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We introduce a multivariate local-linear estimator for regression discontinuity

designs. Unlike current local-linear approaches, we handle multivariate designs

as multivariate. For that purpose, we develop a novel asymptotic normality for

multivariate local-polynomial estimators. Consequently, we overcome the limi-

tations of current local-linear approaches that either contradict the underlying

assumptions or have limited interpretation. We demonstrate the effectiveness of

our estimator through numerical simulations and an empirical illustration of a

Colombian scholarship study by Londoño-Vélez, Rodŕıguez, and Sánchez (2020).

Specifically, our estimates reveal a richer heterogeneity of the treatment effect

that is hidden in the original estimates.
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Multiple Running Variables.

1. INTRODUCTION

The regression discontinuity (RD) design takes advantage of a particular treatment

assignment mechanism that the eligibility of a program is set by the running variable.

For example, a scholarship is awarded to applicants whose scores are above a threshold.

The eligibility often requires additional requirement, such as the applicants’ poverty

scores being below a threshold as well. These RD designs are multivariate in their

running variables. The multivariate RD design is superior to the standard RD design
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in its capability to capture heterogeneous treatment effects over the policy bound-

ary. The multivariate design has the policy boundary to explore; however, the scalar

RD design has only the single point of the policy cutoff. The frequent practices are

dimension-redacted single-variable estimators; however, these practices either contra-

dict the underlying assumptions, which include Assumption 1 (a) of Calonico, Cattaneo,

and Titiunik (2014), or have limited interpretation and applicability. As a result, the

frequent practices ruin either their flexible interpretation or asymptotic validity.

We achieve flexible interpretation with asymptotic validity by proposing an alterna-

tive estimation that takes multivariate RD designs as multivariate. For that purpose,

we develop a novel asymptotic theory of the multivariate local-polynomial estimator

with dimension-specific bandwidths.

We demonstrate favorable properties of the estimator in simulation and empirical

replication studies. In simulation studies, our estimator demonstrates favorable perfor-

mance against the current practices. We apply our estimates to the data of Londoño-

Vélez, Rodŕıguez, and Sánchez (2020) who study the impact of a Colombian scholarship

program on the college attendance rate. In the application, our estimates reveal a new

finding on the treatment effects heterogeneity that was hidden in the original estimates.

Specifically, the impact of the tuition program is homogeneous across different poverty

levels with the same test scores, however, the impact sharply declines among the poor

students with particularly high test scores.

Our contribution is in two-folds. First, to propose a multivariate local-linear RD

estimation, we complete the asymptotic theory of multivariate local-polynomial esti-

mation. Previously, Ruppert and Wand (1994) show the consistency of the multivariate

local-polynomial estimator; Masry (1996) later shows the asymptotic normality of the

estimator; however, Masry (1996) imposes that the bandwidths are common across di-

mensions. In our simulation results of Section 3, allowing for heterogeneous bandwidths

is critical for the bias correction procedure in the RD estimation. Hence, our asymptotic

result of our first contribution is theoretically important and practically relevant.

Second and more importantly, we fill the missing piece of practices in RD designs,

local-linear estimation for the multivariate RD design. For a scalar running variable, the

local-linear estimation of Calonico et al. (2014) with its companion package, rdrobust,
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is the first choice because the local-linear estimation is intuitive analogue to the RD

identification. Nevertheless, existing local-linear estimators are limited to a uni-variate

running variable. Current estimators are either not local-linear, limited in its inter-

pretation, or violating the underlying assumption for the asymptotic normality. Our

local-linear estimator is intuitive as much as a scalar-variable RD design, applicable to

a variety of designs, and is capable to reveal a rich heterogeneity in treatment effects

as demonstrated in our empirical illustration.

Local-linear estimation is the first choice for the RD estimator for a number of rea-

sons. On the one hand, in the identification strategy of RD designs, the treated and

control units around the boundary point are compared. On the other hand, in the ker-

nel estimation, the kernel-weighted averages of the treated and control units within a

small bandwidth from the boundary point are compared. Because local-constant estima-

tion has a boundary problem, local-linear estimation is preferred since Fan and Gijbels

(1992) and Imbens and Kalyanaraman (2012). Currently, however, multivariate estima-

tions are available only in a non-kernel procedure such as Imbens and Wager (2019)

and Kwon and Kwon (2020) with tuning parameters of the worst-case second derivative

instead of the bandwidth.

As a result in empirical practices, the applied researchers convert a multivariate prob-

lem into a single-dimensional problem by taking either (1) a subsample of all but one

requirement being satisfied for treatment or (2) some distance measure from a boundary

point. Two strategies are in relation of a trade-off. The former subsample strategy has

limited applicability by designs and is less capable of capturing heterogeneous effects

over the boundary; the latter distance strategy can produce different estimates over the

boundary; however, we point out its critical modeling issues below.

Matsudaira (2008) is an example of the first subsample strategy. Matsudaira (2008)

considers the participation of a program based on an either failure of language and

math exams. Matsudaira (2008) makes comparisons among two subsamples: first, the

language-passing students who are at the boundary of the math exam; second, the

math-passing students who are at the boundary of the language exam. These approaches

have two issues. First, not all multivariate RD designs can accommodate this subsam-

ple strategy. Second, these approaches mask the important heterogeneity in treatment
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effects over the boundary. For example, among students at the language score on the

border, the impact of a program may be substantially different by their math scores.

Such heterogeneity in treatment effects is academically interesting and policy-relevant.

Londoño-Vélez, Rodŕıguez, and Sánchez (2020) accommodate the same strategy as

Matsudaira (2008), and we offer a richer heterogeneity than the original estimates as

demonstrated in Section 4 with their data.

In the second distance strategy, multivariate running variable is explicitly reduced to

a scalar distance measure. For example, Black (1999) computes the closest boundary

point for each unit and compares units of the same closest boundary point to achieve

the mean effect across the boundary. Furthermore, Keele and Titiunik (2015) propose

another approach with the Euclid distance from a particular boundary point. The dis-

tance approach is capable to estimate heterogeneous effects at each boundary point. A

package implementation in stata and R, rdmulti, is also offered as a wrapper of rdrobust

to implement the latter Euclidean distance-based approach (Cattaneo, Titiunik, and

Vazquez-Bare, 2020). This second distance strategy is straightforward to implement

with the standard scalar RD estimator and applicable to a wider range of designs.

Conversely, there are two critical drawbacks in the distance strategy. First and crit-

ically, the value of the density of the Euclid distance converges to 0 as it approaches

to the boundary. Consequently, the density, which appears in the denominator of the

asymptotic variance, converges to 0 in the limit. As a result, Assumption 1 (a) of

Calonico et al. (2014) is violated, and asymptotic normality does not hold. This simple

fact is a novel remark in this study. Second, the induced conditional mean function

for a point contradicts the other induced mean function from a nearby point on the

boundary. We avoid these issues by handling the multivariate design as a multivariate

estimation.

In the remainder of the paper, we introduce and motivate our estimator it in Section

2. We evaluate the proposed estimator in a Monte Carlo simulation exercise in Section

3. We demonstrate the added value of our estimator in the empirical study of Londoño-

Vélez et al. (2020) in Section 4. Specifically, our estimator reveals a richer heterogeneity

that was hidden in the original study, and our estimator is stable in its pattern relative

to current practice. We conclude with future challenges in Section 5.
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2. METHOD

2.1. Model and Objective

Consider a binary treatment D ∈ {0, 1} and associated pair of potential outcomes

{Y (1), Y (0)} such that Y = DY (1)+ (1−D)Y (0) for an observed outcome Y ∈ R. We

consider a sharp RD design with a vector of running variables R ∈ Rd for some integer

d ≥ 1. Specifically, D = 1{R ∈ T } where T is the treatment region, which is a subset

of the support of R. To fix ideas, consider a pair of scores (R1, R2) for a student. For

example, a student is eligible for a program when both scores exceed their corresponding

thresholds (c1, c2). For such a program, the treatment region is T = {(R1, R2) ∈ R2 :

R1 ≥ c1, R2 ≥ c2} (Figure 2.1 (a)). For another example, a student is eligible when the

sum of scores exceeds a single threshold c1+c2, T = {(R1, R2) ∈ R2 : R1+R2 ≥ c1+c2}
(Figure 2.1 (b)).

Panel (a) Panel (b)

Figure 2.1.— Illustration of T . Panel (a) is under T = {(R1, R2) ∈ R2 : R1 ≥
c1, R2 ≥ c2}; Panel (b) is under T = {(R1, R2) ∈ R2 : R1 +R2 ≥ c1 + c2}.

Let (Yi, Di, Ri)i∈{1,...,n}, Ri = (Ri,1, Ri,2) be the i.i.d. sample of (Y,D,R), R = (R1, R2).

Let c be a particular point on the boundary of T . Our target parameter is θ(c) :=

limr→c,r∈T E[Y (1)− Y (0)|R = r]− limr→c,r∈T C E[Y (1)− Y (0)|R = r]. In the following,

we focus on the issues in estimating the given identified parameter, θ(c). Under the
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following assumption (Hahn, Todd, and der Klaauw, 2001; Keele and Titiunik, 2015),

θ(c) is the average treatment effect (ATE) at each point of the boundary c:

Proposition 2.1 (Keele and Titiunik, 2015, Proposition 1) If E[Y (1)|R = r] and

E[Y (0)|R = r] are continuous in r at all points c of the boundary of T ; P (Di = 1) = 1

for all i such that Ri ∈ T ; P (Di = 1) = 0 for all i such that Ri ∈ T C , then,

θ(c) = E[Y (1)− Y (0)|R = c]

for all c in the boundary of T .

2.2. Issues in the Conventional Estimators

In Introduction, we describe two major approaches of multivariate RD estimation.

The former subsample strategy such as Matsudaira (2008) is a single-variate RD design

because it restricts its attention to the subsample who satisfy all but one requirement for

treatment. Nevertheless, the subsample strategy is limited to a particular assignment

mechanism. Furthermore, the subsample strategy dismisses the important merit of the

multivariate designs, discovering the treatment effect heterogeneity. We demonstrate

this critical merit of our strategy in discovering the heterogeneity in Section 4 with the

Londoño-Vélez et al. (2020) data.

In the latter distance strategy, multivariate running variable is explicitly reduced to

a scalar distance measure. Frequent choice is the Euclidean distance from a point or the

closest boundary (Keele and Titiunik, 2015). The distance strategy is straightforward

to implement in many designs; however, there are two critical drawbacks. First, a pair

of points of the same distance from the point on the boundary share the same mean

values. Hence, the induced conditional mean functions for different points contradict

each other unless the mean function is entirely homogeneous over the boundary. Second

and more importantly, the density of the distance running variable shrinks to zero as

approaching to the boundary. Consequently, the inference and estimates of the distance

strategy is not theoretically guaranteed because Assumption 1 (a) of Calonico et al.

