k # [;
this is often assumed in the literature on the covariance estimation of non-synchronously observed semimartingales
with noise. The quantity x" measures the degree of the non-synchronicity, and x7 is a matrix all of whose
components are equal to 1 in the synchronous case while it is an identity matrix in the completely non-synchronous
case. Hence [A1](iv) is satisfied in these two extreme cases.

(iii) The possibility of the set N™ being non-empty excludes the following trivial exception of [A1] with N™ being
empty: if Tp = logn/n and T, = T, 1 + 1/n for p > 1, [Al] with N = () is not satisfied because G%, — oo as
n — oo. This assumption is also useful to ensure the stability under the localization used in the proof; see Lemma
6.1.

(iv) The fact that we consider the conditional expected durations given Q(TZ )’ instead of ]-"7(12) rules out some depen-
dence between the sampling schemes and the jumps of the observed process. For example, if u is a jump measure
of a one-dimensional Lévy process (i.e. E = R) and T},’s are of the form T, = inf{t > T,_; : \fT fl <1 z2(p —
v)(ds,dz)| > n,} for p=1,2,... and for some appropriate sequence (1,),>1 of positive numbers, then [A1] obvi-
ously fails because T},’s are Q(()O)—measurable (this type of sampling scheme is well studied in Rosenbaum and Tankov
[50]). On the other hand, it still allows the presence of the instantaneous causality between the sampling schemes

and the jumps: see Example 4.2.



(v) Under [A1] it holds that
fN" —P / —ds (3.2)

as n — oo for every t € Ry (see Section 6.1 of [36] for the proof). In particular, [Al] ensures that the parameter n
controls the magnitude of the number of observations.

We impose the following structural assumption on the latent process X:

[A2] The volatility process o is an It6 semimartingale of the form
t t _ _
oy = 00 + b5d5+/ 55dW5+((51{|gl<1})*(,u—1/)t—|—((51{‘5‘>1})*,ut,
0 0 =

where bS is a locally bounded and (F, ©) )-progressively measurable R? ® R -valued process, 0, is a cadlag
(}"t(o))—adapted R? @ RY ® R¥-valued process, and ¢ is an (.Ft( ))—predlctable R? @ RY -valued function on
00 xR, x E.
Moreover, for each j there is an (ft(o))—stopping time p;, a bounded (f,f(o))—progressively measurable R%-valued
process b(j)s, a deterministic non-negative function «; on E, and a constant A; such that p; T oo as j — oo
and, for each j,
(1) b(w®)s = b(H)(wV)s if s < p;(w?),
(ii) E[116()e — 0()ea [ Feants] < AGE[[t1 — t2|®|Fiyne,] for any (.F,E(O))—stopping times ¢; and t2 bounded
by 7, B
iit) [ {7;(2)2 A1} Mdz) < oo and [|6(w @, ¢, 2)[| V [|[6(w®, ¢, 2)|| < 7;(2) for all (w®,¢ z) with ¢ < p;(w®),
(iv) E[[|6(t1 A pj, 2) = 0(t2 A pj, 2)12| Fronts] < Ajyi(2)2E [[t1 — t2]®|Feyae,) for any (.7-" ) stopping times t;
and to bounded by j.

Remark 3.3. An [A2] type assumption is commonly used in the literature of power variations (see e.g. [31]), except
for assumptions (ii) and (iv), i.e. continuity assumptions on the drift and the jump coefficient. Such assumptions

are necessary for the treatment of the irregularity and the non-synchronicity of the observation times as in [24].

We also impose the following regularity condition on the noise process:

[A3] There is a constant I' > 4 and a sequence (p};);>1 of (]_-t(o))

/wu@ dz) <
w(O)GQ(O) t<p (w(0)

Moreover, for each j there is a bounded cadlag ( ) adapted R? ® R%valued process Y(j); and a constant
A’; such that
() TG) @) = T@O), if ¢ < pf (W),
(i) E 1T e — TG el Frnts] < ASE[[tr — t2]® | Fiyar,] for any (ffo))—stopping times t; and ¢ bounded
by j.

-stopping times increasing to infinity such that

Remark 3.4. The locally boundedness of the moment process of the noise is used for verifying a Lyapunov type
condition for central limit theorems and proving the negligibility of the edge effect. The continuity assumption of
the covariance matrix process of the noise is necessary due to the same reason as for [A2]. If the noise is assumed

to be i.i.d. and independent of F(©), [A3] simply means the I'-th moment of the noise is finite for some I' > 4.
Finally, we introduce the following technical condition to avoid some measure-theoretic problems:

[A4] (i) A regular conditional probability of P(®) given H exists for any sub-o-field H of F(©)
(i) The process (Q:(-, A4))i>0 is (ft(o))—progressively measurable for any Borel set A of R%.



Remark 3.5. (i) [A4](i) is satisfied, for example, when () F(9)) is a standard measurable space, i.e. it is Borel
isomorphic to some Polish space (see e.g. Theorem I-3.1 of [26]). In fact, this assumption is not restrictive for
applications.

(ii) [A4](ii) is satisfied, for example, when Q; = Q for some probability measure @ on R?, i.e. the noise is modeled
by an i.i.d. sequence. Another example is the case where Q;(w(®),-) has a density of the form f(-, X;(w(®))), where
[ is a measurable function on R? x R into [0, 1] such that [;, f(z,0)dz =1 for every § € R?. Example 16.1.5 of

[31] is encompassed with this type of model. Thus, this assumption also seems to be unrestrictive for applications.
3.8  Result

To state the main result, we need the notion of stable convergence as common in this area. For each n > 1, let
X™ be a random variable which is defined on B and takes values in a Polish space S. The variables X™ are said to
converge stably in law to an S-valued random variable X defined on an extension of B if E[U f(X™)] — E[U f(X)]
for any F(®)-measurable bounded random variable U and any bounded continuous function f on S, where E denotes
the expectation with respect to the probability measure of the extension. We then write X™ —% X. Note that
we need a slightly generalized definition of stable convergence described at the end of Section 2.2.1 of [31] because
B changes as n varies. The most important property of stable convergence is the following: if the real-valued
variables V,, defined on B converge in probability to a variable V defined on B(®), then X™ —% X implies that
(X™,V,) =% (X, V) for the product topology on the space S x R.

