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In practice, bidding rings at an English auction frequently distribute collusive
gains among the ring members via a nested knockout. This paper presents a
generic nested knockout and discusses the relationship between each distributive
outcome of this generic nested knockout and each solution of bidding ring games.
This paper shows that the outcome yielded by each nested knockout belongs to
the core. In particular, a �nest nested knockout can yield the Shapley value and
a nested knockout in which the surplus of each inner ring is minimal can yield
the nucleolus.
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1 Introduction

Bidding rings have been operated throughout the world. For example, Cassady
(1967) reported realistic bidding rings in many commodity �elds, such as the
antique trade, the �sh trade, and timber rights. A bidding ring is to elimi-
nate buyer competition and thus gain an advantage over sellers�side. Therefore
bidding rings are price in�uencing behavior in auctions.
Cassady (1967) explained that in a realistic English auction rings allocate

the object won the main English auction via a secondary English auction. This
secondary auction after the main auction is called a knockout. When bidders
have di¤erent evaluations for the object being auctioned, it is observed that
knockouts are repeated until the �nal owner of the object is determined. This
sequence of knockouts is called a nested knockout.
By following observations in Cassady (1967), Graham et al. (1990) formal-

ized a single nested knockout mathematically and considered the relationship
between the distributive outcome of the knockout and the Shapley value of a TU

�Graduate School of Economics, Keio University, 2-15-45, Mita, Minato-ku, Tokyo, 108-
8345, Japan. E-mail: oishi-t@gs.econ.keio.ac.jp
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game derived from collusive behavior, namely the bidding ring game. However,
in fact, there may exist many types of the nested knockout. This is because, in
general, size of an inner ring at each knockout nesting is variable and Graham
et al. (1990) focused on only one case with respect to size of an inner ring at
each knockout nesting.
This paper investigates the relationship between the distributive outcome

yielded by each nested knockout and each of TU game solutions such as the core,
the Shapley value and the nucleolus of the bidding ring game. My research is an
extension of Graham et al. (1990). In fact, I formalize a generic nested knockout
mathematically. The generic nested knockout allows not only variability of size
of an inner ring at each knockout nesting but also variability of the number
of participants of each knockout. Therefore, the generic nested knockout can
generate various nested knockouts including one considered in Graham et al.
(1990).
My approach to study bidding rings, which is inspired by Graham et al.

(1990), uses cooperative game theory. Most of literature on bidding rings since
Graham and Marshall�s (1987) seminal work concerns with mechanism design
theory. The literature assumes that bidders act noncooperatively under incom-
plete information on auctions and it demonstrates how to operate bidding rings.
However, this assumption underlying the mechanism design approach may not
be appropriate under some situation that there is strong possibility of coopera-
tion among bidders. An example is the situation that the number of all bidders
at a main auction is relatively small and each bidders at the auction has approx-
imately complete information on the auction. This example implies that some
bidding rings may be operated by cooperative behavior among bidders, not by
noncooperative behavior among bidders. Therefore cooperative game approach
is suitable to deal with the situations mentioned above.
Initially, I show that the distributive outcome yielded by each nested knock-

out belongs to the core of the bidding ring game. Therefore all nested knockouts
yield core imputations. Next, I show that some distributive outcomes can yield
one-point TU game solutions such as the Shapley value and the nucleolus. That
is to say, a nested knockout with the �nest nested structure can yield the Shapley
value and a nested knockout in which the surplus of each inner ring is minimal
can yield the nucleolus. The nested knockout with respect to the Shapley value
may be interpreted as one considered in Graham et al. (1990). The nested
knockout with respect to the nucleolus may be interpreted as one in which each
inner ring can guarantee its advantage for itself. Therefore, the present study
demonstrates that a generic distribution rule generated from practical obser-
vations of nested knockouts can yield core imputations including the Shapley
value and the nucleolus.
The remainder of the paper is organized as follows: in Section 2, I will give

the model of a generic nested knockout and I will characterize some nested
knockouts based on the generic one. Section 3 introduces bidding ring games
and demonstrates the relationship between each distributive outcome and each
solution of the bidding ring game by using formalizations in Section 2. The
paper closes in Section 4 with concluding remarks on two possible applications
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derived from the present study.