(2014) is violated.
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To demonstrate the latter claim, consider the treated subsample Ri ∈ T and let

Zi = ∥Ri − c∥ with a boundary point c = (0, 0), for simplicity. For z > 0, we have

P (Zi ≤ z) = P (∥Ri∥ ≤ z) =

∫
{r21+r22≤z2}

f(r1, r2)dr1dr2

=

∫ z

0

∫ 2π

0

tf(t cos θ, t sin θ)dθdt =

∫ z

0

t

(∫ 2π

0

f(t cos θ, t sin θ)dθ

)
︸ ︷︷ ︸

density function of Zi

dt

where f(·, ·) is the joint density of R = (R1, R2). Hence, as long as the density function

f(·, ·) is bounded, the distance density

fZ(z) ≡ z ·
(∫ 2π

0

f(z cos θ, z sin θ)dθ

)
shrinks to 0 as Ri approaches to the boundary point c = (0, 0). For the valid inference

of a scalar RD estimate, Calonico et al. (2014) assumes that the density fZ(z) is contin-

uous and bounded away from zero (Assumption 1 (a)). Consequently, the asymptotic

normality of the local-linear estimation with Zi is not guaranteed.

In Appendix C, we further show that the kernel density estimation of the distance

running variable diminishes to 0 as the bandwidth h → 0. Hence, the issue can be

severe with a direct density estimation as in Imbens and Kalyanaraman (2012). The

use of rdrobust package avoids the direct density estimation, however, the same concern

applies in its asymptotic validity.

2.3. Our Estimator

We resolve the aforementioned limitations with a new estimator. Our estimator can

capture the heterogeneous treatment effect over the boundary unlike the subsample

strategy; our estimator avoids the issues in its inference unlike the distance strategy.

Consider the following local-linear estimator β̂+(c) = (β̂+
0 (c), β̂

+
1 (c), β̂

+
2 (c))

′

β̂+(c) = arg min
(β0,β1,β2)′∈R3

n∑
i=1

(Yi−β0−β1(Ri,1−c1)−β2(Ri,2−c2))
2Kh (Ri − c) 1{Ri ∈ T }
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whereKh(Ri−c) = K
(

Ri,1−c1
h1

,
Ri,2−c2

h2

)
and each hj is a sequence of positive bandwidths

such that hj → 0 as n → ∞. Unlike Masry (1996), we allow h1 ̸= h2 for the asymptotic

normality. Later in Section 3, we demonstrate the importance of allowing heterogeneous

bandwidths. Similarly, let β̂−(c) be the estimator using 1{Ri ∈ T c} subsample. Our

multivariate RD estimator at c is β̂+
0 (c)− β̂−

0 (c).

In the main text below, we demonstrate our theoretical results in a special case of

local-linear estimation with two-dimensional running variables. In Appendix A, under

the same assumptions shown below, we show the general results for pth order local-

polynomial estimation with d-dimensional running variables. These general results are

also the basis of the bias correction procedure of our estimator.

Because we consider a random sample, the treated sample is independent of the

control sample. Hence, we consider the following nonparametric regression models for

each sample:

Yi =m+(Ri) + ε+,i, E[ε+,i|Ri] = 0, i ∈ {1, . . . , n : Ri ∈ T } and

Yi =m−(Ri) + ε−,i, E[ε−,i|Ri] = 0, i ∈ {1, . . . , n : Ri ∈ T C}.

For the asymptotic normality, we impose the following regularity conditions that are

standard in kernel regression estimations. In Assumption 2.1, we assume the existence

of the continuous density function for the running variable R. Assumption 2.2 is the

regularity conditions for a kernel function to use. We pick a particular set of kernel

functions for our analysis later. Assumption 2.3 imposes a set of smoothness conditions

for the mean function m as well as for the moments of the conditional mean residual εi.

Finally, Assumption 2.4 specifies the rate of convergence of the vector of bandwidths

{h1, . . . , hd} relative to the sample size n.

Assumption 2.1 Let Ur be a neighborhood of r = (r1, . . . , rd)
′.

(a) The random variable Ri has a probability density function f .

(b) The density function f is continuous on Ur and f(r) > 0.

Assumption 2.2 Let K : Rd → R be a kernel function such that

(a)
∫
K(z)dz = 1.
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(b) The kernel function K is bounded and there exists a constant CK > 0 such that

K is supported on [−CK , CK ]
d.

(c) Define κ
(r)
0 :=

∫
Kr(z)dz, κ

(r)
j1,...,jM

:=
∫ ∏M

ℓ=1 zjℓK
r(z)dz, and

ž := (1, (z)′1, . . . , (z)
′
p)

′, (z)L =

(
L∏

ℓ=1

zjℓ

)′

1≤j1≤···≤jL≤d

, 1 ≤ L ≤ p.

The matrix S =
∫
K(z)

 1

ž

 (1 ž′)dz is non-singular.

Assumption 2.3 Let Ur be a neighborhood of r.

(a) The mean function m is (p + 1)-times continuously partial differentiable on Ur

and define ∂j1...jLm(r) := ∂m(r)/∂rj1 . . . rjL , 1 ≤ j1, . . . , jL ≤ d, 0 ≤ L ≤ p + 1.

When L = 0, we set ∂j1...jLm(r) = ∂j0m(r) = m(r).

(b) The variance function σ2(z) = E[ε2i |Ri = z] is continuous at r.

(c) There exists a constant δ > 0 such that supz∈Ur
E[|ε1|2+δ|R1 = x] ≤ U(r) < ∞.

Assumption 2.4 As n → ∞,

(a) hj → 0 for 1 ≤ j ≤ d,

(b) nh1 · · ·hd × h2
j1
. . . h2

jp → ∞ for 1 ≤ j1 ≤ · · · ≤ jp ≤ d,

(c) nh1 · · ·hd × h2
j1
. . . h2

jph
2
jp+1

→ cj1...jp+1 ∈ [0,∞) for 1 ≤ j1 ≤ · · · ≤ jp+1 ≤ d.

Theorem 2.1 (Asymptotic normality of local-linear estimators) Under Assumptions

2.1, 2.2, 2.3 and 2.4 for r = c, the mean function m+ with d = 2 and p = 1, the

conditional mean residual ε+,i, and the variance function σ2
+(z) = E[ε2+,i|Ri = z], as

n → ∞, we have

√
nh1h2

(
H ll
(
β̂+(c)−M+(c)

)
− S−1B(2,1)M

(2,1)
+,n (c)

)
d→ N

(
0,

σ2
+(c)

f(c)
S−1KS−1

)
,

where

H ll = diag(1, h1, h2) ∈ R3×3,

M+(c) = (m+(c), ∂1m+(c), ∂2m+(c))
′ ,
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M
(2,1)
+,n (r) =

(
∂11m+(c)

2
h2
1, ∂12m+(c)h1h2,

∂22m+(c)

2
h2
2

)′

, and

B(2,1) =

∫  1

ž

 (z)′2dz, K =

∫
K2(z)

 1

ž

 (1 ž′)dz.

The parallel result holds for β̂−(c) under the parallel restrictions.

Consequently from Theorem 2.1, the mean-squared error (MSE) of m̂+(c) has the

following asymptotic expansion, for e1 = (1, 0, 0)′,

e1S−1B(2,1)


∂11m+(c)

h2
1

2

∂12m+(c)h1h2

∂22m+(c)
h2
2

2




2

︸ ︷︷ ︸
Bias term

+
σ2
+(c)

nh1h2f(c)
e1S

−1KS−1e′1︸ ︷︷ ︸
Variance term

.

Following the standard bandwidth selection procedure in RD designs, we aim to find

the pair of (h1, h2) that minimizes the above asymptotic MSE.

In general, however, all three coefficients of three partial derivatives ∂11m+(c), ∂12m+(c)

and ∂22m+(c) in the bias term are non-zero. This general expression is too complex to

have an analytical formula for the optimal bandwidths. Hence, we simplify the above

expression by taking particular kernels such that

(2.1) κ
(1,1)
1 = κ

(1,1,1)
1,2 = κ

(1,2)
1 = κ

(1,1,2)
1,2 = κ

(1,2,1)
1,2 = 0.

Among product kernels of the form K(z1, z2) = K1(z1)K2(z2), the above restriction

amounts to rotate the space so that the boundary becomes either the x or y-axis. For

example, the following kernels satisfy the above restrictions:

K1(z) =

(1− |z|)1{|z|≤1} (two-sided triangular kernel),

3
4
(1− z2)1{|z|≤1} (Epanechnikov kernel),

K2(z) = 2(1− |z|)1{0≤z≤1} (one-sided triangular kernel).
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or a cone kernel

K(z1, z2) =
6

π

(
1−

√
z21 + z22

)
1{z21+z22≤1,z2≥0} =

6

π
(1− ∥z∥) 1{∥z∥≤1,z2≥0}.

where z = (z1, z2) and ∥z∥ =
√

z21 + z22 satisfy (2.1). In the following, we assume thatK1

is the two-sided triangular kernel andK2 is the one-sided triangular kernel. For example,

the design with T = {(R1, R2) ∈ R2 : R1 ≥ c1, R2 ≥ c2} satisfies the restriction (2.1) as

is or with a 90 degrees rotation; the design with T = {(R1, R2) ∈ R2 : R1+R2 ≥ c1+c2}
satisfies the restriction (2.1) with a 45 degrees rotation.

Under (2.1), MSE(m̂+(c)), is simplified to

{
h2
1

2
∂11m+(c)

(
s̃1κ

(2,1)
1 + s̃3κ

(2,1,1)
1,2

)
+

h2
2

2
∂22m+(c)

(
s̃1κ

(2,1)
2 + s̃3κ

(3,1)
2

)}2

+
σ2
+(c)

f(c)nh1h2

κ
(2)
0

(
κ
(2,1)
1 κ

(2,1)
2

)2
− 2κ

(1,2)
2

(
κ
(2,1)
1

)2
κ
(2,1)
2 κ

(1,1)
2 + κ

(2,2)
1

(
κ
(2,1)
1 κ

(1,1)
2

)2
(
κ
(1)
0 κ

(2,1)
1 κ

(2,1)
2 −

(
κ
(1,1)
2

)2
κ
(2,1)
2

)2 .

where 
s̃1

s̃2

s̃3

 :=
1

κ
(1)
0 κ

(2,1)
1 κ

(2,1)
2 −

(
κ
(1,1)
2

)2
κ
(2,1)
2


κ
(2,1)
1 κ

(2,1)
2

0

−κ
(2,1)
1 κ

(1,1)
2

 = S−1e1.