Theorem 3.1. Suppose that [Al]-[A4] are satisfied. Then
n'/* (MRC[Y]} — [X, X]¢) =% Wi + 2,

asn — oo for any t > 0, where W and Z are R ® R%-valued processes defined on an extension of B, which
conditionally on F© are mutually independent, centered Gaussian with independent increments, the first one being

continuous and the second one being purely discontinuous, and with (conditional) covariances

{thwk v ]_-(0)} _ % /t [@229{21;k’2181’ 4 Zl:l’Elsk’} G+ F {Tkk’ kk’Tll’Xll i Tkl kl’le/Xlk’} Gi
2 s
(P ’ ! ! ! ’ ’ ! ’ ’ ’ ! ’
912 {Ekk T” u n Elk Tkl kl n lel Ti:k Xi;k + E’;l frik Xlsk }} ds (3.3)
and
Elzizt|F 0] = 2 Z (35 3+ 3+ 3. (3.4)

Here, E denotes the expectation with respect to the probability measure of the extension.
When further X is continuous, the processes n*/* (MRC[Y]" — [X, X]) converge stably in law to the process W
for the Skorokhod topology.

Remark 3.6. The above theorem shows that the observation times’ effect on the asymptotic distribution of the
MRC estimator is only through the asymptotic conditional expected duration process G and the limiting process x
measuring the degree of the non-synchronicity. As was indicated in Remark 3.2(ii), x simply reflects the covariance
structure of the noise process, while G naturally affects the asymptotic distribution of the estimator because it links
with the (spot) sampling frequency, as seen from (3.2). Consequently, the irregularity and the endogeneity of the

observation times have no impact on the asymptotic distribution of the estimator.

Remark 3.7. In the proof of the theorem, it plays a key role to replace the duration (T},11 —T}) with its conditional
expectation G%p. Such replacement is possible because our estimator contains a local averaging procedure (2.3).
More formally, this procedure makes it possible to apply a standard martingale argument described in Lemma 2.3

of [18] to the durations. The benefits of this fact appear in the treatments of the irregularity and the endogeneity of



the observation times in Lemmas 6.4 and 6.7. Also, this is why the higher (conditional) moments of the durations

do not affect the asymptotic distribution of the estimator.

Remark 3.8 (Covariance structure of W;). It is convenient to observe that the covariance structure of W is
analogous to the asymptotic covariance of the realized covariance in a standard setting. For this purpose, in the
following we use some concepts from matrix algebra found in e.g. Horn and Johnson [25]. For each s € R,
we denote by T, the Hadamard product of T4 and xs, i.e. Tfl = THYE for k1 = 1,...,d, and set T,(y) =
% {¢g,g(y)9%25\/§ + dgr.g (y)@‘gfs/\/@s} Since both Y, and y, is positive semi-definite, so is T due to the
Schur product theorem, i.e. Theorem 5.2.1 of [25] (note that the positive semi-definiteness of x5 can be checked
directly using the fact that x** =1 and 0 < x*' < 1 for any k,[). Therefore, ¥,(y) is positive semi-definite as well

because both ¢, , and ¢4 o are non-negative (see Remark 3.1). Then the left side of (3.3) can be rewritten as

1 w0 + S0 S0 Y| ds
e |

The integrand of the above expression is nothing but the F(®-conditional covariance between the (k,1)-th and
(K',1")-th entries of the variable ¥,(y)*/2¢, where ¢ is a d>-dimensional standard normal variable independent of
FO_ In other words, vec(W;) is centered Gaussian with covariance matrix fol S,ds, where G4 = fol (Es(y) ®
Y4 (y)) Cov[vec(¢¢*)]dy and, vec and ® denote the vec-operator and the Kronecker product of matrices, respectively
(cf. Section 2.2 of [9]). In particular, the process Gy is cadlag, (]-'t(o))—adapted and takes values in the set of d x d
positive semidefinite matrices, hence we can construct the process W stated as in the theorem by Proposition 4.1.2
of [31]. More precisely, W can be realized as vec(W;) = fot Y 2dW!, where W' is a d2-dimensional standard
Brownian motion defined on an extension of B(?) and independent of F(9).

Note that the Fisher information matrix for covariance matrix estimation of a multivariate diffusion process
from non-synchronous and noisy observations is not analogous to that for a pure diffusion setting; see Section 2.2
of [9] for details.

Remark 3.9 (Covariance structure of Z;). Z; apparently has an analogous covariance structure to the asymptotic
covariance of the realized covariance due to jumps in the regular sampling case (cf. Eq.(5.4.4) of [31]), and it can
be realized as follows. Set A,, = {z : v(2) > 1/m} for each m € N, and denote by (S(m,j));>1 the successive
jump times of the Poisson process 14, \4,, , * 4. Let (S;)r>1 be a reordering of the double sequence (S(m,j)).
Suppose that sequences (¥,_),>1 and (¥,1),>1 of i.i.d. standard d’-dimensional normal variables and sequences
(¥!_)r>1 and (V. ),>; of ii.d. standard d-dimensional normal variables are defined on an extension of B(®) and
that all of them are mutually independent and independent of F(©). Now, the variable Ts defined in Remark 3.8 is
positive semi-definite, it admits the (positive semi-definite) square root U, := Ti/ % Since the process T is cadlag
and (.Ft(o))—adapted, 80 is Us. Then Z is realized as Z; = > .5 (3 + 3;), where

1 [® ’
3, = w—AXST {\/ Pyo0 (O’ST_\/ GST—\IJT‘— +0g, GS,‘\IIT-&-) + % (GST—\I/;-_ + GST\I/;._,'_)} .
2

This is indeed the desired one; see Proposition 4.1.4 of [31].

Remark 3.10 (Comparison with a pure semimartingale setting). It would be interesting to observe how our result
is different from Bibinger and Vetter [12]’s one in a pure semimartingale setting. For simplicity we focus on the
univariate case, i.e. we assume that d = d’ = 1, and assume that T}, = tll, for every p for notational simplicity. Now
let us recall their result briefly. Suppose that b, ¢ and § are continuous. Suppose also that the sequence (T}) is
independent of b, o,d, W, n and satisfies (3.1). Then, according to Theorem 3.5 of [12], for any ¢t > 0 we have the

following convergence:

V(X X} - [X.X)) > V2 VAW, +2 Y AXs s /1S, (35)

r:Sp<t



where W’ is a standard Brownian motion, H is a (possibly random) C'! function such that n Z:pszgt(Tp—Tp,l)2 —P
H(t) for every t € Ry (the existence is assumed), (S;),>1 is a sequence of stopping times exhausting the jumps
of X, (¥,),>1 is a sequence of i.i.d. standard normal variables, and (7(t));cr, is a family of independent random
variables with uniformly bounded first moments, and such that the processes (n(7(t) =7_(t))):cr, converge finite-
dimensionally in law to (1(t)):cr, (the existence is assumed, and this condition can be weakened; see Assumption
3.1 of [12] for details). Here, Ty (¢t) = min{T}, : T, > t} and T_(¢) = max{T), : T, < t} for any ¢t € Ry and W',
(¥,) and (n(t)) are defined on an extension of B and mutually independent as well as independent of . On the
other hand, provided that T = 0 (so the noise is absent), the corresponding result to our estimator can be written

as follows:

t
nY4(MRC[Y]} — [X, X];) —% %229 \/i/ ol/G AW, +2 Y AXg05,4/Gs, U, | (3.6)
2 0

r:S,<t

where we also assume that G is continuous for simplicity. Compared with the above equation with (3.5), the
quantities H' and n coming from the irregularity of the observation times in the left hand of (3.5) are replaced
with G in (3.6). Since the quantity H contains the information of the second moments of the durations and n
contains that of all the moments of the durations around the jump times, the distributional future of the durations
strongly affects the asymptotic distribution in (3.5). In contrast, the first moments of the durations only affect the

asymptotic distribution in (3.6).