2 The model of nested knockouts

2.1 The generic nested knockout

In practice, bidding rings at a single-object English auction distribute collusive
gains among the ring members via a knockout. The knockout is a secondary
English auction only among ring members after the main auction.
When ring members have di¤erent evaluations for the object, it is common

to observe that knockouts are repeated until the �nal owner of the object is
determined. Then the knockouts facilitate nested ring structure. This structure
means that there is a ring formed at the present knockout within a ring formed
at its previous knockout. The sequence of knockouts is called a nested knockout.
A knockout is conducted at each level of knockout nesting. The procedure of a
nested knockout will be explained in this subsection.
Suppose that there are n buyers in the single-object English auction. Suppose

further that vi is the evaluation of each buyer i = 1; � � � ; n for the item being
auctioned, and v0 is the reservation price of the only seller for his item. Let
v1 > v2 > � � � > vn > v0 � 0.
There is possibility of a bidding rings at the main auction. Suppose that

n bidders form an initial ring R0 = N; where N = f1; � � � ; ng: At the main
auction, buyer 1 remains active in the bidding up to v1 and each buyer except
buyer 1 remains active in the bidding up to v0 or does not participate. Since
buyer 1 can win the main auction and pays v0 to the seller, R0 can get the net
gains v1 � v0:
After the main auction, the members in R0 make possible a sequence of

knockouts in which English auctions are used in order to determine distribu-
tions of collusive gains among all members in R0. This nested knockout has an
inductive distribution rule. The details of this rule will be also described as
follows:
Suppose that in the jth knockout mj (mj < mj�1 and m0 � n) buyers

form an inner ring Rj = f1; 2; � � � ;mjg; which is contained in an inner ring
of the previous knockout Rj�1 = f1; 2; � � � ;mj�1g. In the jth knockout, the
members of Rj appoint buyer 1 to remain active in the bidding up to v1 and
each buyer except buyer 1 to remain active in the bidding up to vmj+1 or not to
participate. The members of Rj�1nRj bid competitively. Since buyer 1 can win
the jth knockout and pays vmj+1 for the object, Rj can win the ownership
of the object and can get the net gains v1 � vmj+1. The di¤erence between
the knockout gains of Rj�1 (to be de�ned inductively) and the net gains of
Rj ; namely v1� vmj+1 is then equally divided among all participants of the jth
knockout. As the result of the jth knockout, each member of Rj�1nRj can get
this equal distribution as ultimate gains for colluding at the main auction. On
the other hand, Rj can get v1�v0 minus the total amount of the distribution to
the members of R0nRj . I call this gains especially the knockout gains of Rj . It
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is possible for the knockouts to continue in this manner for j = 1; 2; � � � ; t such
that Rt = f1g: In the �nal knockout, buyer 1 is determined as the �nal owner
of the object and ultimate gains of each member of R0 for colluding at the main
auction are determined.

I call ultimate gains of each member of R0 the distributive outcome yielded
by the generic nested knockout. From the above explanation, the distributive
outcome yielded by the generic nested knockout is de�ned immediately as follow:

De�nition 1 Let (zi)i2N be a distributive outcome yielded by the generic nested
knockout. Let Rj = f1; 2; � � � ;mjg where mj < mj�1 and let the number of par-
ticipants of the jth knockout be given by kj where mj�1 � mj + 1 � kj �
mj�1: Given N = R0 � R1 � � � � � Rt = f1g and (kj)tj=1 where kt =
mt�1; zi is de�ned inductively by z1 = v1 � v2 + zt and

zi =
vmj+1 � v0 �

Pn
l=mj�1+1

zl

kj
for mj + 1 � i � mj�1;

beginning with m0 � n;
Pn

l=m0+1
zl � 0 and continuing for j = 1; � � � ; t:

2.2 Speci�cation of the nested knockout

There may be many cases of the nested knockout. This is because size of an
inner ring at each knockout nesting and the number of participants of each
knockout are variable. I will characterize especially two distinct cases of the
nested knockout.