Consequently, the MSE of the estimator m̂+(c)− m̂+(c) is{
h2
1

2
(∂11m+(c)− ∂11m−(c))

(
s̃1κ

(2,1)
1 + s̃3κ

(2,1,1)
1,2

)
+

h2
2

2
(∂22m+(c)− ∂22m−(c))

(
s̃1κ

(2,1)
2 + s̃3κ

(3,1)
2

)}2

+
(σ2

+(c) + σ2
−(c))

f(c)nh1h2

e1S
−1KS−1e′1

when the same kernels are used for both the treatment and control sides.

We consider the optimal pair of bandwidths (h1, h2) that minimizes the above asymp-
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totic MSE. There are two remaining issues to minimize the above asymptotic MSE. The

first issue is that two bias terms may vanish when the second derivatives of the treat-

ment and control mean functions are equal. This first issue is an extreme scenario when

the second derivatives match exactly.

The optimal bandwidths may remain undetermined yet without the first issue. The

second issue is that we can choose a pair (h1, h2) such that the bias term equals zero

when the sign of the first-dimension ∂11m+(c)−∂11m−(c) differs from that of the second-

dimension ∂22m+(c)− ∂22m−(c). Unlike the first issue, which requires the exact match

of mean function shapes, this second issue is more likely because only the signs of mean

functions need to equal.

We attain a simple expression as a starting point under the following restrictions.

∂11m+(c) ̸= ∂11m−(c), ∂22m+(c) ̸= ∂22m−(c), and

sgn
{
(∂11m+(c)− ∂11m−(c))

(
s̃1κ

(2,1)
1 + s̃3κ

(2,1,1)
1,2

)}
=sgn

{
(∂22m+(c)− ∂22m−(c))

(
s̃1κ

(2,1)
2 + s̃3κ

(3,1)
2

)}
.

The unique pair of optimal bandwidths is attained by

h1

h2

=

√
B2(c)

B1(c)
and h6

1 =
(σ2

+(c) + σ2
−(c))

2n
e1S

−1KS−1e′1(B
−5/2
1 (c)B

1/2
2 (c))

where

B1(c) =(∂11m+(c)− ∂11m−(c))
(
s̃1κ

(2,1)
1 + s̃3κ

(2,1,1)
1,2

)
, and

B2(c) =(∂22m+(c)− ∂22m−(c))
(
s̃1κ

(2,1)
2 + s̃3κ

(3,1)
2

)
.

In general, these restrictions can fail. A similar issue arises in the single-variable

RD estimation with heterogeneous bandwidths with the treatment and control mean

functions (Imbens and Kalyanaraman, 2012). A theoretically possible approach is to

follow Arai and Ichimura (2018) who derive the higher-order expansion of the bias terms

for the single-variable RD estimation. In Appendix A.2.1, we derive the higher-order

expansion of the bias terms. Practically speaking, such a higher-order bias correction
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is not appropriate for multivariate RD estimations. As shown in Appendix A.2.1, a

higher-order bias correction procedure requires a reliable estimation for local estimation

of cubic polynomial with 10 coefficients. The higher-order bias correction is theoretically

possible; however, such a procedure is practically not reliable. Instead, we follow Imbens

and Kalyanaraman (2012) to rely on regularization. In particular, we take the absolute

values of the bias terms B1(c) and B2(c) as

h1

h2

=

(
B2(c)

2

B1(c)2

)1/4

and h1 =

[
(σ2

+(c) + σ2
−(c))

2n
e1S

−1KS−1e′1(|B1(c)|−5/2|B2(c)|1/2)
]1/6

,

and add regularization terms to B1(c) and B2(c) to prevent bandwidths to blow up when

the bias terms are zero or close to zero. Note that the optimal bandwidth ratio h1/h2

is the same for the optimal inner solution to the minimization as well as for the corner

solution of the first-order bias being zero. Given the same bandwidth ratio, we choose

h1 from the above formula when the realized signs of the estimated bias terms are the

same. If they are different, then we determine the bandwidths by the regularization,

assuming that the bias term disappears. Finally, as is well known for the single-variable

RD estimation by Calonico et al. (2014), we need to have a bias correction to have

appropriate inference. We propose a plug-in bias correction with the two-dimensional

local-quadratic estimation. See Appendix B for these implementation details.

3. SIMULATION RESULTS

We demonstrate the numerical properties of our estimator in the following Monte

Carlo simulations with four different designs, partially taken from Arai and Ichimura

(2018), Calonico et al. (2014), and Imbens and Kalyanaraman (2012). Specifically, we

take four designs of Arai and Ichimura (2018) as the base specifications for mean func-

tion shapes for one of two dimensions. Figure 3.2 is the shapes of mean functions used

in the numerical simulations of Arai and Ichimura (2018). Those specifications are

repeatedly used in other RD studies such as Calonico et al. (2014) and Imbens and

Kalyanaraman (2012) to evaluate their numerical performances.
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(a) Design 1 µ1(r2) (b) Design 2 µ2(r2)

(c) Design 3 µ3(r2) (d) Design 4 µ4(r2)

Figure 3.2.— Basic mean functions taken from Arai and Ichimura (2018). Design

1 is from Lee (2008) Data and Design 3 is a modification of Design 1 by Imbens and

Kalyanaraman (2012). Design 2 and 4 are from Ludwig and Miller (2007) Data.
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Figure 3.3.— Contour plots for Design 1, m(r1, r2) = µ1(r2) cos(πr1) with µ1(r2)

as in Figure 3.2 (a). The red line is the boundary; the red circle is the evaluation point.

Figure 3.4.— Contour plots for Design 2, m(r1, r2) = µ2(r2) cos(πr1) with µ2(r2)

as in Figure 3.2 (b). The red line is the boundary; the red circle is the evaluation point.
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Figure 3.5.— Contour plots for Design 3, m(r1, r2) = µ3(r2) cos(πr1) with µ3(r2)

as in Figure 3.2 (c). The red line is the boundary; the red circle is the evaluation point.

Figure 3.6.— Contour plots for Design 4, m(r1, r2) = µ4(r2) cos(πr1) with µ4(r2)

as in Figure 3.2 (d). The red line is the boundary; the red circle is the evaluation point.

Based on the shapes of the mean function of a single dimension R1, we multiply a

cosine function of the other dimension R2. Figures 3.3, 3.4, 3.5, and 3.6 are the 3D plots

of the mean functions. The cosine function is chosen among trigonometric functions so
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that their second derivatives in R1 and R2 are nonzero. Among the four designs, the

shape in Design 1 is relatively moderate compared to other specifications. Design 2

has a massive jump on the boundary with similar shapes on both sides; Design 3 is

extremely flat on the control side; Design 4 has a complex shape in the control side.

(a) Design 1 (b) Design 2

(c) Design 3 (d) Design 4

Figure 3.7.— Histograms of point estimates for three designs with truncation of

1% tail observations. Darker blue distributions are of our preferred estimates; lighter

yellow distributions are of distance based estimates.
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For each draw of a simulation sample, we draw R1 ∼ 2 × Beta(2, 4) − 1 and R2 ∼
U [−1, 1] independently each other; we generate the outcome variable as m(Ri1, Ri2)+ϵi

where ϵi ∼ N(0, 0.12952). We compare the quality of our estimator, rd2dim, relative

to the distance estimation using rdrobust in Figures 3.7. Figures 3.7 are histograms

of realized estimates of 3000 times replications. The darker blue histograms of rd2dim

have mainly thinner shapes than the lighter yellow histograms of distance estimation

using rdrobust. Nevertheless, for some specifications, the distance approach has better

bias corrections than ours. The yellow histograms are better centered around the red

line of the true effect than the blue histogram.

TABLE 3.1

Simulation results of three estimators for three designs.

Design Estimator Mean Median Mean Coverage RMSE Success

length length bias rate rate

Design 1 rd2dim 0.47 0.43 0.08 0.92 0.18 1.00

Design 1 common 0.44 0.42 0.11 0.78 0.17 1.00

Design 1 distance 0.88 0.73 0.02 0.93 0.31 1.00

Design 2 rd2dim 1.70 1.47 -0.14 0.96 1.74 0.99

Design 2 common 1.64 1.60 -0.55 0.89 0.59 1.00

Design 2 distance 41123.96 1.99 0.02 0.95 1.60 0.98

Design 3 rd2dim 1.02 0.87 0.24 0.77 5.73 0.88

Design 3 common 0.75 0.69 0.35 0.49 0.69 0.99

Design 3 distance 212563.46 1.34 -0.15 0.96 5.70 0.74

Design 4 rd2dim 0.64 0.64 0.08 0.92 0.24 1.00

Design 4 common 0.52 0.50 0.17 0.74 0.22 1.00

Design 4 distance 0.53 0.48 0.10 0.85 0.19 1.00

Notes: Results are from 3, 000 replication draws of 1, 000 observation samples. rd2dim refers

to our preferred estimator; common is our estimator with imposing the bandwidths being

the same for two dimensions; distance is the estimator with the Euclidean distance from

the boundary point as the running variable. All the implementations are in Python. Mean

length and Median length are of generated confidence interval length. Success is the rate

of successful reporting among replicated 3, 000 samples, counting the failures in positive

variance estimation or in singularity of the design matrix.
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We have a closer look at the performance comparisons in Table 3.1. Our first observa-

tion is that estimations with heterogeneous bandwidths h1 ̸= h2 matter. The common

estimator is a version of rd2dim that imposes h1 = h2. For all designs, the 95% coverage

rate of the true effect size is much worse for common compared to rd2dim, apparently

due to better bias correction with heterogeneous bandwidth selection.

When we compare rd2dim against distance, RMSE of rd2dim is approximately half of

distance for Design 1; the RSMEs are similar for two estimators for the other designs. We

conjecture the reason for the massively superior performance in Design 1 for its sufficient

variations in the mean functions over both axes of R1 and R2. The other designs are less

natural as two-dimensional designs than Design 1 and have extremely flat or extremely

dipping shapes. Our rd2dim is equally favorable in the 95% coverage rate compared

to distance. Nevertheless, the lengths of the mean and median confidence intervals are

much shorter for rd2dim relative to distance for most specification. Importantly, our

estimator is much more stable than distance based that sometimes fail to report a

valid standard error estimate. These tendencies are shown as extreme values in the

standard errors and consequently the mean length as well as the successful reporting of

the estimates without division by zero error. The instability of the distance estimator

is natural because the assumption for the valid inference is violated (see Section 2.2 for

details).