Remark 3.11 (Comparison with the continuous case). The result of the theorem is not new if X is continuous.
In fact, in the case that X is continuous, a central limit theorem for the MRC estimator can be derived with a
somewhat weaker assumption on the limiting process G; see Theorem 3.1 and assumption [A4] of Koike [36] for
details. In the discontinuous case, we need some regularity of the path of the left limit process G_ to verify the
approximation given in Proposition 6.6, so the structural assumption [A4](iii-c) is necessary.

It is worth mentioning that the structural assumption on G is necessary to deal with the irregularity of obser-
vation times in the discontinuous case. In contrast, such a condition is only required to handle the time endgeneity
in the continuous case. In fact, if the observation times have a kind of pre-determination property (the so-called
strong predictability), convergence in probability of G™ to G for the Skorokhod topology is sufficient to derive a

central limit theorem; see Koike [35] for details.

Remark 3.12 (Feasible limit theorem). In order to apply Theorem 3.1 to real statistical problems such as the
construction of confidence intervals, we need an estimator for the asymptotic covariance matrix given by (3.3)
and (3.4). This will be achieved by combining the technique used in the non-synchronously observed diffusion
setting (e.g. a kernel approach of [24] or a histogram-type method of [8]) with the one used in the jump diffusion
setting (e.g. a thresholding and locally averaging method of [2]). Or we can presumably use an estimator of Alt-
Sahalia and Xiu [3] for the equidistant sampling setting without modification because the distribution of the variable
n'/4Y; is, roughly speaking, approximated by the d-dimensional normal variable with mean 0 and covariance matrix
OV Xr, G, + %Tn in the absence of jumps conditionally on f}?), where T is the same one as in Remark 3.8 (this

is theoretically manifested by Lemma 6.7 in a sense).

4 Examples of the observation times

In this section we give some illustrative examples of the observation times that satisfy the condition [A1l]. We
shall start to discuss univariate examples (i.e. we assume that d = 1), which are not encompassed with the restricted

discretization schemes.

Example 4.1. As an illustrative example of endogenous observation times, we consider a simple model generated

by hitting times of the underlying Brownian motion W. This type of model is commonly used in the literature; see
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[18, 37, 48] among others. Here we especially focus on a simpler version of the specification from [48]. Specifically,

t!’s are defined as follows:
th=0, t., =inf {t > th: Wy — Wy + Va6 — t)) = btg/\/ﬁ} :

where a and b are cadlag (]—'t(o))—adapted processes such that a;b; > 0 and a;_b,_ > 0 for every ¢. In this case
[A1] is satisfied with setting T}, = 7 = t,, for every p, as long as G := b/a satisfies [A1](iii-c). In fact, noting that,
conditionally on }'g), n(Tpq1 —Tp) follows the inverse Gaussian distribution with mean G, and variance GQTP /ar,,
(3.1) holds true for any ¢t > 0 and £ € (0,1). Moreover, we have E[n(T,4+1 — Tp)|g£)] = G, for every p because W
is independent of . Hence [A1](i)-(iii) are satisfied with N = (). Finally, [A1](iv) is automatically satisfied.

Example 4.2. We can also accommodate observation times generated by hitting times of a Brownian motion plus

finitely many jumps to our situation. For example, let us consider the observation times defined as follows:
=0, 4, :inf{t >t} Wy = Wi + Vg (E—t1) + 6 %y — 8 % s = bt%/\/ﬁ},

where a and b are the same one as in Example 4.1 and ¢’ is an (.F,f(o))—optional real-valued function on Q(® xR, x E
such that 1g50) * p1¢ < oo for all t. Therefore, the process ¢’ x p has finitely many jumps. Then, it can easily
been seen that [A1] is satisfied in this case under the same situation as that of Example 4.1, except for setting
N'={peZy:8*pp,,, —0*pun >0}

Example 4.3. Let us consider the observation times discussed in Example 3.4 of Bibinger and Vetter [12]. Namely,
t! =i/n if i is even and t} = (i + «)/n if i is odd, where a € (0,1) is a constant. [12] showed that this observation
times produce an additional randomness in the asymptotic distribution of the realized covariance estimator even
though they are deterministic. In fact, in this case the variable n(t) in (3.5) takes the values (1 4+ «) and (1 — «)
with probabilities (14 a)/2 and (1 — a)/2, respectively. On the other hand, setting T), = (p + 1)/n and 7, = t,,,
[A1] is satisfied. Hence in our case this example has the same impact as that of the regular observation times on

the asymptotic distribution.

Next we turn to the multivariate and non-synchronous examples. As the data synchronization method, we focus

on the refresh sampling method.

Example 4.4. We shall discuss the Poisson sampling, which is one of the most popular models in this area; see
e.g. [8, 12, 23, 53]. Let (t¥) be a sequence of Poisson arrival times with the intensity npy for each k and suppose
that (t1),..., (t?) are mutually independent and independent of X and e. Then, [A1] is satisfied with

Gszzd: 5 (n X’;lz{ Ltk =1,
b=l 1<l < <l<a P + Dy 0 otherwise.
Example 4.5. Here we give an example of observation times which are possibly endogenous and satisfy [A1] with
the explicit G and x. More precisely, we give a continuous time analog of the Lo-MacKinlay model of [39].

Let (73)72, be a sampling scheme and suppose that sup;>q(7; At — 7i_1 At) = 0p(n™%) as n — oo for any
t>0and ¢ € (0,1). For each k = 1,...,d, let (My(n,i))2, be a sequence of Z, -valued variables defined on B()
and independent of X and (7;) such that My, := (My(n,i + 1) — My(n,1))2, is independent and geometrically
distributed with the common success probability py € (0,1). Moreover, suppose that, for each i, My(n,4) is
an (FT(?))?';O—stopping time so that ¥ := TMj(n,i) 1S an (ft(o))—stopping time and that My(n,i + 1) — Mg(n,i) is
independent of F t(,? ), Finally, assume that My, ..., M, are mutually independent and that [A1](i)—(iv) are satisfied

k3

with replacing (T;) by (7). Then it can easily be shown that [A1] holds true with

d .
(—1)k1G0 0l 1 if k=1,
G(s = 2 and s =
D D (= *

k=11<l1<---<lp<d pkpl/(pk +pl - pkpl) OtherWise'
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Here, G° denotes the asymptotic conditional expected duration process corresponding to (7;). By taking an en-

dogenous sampling scheme as the underlying sampling scheme (7;), we can obtain endogenous observation times.