2.2.1 The �nest nested knockout

A simple nested knockout is the �nest nested knockout in the sense that the
number of knockouts is largest. I will formulate the �nest nested knockout as
follow:

De�nition 2 The �nest nested knockout is a nested knockout in which at each
jth knockout, the size of an inner ring is jRj j = n � j and the number of
participants is jRj�1j :

Then the distributive outcome of the �nest nested knockout is given by the
following proposition. The proof of this proposition will be omitted since it is a
matter of calculation derived from De�nition 1 and De�nition 2.

Proposition 1 Let (x̂i)i2N be a distributive outcome yielded by the �nest nested
knockout. Then x̂i is given by

x̂i =
n�1X
j=i

vj � vj+1
j

+
vn � v0
n

for i � n� 1

x̂n =
vn � v0
n

:
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2.2.2 The minimal surplus nested knockout

Let us consider a nested knockout in which the di¤erence between the knockout
gains of Rj and the net gains of Rj is minimal in each jth knockout. I call this
di¤erence the surplus of an inner ring Rj : The net gains of Rj is the worth that
Rj can get by itself. The knockout gains of Rj is the worth that Rj can get via
a nested knockout distribution rule mentioned in subsection 2.1. Therefore the
surplus of Rj is regarded as its advantages in forming Rj in the nested knockout.

De�nition 3 The minimal surplus nested knockout is a nested knockout in
which the surplus of an inner ring at each knockout nesting is minimal.

The above nested knockout is a nested knockout in which each inner ring
can guarantee its advantage for itself. The distributive outcome of this nested
knockout can be given as the following.

Proposition 2 Let (x�i )i2N be a distributive outcome yielded by the minimal
surplus nested knockout. Let Mi = vi � v0 for each i 2 N: Then x�i is given by
x�i = �t, x

�
1 = v1 � v2 + �t0 for m�

t�1 � k�t + 2 � i � m�
t�1 and 1 � t � t0 such

that m�
t0 = 1, where �t, k

�
t and m

�
t are de�ned inductively by

�t = min
k=2;��� ;m�

t�1

(
Mm�

t�1�k+2 �
Pt�1

i=0(k
�
i � 1)�i

k

)
;

k�t denotes the largest value of k for which the above expression attains its min-
imum and m�

t = m
�
t�1� k�t +1 (beginning with m�

0 � n; �0 � 0 and continuing
for t = 1; � � � ; t0 such that m�

t0 = 1).

Proof. The proof will be completed by the following two steps.

Step 1 : In the 1st knockout, for any �xed k 2 R0nf1g; let jR1j = n�k+1: The
net gains of R0 is M1 and the net gains of R1 is v1 � vn�k+2: If the number of
participants of R1 at the 1st knockout is f; then the surplus of R1 is given by

Mn�k+2 �
Mn�k+2
(k � 1) + f (k � 1) =

1
k�1
f + 1

�Mn�k+2:

If the surplus of R1 is minimal for any �xed k; then f = 1: Therefore the minimal
surplus of R1 is given by

�1 = min
k=2;��� ;n

�
Mn�k+2

k

�
:

Each member of R0nR1 can gain �1 as his distributive outcome. Take k1 as a
k giving �(1). Let R1 = f1; � � � ;m1g: Then m1 = n� k1 + 1:
In the 2nd knockout, for any �xed k 2 R1nf1g; let jR2j = m1 � k + 1: The

nested knockout gains of R1 is M1 � (k1 � 1)�1 and the net gains of R2 is
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v1 � vm1�k+2: If the number of participants of the 2nd knockout is g; then the
surplus of R2 is given by

1
k�1
g + 1

� (Mm1�k+2 � (k1 � 1)�1) :

If the surplus of R2 is minimal for any �xed k; then g = 1: Therefore the minimal
surplus of R2 is given by

�2 = min
k=2;��� ;m1

�
Mm1�k+2 � (k1 � 1)�1

k

�
:

Each member of R1nR2 can gain �2 as his distributive outcome. Take k2 as a k
giving �2. Let R2 = f1; � � � ;m2g: Then m2 = m1 � k2 + 1: Similarly, the same
procedure can be repeated until the distributive outcome of each members in
R0 is determined.