4. APPLICATION

We illustrate our estimator in an empirical application of a Colombian scholarship,

Londoño-Vélez, Rodŕıguez, and Sánchez (2020). The scholarship of interest is primarily

determined by two thresholds: merit-based and need-based. Consequently, there is a

policy boundary instead of a single cutoff. Our estimator is particularly relevant to

their study because of their interest in the heterogeneity over the policy boundary.

The outcome of interest is enrollment in any college; hence, the policy impact may be

heterogeneous by their poverty level and their level of academic ability.

From 2014 to 2018, the Colombian government operated a large-scale scholarship

program called Ser Pilo Paga (SPP). The scholarship loan covers “the full tuition cost of

attending any four-year or five-year undergraduate program in any government-certified



20

“high-quality” university in Colombia.” (Londoño-Vélez et al. (2020), pp.194). The

scholarship takes the form of a loan, but the loan is forgiven if the recipient graduates

the university appropriately. The eligibility of the SPP program is three-fold: first,

students must have their scores from a high-school exit exam exceeding a threshold;

second, the students must be from a welfare recipient household; third, the students

must be admitted by an eligible university. The first merit-based threshold is based

on the nationally standardized high school graduation exam, SABER 11. In 2014 of

Londoño-Vélez et al. (2020)’s study period, the cutoff was the top 9% of the score

distribution. The second need-based threshold is based on the eligibility of a social

welfare program, SISBEN. Being eligible for SISBEN means that the family is roughly

the poorest 50 percent. Students who exceed two thresholds may still be ineligible for the

program due to the third requirement. Hence, the impact of exceeding both thresholds

is not the impact of the program itself due to potential noncompliance. The estimand

is the impact of the program eligibility, which is the intention-to-treat (ITT) effect.

The empirical strategy of Londoño-Vélez et al. (2020) is the subsample approach.

They run two separate local regressions for the merit-based cutoff among the need-

eligible students and for the need-based cutoff among the merit-eligible students. Figure

4.8 is the scatter plot of observations in the space of the need-based criterion (SISBEN)

for the x-axis and the merit-based criterion (SAVER11) for the y-axis. Their strategy

is to estimate the effect of exceeding the SISBEN threshold for those who are around

SABER11 score near 0 and of exceeding the SABER11 threshold among those who are

around SISBEN score near 0. For each subsample, they run rdrobust package based on

Calonico et al. (2014). Londoño-Vélez et al. (2020) prefer this approach because the

discontinuities represent different populations, and the heterogeneity in estimated im-

pacts across these frontiers is informative (pp.205). Londoño-Vélez et al. (2020) report

that the effect of exceeding the merit-based (SABER11) threshold on enrollment in

any eligible college is 0.32 with the standard error of 0.012 for the need-based (SIS-

BEN) eligible subsample; the effect of exceeding the need-based (SISBEN) threshold

on enrollment in any eligible college is 0.274 with the standard error of 0.027 for the

merit-based (SABER11) eligible subsample. Students with the need eligibility in the

x-axis boundary of Figure 4.8 have a slightly higher effect than students with the merit
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eligibility in the y-axis boundary of Figure 4.8. Indeed, their strategy captures certain

heterogeneity in the two sub-populations, albeit with richer heterogeneity within.

Figure 4.8.— Scatter plot of observations. The x-axis represents the distance of

SISBEN score from the policy cutoff, divided by 100; the y-axis represents the distance

of SABER11 score from the policy cutoff, divided by 100. Positive values in each dis-

tance measure imply satisfying one of two policy requirements. The black dots on the

boundary are our evaluation points from 1 through 30.
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Instead of the subsample approach, we estimate the heterogeneous effects over the

whole boundary. We summarize our results in Figure 4.9. The darker blue intervals are

the pointwise 95% confidence intervals from our rd2dim estimates at each value of the

boundary points; the lighter green intervals are the pointwise 95% confidence intervals

from the distance-based rdrobust estimates at the same values of the boundary points.

For the most of points, the pattern of two estimates are similar across the boundary

points with a notable difference in the length of the confidence intervals. For the most

of the need-based eligible students (point 3 through point 15), our confidence intervals

are shorter than the distance-based ones.

Figure 4.9.— Estimation results over the 30 boundary points. Values from 1 through

30 in the x-axis corresponds values in Figure 4.8. Points from 1 through 15 are of

exceeding the merit threshold among the need-eligible students; points from 16 through

30 are of exceeding the need threshold among the merit-eligible students.

Both estimates, in particular our boundary-specific estimates, suggest that there are

substantial heterogeneity in the effects among the merit-eligible students (16 ∼ 30) but

not among the need-eligible students (1 ∼ 15). Specifically, the program has similar

effects among the majority of students, but the program has no or negative impact for
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extremely capable students (points 25 through 30).

The zero impact for extremely capable students is reasonable because they would

have received other scholarships to attend college without out-of-pocket expenses any-

way. The negative impact of the most capable students (points 29 and 30) may be

consistent with the definition of the dependent variable. The data is constructed from

the administrative SABER11 and SISBEN scores data which is merged with the data

from the Ministry of Education of Colombia that tracks students of the postsecondary

education system. Hence, the dependent variable of enrollment may not capture the

outside options such as enrolling in the selected US schools. The distance estimation

does not capture this heterogeneity and takes the opposite sign from the other esti-

mates. We conjecture that the distance estimation picks the outlier who are away from

the boundary because the students of the same distance from the point are compared

equally. In fact, this sign-flipping pattern of the distance estimation disappears when

the relative scale of two axes are adjusted by the absolute maximum values of each axis

(Figure 4.10 and 4.11). Finding an appropriate relative scaling of two axes is a difficult

task. Our rd2dim is free from such a difficult re-scaling task. This is an important merit

of our approach that can handle the relative scaling of the two-dimensional data as is.

5. CONCLUSION

We provide an alternative estimator for RD designs with multivariate running vari-

ables. Specifically, our estimator does not convert a multivariate RD estimation problem

into a scalar RD estimation problem. We estimate the multivariate conditional mean

functions as is. For the purpose of RD estimations, we develop a new asymptotic result

for the multivariate local-polynomial regression with dimension specific bandwidths. In

numerical simulations, we demonstrate favorable performance of our estimator against

a frequently used procedure of a distance measure as the scalar running variable. We

apply our estimator to the study of Londoño-Vélez et al. (2020) who study the impact

of a scholarship program that has two eligibility requirements. In the application, our

estimates are consistent with the original estimates and reveal a richer heterogeneity in

the program impacts over the policy boundary than the original estimates.

Our contributions are summarized in two ways. First, we demonstrate the issues in
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the current practices of multivariate RD designs and offer a remedy for the issues. The

distance approach (Black, 1999, Keele and Titiunik, 2015, for example) of converting

a multivariate running variable with the Euclidean distance from a point violates the

inference assumption of Calonico et al. (2014) and imposes a nontrivial restriction on the

conditional mean function; the subsample approach (Matsudaira, 2008, for example) of

taking the subsample with eligibility for all but one requirement has limited applicability

and capability to capture heterogeneous effects. We provide a strategy that is capable

to estimate heterogeneous effects without the dimension reduction.

Second, our asymptotic results complete the theory of multivariate local-polynomial

estimates. After Masry (1996) has shown the asymptotic normality of multivariate local-

polynomial estimates with common bandwidths between dimensions, no studies have

achieved the asymptotic theory with dimension-specific bandwidths. As demonstrated

in our simulation results, allowing different bandwidths for each dimension matters

substantially for the bias correction procedure, which results in the improved coverage

rate of our preferred estimates.

There are a few theoretical and practical issues remaining. First, our consideration is

limited to a random sample; hence, spatial RD designs are excluded from our consid-

eration. We defer our focus to spatial designs because of its theoretical and conceptual

complexity in addition to the analysis in this study. Nevertheless, we aim to propose

a spatial RD estimation based on a newly developed asymptotic results of Kurisu and

Matsuda (2022) in a separated study. Second, our theoretical results applies to any

finite dimensional RD designs, however, practical performances of such estimators with

higher than two dimensions can be limited. Although most RD designs have at most

two dimensions, the practical implementation of a higher-dimensional RD estimation is

an open question. Similarly, we provide the higher-order bias expressions for our multi-

variate local-polynomial estimates; however, estimating the derived bias expressions is

challenging. A new idea of exploiting these expressions is desirable. Finally, we do not

provide any procedure to aggregate heterogeneous estimates over the set of boundary

points. We leave these topics for future research questions.
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APPENDIX A: ASYMPTOTIC THEORY FOR MULTIVARIATE LOCAL-POLYNOMIAL
REGRESSIONS

A.1. Local-polynomial estimator

Consider the following nonparametric regression model:

Yi = m(Ri) + εi, E[εi|Ri] = 0, i = 1, . . . , n,

where {(Yi, Ri)}ni=1 is a sequence of i.i.d. random vectors such that Yi ∈ R, Ri =

(Ri,1, . . . , Ri,d)
′ ∈ Rd.

Define

D = #{(j1, . . . , jL) : 1 ≤ j1 ≤ · · · ≤ jL ≤ d, 0 ≤ L ≤ p},

D̄ = #{(j1, . . . , jp+1) : 1 ≤ j1 ≤ · · · ≤ jp+1 ≤ d},

and (sj1...jL1, . . . , sj1...jLd) ∈ Zd
≥0 such that sj1...jLk = #{jℓ : jℓ = k, 1 ≤ ℓ ≤ L}.

Further, define sj1...jL ! = sj1...jL1! . . . sj1...jLd!. When L = 0, we set (j1, . . . , jL) = j0 = 0,

sj1...jL ! = 1. Note that
∑d

j=1 sj1...jLℓ = L. The local-polynomial estimator

β̂(r) = (β̂j1,...jL(r))
′
1≤j1≤···≤jL≤d,0≤L≤p

:= (β̂0(r), β̂1(r), . . . , β̂d(r), β̂11(r), . . . β̂dd(r), . . . , β̂1...1(r), . . . , β̂d...d(r))
′.

of

M(r) =

(
1

sj1...jL !
∂j1,...jLm(r)

)′

1≤j1≤···≤jL≤d,0≤L≤p

:=

(
m(r), ∂1m(r), . . . , ∂dm(r),

∂11m(r)

2!
,
∂12m(r)

1!1!
, . . . ,

∂ddm(r)

2!
,

. . . ,
∂1...1m(r)

p!
,
∂1...2m(r)

(p− 1)!1!
. . . ,

∂d...dm(r)

p!