5 Simulation study

In this section we assess the finite sample accuracy of the central limit theory developed in this paper and
confirm our theoretical findings via Monte Carlo experiments.
We simulate over the unit interval [0, 1], and basically follow the design of Ait-Sahalia and Xiu [3]. To simulate

the latent semimartingale X, the following bivariate Heston model with jumps is considered:
AdX} = o dW) +dZfF,  dop, = ki(0f — o )dt + spowpdBY +dJF — A\ Y dt, k=12
Here, W', W2, B!, B2 are correlated standard Brownian motions such that
AW, W2, = ppdt,  d[W* B¥, = ppdt,  d[W', B2, =d[W?, B, =d[B*, B*; =0.

J¥ is a compound Poisson process with jump size uniformly distributed on [0, 27,2/ ] and jump intensity )\X. J' and
J? are assumed to be mutually independent. Z* is a pure jump Lévy process specified as follows. First, Z2 is
linearly correlated with Z' as Z%2 = p;Z' + WZO, where ZY is another Lévy process independent of Z'. For
each m =0,1, Z™ is a CGMY process with Lévy density given by

e_'Ym/—lrl e—’Ym+$
fm(z) = mel{wd)} + CWW1{1>O}.

The parameter values of the stochastic volatility processes used in the simulation are reported in Table 1. The
initial value for the volatility processes ai7t is set at 5,% for each k = 1, 2, which ensures that E[U,%)t] = _,% forallt e
[0,1]. The specification of the parameters in the CGMY processes is as follows. We set vt = 3, Y- = 5, B = 0.5
for every m = 0, 1. ¢; is selected such that the quadratic variation contributed by jumps in X' amounts to 15% in
expectation, i.e. E([Z1, Z1];)/E([X', X!]1) = 0.15. Then ¢y is selected such that F([Z2, Z?];)/E([X?, X?];) = 0.15.
Finally, the correlation parameter p; between the jump processes are set at 0.2. Note that Z! and Z2 can be exactly
simulated because we only consider the situation where they are of finite variation; see e.g. [33] for details.

To generate observation times, we consider Lo-MacKinlay type sampling schemes illustrated in Example 4.5.
Two kinds of sequence (7;)$2,, of latent observation times are considered: One is the equidistant sampling scheme

7; = i/n and the other is the endogenous sampling scheme defined by
0=0, Tp=if{t>n W —-W —2yn(t—7)=-2/vn}, i=0,1,..., (5.1)

where we set n = 23,400. Note that in the latter case the sequence (7,41 — 73)52, is independent and identically
distributed with the inverse Gaussian distribution with mean 1/n and variance 4/n2, thus we can exactly simulate
7;’s (and construct the exactly discretized path {W;,} from {7;}). Furthermore, in both cases the corresponding
conditional expected duration processes G° are identical with 1. The parameters p' and p? from Example 4.5,
which denote the probabilities of observations occurring, are assumed to be identical each other and varied thorough
1/3,1/5,1/10 and 1/30.

In constructing noisy prices Y, we first generate a discretized path X, , X, ,... of X using a standard Euler
scheme. After that, we add simulated microstructure noise Y;, = X, + ¢, by generating centered Gaussian
ii.d. variables e’jﬂ,elﬁl, ... with standard deviation 0.005. €' and €* are assumed to be mutually independent.
Simulation results are based on 10,000 Monte Carlo iterations for each scenario.

Following [14], the MRC estimator is implemented using the weight function g(x) = x A (1 — x) and the refresh
time sampling method (the finite sample corrections explained in [14] are also included). We consider the window

size k,, of the form k,, = [0,/N}'], and 6 is selected among 1/3 and 1. The former value of 8 corresponds to the
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Table 1: The parameters of the stochastic volatility processes

k kp sk Ok ok AN TV pB
1 5 03 025 -0.6 5 0.05 0.5
2 4 04 03 -075 10 0.01 —

one used in Jacod et al. [28], while the latter one does to the one used in Christensen et al. [14]. We assess the

accuracy of the standard normal approximation of the infeasible standardized statistic

L MRCIYIP!? — (X, X2,
AVAR

, (5.2)

where AVAR is the theoretical asymptotic variance given in Theorem 3.1. Table 2 reports the sample mean and
standard deviation as well as 95% and 99% coverages of (5.2). As the table reveals, the central limit theorem for
(5.2) fairly works. As was expected from the theory developed in the above, we find no significant difference of the
results between the exogenous and the endogenous sampling cases. At relatively low frequencies like p! = p? = 1/10
or 1/30, the results for § = 1 show the better performance than those for # = 1/3. This would be because k,, is not
sufficiently large in such a situation, in order to work the averaging effect of the pre-averaging procedure explained
in Remark 3.7.

Table 2: Simulation results of the standardized estimates

T =1i/n 7;’s are defined by (5.1)
Coverage Coverage Coverage Coverage

Mean SD (95%) (99%) Mean SD (95%) (99%)
0=1/3
pt=p>=1/3 —0.00 1.01 0.949 0.987 —0.00 1.02 0.948 0.987
pl=p*=1/5 —0.01 1.02  0.946 0.987 —0.01 1.04  0.943 0.986
pl=p*=1/10 -0.01 1.05 0.939 0.983 —0.01 1.06 0.937 0.984
pt=p?>=1/30 —0.03 1.09 0.928 0.979 —0.03 1.10 0.929 0.980
=1
pl=p*=1/3 —0.01 1.01 0.948 0.987 —-0.01 1.01 0.949 0.989
pl=p*=1/5 —0.01 1.01 0.948 0.987 —0.01 1.01 0.951 0.987
pt=p?>=1/10 —0.02 1.02 0.947 0.986 —0.02 1.02 0.948 0.987
pt=p? = 1/30 —-0.03 1.03 0.946 0.985 —-0.03 1.03 0.943 0.985

Note. We report the sample mean, standard deviation (SD) as well as the 95% and 99% coverages of the standardized

statistics (5.2) included in the simulation study.