Step 2 : Next, I will show that in each ith nested knockout we can take
ki = k

�
i such that k

�
i is the largest k giving �i in order to decrease the number of

the knockouts. (That is to say, the distributive outcome yielded by the minimal
surplus nested knockout is independent on the number of the knockouts.)

Let kp and kq (kq < kp) be every k giving �1; namely �1 =
Mn�kp+2

kp
=

Mn�kp+2
kp

: Take kq as a k giving �1 in the 1st knockout. Let s1 = �1(kq�1); m1 =

n � kq + 1 and �2 = mink=2;��� ;m1

n
Mm1�k+2�s1

k

o
: I will prove (i)

Mn�kp+2
kp

=
Mm1�k�+2�s1

k� ; where k� = kp�kq+1 and (ii) for any k = 2; � � � ;m1;
Mn�k0+2

k0 �
Mm1�k+2�s1

k ; where k0 = k+ kq � 1: To show (i) and (ii) su¢ ces for the purpose
of Step 2 since the same procedure can be repeated until the t0th knockout.
Proof of (i):

Mm1�k�+2 � s1
k�

=
Mn�kq+1�(kp�kq+1)+2 � s1

kp � kq + 1

=
Mn�kp+2 �

Mn�kp+2
kp

(kq � 1)
kp � kq + 1

=
Mn�kp+2

�
1� kq�1

kp

�
kp � kq + 1

=
kp � kq + 1

kp
�
Mn�kp+2

kp � kq + 1

=
Mn�kp+2

kp
;

which completes the proof of (i).
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Proof of (ii): For any k = 2; � � � ;m1; it su¢ cies to prove k0 (Mm1�k+2 � s1) �
k �Mn�k0+2 � 0: For any k = 2; � � � ;m1;

k0 (Mm1�k+2 � s1)� k �Mn�k0+2

= (k + kq � 1)
�
Mn�kq+1�k+2 � �1 (kq � 1)

�
� k �Mn�(k+kq�1)+2

= (kq � 1)Mn�kq+k+3 � (k + kq � 1)�1 (kq � 1)

= (kq � 1)(k + kq � 1)
�
Mn�kq�k+3

k + kq � 1
� �1

�
= (kq � 1)(k + kq � 1)

�
Mn�k0+2

k0
� �1

�
� 0;

since
Mn�k0+2

k0 � �1 from the de�nition of �: This completes the proof of (ii).
Therefore, in each ith nested knockout we can take k�i as the largest value of

k for which the formula of �t attains its minimum and we have m�
i = m

�
i�1 �

k�i + 1; which completes the proof.

Remark 1 The distributive outcome yielded by the minimal surplus nested knock-
out x� satis�es x�1 � x�2 � � � � � x�n owing to Step 2 in the proof of Proposition
2. In other words, the minimal surplus nested knockout has order-preserving in
the sense that x�1 � x�2 � � � � � x�n if v1 > v2 > � � � > vn: Also, obviously, the
distributive outcome yielded by the �nest nested knockout has order-preserving.

The following example gives the distributive outcome yielded by the minimal
surplus nested knockout of a 7 buyers case.

Example (A 7-buyers case)

v1 = 30; v2 = 25; v3 = 21; v4 = 15; v5 = 14; v6 = 11; v7 = 10; v0 = 5:

The 1st knockout:

�1 = min

�
M7

2
;
M6

3
; � � � ; M2

7

�
= min

�
5

2
;
6

3
;
9

4
;
10

5
;
16

6
;
20

7

�
= 2

k�1 = 5; x�i = �1 = 2 (i = 4; 5; 6; 7)

m�
1 = n� k�1 + 1 = 3

The 2nd knockout:

�2 = min

�
M3 � (k�1 � 1)�1

2
;
M2 � (k�1 � 1)�1

3

�
= min

�
8

2
;
12

3

�
= 4

k�2 = 3; x�i = �2 = 4 (i = 2; 3)

m�
2 = m

�
1 � k�2 + 1 = 1 = m�

t0

x�1 = v1 � v2 + �t0 = v1 � v2 + �2 = 9

The distributive outcome yielded by the minimal surplus nested knockout is given
by x� = (9; 4; 4; 2; 2; 2; 2).
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3 Solutions of bidding ring games