)′
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is given as a solution of the following problem:

β̂(r) = arg min
β∈RD

n∑
i=1

(
Yi −

p∑
L=0

∑
1≤j1≤···≤jL≤d

βj1...jL

L∏
ℓ=1

(Ri,jℓ − rjℓ)

)2

Kh (Ri − r)(A.1)

where β = (βj1...jL)
′
1≤j1≤···≤jL≤d,0≤L≤p,

Kh(Ri − r) = K

(
Ri,1 − ri

h1

, . . . ,
Ri,d − rd

hd

)
and each hj is a sequence of positive constants (bandwidths) such that hj → 0 as n →
∞. For notational convenience, we interpret

∑
1≤j1≤···≤jL≤d βj1...jL

∏L
ℓ=1(Ri,jℓ − rjℓ) = β0

when L = 0. We introduce some notations:

Y :=


Y1

...

Yn

 , W := diag (Kh (R1 − r) , . . . , Kh (Rn − r)) ,

R := (R1, . . . ,Rn) =


1 · · · 1

(R1 − r)1 · · · (Rn − r)1
... . . .

...

(R1 − r)p · · · (Rn − r)p

 =

 1 . . . 1

Ř1 . . . Řn

 ,

where

(Ri − r)L =

(
L∏

ℓ=1

(Ri,jℓ − rjℓ)

)′

1≤j1≤···≤jL≤d

.

The minimization problem (A.1) can be rewritten as

β̂(r) = arg min
β∈RD

(Y −R′β)′W (Y −R′β) = arg min
β∈RD

Qn(β).

Then the first order condition of the problem (A.1) is given by

∂

∂β
Qn(β) = −2RWY + 2RWR′β = 0.



28

Hence the solution of the problem (A.1) is given by

β̂(r) = (RWR′)−1RWY

=

[
n∑

i=1

Kh (Ri − r)RiR
′
i

]−1 n∑
i=1

Kh (Ri − r)RiYi.

Define

H := diag(1, h1, . . . , hd, h
2
1, h1h2, . . . , h

2
d, . . . , h

p
1, h

p−1
1 h2, . . . , h

p
d) ∈ RD×D.

Theorem A.1 (Asymptotic normality of local-polynomial estimators) Under As-

sumptions 2.1, 2.2, 2.3 and 2.4, as n → ∞, we have

√
nh1 · · ·hd

(
H
(
β̂(r)−M(r)

)
− S−1B(d,p)M (d,p)

n (r)
)

d→ N




0
...

0

 ,
σ2(r)

f(r)
S−1KS−1

 ,

where

M (d,p)
n (r) =

(
∂j1...jp+1m(r)

sj1...jp+1 !

p+1∏
ℓ=1

hjℓ

)′

1≤j1≤···≤jp+1≤d

=

(
∂1...1m(r)

(p+ 1)!
hp+1
1 ,

∂1...2m(r)

p!
hp
1h2, . . . ,

∂d...dm(r)

(p+ 1)!
hp+1
d

)′

∈ RD̄,

B(d,p) =

∫  1

ž

 (z)′p+1dz ∈ RD×D̄, K =

∫
K2(z)

 1

ž

 (1 ž′)dz.

Proof: Define h := (h1, . . . , hd)
′ and for r, y ∈ Rd, let r ◦ y = (r1y1, · · · , rdyd)′ be the

Hadamard product. Considering Taylor’s expansion of m(r) around r = (r1, . . . , rd)
′,

m(Ri) = (1, Ř
′
i)M(r) +

1

(p+ 1)!

∑
1≤j1≤···≤jp+1≤d

(p+ 1)!

sj1...jp+1 !
∂j1,...,jp+1m(R̃i)
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×
p+1∏
ℓ=1

(Ri,jℓ − rjℓ),

where R̃i = r + θi(Ri − r) for some θi ∈ [0, 1). Then we have

β̂(r)−M(r)

= (RWR′)−1RW (Y −R′M(r))

=

 n∑
i=1

Kh (Ri − r)

 1

Ři

 (1 Ř
′
i)

−1
n∑

i=1

Kh (Ri − r)

 1

Ři


×

εi +
∑

1≤j1≤···≤jp+1≤d

1

sj1...jp+1 !
∂j1,...,jp+1m(R̃i)

p+1∏
ℓ=1

(Ri,jℓ − rjℓ)

 .

This yields

√
nh1 · · ·hdH(β̂(r)−M(r)) = S−1

n (Vn(r) +Bn(r)),

where

Sn(r) =
1

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)H−1

 1

Ři

 (1 Ř
′
i)H

−1,

Vn(r) =
1√

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)H−1

 1

Ři

 εi

=: (Vn,j1...jL(r))
′
1≤j1≤···≤jL≤d,0≤L≤p,

Bn(r) =
1√

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)H−1

 1

Ři


×

∑
1≤j1≤···≤jp+1≤d

1

sj1...jp+1 !
∂j1,...,jp+1m(R̃i)

p+1∏
ℓ=1

(Ri,jℓ − rjℓ)

=: (Bn,j1...jL(R̃i))
′
1≤j1≤···≤jL≤d,0≤L≤p.

(Step 1) Now we evaluate Sn(r). For 1 ≤ j1,1 ≤ · · · ≤ j1,L1 , j2,1, . . . , j2,L2 ≤ d, 0 ≤
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L1, L2 ≤ p, we define

In,j1,1...j1,L1
,j2,1...j2,L2

:=
1

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)

L1∏
ℓ1=1

(
Ri,jℓ1

− rjℓ1
hjℓ1

)
L2∏

ℓ2=1

(
Ri,jℓ2

− rjℓ2
hjℓ2

)
.

Observe that

E
[
In,j1,1...j1,L1

,j2,1...j2,L2

]
=

1

h1 · · ·hd

E

[
Kh (Ri − r)

L1∏
ℓ1=1

(
Ri,jℓ1

− rjℓ1
hjℓ1

)
L2∏

ℓ2=1

(
Ri,jℓ2

− rjℓ2
hjℓ2

)]

=

∫ ( L1∏
ℓ1=1

zjℓ1

)(
L2∏

ℓ2=1

zjℓ2

)
K(z)f(r + h ◦ z)dz

= f(r)κ
(1)
j1,1...j1,L1

j2,1...j2,L2
+ o(1).

For the last equation, we used the dominated convergence theorem.

Var(In,j1,1...j1,L1
,j2,1...j2,L2

)

=
1

n(h1 · · ·hd)2
Var

(
Kh (R1 − r)

L1∏
ℓ1=1

(
Ri,jℓ1

− rjℓ1
hjℓ1

)
L2∏

ℓ2=1

(
Ri,jℓ2

− rjℓ2
hjℓ2

))

=
1

nh1 · · ·hd


∫ L1∏

ℓ1=1

(
Ri,jℓ1

− rjℓ1
hjℓ1

)2 L2∏
ℓ2=1

(
Ri,jℓ2

− rjℓ2
hjℓ2

)2

K2(z)f(r + h ◦ z)dz

−h1 · · ·hd

(∫ L1∏
ℓ1=1

(
Ri,jℓ1

− rjℓ1
hjℓ1

)
L2∏

ℓ2=1

(
Ri,jℓ2

− rjℓ2
hjℓ2

)
K(z)f(r + h ◦ z)dz

)2


=
1

nh1 · · ·hd

(
f(r)κ

(2)
j1,1...j1,L1

j2,1...j2,L2
j1,1...j1,L1

j2,1...j2,L2
+ o(1)

)
− 1

n
(f(r)κ

(1)
j1,1...j1,L1

j2,1...j2,L2
+ o(1))2 (DCT)

=
f(r)κ

(2)
j1,1...j1,L1

j2,1...j2,L2
j1,1...j1,L1

j2,1...j2,L2

nh1 · · ·hd

+ o

(
1

nh1 · · ·hd

)
.
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Then for any ρ > 0,

P
(
|In,j1,1...j1,L1

,j2,1...j2,L2
− f(r)κ

(1)
j1,1...j1,L1

j2,1...j2,L2
| > ρ

)
≤ ρ−1

{
Var(In,j1,1...j1,L1

,j2,1...j2,L2
) +

(
E[In,j1,1...j1,L1

,j2,1...j2,L2
]− f(r)κ

(1)
j1,1...j1,L1

j2,1...j2,L2

)2}
= O

(
1

nh1 · · ·hd

)
+ o(1) = o(1).

This yields In,j1,1...j1,L1
,j2,1...j2,L2

p→ f(r)κ
(1)
j1,1...j1,L1

j2,1...j2,L2
. Hence we have Sn(r)

p→ f(r)S.

(Step 2) Now we evaluate Vn(r). For any t = (t0, t1, . . . , td, t11, . . . , tdd, . . . , t1...1, . . . , td...d)
′ ∈

RD, we define

Rn,i,j1...jL :=
1√

nh1 · · ·hd

Kh (Ri − r)
L∏

ℓ=1

(
Ri,jℓ − rjℓ

hjℓ

)
εi, 1 ≤ j1, . . . , jL ≤ d,

Zn,i :=

p∑
L=0

∑
1≤j1≤···≤jL≤d

tj1...jLRn,i,j1...jL .

Observe that

σ2
n,j1...jL

:= Var

(
n∑

i=1

Rn,i,j1...jL

)
=

1

h1 · · ·hd

E

[
ε2iK

2
h (R1 − r)

L∏
ℓ=1

(
R1,jℓ − rjℓ

hjℓ

)2
]

=
1

h1 · · ·hd

E

[
σ2(Ri)K

2
h (R1 − r)

L∏
ℓ=1

(
R1,jℓ − rjℓ

hjℓ

)2
]

=

∫
σ2(r + h ◦ z)

(
L∏

ℓ=1

z2jℓ

)
K2(z)f(r + h ◦ z)dz

= σ2(r)f(r)κ
(2)
j1...jLj1...jL

+ o(1).

For the last equation, we used the dominated convergence theorem. Moreover, for 1 ≤
j1,1 ≤ · · · ≤ j1,L1 ≤ d and 1 ≤ j2,1 ≤ · · · ≤ j2,L2 ≤ d, we have

Cov(Vn,j1,1...j1,L1
(r), Vn,j2,1...j2,L2

(r))

=
1

h1 · · ·hd

E

[
σ2(Ri)K

2
h (Ri − r)

L1∏
ℓ1=1

(
Ri,j1,ℓ1

− rj1,ℓ1
hj1,ℓ1

)
L2∏

ℓ2=1

(
Ri,j2,ℓ2

− rj2,ℓ2
hj2,ℓ2

)]
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=

∫
σ2(r + h ◦ z)

(
L1∏

ℓ1=1

zj1,ℓ1

)(
L2∏

ℓ2=1

zj2,ℓ2

)
K2(z)f(r + h ◦ z)dz

= σ2(r)f(r)κ
(2)
j1,1...j1,L1

j2,1...j2,L2
+ o(1).