6 Proof of Theorem 3.1
6.1 Preliminaries
6.1.1 Localization

Before starting the proof, we strengthen our assumptions [A1]-[A3] by localization procedures. First, a standard
localization procedure, described in detail in Lemma 4.4.9 of [31], for instance, allows us to replace the conditions

[A2] and [A3] by the following strengthened versions, respectively:
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[SA2] We have [A2], and the processes Xy, b, oy, b; and &, are bounded. Also, b is (H])-progressively measurable
and oy is (H})-adapted. Moreover, there are a constant A and a non-negative bounded function v on F such
that [7(2)?A(dz) < oo and ||§(w'®),¢,2)|| v 16(w(©, ¢, 2)|| < ~(z) and

E [|Ibe, = bty |*[Feonta] < AE[[ts — t2]7|Feinta) »
E[[16(t1, 2) = 6(ta, 2) 1’| Feynt] < Ay(2)*E [|[t1 — t2]™ | Feyat,)

for any bounded (.E(O))—stopping times ¢; and to.
[SA3] There are a constant I' > 4 and a constant A’ such that the process [ ||z||'Q:(dz) is bounded and

E [”Ttl - Tt2||2|‘Ft1At2] < NE Htl - t2|w|]:t1/\t2}
for any bounded (ffo))-stopping times ¢; and to. Moreover, T; is cadlag and (H;)-adapted.

Next we introduce a strengthened version of [Al]. In the following we fix a constant £ € (0, 1) such that

§>;\/;<Fc+§)v(1—w), (6.1)

and we set 7, = n_¢.
[SA1] We have [A1], and for every n it holds that

sup(Tp — Tp—1) < 7. (6.2)
p=>0

The following lemma allows us to replace [A1] by [SA1] via another localization argument. The proof is similar

to that of Lemma 6.3 from [36], so we omit it.

Lemma 6.1. Assume [Al]. One can find sampling schemes (fp) and (?Ilf) (k =1,...,d) satisfying the following
conditions:
(i) (fp) and (?I’f) satisfy [SA1] with the same limiting processes G and x as those of the original sampling schemes.
(ii) For any t > 0 there is a subset leol of QO such that lim,, P(O)(Q(0 )

n, nt we have
T, Nt =T, Nt and TF Nt =TF At for all k,p.

%) = 1. Moreover, on Q

6.1.2  Outline of the proof

Here we give a brief description of the scheme of the proof. First, for the proof it is convenient to realize the
processes VW and Z on an extension of B() as in Remarks 3.8-3.9 (so we will use the notation introduced in these
remarks in the following). For notational simplicity, we use the same letters P and E for the probability and the
expectation with respect to this extension.

Next we introduce some notation. We denote by R, the set of all indices r such that S, = S(m/,j) for some

j > 1 and some m’ < m. Also, we set
¢ ¢
_ fAmﬁ{z:|5(t,2)|§1} 8(t,z)A(dz), B(m), = [, b(m)sds, M, = [jodWy,

m)t = XO —|— B(m)t + Mt, J(m)t = (51Am *Mt, X(m)t = C(m)t + J(m)t,
m)t = Xt — X(m)t = 51145"” * (M — l/)t.

b(m)t = bt

o(

Z(
These processes are well-defined under [SA2]. Furthermore, set I, = [I,—1,T}) for every p € Z,. On the other hand,
for any process V' and any (random) interval I = [S,T), we define the random variable V(I) by V(I) = Vp — V.
We also set I(t) = IN[0,t) = [SAt,TAt) for any t € Ry and |[I| =T — S. For any real-valued function u on
[0, 1], we set u;; = u(p/ky) for p=0,1,...,k,. For any d-dimensional processes U, V, any k,l € {1,...,d} and any
u,v € {g,9'}, we define the process E,(M’,l)(U7 V)™ by
| N Thatt

=R,V = o Y T@iV(w), teRy,
2hn
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where U (u)¥ = 22261 u;}U’C (Ii1p) and V(v)! is defined analogously. Moreover, we define the d-dimensional process
¢ by
1 o0
&zﬁifZ}guﬁgb teRy, k=1,...,d.

p=1
It can easily been seen that & is a purely discontinuous locally square-integrable martingale on B under [SA3].
Finally, for any d-dimensional process V we define the R? @ R?-valued process Z[V]" by

—_ —_ —(k,l —(L,k —(k,l
s ==k v+ 2R v e+ 2D v e + 2 e, k=1,

9,9 9.9

Now we turn to the outline of the proof. In the first step we show that the errors from the interpolations to the
synchronized sampling times are asymptotically negligible:

Proposition 6.1. Assume [SA1]-[SA3] and [A4](ii). Then n'/4 (MRC[Y]” - ZX]" + w’f,i% Y, Y]”) 225 0.

The proof of this proposition is an easy extension of that of Proposition 6.1 from [36], so we omit it.
In the next step we decompose the quantity Z[X|" as E[X]" = E[X(m)]} + (B[X]" — E[X (m)]™) for each m,
and show that the first term enjoys a central limit theorem for any fixed m and the second term is negligible as

m — 00. More precisely, we prove the following propositions:

Proposition 6.2. Suppose that [SA1]-[SA3| and [A4] are satisfied. Then

_
! k2

as n — oo for any t >0 and any m > 1, where Z(m)y =3, cr .5 <;(3r +37).

When further X is continuous, the processes n'/*(E[X|" — [X, X] — &[Y, Y]™) converge stably in law to the
process W for the Skorokhod topology.

¥t (=L - [X(m), X () VLYIE) % Wit 2

Proposition 6.3. Suppose that [SA1]-[SA3] and [A4](ii) are satisfied. Then
Z(m)t —>d5 Zt (63)

as m — oo and
lim sup lim sup P <n1/4 IZ[X]} — E[X (m)]7] > n) =0 (6.4)

m— o0 n—oo

for any t,n > 0.
Combining Propositions 6.1-6.3 with Proposition 2.2.4 of [31], we obtain Theorem 3.1.
6.2 Proof of Proposition 6.2

Throughout the discussions, for (deterministic) sequences (x,) and (yn), Zn < yn means that there is a (non-
random) constant K € [0,00) such that =, < Ky, for large n. We also denote by Fj the conditional expectation
given FO) ie. Ey[-] = E[|F©).

The proof of Proposition 6.2 is divided into the following steps:

@
(ii

) Approximating the estimation error due to the diffusion part by a more tractable one,
)

(iii) Approximating the estimation error due to the jump part by a more tractable one (Section 6.2.1),
)
)

Proving a central limit theorem for the approximation constructed in (i),

—

(iv) Proving a local stable convergence result corresponding to Lemma 16.3.7 of [31] (Section 6.2.2),

(v

Proving a joint limit theorem for the pair of the above approximations and completing the proof of the

proposition (Section 6.2.3).
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The first two steps have already been carried out in [36]. For the later use, we summarize the result in the
following. We begin by introducing some notation. For any d-dimensional processes U,V any k,l € {1,...,d} and
any real-valued functions u,v on [0, 1], we define the processes Mq(jf{,l)(U, V)™ and Lq(f;f)(U, V)™ by

NI+1
MEDO V)= Y Cr UV,  LENU V) =MEDU,V); + MUY (VU

where

g—1 PAg
1

CLWi= 3 dupaUth), o= gm Y ueg

i=(pVg—kn+1)V1

Moreover, define the R? @ R%-valued process L|M]" by
n, n k7l n lvk: n k)l n
L{M]™* = L&D (0, )" + LD (v, €7 + L (a1, @) + LD (€, @),

Then, we have the following results, which are proved as Proposition 6.2 and Eq.(6.7) from [36]:

Proposition 6.4. Suppose that [SA1]-[SA3] and [A4](ii) are satisfied. Then

it (IO~ L - M) = P ) S

as n — oo for any m > 1.