3.1 Bidding ring games

A bidding ring game at an English auction under complete information is the
TU game introduced by Graham et al. (1990). Let N = f1; � � � ; ng be the
�nite set of buyers, and S � N be a coalition. Let vi be the evaluation of each
buyer i for the only item being auctioned, and v0 be the reservation price of
the only seller for his item. Suppose that v1 > v2 > � � � > vn > v0 � 0. Let us
consider an English auction with a possibility of bidding ring among buyers of
the auction. This situation can be described as the TU game (N; v) satisfying

v(S) =

(
v1 �maxj =2S vj if 1 2 S
0 if 1 =2 S;

where maxj =2N vj � v0: We call this game the bidding ring game.
The characteristic function of this game denotes the net gains that S can

guarantee for itself. This function is based on the followings. First, under
the English auction rule, it is a dominant strategy for each bidder to remain
active until bidding reaches his evaluation. Second, in any S including buyer
1, S makes buyer 1 the sole essential bidder in the coalition. Then, if each
buyer in S except buyer 1 has higher evaluation than maxj =2S vj ; he remains
active until bidding reaches maxj =2S vj . If each buyer in S except buyer 1 has
lower evaluation than maxj =2S vj ; then he remains active until bidding reaches
his evaluation. Since each bidder in NnS remains active until bidding reaches
his evaluation, by the auction rule, the coalition S can win the auction with the
net gains v1 �maxj =2S vj : Lastly, in any S not including buyer 1, this coalition
cannot win the auction, hence the net gains is 0:

Remark 2 The bidding ring game is convex (See Graham et al. (1990)). There-
fore the core of this game is nonempty. Furthermore, in this game, Shapley value
and the nucleolus belong to the core.

The following subsections 3.2 and 3.3 discuss the relationship between each
distributive outcome of the nested knockout and each solution of bidding ring
games at an English auction. I will state here that well-known one point solutions
such as the Shapley value and the nucleolus can be characterized by the nested
knockouts respectively.

3.2 The core and the Shapley value

An n-dimensional vector x of the bidding ring game is a payo¤ vector if it
satis�es that

P
i2N xi = v(N): Then the core of the present game is a set of

payo¤ vectors x satisfying
P

i2S xi � v(S) for all S � N:
The Shapley value �(v) of this game is a payo¤ vector given by the formula

�i(v) =
X

S�N; i=2S

jSj!(n� jSj � 1)!
n!

(v(S [ i)� v(S)) ; 8i 2 N:

8



Proposition 3 Each distributive outcome yielded by the generic nested knock-
out belongs to the core.

Proof. Let z 2 Rn be the distributive outcome yielded by the generic nested
knockout. From De�nition 1, z is a payo¤ vector. If 1 =2 S; then

P
i2S zi >

0 = v(S): If 1 2 S; then it su¢ ces to show
P

i2S zi � v(S) such that S = Rj(=
f1; � � � ;mjg) since zi > 0: Recall that Rj gets v1 � v0 minus the total amount
of the distribution to the members of NnRj .
Then we haveX

i2S
zi � v(S) = v1 � v0 �

X
i2NnRj

zi �
�
v1 � vmj+1

�

=

�
1� mj�1 �mj

kj

�0@vmj+1 � v0 �
X

i2NnRj

zi

1A
> 0;

since mj�1�mj < kj and vmj+1�v0�
P

i2NnRj
zi > 0; which are derived from

De�nition 1. This completes the proof.

Proposition 4 The distributive outcome yielded by the �nest nested knockout
is the Shapley value.

Proof. It is obvious since Theorem 2 in Graham et al. (1990) and Proposition
1 in the present paper.