For the last equation, we used the dominated convergence theorem. For sufficiently

large n, we have

n∑
i=1

E[|Zn,i|2+δ]

=
1

nδ/2(h1 · · ·hd)1+δ/2
E
[
|εi|2+δ |Kh (Ri − r)|2+δ

×

∣∣∣∣∣
p∑

L=0

∑
1≤j1≤···≤jL≤d

tj1...jL

L∏
ℓ=1

(
Ri,jℓ − rjℓ

hjℓ

)∣∣∣∣∣
2+δ


≤ U(r)

(nh1 · · ·hd)δ/2

∫ ∣∣∣∣∣
p∑

L=0

∑
1≤j1≤···≤jL≤d

tj1...jL

L∏
ℓ=1

zjℓ

∣∣∣∣∣
2+δ

|K(z)|2+δf(r + h ◦ z)dz

=
U(r)f(r)

(nh1 · · ·hd)δ/2

∫ ∣∣∣∣∣
p∑

L=0

∑
1≤j1≤···≤jL≤d

tj1...jL

L∏
ℓ=1

zjℓ

∣∣∣∣∣
2+δ

|K(z)|2+δdz + o(1)

= o(1).

For the second equation, we used the dominated convergence theorem. Thus, Lya-

pounov’s condition is satisfied for
∑n

i=1 Zn,i. Therefore, by Cramér-Wold device, we

have

Vn(r)
d→ N




0
...

0

 , σ2(r)f(r)K

 .

(Step 3) Now we evaluate Bn(r). Decompose

Bn,j1...jL(R̃i) =
{
Bn,j1...jL(R̃i)−Bn,j1...jL(r)− E

[
Bn,j1...jL(R̃i)−Bn,j1...jL(r)

]}
+ E

[
Bn,j1...jL(R̃i)−Bn,j1...jL(r)

]
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+ {Bn,j1...jL(r)− E [Bn,j1...jL(r)]}

+ E [Bn,j1...jL(r)]

=:
4∑

ℓ=1

Bn,j1...jLℓ.

Define Nr(h) :=
∏d

j=1[rj − CKhj, rj + CKhj]. For Bn,j1...jL1,

Var(Bn,j1...jL1)

≤ 1

{(p+ 1)!}2h1 · · ·hd

E

[
K2

h (Ri − r)
L∏

ℓ=1

(
Ri,jℓ − rjℓ

hjℓ

)2

×
∑

1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

1

sj1,1...j1,p+1 !

1

sj2,1...j2,p+1 !

×(∂j1,1...j1,p+1m(R̃i)− ∂j1,1...j1,p+1m(r))(∂j2,1...j2,p+1m(R̃i)− ∂j2,1...j2,p+1m(r))

×
p+1∏
ℓ1=1

(Ri,j1,ℓ1
− rj1,ℓ1 )

p+1∏
ℓ2=1

(Ri,j2,ℓ2
− rj2,ℓ2 )

]

≤ 1

{(p+ 1)!}2
max

1≤j1≤···≤jp+1≤d
sup

y∈Nr(h)

|∂j1...jp+1m(y)− ∂j1...jp+1m(r)|2

×
∑

1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

p+1∏
ℓ1=1

hj1,ℓ1

p+1∏
ℓ2=1

hj2,ℓ2

×
∫ ( L∏

ℓ=1

|zjℓ|
p+1∏
ℓ1=1

|zj1,ℓ1 |
p+1∏
ℓ2=1

|zj2,ℓ2 |

)
K2(z)f(r + h ◦ z)dz

= o

 ∑
1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

p+1∏
ℓ1=1

hj1,ℓ1

p+1∏
ℓ2=1

hj2,ℓ2

 .(A.2)

Then we have Bn,j1...jL1 = op(1).

For Bn,j1...jL2,

|Bn,j1...jL2|

≤ 1

(p+ 1)!
max

1≤j1,...,jp+1≤d
sup

y∈Nr(h)

|∂j1...jp+1m(y)− ∂j1...jp+1m(r)|
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×
√

nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+1≤d

p+1∏
ℓ1=1

hj1,ℓ1

∫ ( L∏
ℓ=1

|zjℓ |
p+1∏
ℓ1=1

|zj1,ℓ1 |

)
|K(z)|f(r + h ◦ z)dz

= o(1).(A.3)

For Bn,j1...jL3,

Var(Bn,j1...jL3)

≤ 1

{(p+ 1)!}2
∑

1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

∂j1,1...j1,p+1m(r)∂j2,1...j2,p+1m(r)

×
p+1∏
ℓ1=1

hj1,ℓ1

p+1∏
ℓ2=1

hj2,ℓ2

∫ ( L∏
ℓ=1

z2jℓ

p+1∏
ℓ1

|zj1,ℓ1 |
p+1∏
ℓ2=1

|zj2,ℓ2 |

)
K2(z)f(r + h ◦ z)dz

= o(1).(A.4)

Then we have Bn,j1...jL3 = op(1).

For Bn,j1...jL4,

Bn,j1...jL4

=
√
nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(r)

sj1,1...j1,p+1 !

×
p+1∏
ℓ1=1

hj1,ℓ1

∫ ( L∏
ℓ=1

zjℓ

p+1∏
ℓ1=1

zj1,ℓ1

)
K(z)f(r + h ◦ z)dz

= f(r)
√

nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(r)

sj1,1...j1,p+1 !

p+1∏
ℓ1=1

hj1,ℓ1
κ
(1)
j1...jLj1,1...j1,p+1

+ o(1).(A.5)

Combining (A.2)-(A.5),

Bn,j1...jL(R̃i) = f(r)
√

nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(r)

sj1,1...j1,p+1 !

×
p+1∏
ℓ1=1

hj1,ℓ1
κ
(1)
j1...jLj1,1...j1,p+1

+ op(1).
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(Step 4) Combining the results in Steps1-3, we have

An(r) := Vn(r) +
(
Bn(r)− f(r)

√
nh1 · · ·hd (bn,j1...jL(r))

′
1≤j1≤···≤jL≤d,0≤L≤p

)
d→ N




0
...

0

 , σ2(r)f(r)K

 .

This yields the desired result. Q.E.D.

Remark A.1 (General form of the MSE of ̂∂j1...jLm(r)) Define

b(d,p)n (r) := B(d,p)M (d,p)
n (r)

= (bn,0(r), bn,1(r), . . . , bn,d(r),

bn,11(r), bn,12(r), . . . , bn,dd(r), . . . , bn,1...,1(r), bn,1...2(r), . . . , bn,d...d(r))
′

and let ej1...jL = (0, . . . , 0, 1, 0, . . . , 0)′ be aD-dimensional vector such that e′j1...jLb
(d,p)
n (r) =

bj1...jL(r). Theorem A.1 yields that

bn,j1,...,jL(r) :=
∑

1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(r)

sj1,1...j1,p+1 !

p+1∏
ℓ1=1

hj1,ℓ1
κ
(1)
j1...jLj1,1...j1,p+1

,

for 1 ≤ j1 ≤ · · · ≤ jL ≤ d, 0 ≤ L ≤ p and

MSE( ̂∂j1...jLm(r))

=

{
sj1...jL !

(S−1ej1...jL)
′B(d,p)M

(d,p)
n (r)∏L

ℓ=1 hjℓ

}2

+ (sj1...jL !)
2 σ2(r)

nh1 · · ·hd ×
(∏L

ℓ=1 hjℓ

)2
f(r)

e′j1...jLS
−1KS−1ej1...jL .
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A.2. Higher-order bias

In this section, we derive higher-order biases of local-polynomial estimators. Suppose

that Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Further, we assume that

• the density function f is continuously differentiable on Ur.

• the mean function m is (p+ 2)-times continuously differentiable on Ur.

Recall that

√
nh1 · · ·hdH(β̂(r)−M(r)) = S−1

n (Vn(r) +Bn(r)),

where

Sn(r) =
1

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)H−1

 1

Ři

 (1 Ř
′
i)H

−1,

Vn(r) =
1√

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)H−1

 1

Ři

 εi =: (Vn,j1...jL(r))
′
1≤j1≤···≤jL≤d,0≤L≤p,

Bn(r) =
1√

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)H−1

 1

Ři


×

 ∑
1≤j1≤···≤jp+1≤d

1

sj1...jp+1 !
∂j1,...,jp+1m(r)

p+1∏
ℓ=1

(Ri,jℓ − rjℓ)

+
∑

1≤j1≤···≤jp+2≤d

1

sj1...jp+2 !
∂j1,...,jp+2m(R̃i)

p+2∏
ℓ=1

(Ri,jℓ − rjℓ)


=: (Bn,j1...jL(R̃))′1≤j1≤···≤jL≤d,0≤L≤p.

Now we focus on Bn,j1...jL(R̃).

Bn,j1...jL(R̃)

=
1√

nh1 · · ·hd

n∑
i=1

Kh (Ri − r)

(
L∏

ℓ=1

Ri,jℓ − rjℓ
hjℓ

)

×

 ∑
1≤j1,1≤···≤j1,p+1≤d

1

sj1,1...j1,p+1 !
∂j1,1,...,j1,p+1m(r)

p+1∏
ℓ1=1

(Ri,j1,ℓ1
− rj1,ℓ1 )
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+
∑

1≤j1,1≤···≤j1,p+2≤d

1

sj1,1...j1,p+2 !
∂j1,1,...,j1,p+2m(R̃i)

p+2∏
ℓ1=1

(Ri,j1,ℓ1
− rj1,ℓ1 )


=: Bn,1(r) + Bn,2(R̃).