Proposition 6.5. Suppose that [SA1]-[SA3] and [A4](ii) are satisfied. Then, the processes n'/*L[M]™ converge
stably in law to W for the Skorokhod topology.

From the next section we start the proofs of the remaining steps.

6.2.1 Approximation of the estimation error due to the jump part

In this subsection we fix ¢ > 0 and m € N, and denote by Q,(t,m) the set on which k, —1 < Ng < Ny —k,
for all » € R,, such that S, < ¢. On this set we have

1/4 Ntn*kn‘Fl kn,—1

n'MEED (C(m), J(m))} = > grgrCm)* (Liy) T (m) (Iisg)
kan i—0 p.a=0
= > {nxtr)F+n_(n,r)}AXE (6.5)
TERm:S-<t

where Nk
n+(n,7“) = n1/4 Zp S;vn :_1 Zg(paN + 1)C( )(Ip)’

N
no(nr) =S (0 NE D) (T,).

Similarly, on Q, (¢, m) we have

=(k,l k k l
nAELD@ Tm)r = > {0 )+l (nr)t AXE (6.6)
TERmM:S-<t
where , —
1/4 n
ng_(n, r)k = _nkn Zp S}Vn T Cq’ g(p7 Ngr_ + 1)6%,
b ntt N k
n" (”a 7") = *nkT Zp:S(Ngri_kn_pz)*_ Cg’7g(p) NST_ + ]‘)ETk

The aim of this subsection is to approximate ny(n,r) and 7/, (n,r) by more tractable quantities. Here, the major
difficulty coming from the irregularity of the observation times is the fact that Ng = — k, + 1 might not be a
((](T?)));o:o—stopping time. Therefore, we first “approximate” Ng _ —k, +1 by a (Q(Tz));t‘;o—stopping time.
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More precisely, set S, = (S, — &= 2 Jogn)s and Sf = (S, — ﬂG” Alogn),. Then, S is a (gt(o))—stopping time
(Lemma 6.2) and thus Ngi +1lisa (g(o))p o-stopping time, and this Varlable gives an approximation of Ng _ —k,+1
(Lemma 6.4).

Now we can define our tractable approximations of 4 (n, ) and n/y (n, r) as follows. For any non-negative random

variable p and any real-valued function ¢ on [0, 1], we define the d’-dimensional variable L(¢, p),, = (L(¢, p))1<j<a
and the d-dimensional variable L'(, p), = (L'(¢, p)¥)1<r<a by

kn—1 1/4 kn—1
L(,p)h, = nV* N ¢n W (Iiyn L(gp)h="—3 onéh
(¢,p)n n = ¢w ( i(p) +w)a (¢a p)n kn — weT’L(p)”+w

where we set i(p)" = N' +1 (recall that ¢y, = ¢(w/ky)). We also define the function ¢ on [0,1] by o(z) = p(1—1).

Then we set

{ =y L(g.g S, 2 =15 LGg.g, S,
= —y 1Ll(¢g ,9) ) ns :Llr ==ty ' (qbg ,g9) )

The aim of this subsection is to prove the following proposition:

Proposition 6.6. Suppose that [SA1]-[SA3] and [A4](ii) are satisfied. Then

n-(n,1) = og12,_ + 0p(1), n+(n,r) = 05,2, +0p(1), (6.7)
n_(n,r) = 2" + o0,(1), n(n,r) = 2" + op(1). (6.8)

Now we start to justify that the variable Ngl + 1 is an appropriate approximation of Ng  — k, + 1. In the

remainder of this subsection we fix an index r € R,,, such that S, < oo.
Lemma 6.2. Under [SA1], Si is a (G, © )) -stopping time.

Proof. For any t > 0, we have {S] <t} = {ST <t+ (kn/n)GS Nlog n} N {S, < t}. Therefore, noting that S, is
g(go)—measurable, we obtain {S] <t} € g§°). O

Lemma 6.3. Under [SA1], supgp,p, |Gs,— — G(s,—n), | = Op(v'ho) as hg | 0.

Proof. Define the processes G(m), G'(m) and G"(m) by G(m), = [, 5,dW, + (51Ac n{|6|<1}) (L—0), G'(m)y =
(01, Agi5i<1y TOLg5/51y) * e, and G’ (m) = G—G(m)—G'(m). Since G'(m) is piecewise constant, it is evident that
SUPg<p<ng |G'(M)s,— — G'(m)(s,—n), | = Op(v'ho). Moreover, since G”(m) is absolutely continuous with a locally
bounded derivative, it also holds that supg_j, .y, |G (m)s,— — G"(m)(s,—n), | = Op(v/ho). On the other hand, let
(G*™) be the smallest filtration containing (]_.t(o)) such that Q{;"” contains the o-field generated by the restriction of
the measure p to Ry x A,,. Then, by Proposition 2.1.10 of [31] G(m ) is a locally square integrable martingale with
respect to (Gi'™) and its predictable quadratic variation is given by (G fot G,ords + (02 1Acnn{\§\§1}) * v, and
G(m)s,_ = G(m)sg,. Since S, is Gi-measurable, (S, — k)4 is a (G;* )—stopplng time for every h > 0. Therefore,
the Lenglart inequality implies that

_ K’ _
P (s Iy HGm)s, — Glms, )P > K) < G 4+ P (1 (G, — (Gm)s, .| > K)

for any K, K’ > 0 and thus a standard localization argument yields supy<j<p, |G(m)s, —G(m) s, —n). | = Op(v/ho).
This completes the proof of the lemma. O

Lemma 6.4. Under [SA1], Ng - N"* =k, + op(néfa/) forany o/ € (0,(§ — Kk — 3 A (E—3)Aw).
Proof. Since o < { —k — 3, by [SA1] we have

B[l )6 ]

n n o _ - =
Ns,— = Ngp = Gn Lo, issiy T op(n
p=1 Tp-1

1/2—(1’).
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In particular, from this expression and [SA1], we deduce Ng§ _ — NST = Op(y/nlogn). Therefore, [SA1] yields