3.3 The nucleolus

Let X be the set of all imputations of the bidding ring game, namely X = fx 2
Rnj

P
i2N xi = v(N); xi � v(fig) for all i 2 Ng. Obviously, X 6= ;: Given

an imputation x 2 X for this game, the excess of a coalition S with respect
to x is de�ned as the number v(S)�

P
i2S xi and let e(x) denote the (2

n � 2)
dimensional vector, the components of which are all non-trivial excesses, namely
the excesses of every coalition S 6= N; ; with respect to x, arranged in the non-
increasing order. The nucleolus of v is de�ned as the set of imputations such
that the vector e(x) is lexicographically minimal over X. It is well known that
the nucleolus is not empty and a singleton (Schmeidler (1969)).
Let v0 be the 0-normalization of v, that is, v0(S) = v(S) �

P
i2S v(fig) for

every coalition S. It is well known that an imputation z is the nucleolus of the
game v if and only if an imputation z0 satisfying z0i = zi � v(fig) for each i in
N is the nucleolus of the game v0.

Proposition 5 The distributive outcome yielded by the minimal surplus nested
knockout is the nucleolus.

9



Proof. Let v be the 0-normalization of a bidding ring game and let Mi =
vi � v0 for each i 2 N: Then,

v(S) =

8><>:
M2 if S = N

M2 �maxi=2SMi if 1 2 S ( N
0 if 1 =2 S:

In the followings, I will focus on the game v stated above.
Let us consider how to divide the net gains of R0 minus v1 � v2 among all

members of R0: By Proposition 2, we can give a modi�ed distributive outcome
as follow:
(P): Let (x�i )i2N be a modi�ed distributive outcome yielded by the minimal

surplus nested knockout. Let Mi = vi � v0 for each i 2 N: Then x�i is given by
x�i = ��t, x�1 = ��t0 for m�

t�1 � k�t + 2 � i � m�
t�1 and 1 � t � t0 such that

m�
t0 = 1, where �t, k

�
t and m

�
t are de�ned inductively by

�t = max
k=2;��� ;m�

t�1

(
�
Mm�

t�1�k+2 +
Pt�1

i=0(k
�
i � 1)�i

k

)
;

k�t denotes the largest value of k for which the above expression attains its
maximum and m�

t = m�
t�1 � k�t + 1 (beginning with m�

0 � n; �0 � 0 and
continuing for t = 1; � � � ; t0 such that m�

t0 = 1).
It su¢ ces to show the distributive outcome stated in (P) is the nucleolus of

v: The proof is based on Kopelowit0z algorithm. Initially consider the optimal
solution to the following problem (I) as

min �

s:t:
X
i2S

xi � �� 8S ( N : 1 =2 SX
i2S

xi �M2 �max
i=2S

Mi � � 8S ( N : 1 2 SX
i2N

xi =M2

xi � 0 8i 2 N:

� is bounded below and for � = 0, x satisfying x1 = M2 and xi = 0 for
i 6= 1 is feasible. Hence, the optimal solution to problem (I) exists and � � 0.
If 1 =2 S, then the corresponding constraint is dominated by the constraints

xi � �� i = j(S); j(S) + 1; � � � ; n

for the coalitions fj(S)g,fj(S) + 1g,� � � ,fng where j(S) = minfjjj 2 S; 1 =2 Sg
because S � fj(S); j(S) + 1; � � � ; ng and xi � 0 for i = 1; � � � ; n: If 1 2 S, then
the corresponding constraint is dominated by

kX
i=1

xi �M2 �Mk+1 � � k = 1; � � � ; ~j(S)� 1
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for the coalition f1; 2; � � � ; ~j(S)� 1g where ~j(S) = minfjjj =2 S; 1 2 Sg because
xi � 0 for i = 1; � � � ; n. Problem (I) may, therefore, be simpli�ed to the following
problem (I0) as

min �
s:t: xi � �� 8i 2 N

kX
i=1

xi �M2 �Mk+1 � � k = 2; � � � ; n� 1X
i2N

xi =M2

xi � 0 8i 2 N:

I now claim that the optimal value to problem (I0) is

�1 = max

�
�Mn

2
;�Mn�1

3
; � � � ;�M2

n

�
;

which is as de�ned in (P). Since it is trivial that � � max
�
�Mn

2 ; � � � ;�
M2

n

	
, it

su¢ ces to show that � = max
�
�Mn

2 ; � � � ;�
M2

n

	
. Let x0 satisfying x01 = ��+a1,

x02 = ��+ a2 and x0i = �� for i 6= 1; 2 (a1 � 0; a2 � 0 and a1 + a2 =M2 + n�).
Then I will show that x0 is feasible for � = max

�
�Mn

2 ; � � � ;�
M2

n

	
. It is trivial

that x0i � �� for any i in N ,
P

i2N x
0
i = M2, and x0i � 0 because � � 0.