For Bn,1(r),

E[Bn,1(r)] =

√
n

h1 · · ·hd

E

[
Kh(R1 − r)

(
L∏

ℓ=1

R1,jℓ − rjℓ
hjℓ

)

×
∑

1≤j1,1≤···≤j1,p+1≤d

1

sj1,1...j1,p+1 !
∂j1,1,...,j1,p+1m(r)

p+1∏
ℓ1=1

(R1,j1,ℓ1
− rj1,ℓ1 )


=
√

nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+1≤d

1

sj1,1...j1,p+1 !
∂j1,1,...,j1,p+1m(r)

p+1∏
ℓ1=1

hj1,ℓ1

×
∫ L∏

ℓ=1

zjℓ

p+1∏
ℓ1=1

zj1,ℓ1K(z)f(r + h ◦ z)dz

=
√

nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+1≤d

1

sj1,1...j1,p+1 !
∂j1,1,...,j1,p+1m(r)

p+1∏
ℓ1=1

hj1,ℓ1

×

(
f(r)

∫ L∏
ℓ=1

zjℓ

p+1∏
ℓ1=1

zj1,ℓ1K(z)dz

+
d∑

k=1

∂kf(r)hk

∫
zk

L∏
ℓ=1

zjℓ

p+1∏
ℓ1=1

zj1,ℓ1K(z)dz

)
(1 + o(1)).(A.6)

Var(Bn,1(r))

≤
∑

1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

∂j1,1...j1,p+1m(r)∂j2,1...j2,p+1m(r)

×
p+1∏
ℓ1=1

hj1,ℓ1

p+1∏
ℓ2=1

hj2,ℓ2

∫ ( L∏
ℓ=1

z2jℓ

p+1∏
ℓ1=1

|zj1,ℓ1 |
p+1∏
ℓ2=1

|zj2,ℓ2 |

)
K2(z)f(r + h ◦ z)dz

= O

 ∑
1≤j1≤···≤jp+1≤d

p+1∏
ℓ=1

hjℓ

2 .(A.7)
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For Bn,2(R̃),

Bn,2(R̃) =
{
Bn,2(R̃)− Bn,2(r)− E[Bn,2(R̃)− Bn,2(r)]

}
+ E[Bn,2(R̃)− Bn,2(r)]

+ Bn,2(r)− E[Bn,2(r)]

+ E[Bn,2(r)]

=:
4∑

ℓ=1

Bn,2ℓ.

Define Nr(h) :=
∏d

j=1[rj − CKhj, rj + CKhj]. For Bn,21,

Var(Bn,21)

≤ 1

h1 · · ·hd

E

[
K2

h (Ri − r)
L∏

ℓ=1

(
Ri,jℓ − rjℓ

hjℓ

)2

×
∑

1≤j1,1≤···≤j1,p+2≤d,1≤j2,1≤···≤j2,p+2≤d

1

sj1,1...j1,p+2 !

1

sj2,1...j2,p+2 !

×(∂j1,1...j1,p+2m(R̃i)− ∂j1,1...j1,p+2m(r))(∂j2,1...j2,p+2m(R̃i)− ∂j2,1...j2,p+2m(r))

×
p+2∏
ℓ1=1

(Ri,j1,ℓ1
− rj1ℓ1 )

p+2∏
ℓ2=1

(Ri,j2,ℓ2
− rj2ℓ2 )

]
≤ max

1≤j1≤···≤jp+2≤d
sup

y∈Nr(h)

|∂j1...jp+2m(y)− ∂j1...jp+2m(r)|2

×
∑

1≤j1,1≤···≤j1,p+2≤d,1≤j2,1≤···≤j2,p+2≤d

p+2∏
ℓ1=1

hj1,ℓ1

p+2∏
ℓ2=1

hj2,ℓ2

×
∫ ( L∏

ℓ=1

|zjℓ|
p+2∏
ℓ1=1

|zj1,ℓ1 |
p+2∏
ℓ2=1

|zj2,ℓ2 |

)
K2(z)f(r + h ◦ z)dz

= o

 ∑
1≤j1≤···≤jp+2≤d

p+2∏
ℓ=1

hjℓ

2 .(A.8)

For Bn,22,

|Bn,22|
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≤ max
1≤j1,...,jp+2≤d

sup
y∈Nr(h)

|∂j1...jp+2m(y)− ∂j1...jp+2m(r)|

×
√

nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+2≤d

p+2∏
ℓ1=1

hj1,ℓ1

∫ ( L∏
ℓ=1

|zjℓ |
p+2∏
ℓ1=1

|zj1,ℓ1 |

)
|K(z)|f(r + h ◦ z)dz

= o

√nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+2≤d

p+2∏
ℓ1=1

hj1,ℓ1

 .(A.9)

For Bn,23,

Var(Bn,23)

≤
∑

1≤j1,1≤···≤j1,p+2≤d,1≤j2,1≤···≤j2,p+2≤d

∂j1,1...j1,p+2m(r)∂j2,1...j2,p+2m(r)

×
p+2∏
ℓ1=1

hj1,ℓ1

p+2∏
ℓ2=1

hj2,ℓ2

∫ ( L∏
ℓ=1

z2jℓ

p+2∏
ℓ1

|zj1,ℓ1 |
p+2∏
ℓ2=1

|zj2,ℓ2 |

)
K2(z)f(r + h ◦ z)dz

= O

 ∑
1≤j1≤···≤jp+2≤d

p+2∏
ℓ=1

hjℓ

2 .(A.10)

For Bn,24,

Bn,24 =
√
nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+2≤d

∂j1,1...j1,p+2m(r)

sj1,1...j1,p+2 !

×
p+2∏
ℓ1=1

hj1,ℓ1

∫ ( L∏
ℓ=1

zjℓ

p+2∏
ℓ1=1

zj1,ℓ1

)
K(z)f(r + h ◦ z)dz

= f(r)
√

nh1 · · ·hd

×

 ∑
1≤j1,1≤···≤j1,p+2≤d

∂j1,1...j1,p+2m(r)

sj1,1...j1,p+2 !

p+2∏
ℓ1=1

hj1,ℓ1

∫ ( L∏
ℓ=1

zjℓ

p+2∏
ℓ1=1

zj1,ℓ1

)
K(z)dz

 (1 + o(1)).(A.11)

Combining (A.6)-(A.11),

Bn,j1...jL(R̃)

=
√

nh1 · · ·hd

∑
1≤j1,1≤···≤j1,p+1≤d

1

sj1,1...j1,p+1 !
∂j1,1,...,j1,p+1m(r)

p+1∏
ℓ1=1

hj1,ℓ1
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×

(
f(r)

∫ L∏
ℓ=1

zjℓ

p+1∏
ℓ1=1

zj1,ℓ1K(z)dz +
d∑

k=1

∂kf(r)hk

∫ (
zk

L∏
ℓ=1

zjℓ

p+1∏
ℓ1=1

zj1,ℓ1

)
K(z)dz

)
(1 + o(1)).

+
√

nh1 · · ·hd

×

f(r)
∑

1≤j1,1≤···≤j1,p+2≤d

∂j1,1...j1,p+2m(r)

sj1,1...j1,p+2 !

p+2∏
ℓ1=1

hj1,ℓ1

∫ ( L∏
ℓ=1

zjℓ

p+2∏
ℓ1=1

zj1,ℓ1

)
K(z)dz

 (1 + o(1)).

A.2.1. Higher-order bias of the local-linear estimator

For local-linear estimators (i.e., d = 2, p = 1), we have

bn,0 =
f(r)

2

2∑
j,k=1

∂jkm(r)hjhk

∫
zkzjK(z)dz

+
2∑

ℓ=1

∂ℓf(r)

2

2∑
j,k=1

∂jkm(r)hjhkhℓ

∫
zjzkzℓK(z)dz

+
f(r)

6

2∑
j,k,ℓ=1

∂jkℓm(r)hjhkhℓ

∫
zjzkzℓK(z)dz,

bn,1 =
f(r)

2

2∑
j,k=1

∂jkm(r)hjhk

∫
z1zkzjK(z)dz

+
2∑

ℓ=1

∂ℓf(r)

2

2∑
j,k=1

∂jkm(r)hjhkhℓ

∫
z1zjzkzℓK(z)dz

+
f(r)

6

2∑
j,k,ℓ=1

∂jkℓm(r)hjhkhℓ

∫
z1zjzkzℓK(z)dz,

bn,2 =
f(r)

2

2∑
j,k=1

∂jkm(r)hjhk

∫
z2zkzjK(z)dz

+
2∑

ℓ=1

∂ℓf(r)

2

2∑
j,k=1

∂jkm(r)hjhkhℓ

∫
z2zjzkzℓK(z)dz

+
f(r)

6

2∑
j,k,ℓ=1

∂jkℓm(r)hjhkhℓ

∫
z2zjzkzℓK(z)dz.
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When K(z) = K1(z1)K2(z2) where K1(z1) = (1 − |z1|)1{|z1|≤1} and K2(z2) = 2(1 −
z2)1{0≤z2≤1}, we have

bn,0 =
f(r)

2

{
h2
1∂11m(r)κ

(2,1)
1 + h2

2∂22m(r)κ
(2,1)
2

}
+

∂1f(r)

2

(
2h2

1h2∂12m(r)κ
(2,1,1)
1,2

)
+

∂2f(r)

2

(
h2
1h2∂11m(r)κ

(2,1,1)
1,2 + h3

2∂22m(r)κ
(3,1)
2

)
+

f(r)

6

(
3h2

1h2∂112m(r)κ
(2,1,1)
1,2 + h3

2∂222m(r)κ
(3,1)
2

)
,

bn,1 =
f(r)

2

(
2h1h2∂12m(r)κ

(2,1,1)
1,2

)
+

∂1f(r)

2

(
h3
2∂11m(r)κ

(4,1)
1 + h2

1h2∂22m(r)κ
(2,2,1)
1,2

)
+

∂2f(r)

2

(
2h1h

2
2∂12m(r)κ

(2,2,1)
1,2

)
+

f(r)

6

(
h3
1∂111m(r)κ

(4,1)
1 + 3h1h

2
2∂122m(r)κ

(2,2,1)
1,2

)
,

bn,2 =
f(r)

2

(
h2
1∂11m(r)κ

(2,1,1)
1,2 + h2

2∂22m(r)κ
(3,1)
2

)
+

∂1f(r)

2

(
2h2

1h2∂12m(r)κ
(2,2,1)
1,2

)
+

∂2f(r)

2

(
h2
1h2∂11m(r)κ

(2,2,1)
1,2 + h3

2∂22m(r)κ
(4,1)
2

)
+

f(r)

6

(
3h2

1h2∂112m(r)κ
(2,2,1)
1,2 + h3

2∂222m(r)κ
(4,1)
2

)
.

Therefore,

Bias(m̂(r))

= s̃1bn,0 + s̃3bn,2

=

{
h2
1

2
∂11m(r)(s̃1κ

(2,1)
1 + s̃3κ

(2,1,1)
1,2 ) +

h2
2

2
∂22m(r)(s̃1κ

(2,1)
2 + s̃3κ

(3,1)
2 )

}
+ h2

1h2

(
∂11m(r)

2

∂2f(r)

f(r)
+ ∂12m(r)

∂1f(r)

f(r)
+

∂112m(r)

2

)
(s̃1κ

(2,1,1)
1,2 + s̃3κ

(2,2,1)
1,2 )
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+ h3
2

(
1

2
∂22m(r)

∂2f(r)

f(r)
+

1

6
∂222m(r)

)
(s̃1κ

(3,1)
2 + s̃3κ

(4,1)
2 ).