NZ _+1 1 2 Ng, -+t
o' —L Nidp 0) | _ 1+20/ 52 —
E E |[|n* "2 o 1{TP*1>SI} |QTP_1 =n T E on I{Tp,1>sl} = 0,(1),
Tp71 p=1 Tpfl

hence Lemma 2.3 of [18] implies that

NE 41 |
} : P 1o
Ng7.7—NgT =N GTl{Tp_1>Si}+0p (n2 a)
p=1 Tp—l

Now [SA1], Lemma 6.3 and the fact that o/ < w A 1 yield

(L S )
n Pkl P =N < P p>1 it (n%iaj:o (n%*aj’
1; <G?1p1 Gg’7> {TP-1>S'} Z GTP . Gir {Tr-1>51} D D
thus we have
NZ .
r— I 1_ ’ GS/\logn 1
N§ _—Ng =n Z | | Lo 1>St}+op( “):’fn”Tﬂp(m )
Qr
Since limy, P(GE_ > logn) = 0, we obtain the desired result. 0

Now we proceed to the main body of the proof of Proposition 6.6. Denote by £2,,(m) the set on which |S,, —S,,| >
(kn/n)logn for any r1,79 € Ry, such that r1 # ro and S,.,, S, < co. Since S,, # S, if 11 # ry and S,,, Sy, < 00,
we have P(Q2,(m)) — 1 as n — oo.

Lemma 6.5. Under [SA2], Elsupg <,g, [los — os 1% Q(m)] S (kn/n)logn.

Proof. Since no jump of the Poisson process 14, * u occurs in [S,., S;) on the set ,,(m), we have o, = o(m), for

m

every s € [S,.,S,) on this set, where

{ g(m)s =00+ fo Judu + [§ T, dW, + (61Ac Yx (p—v)s,
b(m)y = by — Ja, A{2:[3(u,2)| <1} & (u, 2)A(dz).

On the other hand, by Proposition 2.1.10 of [31] we have F [SUP§T§s<ST llo(m)s — a(m)§T||2} Tﬂ logn, which
implies the desired result. O

Proof of Proposition 6.6. Throughout the proof we fix a constant o’ such that 1—¢ < o/ < (§—k—21)A({—2)Aw.
Such an o/ exists due to (6.1).
First we prove the first equation of (6.7). Set 2, = {Ng§ —k, +1 > 0}. By the Lipschitz continuity of g,

. i/ Ns, - . pl/akell
n—(n,r)" = § (¢979)7](77L.7+17pM (Ip) +o0p(1) = § (bg,g)wM™(1 3,,+1fkn+w)+0p(1)
o Sr (0 "
p=Ng _—kn+2 w=1

on ,. On the other hand, noting that we have
sup {|[My — My | :|s —r| < h,s,r € 0,4} = O (VA|log hl)

as h | 0 for any ¢t > 0 due to a representation of a continuous local martingale with Brownian motion and Lévy’s
theorem on the uniform modulus of continuity of Brownian motion, summation by parts, (6.2) and Lemma 6.4
imply that

kn—1

ST (Ggg)i A M (g, 1-kobw) = M (L1 ) }
w=1

18



_1/4 k k
=n Z { bg.9)w — (g, g)w+1} <MTN§L Clekndw MTi(ST)"+w)

14 (Gg )R (MT -t ) = (s )

Sy i(Sf)n4kp -1
=0, <n1/4 /nl/z_""—flogn) = o, (n(lféfa/)h /logn) = 0,(1)

on Q,. Since lim,, P(Q,) = 1, we conclude that

’I’L1/4 kn—1 —
n-(n,r)* = S 21 (¢g,g)ka(I¢(si)+w) +op(1).
w=

Next, noting that W is a d’-dimensional (gt(o))—Brownian motion (recall that (gt(o)) is the smallest filtration con-

taining (]_-t(o)) such that g(go) contains the o-field generated by p), we have

kn—1 d kn—1

— n Tistym ; i i
nl/4 Z (¢g,g)wM sT)+w Zom R —ve Z Z % g / (053 — 0§i> dw?,

w=1 =1 w=1 Tl(sT)n+w_1
hence the Lenglart inequality implies that it is enough to show that

d knp—1

T, st
i(Sp)"+w o ki 0
fg E ‘qbgg ! (Jg‘]—osj) ds’ () —P Q.
= 1(57)"4—“; 1
et "
j=1 w=1 (S +w—1

Set

T .t
(S 4w . ki 0
(afj - O’SJ) ds|Gy glo 1 :
= Tishynsw-1 {Tusb"w—lSST}

2= viS S @l

j=1 w=1 i(SHn fw—1

Then, since Q,(m) € Qéo), it holds that

Ti(s,ym . -\ 2
E[A];Q,(m)] < IZE / (0'5] - akJT) ds; Q. (m)
Tl(ST)n Sr

Now, Lemma 6.5, the boundedness of o and (6.2) imply that

Tispym Y i\ 2 k y e\ 2
(O’SJ -0 JT) ds; Qp(m)| < — sup (US] -0 JT) 1 Q(m)
st n S, <s<S, Sr

(logn)E

+7n S o,

Tistym
hence we obtain E[A]; Q,(m)] < v/nf, = o(1). Therefore, the equation lim,, P(Q,,(m)) = 1 and the Chebyshev
inequality yield A!, = 0,(1). On the other hand, the boundedness of ¢, (6.2) and Lemma 6.4 imply that

Fen—1

A, — AL < /nin Z {r Ny + ko= N§ —1] = 0p(n' ) = 0,(1).

< VnT
(SN fw— 1>ST‘} "
Consequently, we obtain A,, = 0,(1) and the first equation of (6.7) has been proved. On the other hand, noting
that Ng — Ng < 1and S, is an (ft(o))-stopping time, the second equation of (6.7) can be shown in a similar
(and simpler) manner.

Next we prove the first equation of (6.8). By the (piecewise) Lipschitz continuity of g and ¢’, we have on Q,

n
Ng, _

Z (¢g ,g) 41— p€7—’~ + Op( )

p=(NZ _—kn+2)4

nl/4

1/’2 kn

i (n,r)* =~
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Moreover, by Lemma 6.4, [SA3] and the Lipschitz continuity of ¢4 , we have

1/4 Ng W(SH" +kn—1

k k _ —a’
k E (%’,g)%gr,ﬂ—perg - § (‘bg”g)?(svt)n_kkn_perg =0y (n “ )
n

p=(Ng, _—kn+2)+ p=i(SH)n+1

on Q,. Since lim,, P(Q),) = 1, we conclude that

nl/4 W(SH™ +k,—1
K
Dok (¢g’7g)?(sl)n+kn_p€f-}j +0p(1) = Z;n— + 0p(1).
" op=i(shn4l

17/_ (n7 r)k = —

Similarly we can prove the second equation of (6.8). O
6.2.2  An auziliary local stable convergence result

In this subsection we prove an auxiliary local stable convergence result corresponding to Lemma 16.3.7 of [31].
The proof is close to that of the aforementioned lemma, but there is a difference due to the additional randomness
coming from the sampling times. Furthermore, we can also simplify some parts of the proof because it is sufficient
for our purpose to prove a simpler consequence than that of the aforementioned lemma. For these reasons we give
a complete proof.