Moreover, for k = 2; � � � ; n� 1; we have

kX
i=1

x0i � (M2 �Mk+1 � �) = (n� k + 1)�+Mk+1

� (n� k + 1)
�
� Mk+1

n� k + 1

�
+Mk+1 = 0

because � � max
�
�Mn

2 ; � � � ;�
M2

n

	
. Therefore, for � = max

�
�Mn

2 ; � � � ;�
M2

n

	
,

x0 is feasible. This establishes the claim.
This claim implies that we have

x�i = ��1 i = n� k�1 + 2; � � � ; n
n�k�1+1X
i=1

x�i =M2 �Mn�k�1+2 � �1

where �1 and k�1 are as de�ned in (P). If k
�
1 6= n � 1, variables x�m�

1+1
; � � � ; x�n

where m�
1 is as de�ned in (P) may be eliminated from problem (I0), together

with the additional equality constrains involving every coalition S � fm�
1 +
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1;m�
1 + 2; � � � ; ng. Problem (II) may be written

min �
s:t: xi � �� i = 1; � � � ;m�

1
kX
i=1

xi �M2 �Mk+1 � � k = 2; � � � ;m�
1 � 1

m�
1X

i=1

xi =M2 + (k
�
1 � 1)��1

xi � 0 i = 1; � � � ;m�
1:

This is of precisely the same form as problem (I0), so the same procedure may
be repeated for t = 1; � � � t0 such that m�

t0 = 1, therefore, the proof is completed.

4 Concluding Remarks

I will give concluding remarks by mentioning two possible applications derived
from the present study.

(1) Let v be the monotonic game, that is, v(S) � v(T ) whenever S � T � N .
For each coalition S, let the value of v(N)�v(N nS) be the marginal contribution
of S to the grand coalition N . Note that the marginal contribution of each
coalition to the grand coalition is non-negative because of the monotonicity of
v. For every singleton S = fig, the value of v(N)� v(N nS) is especially called
the marginal contribution of player i to the grand coalition. Oishi (2006) de�ned
a monotonic game as follow:
v is a game with collectively contributing coalitional leaders if it satis�es

that
v(N)� v(NnS) = max

i2S
(v(N)� v(Nnfig)) ; 8S � N:

The game v stated above describes a situation that for each coalition S, the
marginal contribution of S to N is made by a player with the highest marginal
contribution to N among all the members in S. Then the player whose marginal
contribution to N is highest in S is a collectively contributing coalitional leader.
Oishi (2006) presented that the bidding ring game is a game with collectively

contributing coalitional leaders. Therefore, the results in the present study can
be generalized to games with collectively contributing coalitional leaders. As an
application along this line, we can calculate the Shapley value and the nucleolus
of the sewerage system game, which deals with the bene�t allocation problem
of cities sharing a sewer and a sewage plant on a river (See Oishi (2006)). This
implies that the result of the preset study may apply to various bene�t allocation
problems de�ned on the line graph.

(2) Let (N; v) be a coalitional game. A game (N; v) will be abbreviated to
v: Oishi and Nakayama (JER, forthcoming) de�ned the anti-dual of v to be

12



the dual of (�v): As an economic meaning of the anti-dual, the anti-dual game
may be considered as a cost game when we regard the original game as a pro�t
game. A good example of the anti-dual is the relation between the airport game
due to Littlechild (1974) with one aircraft in each type and the bidding ring
game. Oishi and Nakayama (JER, forthcoming) showed that solutions such
as the core, the Shapley value and the nucleolus of the anti-dual are obtained
straightforwardly from original games.
The anti-dual of the bidding ring game is the simple airport game mentioned

above. Therefore the generic distribution rule considered in the present study
may lead to the core, the Shapley value and the nucleolus of the simple airport
game.
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