APPENDIX B: IMPLEMENTATION DETAILS

In section 2.3, we propose our optimal bandwidth selection from the following for-

mula:

h1

h2

=

(
B2(c)

2

B1(c)2

)1/4

and

h1 =

[
(σ2

+(c) + σ2
−(c))

2n
e1S

−1KS−1e′1|B1(c)|−5/2|B2(c)|−1/2)

]1/6
and our RD estimate prior to the bias correction is β̂+

0 (c)− β̂−
0 (c) where these intercept

terms of the local-polynomial estimates {β̂+
0 (c), β̂

−
0 (c)} are computed with the band-

widths specified above. Nevertheless, to compute the optimal bandwidth, we need to

estimate the bias terms B1(c) and B2(c) as well as the residual variances {σ2
+(c), σ

2
−(c)}.

We follow Calonico et al., 2014, Section 5) in estimation of the residual variances at the

boundary point c. For the bias terms, as in Calonico et al. (2014), we set a pair of pilot

bandwidths with the local-quadratic regression. The key complication of our study is

that the local-quadratic regression is also multivariate.

The expression of the bias terms involve a pair of partial derivatives (∂11m+(c), ∂22m+(c))

for the treated and (∂11m−(c), ∂22m−(c)) for the control. Given a pair of pilot band-

widths b+ and b− for the treated and the control, we run the local-quadratic estimation

γ̂+(c) = arg min
(γ0,...,γ5)′∈R6

n∑
i=1

(Yi − γ0 − γ1(Ri,1 − c1)

− γ2(Ri,2 − c2)− γ3(Ri,1 − c2)
2

− γ4(Ri,1 − c1)(Ri,2 − c2)

− γ5(Ri,2 − c2)
2)2Kb (Ri − c) 1{Ri ∈ T }
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and

γ̂−(c) = arg min
(γ0,...,γ5)′∈R6

n∑
i=1

(Yi − γ0 − γ1(Ri,1 − c1)

− γ2(Ri,2 − c2)− γ3(Ri,1 − c2)
2

− γ4(Ri,1 − c1)(Ri,2 − c2)

− γ5(Ri,2 − c2)
2)2Kb (Ri − c) 1{Ri ∈ T C}

where Kb(Ri − c) = K
(

Ri,1−c1
b

,
Ri,2−c2

b

)
to obtain these partial derivatives. These pilot

bandwidths (b+, b−) are chosen from minimizing the mean squared error of estimating

the bias term, which involves the local cubic regression. 1

Given the pilot bandwidths, we estimate the bias terms B1(c) and B2(c). Let B̂1(c)

and B̂2(c) be their estimates. In the optimal bandwidth selection, we follow Imbens and

Kalyanaraman (2012) to regularize the bias term which appears in the denominator.

Specifically, we employ their result that the inverse of bias term estimation error is

approximated by 3 times their variance. If the estimated signs of the bias terms are the

same, sgn(B̂1(c)B̂2(c)) ≥ 0, then the optimal bandwidths should be chosen from the

first-order condition: we set

h1 =

(σ̂2
+(c) + σ̂2

−(c))

2n
e1S

−1KS−1e′1(B̂1(c)
2 + 3V̂ (B̂1(c))

−1

(
B̂2(c)

2

B̂1(c)2 + 3V̂ (B̂1(c))

)1/4
1/6

and

h2 =

(σ̂2
+(c) + σ̂2

−(c))

2n
e1S

−1KS−1e′1(B̂2(c)
2 + 3V̂ (B̂2(c))

−1

(
B̂1(c)

2

B̂2(c)2 + 3V̂ (B̂2(c))

)1/4
1/6

separately for each subsample of the treated and control, where V̂ (B̂1(c)) and V̂ (B̂2(c))

are variance estimates from the bias estimation with the pilot bandwidths. If the esti-

mated signs of the bias terms are different, sgn(B̂1(c)B̂2(c)) < 0, then we use the same

1Furthermore, we choose the preliminary bandwidth for the local cubic regression from minimizing
the mean squared error of estimating the bias term for the pilot bandwidth. This preliminary bandwidth
selection involves the global 4th order polynomial regressions.
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bandwidth ratio h1/h2, but the first-order bias can be eliminated. Hence, we set

h1 =

(σ̂2
+(c) + σ̂2

−(c))

2n
e1S

−1KS−1e′1(3V̂ (B̂1(c)))/2)
−1

(
B̂2(c)

2

B̂1(c)2 + 3V̂ (B̂1(c))

)1/4
1/6

and

h2 =

(σ̂2
+(c) + σ̂2

−(c))

2n
e1S

−1KS−1e′1(3V̂ (B̂2(c))/2)
−1

(
B̂1(c)

2

B̂2(c)2 + 3V̂ (B̂2(c)))

)1/4
1/6

where the bias terms are replaced with the regularization terms.

APPENDIX C: CONSEQUENCE OF CONVERTING TWO-DIMENSIONAL DATA TO ONE
DIMENSION.

Let Zi = ∥Ri∥ and K1(r) = 2(1− r)1{0≤r≤1}. Define

f̌(0) =
1

ňh

n∑
i=1

K1(Zi/h)1{Ri,2≥0}, ň =
n∑

i=1

1{Ri,2≥0}.

Note that ň
n
= P (R1,2 ≥ 0) +Op(n

−1/2) and

f̌(0) =

(
1

(ň/n)
− 1

P (R1,2 ≥ 0)
+

1

P (R1,2 ≥ 0)

)
1

nh

n∑
i=1

K1(Zi/h)1{Ri,2≥0}

=
1

P (R1,2 ≥ 0)

1

nh

n∑
i=1

K1(Zi/h)1{Ri,2≥0} +Op(n
−1/2)

=:
1

P (R1,2 ≥ 0)
f̃(0) +Op(n

−1/2).

Further,

E[f̃(0)] =
2

h
E[K1(Z1/h)1{R1,2≥0}]

=
2

h

∫
(1− ∥(r1/h, r2/h)∥)1{∥(r1/h, r2/h)∥ ≤ 1}1{r2≥0}f(r)dr

=
2

h

∫
(1− ∥(r1/h, r2/h)∥)1{∥(r1/h, r2/h)∥ ≤ 1}1{r2/h≥0}f(r)dr
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= 2h

∫
(1− ∥z∥)1{∥z∥≤1,z2≥0}f(hz1, hz2)dz

= 2h

(
f(0)

∫
(1− ∥z∥)1{∥z∥≤1,z2≥0}dz + o(1)

)
= 2h

(
f(0)

∫ 1

0

(1− r)rdr

∫ π

0

dθ + o(1)

)
= 2h

(π
6
f(0) + o(1)

)
where we used the dominated convergence theorem for the fifth equation, and

Var(f̃(0)) ≤ 1

nh2
E
[
K2

1(Z1/h)1{R1,2≥0}
]

=
4

n

∫
(1− ∥z∥)21{∥z∥≤0,z2≥0}f(hz1, hz2)dz

=
4

n

(
f(0)

∫
(1− ∥z∥)21{∥z∥≤1,z2≥0}dz + o(1)

)
=

4

n

(
f(0)

∫ 1

0

(1− r)2rdr

∫ π

0

dθ + o(1)

)
=

4

n

( π

12
f(0) + o(1)

)
where we used the dominated convergence theorem for the second equation. Then we

have

f̌(0) =
πh

3P (R1,2 ≥ 0)
f(0) + o(h) +Op(n

−1/2).
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APPENDIX D: ADDITIONAL FIGURES

Figure 4.10.— Estimation results over the 30 boundary points comparing two dis-

tance estimates with and without modifying the relative scale of two axes. Values from

1 through 30 in the x-axis corresponds values in Figure 4.8. Points from 1 through 15

are of exceeding the merit threshold among the need-eligible students; points from 16

through 30 are of exceeding the need threshold among the merit-eligible students.
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Figure 4.11.— The same estimates as Figure 4.10, comparing the scaled distance

estimates against the non-scaled rd2dim estimates. Values from 1 through 30 in the

x-axis corresponds values in Figure 4.8. Points from 1 through 15 are of exceeding the

merit threshold among the need-eligible students; points from 16 through 30 are of

exceeding the need threshold among the merit-eligible students.
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APPENDIX E: ADDITIONAL TABLES

mean mean mean mean var var var var

spec bias band opt band opt band2 prelim band bias band opt band opt band2 prelim band

common 0.794076 0.296791 NA 1.073086 0.030233 0.009093 NA 0.079046

rd2dim 0.794076 0.487928 0.451023 1.073086 0.030233 0.180021 0.120483 0.079046

distance 0.365445 0.175759 NA NA 0.001036 0.000615 NA NA

TABLE 5.2

Bandwidths values in simulation studies: Design 1, Lee shape.

mean mean mean mean var var var var

spec bias band opt band opt band2 prelim band bias band opt band opt band2 prelim band

common 0.764508 0.172198 NA 1.043899 0.006529 0.000332 NA 0.018939

rd2dim 0.764849 0.166120 0.082935 1.044551 0.006539 0.000088 0.000153 0.019033

distance 0.311965 0.144708 NA NA 0.000486 0.000298 NA NA

TABLE 5.3

Bandwidths values in simulation studies: Design 2, LM shape.

mean mean mean mean var var var var

spec bias band opt band opt band2 prelim band bias band opt band opt band2 prelim band

common 0.452217 0.117801 NA 0.649366 0.001988 0.000145 NA 0.007845

rd2dim 0.451275 0.161877 0.050484 0.647143 0.001857 0.000623 0.000060 0.006993

distance 0.217524 0.101804 NA NA 0.000181 0.000218 NA NA

TABLE 5.4

Bandwidths values in simulation studies: Design 3, additive shape.
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mean mean mean mean var var var var

spec bias band opt band opt band2 prelim band bias band opt band opt band2 prelim band

common 0.664811 0.221003 NA 1.073762 0.013142 0.005277 NA 0.079971

rd2dim 0.665097 0.265174 0.169662 1.073617 0.013127 0.051824 0.031091 0.080807

distance 0.554709 0.292187 NA NA 0.011424 0.005015 NA NA

TABLE 5.5

Bandwidths values in simulation studies: Design 4, LM2 shape.
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