The following lemma is a direct consequence of the Skorokhod representation theorem, so we omit the proof:

Lemma 6.6. Let (f,) be a sequence of real-valued functions on RP such that there exists a constant K satisfying
|fn(z)] < K and |fo(x) — fn(y)| < K|z —y|| for all z,y € RP and every n. If a sequence (x,,) of RP -valued random

variables converges in law to a variable x, then E[fy(zn)] — E[fn(z)] — 0

The following lemma is the main result of this subsection. We denote by 91p the D-dimensional standard normal

distribution.

Lemma 6.7. Assume that [SA1], [SA3] and [A4](ii) are satisfied. Suppose that for each n there is a (gt(o))-stoppz'ng
time pp,. Suppose also that there is a finite-valued variable p such that p, — p as n — oo and one of the following

two condition is satisfied:

(1) p>0, P(Typ,ynsk,—n5| < p) =1 asn — oo for some B € (0,§ —1/2),
. . 0
in which case we set G,y = G,_, U,y = U, and Q(p) = gg_), (6.9)

(2)  pn = p for all n, in which case we set G,y = G,, U,y = v, and g((gg = ,(;0).

Let ¢1 and ¢o be continuous real-valued functions ¢1 and ¢o on [0,1]. Then, for any F-measurable bounded variable

U and any bounded Lipschitz function f on R+ we have
E[Uf(Lu. L)|Gp,] =7 E [U / 7 (o1l /0G . 621V 0) Mo () Na()lGly) | (6:10)

where L, = L(¢1, pn)n, Ll, = L' (¢2, pn)n and |¢;]|* = fo ¢;(z)?dx for j =1,2.

Proof. Step 1) For k,1 = 1,...,d we set DFl = izk"fl (d2)7]* 1

= y- We begin by proving

{Tk(p 1w =Ti(pn)" +w
Dkt —p ||¢2||2X( )» Where we set X( ) = = Xt in Case (1) and X(p) = X} in Case (2). Since i(p,) is a (Q(O))p o
stopping time, [SA1] and Lemma 2.3 of [18] yield DX = ,%n Zw:1 |(d2)7|? Xl%l(p I + 0p(1). Since x* is cadlag,
(6.9) implies that Dk = H¢2||2x% + 0,(1).

Step 2) From Step 1, by considering an appropriate subsequence if necessary, without loss of generality we may
assume that there is a subset Qg of Q(9) such that P(0)(Qg) = 1 and DF(w(©) — ||¢2||2XI(“/IJ)(M(O)) for all w(® € Q.
Step 3) Fix w® € Qp, and consider the probability space (1), F1) Qp), where Qo(-) = Q(w®,-). Our aim in
this step is to show that under Qg

Ly, 5 (g2 VO~ 15 (w ), (6.11)
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where (' is a standard d-dimensional normal variable independent of F.

For each w =1,...,k, — 1 we define the d-dimensional variable y? = (y™¥);<,<q by

nl/4

Yt = (¢2)

L<pn>n<w<°>>+w

Then y7,...,y; _, are independent under y and we have L;, (WO ) = ZZ":? yit. Moreover, by [SA3] we have

kp—1
Eqy(yw) =0,  Eq,(lysll*) S k.2 Z Eq,(llysl*) =0
kn—1 nl/2 kp—
E n k: n l _ Tkl 0)y 1 _ )
11;2:1 QO Yo Jul )Ti]?»rrl>”'(w<°>>+w {Tipnw <w<°>>+w_T;<pn>n<w<°>>+w}

Since Y is cadlag, (6.9) and the fact that n'/2/k, — 0~ yield S>¥ 7" Eg, (ymFymt) = 0= 0EL (W O)DEH W) +

0p(1), where we set Tﬁl)) =Tk in Case (1) and T’(cé) =Tk in Case (2 ) Since w(® € Q) this implies that

kn—1
Z Eqy (™ y") =7 16212071 1() (0 @)x () (0 ).

Now a standard central limit theorem on row-wise independent triangular arrays of infinitesimal variables (e.g. The-
orem 2.2.14 of [31]) yields (6.11).
Step 4) In this step we shall show the following convergence for L,:

L, =%/ ®20G )¢, (6.12)

where ( is a standard d’-dimensional normal variable independent of F. Unlike Step 3, here the limiting variable is
mixed normal, so we cannot rely on the standard central limit theorem used in Step 3. Instead, we use the classic
mixed normal limit theorem of Hall [20].

Fix u € R? arbitrarily and set y(u)” = = n4(¢1) 2w W (L, ) 1w) for each w = 1,...,k, — 1. Then y(u)7 is
G1(,, yn+-measurable and u*L,, = Zl; _11 y(u). Therefore, noting that G and G_ do not vanish, it suffices to

verify the following four conditions according to [20] and the Cramér-Wold method:
E [maxlgwgkn_l |y(u)’uﬂ|2] — O7
kn—1 n
Yot [ = llul?ll1]?0G,, = 0,
HUIIQH%HQ@GM =7 Jull?61120G ),
k —1
‘E |gT<pn)"+w71” =7 0.

(6.13) follows from (6.2) and Lévy’s theorem on the uniform modulus of continuity of Brownian motion. Next,
[SA1] and Lemma 2.3 of [18] imply that

kn—1 kn—1 kn—1

n N n N ||'LL||2 n

D sl = [PV Y (1)t iyl +0p(1) = T DT (B1)EG T s+ 0p(D):
w=1 w=1 w=1

hence we obtain (6.14) because G is cadlag. Finally, the fact that G is cadlag and (6.9) yield (6.15), while we have
Ely(w)y |91y, npw) = 0 because W is a d’-dimensional (F;)-Brownian motion independent of G, hence (6.16)
holds true.
Step 5) We denote by U,,(U) and ¥(U) the left and right sides of (6.10), respectively. In this step we show that it
is enough to prove

U, (1) =P ¥(1). (6.17)
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In fact, assume this, and take an arbitrary bounded variable U. We consider the cadlag version of the bounded
martingale U; = E(U|gt(0)).
First suppose that we are in Case (1). Set k,, = k, — |n”] and define the d’-dimensional variable L,, = (L/)1<j<a

and the d-dimensional variable L!, = (L )1<k<d by

En 